
   

 

1 
 

 

 

 

PREVENTION AND MANAGEMENT OF WILDFIRES: 

VULNERABILITY MAPPING AND MACHINE LEARNING-

BASED ALGORITHM DEVELOPMENT FOR FUEL MAPPING 

USING HYPERSPECTRAL IMAGERY 

Thesis submitted in partial fulfilment of the requirements for the degree of Doctor 

of Philosophy in Energy and Environment (Science and Technology for the 

Industrial Innovation) at the Faculty of Engineering, La’ Sapienza University of 

Rome, Italy 

 

PhD Student  

Riyaaz Uddien Shaik 

Supervisor          

Prof. Giovanni Laneve 

 

XXXIV Cycle 

Department of Astronautics Electrical and Energy Engineering (DIAEE) 

La’ Sapienza University of Rome, Italy 

January 2022 

 



   

 

2 
 

CONTENTS 

LIST OF FIGURES ......................................................................................................................... 4 

LIST OF TABLES ........................................................................................................................... 6 

LIST OF ACRONYMS ................................................................................................................... 7 

PUBLICATIONS ............................................................................................................................ 8 

ABSTRACT ................................................................................................................................... 10 

INTRODUCTION ........................................................................................................................ 13 

1.1. Overview on Wildfires ................................................................................................. 13 

1.2. Forest as Fuels ................................................................................................................ 16 

1.3. Overview on Remote Sensing ...................................................................................... 17 

1.4. Introduction to Hyperspectral Images ....................................................................... 19 

1.5. Hyperspectral Image Classification: Challenges ...................................................... 23 

1.6. State-of-the-Art .............................................................................................................. 25 

1.6.1. Related Work on Wildfire Vulnerability Map ................................................... 25 

1.6.2. Related Work on Wildfire Fuel Map .................................................................. 27 

1.7. Objectives of this Dissertation ..................................................................................... 28 

1.8. Structure of the Thesis .................................................................................................. 29 

WILDFIRE VULNERABILITY MAP ........................................................................................ 30 

2.1. Introduction to Vulnerability Map .................................................................................. 30 

2.2. Fire Vulnerability Indices .................................................................................................. 31 

2.3. Study Area ........................................................................................................................... 34 

2.4. Materials and Methods ...................................................................................................... 36 

2.4.1. Exposure ....................................................................................................................... 36 

2.4.2. Sensitivity ..................................................................................................................... 40 

2.4.3. Coping Capacity .......................................................................................................... 44 

2.5. Results and Discussions .................................................................................................... 47 

2.5.1. Vulnerability Map ....................................................................................................... 47 

FUEL TYPES CLASSIFICATION USING PRISMA HYPERSPECTRAL DATA ............ 49 

3.1. PRISMA Hyperspectral Data ............................................................................................ 50 

3.2. Study Area ........................................................................................................................... 51 

3.3. Materials and Methods ...................................................................................................... 52 

3.3.1. Pre-processing of Hyperspectral data ...................................................................... 52 



   

 

3 
 

3.3.2. Reference Data ............................................................................................................. 55 

3.3.3. Pixel Extraction ............................................................................................................ 57 

3.3.4. Techniques Used ......................................................................................................... 58 

3.3.5. Dataset Preparation ..................................................................................................... 64 

3.4. Results and Discussions .................................................................................................... 66 

3.4.1. Fuel Types Classification ............................................................................................ 66 

3.4.2. Stability Analysis ......................................................................................................... 69 

ANDERSON-BASED FUEL MAPPING .................................................................................. 73 

4.1. Introduction to Anderson fuel models ............................................................................ 73 

4.2. Further classification .......................................................................................................... 75 

4.3. Fuel map generation .......................................................................................................... 75 

SCOTT/BURGAN-BASED FUEL MAPPING ......................................................................... 78 

5.1. Introduction to Scott/Burgan dynamic fuel models ...................................................... 78 

5.2. Study Area and Classification .......................................................................................... 82 

5.3. Relative Greenness ............................................................................................................. 83 

5.4. Fuel Map Generation ......................................................................................................... 85 

VALIDATION OF ALGORITHM ............................................................................................ 87 

6.1. Validation with reference data ......................................................................................... 87 

6.2. Validation with ground data ............................................................................................ 90 

6.3. Validation with field data ................................................................................................. 93 

6.3.1. North - East Latium ..................................................................................................... 94 

6.3.2. South-East Sardinia ..................................................................................................... 95 

6.3.3. North-Sardinia ............................................................................................................. 95 

SYSTEM ARCHITECTURE ..................................................................................................... 100 

6.1. MATLAB based Graphic User Interface ....................................................................... 100 

SWOT ANALYSIS OF HYPERSPECTRAL REMOTE SENSING FOR WILDFIRE FUEL 

MAPPING .................................................................................................................................... 103 

7.1.  Breakdown of SWOT category ...................................................................................... 104 

CONCLUSIONS ......................................................................................................................... 107 

8.1. Contributions of this Dissertation .................................................................................. 107 

8.2. Future Research Developments ..................................................................................... 108 

REFERENCES ............................................................................................................................. 110 

 



   

 

4 
 

LIST OF FIGURES 

 

Fig 1. Temporal phases in the fire disturbance continuum (Jain et al. 2004) ........... 15 

Fig 2. General scheme of a supervised image classification approach. Available 

prior information can be used in both the classification stage and the data 

processing stage. ............................................................................................................... 25 

Fig 3. Description of Vulnerability Index ...................................................................... 31 

Fig 4. Region of Interest for Wildfire Vulnerability Analysis .................................... 35 

Fig 5. Map of population density, road density and land cover, with normalized 

values divided in 5 classes, for the AOI of Sardinian Island ...................................... 39 

Fig 6. Map of exposure for the AOI of Sardinia ........................................................... 40 

Fig 7. Map of sensitivity for the AOI of Sardinia ......................................................... 44 

Fig 8. Coping Capacity in the AOI of Sardinia ............................................................. 46 

Fig 9. Vulnerability maps for the AOI of Sardinia, expressed in normalized value 

and by classes .................................................................................................................... 48 

Fig 10: Process Flow Chart .............................................................................................. 50 

Fig 11. Geographic location of the image considered for processing. ...................... 52 

Fig 12. Noisy Lines on PRISMA Imagery ...................................................................... 53 

Fig 13. Classification Map (Vegetation and Non-Vegetation) ................................... 54 

Fig 14. CORINE Land Cover Map .................................................................................. 56 

Fig 15. Nature System Map ............................................................................................. 56 

Fig 16. Grasslands Map .................................................................................................... 57 

Fig 17. Process Flowchart of Dataset Preparation ........................................................ 66 

Fig 18. Classification Map of 18 classes ......................................................................... 68 

Fig 19. Classification Map of Mixed Pixels ................................................................... 69 

Fig 20. (left) Fuel Map [27-06-2021] and (right) Fuel Map [31-07-2021] .................... 70 

Fig 21. (left) Castel Porziano [27-06-2021] and (right) Castel Porziano [31-07-2021]

 ............................................................................................................................................. 71 

Fig 22. (left) NDVI Castel Porziano [27-06-2021] and (right) NDVI Castel Porziano 

[31-07-2021] ........................................................................................................................ 71 

Fig 23. Classification of Sparse Grasslands ................................................................... 75 

Fig 24. Wildfire Fuel Map ................................................................................................ 77 

Fig 25. Procedure of dynamic fuel mapping ................................................................ 82 

Fig 26. PRISMA image of the study area. ...................................................................... 83 

Fig 27. Relative Greenness Map...................................................................................... 84 

Fig 28. Classified Map for West-Latium ........................................................................ 85 

Fig 29. Dynamic Fuel Map............................................................................................... 86 



   

 

5 
 

Fig 30. (a) Reference Fuel Map (Courtesy of FirEUrisk project) (b) Classification 

Map (from PRISMA) (c) Fuel Map (from PRISMA) and d) RGB (from PRISMA) .. 92 

Fig 31. Validation Areas ................................................................................................... 94 

Fig 32. Validation Points for (i) North-West Sardinia, (ii) South-West Sardinia and 

(iii) West Latium ............................................................................................................... 96 

Fig 33. MATLAB GUI Layout ....................................................................................... 101 

Fig 34. MATLAB based Graphic User Interface for Wildfire Fuel Mapping ......... 102 

Fig 35. README file for using GUI ............................................................................. 102 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

6 
 

LIST OF TABLES 

 

Table 1: Technical characteristics of some hyperspectral sensors developed over 

last years (Atiya et al. 2022) ............................................................................................. 22 

Table 2: Definition of the three components of vulnerability and the corresponding 

variables collected............................................................................................................. 33 

Table 3: Parameters and variables for the analysis of exposure ................................ 36 

Table 4: Brief description of the process of analysis of the variables included in 

exposure assessment ........................................................................................................ 37 

Table 5: Weighting of land cover categories, relation with fire and references ...... 37 

Table 6: Parameters and variables for the analysis of sensitivity .............................. 41 

Table 7: Parameters and variables for the analysis of coping capacity ..................... 45 

Table 8. Cross Validation of Images............................................................................... 71 

Table 9. Fuel Models (With correspondence to JRC) ................................................... 73 

Table 10. Fuel Types with correspondence to Anderson Codes ................................ 76 

Table 11. Scott/Burgan Standard Fire Behaviour Models, Fuel Types and Fuel 

Numbers ............................................................................................................................ 78 

Table 12. Confusion Matrix of Classified Map ............................................................. 88 

Table 13. Fuel models encountered during the field campaigns ............................... 96 

Table 14. Confusion Matrix for field campaign............................................................ 99 

Table 15. SWOT Matrix .................................................................................................. 104 

 

 

 

 

 

 

 



   

 

7 
 

LIST OF ACRONYMS 

Acronym Definition 

HSI Hyperspectral Imagery 

PRISMA PRecursore IperSpettrale della Missione Applicativa 

ASI Italian Space Agency 

DEM Digital Elevation Model 

LUCAS Land Use/Cover Area Frame Survey 

GIS Geographic Information System 

JMSAM Jeffries Matusita Spectral Angle Mapper 

UNESCO United Nations Educational, Scientific and Cultural 

Organization 

RAS Regional Administration of Sardinia 

AVIRIS Airborne Visible/Infrared Imaging Spectrometer 

EO Earth Observation 

 

 

 

 

 

 

 

 

 



   

 

8 
 

PUBLICATIONS 

 

CONFERENCE PROCEEDINGS 

[1] Riyaaz Uddien Shaik, Giovanni Laneve, Lorenzo Fusilli. ‘New Approach of 

Sample Generation and Classification for Wildfire Fuel Mapping on Hyperspectral 

(PRISMA) Image’. IEEE International Geoscience and Remote Sensing Symposium 

2021. 

[2] Riyaaz Uddien Shaik, Valerio Pampanoni, Giovanni Laneve. ‘Support Wildfire 

Management in Mediterranean Territories Using Multi-Source Satellite Data’. 

October 2019, 12th EARSeL eProceedings. 

[3] Valerio Pampanoni, Riyaaz Uddien Shaik. ‘Daily Fire Hazard Index for the 

Prevention and Management of Wildfires in the Region of Sardinia’. September 

2019, AIDAA eProceedings, Rome, Italy. 

[4] Riyaaz Uddien Shaik, Giovanni Laneve, Lorenzo Fusilli. ‘Dynamic Wildfire Fuel 

Mapping Using Sentinel-2 and PRISMA Hyperspectral Imagery’. IEEE International 

Geoscience and Remote Sensing Symposium 2022. 

JOURNAL ARTICLES 

[1] Riyaaz Uddien Shaik, Giovanni Laneve, Lorenzo Fusilli. ‘An Automatic 

Procedure for Forest Fire Fuel Mapping Using Hyperspectral (PRISMA) Imagery: 

A Semi-Supervised Classification Approach’. March 2022, Remote Sensing 

14(5):1264. 

[2] Riyaaz Uddien Shaik#, Giovanni Laneve#, Valerio Pampanoni#. ‘The Daily Fire 

Hazard Index: A Fire Danger Rating Method for Mediterranean Areas’. July 2020, 

Remote Sensing 12(15): 2356. 

 



   

 

9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

10 
 

ABSTRACT 

 

Fire is a major ecological disturbance and threatening factor of ecosystem 

sustainability around the world and specifically in Mediterranean regions. Natural 

vegetation ecosystems are important environmental resources that provide various 

benefits to the human society whereas it also acts as fuel for wildfires. Hyperspectral 

imagery (HSI) is a passive technology which has the ability to classify the wildfire 

fuel types in a scene by means of several (hundreds) narrow band spectral 

acquisitions. This PhD thesis focused on developing a wildfire vulnerability map 

using GIS data for Sardinia and a procedure for wildfire fuel mapping using 

PRISMA HSI. 

Firstly, wildfire vulnerability map was generated using the vulnerability index 

comprising of the three main components: exposure, sensitivity and coping 

capacity. Exposure, representing the presence of assets (people, property and 

ecosystems) in areas where wildfires occur. Sensitivity, representing the degree to 

which these assets can be affected by a wildfire, linked to their predisposition to 

suffer certain type and magnitude of losses. Coping capacity, related to the 

measures applied to anticipate potential effects or to respond in case of fire occurs, 

based on institutional practices within several countries. Composite indices for each 

of the components were created using GIS data of population density, fuel types, 

location of protected areas, roads infrastructure and surveillance activities, taking 

into account the effect of the third dimension wherever is necessary. The additive 

type model was selected for the aggregation of components by allocating weights 

in the order of importance, mainly to differentiate the effects of individual elements 

and to streamline the interpretation of the outputs. Specifically, non-coping capacity 

was improved by including road density along with other institutional variables 

such as firefighters and surveillance areas. The vulnerability map of Sardinia 
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developed by combining exposure map, sensitivity map and non-coping capacity 

map was shown. In this map, the value ranges from 0 to 1 representing from lower 

to higher vulnerable pixels correspondingly. 

Secondly, a semi-supervised machine learning approach for discriminating the 

wildfire fuel types was developed for the hyperspectral imagery (HSI) of PRISMA, 

a recently launched satellite of Italian Space Agency. Though machine learning 

classifiers provide better accuracy comparatively, many remote sensing specialists 

hesitate to use them because of the unavailability of required datasets. So, here, a 

procedure was developed to generate samples using single spectral signature as 

input data point for each class to apply support vector machine classifier and 

followed by, unmixing of mixed pixels by fully constrained linear mixing model. 

The procedure developed for classifying the fuel types available in the image of 

south-west Sardinia covering a part of Monte-Arcosu Forest and 18 different fuel 

types were classified in this region of interest. 

In order to correlate the classified fuel types to fuel models of Anderson or 

Scott/Burgan, further classification was carried out. Fuel types were classified 

according to the sparse/dense type, plain/mountainous type, open/closed type, and 

climatic conditions and for which available maps such as biomass, DEM, Tree Cover 

Density Map and iso-bioclimatic condition map were used respectively. Relative 

Greenness map was generated using time-series Sentinel-2 data. Then, the 

procedure of conversion from classified map to fuel map according to the JRC 

Anderson Codes and Scott/Burgan standard fuel models has been presented. The 

procedure was implemented on the HSI images obtained for south of Sardinian 

Island and for north-west of Latium in Italy as demonstration purpose. The 

classified map has been validated in different ways i.e. by using reference data, 

ground data and field data and obtained an overall accuracy of greater than 80% for 

all the cases. The stability of this approach was also tested by repeating the 
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procedure on another HSI obtained on Latium in Italy and obtained degree of 

confidence greater than 95%. The proposed approach in this work can be used to 

generate wildfire fuel map using hyperspectral (PRISMA) data with higher 

accuracy over any part of Europe using LUCAS points as input. SWOT analysis has 

been conducted to understand the Strengths, Weaknesses, Opportunities and 

Threats of PRISMA hyperspectral imagery for wildfire fuel mapping. Though it is 

not possible to overcome all the weaknesses and threats, strategies to overcome 

some of them were discussed. 

Thus, the most vulnerable spots of wildfires can be referred using the developed 

vulnerability map whereas the wildfire fuels can be mapped-in for the areas of 

interest with hyperspectral image of PRISMA as per the proposed approach. Fuel 

map is useful to fire managers, researchers, policy makers and systems in 

applications such as study of fire behaviours, fire potential, fire emissions, carbon 

budget, fuel management, fire effects and ecosystem modelling. With this, it can be 

considered that this work has a major role in the prevention and management of 

wildfires. 

Keywords: Wildfires; Vulnerability Map; Fuel Map; Machine Learning; Fuel 

Models; 
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INTRODUCTION 

 

1.1. Overview on Wildfires 

Fire is a significant ecological disturbance and threatening factor in ecosystem 

sustainability worldwide, specifically in Mediterranean regions. A researcher has 

considered the fire as the most giant "herbivore" on Earth with general dietary 

preferences (Bond and Keeley 2005). Fire occurs in variety of forms including high 

intensity crown fires to long-duration ground fires in organic soil with relatively 

low intensities (van der Werf et al. 2017). Fire regimes and ecosystems are rapidly 

changing at historically unprecedented rates. For example, fire activity has 

significantly increased in boreal forest ecosystems and declines in savannas 

(Veraverbeke et al. 2018a; Stavros et al. 2014; Dennison et al. 2006).  

Fire is the main cause of forest destruction in the countries of the Mediterranean 

basin. The main reasons for the forest fires can be divided into two as natural 

(temperature, wind etc.,) and anthropogenic (human-made) causes. The 

predominating climatic conditions of the Mediterranean basin are significantly 

affecting the forest situation. Long summers (extending from June to October and 

sometimes even longer), with virtually no rain and average daytime temperatures 

well over 30oC, reduce the moisture content of forest litter to below 5%. Under these 

conditions, even a small addition of heat (a lightning, a spark, a match, a cigarette 

butt) can be enough to start a violent conflagration. Together with the heat and lack 

of moisture, wind is another influential climatic factor. The inland summer winds 

characterized by high speeds and strong desiccating power, for example, the mistral 

of France, the khamsin in Lebanon and Syria, the sirocco of Catalonia and Italy, the 

sharav in Israel, and the sirocco in the Maghreb, as well as the poniente in Valencia 

and the levante in the Straits of Gibraltar, cause atmospheric humidity to fall below 

30% and contribute to the spread of fires by carrying sparks over great distances. 
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The dry and cold winds of the Mediterranean winters can also increase the danger 

of fire. For example, the foehn that blows southwards over the northern Italian Alps, 

and the southerly wind that blows across the north of Spain from the Central 

Meseta, often fan small, deliberately set fires out of control (Arbez, Birot, and 

Carnus 2002). For the anthropogenic, humans have become an increasingly 

important driver of fire occurrence (Bowman et al. 2011). Human activity has 

enhanced fire activity in locations such as deforestation zones, while fire 

suppression and conversion of fire prone landscapes such as savannas to 

agriculture in Africa, or of fire-maintained open lands to closed-canopy forests in 

the eastern US has generally decreased fire activity (van der Werf et al. 2017; 

Bowman et al. 2009). 

The fire disturbance continuum discriminates between discrete temporal phases 

during which fire processes occur (Jain et al. 2004). The fire disturbance continuum 

includes pre-fire, active, and post-fire environments as shown in Fig 1. The pre-fire 

environment refers to the type, and condition of fuels as influenced by climate, 

weather and land management. The active fire environment is the phase during 

which fires spread over the landscape. Topography, fuels and fire weather influence 

active fire behavior and intensity. Fire intensity describes the physical combustion 

process of energy release from organic matter (Keeley 2009) and is directly related 

to fire emissions (Wooster et al. 2005). Finally, the post-fire environment is what is 

left after the fire is extinguished. The post-fire environment is often described 

interchangeably with the terms fire and burn severity (Boer et al. 2008; Keeley 2009). 

Here, we define fire severity as the degree of environmental change caused by a fire 

as evidenced immediately after the fire without recovery effects (Lentile et al. 2006; 

Morgan et al. 2014; Veraverbeke et al. 2018b). Conversely, burn severity gauges both 

the immediate fire-induced change and vegetation recovery. Fire and burn severity 

include fire effects on vegetation and soil (Morgan et al. 2014; Parsons et al. 2010). 
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Fig 1. Temporal phases in the fire disturbance continuum (Jain et al. 2004) 

 

Over the last five decades, researchers have paid much attention to the ecological 

impacts of fire. The study of fire includes a broad spectrum of scientific disciplines 

including ecology, forestry, mechanical engineering (fire propagation patterns), 

atmospheric chemistry (gas emissions) and geography (spatial analysis of fire 

occurrence), to name just a few examples (Arroyo, Pascual, and Manzanera 2008). 

Fire behaviour helps determine the impact of fire to a more considerable extent. Fire 

behaviour is one of the reasons for causing different ecological impacts, and also it 

helps to determine the optimal suppression strategy for any given fire (Vakalis et 

al. 2004a, 2004b; Keramitsoglou et al. 2004; Whelan 2009). Fire intensity and rate of 

spread are two important determinants of fire behaviour that are affected, among 

other factors, by the fuel load, the type of fuel, and the fuel continuity (Whelan 

2009). Fuel types vary with different species; for instance, Pinus halepensis is more 

flammable than others (Vakalis et al. 2004a) due to the highly flammable resins and 

oils content, producing high-intensity fires. At the same time, fuel continuity and 

fuel load relate to the percentage of the surface covered by vegetation, in other 

words, by potential fuels (Whelan 2009). The accuracy and effectiveness of any tool 

for simulation of fire behaviour or fire risk assessment depend on the accuracy and 

availability of data related to the vegetation ecosystem. Spatially and thematically 
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accurate vegetation cover is critical for the suppression and prevention of fire in 

fire-prone areas and ecosystems (Vakalis et al. 2004a, 2004b). 

 

1.2. Forest as Fuels 

As a reflection of the prevailing climate with its long summer droughts, 

Mediterranean forests are frequently characterized by fire climax species, i.e., those 

that depend on the presence of fire in their reproductive cycle (Aretano and 

Giovanni, 2015). Pines form the largest tree stands on both the northern and the 

southern shores of the Mediterranean. These species are characterized by 

physiological mechanisms that link natural seeding with fire, e.g., the opening of 

pine cones exposed to intense heat. These species also tend to have a particularly 

high content of resin or essential oils, making them extremely inflammable. Other 

species, particularly the evergreen sclerophyll oaks, have developed a 

morphological resistance to fire. For example, Quercus Suber has developed a 

characteristically thick bark that isolates the cambium, enabling it to resist sporadic 

fires. Likewise, the presence of a large number of dormant buds in oaks ensures the 

production of shoots and sprouts if the aerial part of the plant is reduced by fire. 

However, these adaptive reactions do not provide permanent protection. After 

repeated fires, the trees are replaced by a woody shrub cover that is not merely 

resistant to fire but typically pyrophytic, as with the dehiscence of rockroses 

(Cistus), or other species that produce seed with a thick isolating tegument or 

rhizomes or running roots. To this natural evolution of flora must be added human-

induced changes caused by attempts to restore the tree cover in areas where 

excessive fire or other uses, such as overgrazing and fuelwood extraction, have 

caused a high level of degradation (Bonazountas and Toukiloglou, 2014). 

Reforestation is usually carried out using pioneer species, predominantly pines 

established in mono-species stands. This in itself increases the risk of fire due to the 
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continuity of fuels in closely spaced plantations as well as the concentration of fine, 

highly inflammable fuels (Arbez, Birot, and Carnus 2002). 

 

1.3. Overview on Remote Sensing 

The innate human desire to explore and understand the intangible pushes the 

boundaries of the scientific and technical limits, and is what made remote sensing 

the field of science of today. Aristotle, in De Anima, exposes the nature of light as a 

state of actual transparency in a potentially transparent medium and thus 

represents the necessary condition for vision. Eighteen hundred years after him, 

Leonardo da Vinci sets in detail the principles underlying the “camera obscura”, 

while Isaac Newton, in 1666, using a prism proves that the light could be dispersed 

into a spectrum of colours, and using a second prism, the colour could be re-

combined into white light, giving birth to the science and art of “drawing with 

light”, broadly known as “photography”. Not long after, the first photograph in 

history of humanity was taken by Niepce (1827), while Gaspard-Félix Tournachon 

(Nadar) took in 1858 the first aerial photograph from a balloon from an altitude of 

1,200 feet over Paris. New methods and technologies for sensing of the Earth’s 

surface going beyond the traditional black and white aerial photograph, required a 

new, more comprehensive term to be established. The term remote sensing came to 

fill in this gap, initially introduced in 1960. Remote Sensing (RS) is the field of 

science that includes all those activities necessary for the observation, acquisition 

and interpretation of information related to objects, events, phenomena or any other 

item under investigation, without making physical contact with the object, event, or 

phenomenon under investigation. Since the launch of the first satellite for space 

exploration (Sputnik-1) in the late fifties, advances in the satellite technology burst, 

offering a multitude of spaceborne and airborne platforms with on-board sensors 

able to detect a great number of heterogeneous sources of information, for the study 
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not only of distant celestial objects but also for the Earth Observation (EO) (J. A. 

Richards and X. Jia 2006). 

Remote sensing systems collect data by detecting the energy that is reflected from 

an object or area under investigation. Considering the electromagnetic radiation as 

the principal physical carrier of information, a main differentiation of remote 

sensing systems is based on the typology of the source of energy exploited. 

Depending on whether these systems measure the radiation that is naturally 

available, or the energy used to illuminate the target under investigation is emitted 

by the sensor, are defined as passive or active, respectively. Passive sensors rely on 

the energy provided by the Sun, which is either reflected, or absorbed and then re-

emitted from the Earth’s surface. While the reflected energy (e.g., visible radiation) 

is available only when the Sun illuminates the Earth, the emitted energy (e.g., 

thermal infrared radiation) can be detected at any time, as long as the amount of 

energy is large enough to be recorded. Examples of the most popular passive 

sensors are cameras, scanning sensors and microwave radiometers. Active sensors 

instead, emit the energy required to illuminate the target under investigation, and 

then detect the backscattered radiation. Examples of broadly used active systems 

are the RAdio Detection and Ranging (RADAR) and Light Detection and Ranging 

(LiDAR). In this case, being the sensor as the source of radiation, the data acquisition 

can be performed at any time (J. R. Schott. 2007). 

The vast variety of available sensors, which provide data either in image or signal 

formats, allows to tackle a large number of applications with remarkable 

advantages. In general, each family of sensors is characterised by properties such as 

spatial, spectral, radiometrical and temporal resolutions, which are strictly related 

to their physical implementation resulting more or less suitable for a precise 

application. This entails the development of advanced techniques for data 

processing and interpretation that are sensor and application dependent. Space 
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exploration is the RS domain that leads by far the technological advances, providing 

important know-how also for the Earth monitoring and for its understanding as a 

celestial object (Lentile and Nate C. Benson, 2006.). Another main application is 

related to the environmental monitoring, where remote sensing techniques are used 

for studying human activities, such as urban planning, agriculture land usage, and 

natural phenomena, such as damage assessment due to earthquakes or floods, 

eruptions, climate change (e.g., glaciers), deforestation. Protected areas with fragile 

ecosystems can be studied by means of non-invasive remote sensing-based 

monitoring, without carrying any risk of environmental damage, replacing in this 

way costly field campaigns. Other important applications include meteorology, 

national security and natural resource management. The dissemination of remote 

sensing data is another important topic and is strictly connected to geographic 

information systems (GIS). Such platform allows remote sensing data obtained by 

different sources to be combined in order to make the information readily 

understandable to the final users (L. Bruzzone and B. Demir, 2014.). 

 

1.4. Introduction to Hyperspectral Images 

Earth remote sensing includes data collection on the environment, geology, climate, 

and other characteristics of the Earth by means of sensors positioned in the air or in 

Earth orbit. An important distinction between the systems broadly used to this end, 

refers to the coverage of electromagnetic spectrum. Focusing on passive optical 

systems, the sensor acquires data as in image format, detecting a portion of the 

electromagnetic radiation reflected from the Earth’s surface in a range of 

wavelengths that includes the visible, near-infrared and short-wavelength infrared 

regions of the electromagnetic spectrum. The sensor system, for instance the 

scanner, is composed by detectors that scan the scene and store the radiance 

detected as a quantised sample of the continuous data stream, forming a pixel 
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characterised by a digital number, DN. To create multi-channel images that show 

specific portions of the EM field, the detected beam is split into different spectral 

components by inserting a system of spectral filters and optical components (e.g., 

prism, grating). For a more detailed review on sensor systems and different 

typology of scanners, please refer to (R. A. Schowengerdt 2007; J. R. Schott 2007; J. 

A. Richards and X. Jia 2006). 

According to the characteristics of the scanner, sensor systems are distinguished by 

their different resolutions, which also define the characteristics of the acquired 

images. Measure of the sensor’s ability to image closely spaced objects so that they 

are distinguishable as separate objects represents the spatial resolution, and 

depends on the altitude of the sensor and its angle of view (i.e., the angle subtended 

by the sensor), which is defined in terms of Instantaneous Field of View (IFOV). In 

digital imaging, the resolution is limited by the pixel size. The spectral resolution is 

related to the bandwidth of the specific spectral channel at which the instrument is 

sensitive, while the radiometric resolution is defined as the minimum energy able 

to be detected by the sensing system. The intrinsic radiometric resolution of a sensor 

depends on the detector’s signal to noise ratio. In a digital image, the radiometric 

resolution is limited by the number of discrete quantisation levels used to digitise 

the continuous intensity value. Considering a three-dimensional space (x, y, λ), 

where x and y are spatial coordinates and λ the spectral coordinate, each pixel is the 

integral of the radiance in a small volume (cube). The minimum value obtained by 

the integral represents the radiometric resolution, whereas the spatial resolution is 

represented by the size of a cube in the plane (x, y). The spectral resolution is the 

minimum bandwidth on which the measured radiation is integrated. Although the 

acquisition system could detect signals with high resolutions, it counts on various 

critical points due to physical constraints and instrumental limitations. Indeed, the 

acquisition of the images is usually affected by the sensor’s noise, bad pixel location 

and atmospheric contribution, requiring different levels of pre-processing in order 
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to ensure the image quality in terms of spectral, spatial and radiometric accuracy (J. 

A. Richards and X. Jia 2006) and make the data available for further analysis. 

According to criteria that include spectral range, spectral and spatial resolutions 

and number of bands, the acquired images are identified as panchromatic, 

multispectral and hyperspectral. Panchromatic images are mono-channel data, 

which spatial resolution is maximised with a consequently minimisation of the 

spectral resolution. In such images, the high geometrical detail permits objects on 

the ground to be represented in detail, however, the information of the target’s 

spectral characteristic results poor, meaning that objects of different nature can be 

represented in the same range of pixel values, making their discrimination difficult 

to achieve. In multispectral images, the augmented spectral dimension, which is 

represented by a few wide spectral channels that cover wide portions of the 

electromagnetic spectrum, provides useful information on the nature of the targets 

and facilitates their discrimination and classification. In hyperspectral images, the 

spectral resolution is further improved, where the spectral information is 

maximised, providing data characterised by hundreds of narrow and contiguous 

spectral-channels. Consequently, each pixel can be represented as a vector in which 

a given value corresponds to the radiation at a given spectral band. The high 

dimensionality of this vector intrinsically provides a finer representation of the 

spectral signature of the target, leading to a better discrimination among different 

materials with respect to multispectral images, which are characterised by only few 

spectral channels. Moreover, recent technological advances in sensor technology 

have led to the development of a new generation of hyperspectral sensors able to 

provide images with improved spatial resolution. For instance, an image acquired 

by Hyperion sensors (mounted on EO-1 satellite) has a spatial resolution of 30 m, 

while ROSIS-3 (airborne spectrometer) can provide images with a spatial resolution 

of 1.7 m if the acquisition is taken at the altitude of 3 km. CASI-1500 can provide a 

data cube of 144 spectral bands with a spectral resolution of 1.25 m. From these few 
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examples, we can see that the contextual information, becomes an important source 

of information that can be exploited for distinguishing different objects on the 

ground. Hyperspectral images have been widely exploited in different applications, 

ranging from forestry management, pollution detection and mineral exploration. 

Table 1 provides a summary of the most commonly used sensors usually mounted 

on aircraft or spacecraft, reporting the principal spectral characteristics. 

Table 1: Technical characteristics of some hyperspectral sensors developed over last years 

(Atiya et al. 2022) 

Sensor Manufacturer Platform 
Number of 

bands 

Spectral 

Resolution 

Spatial 

Resolution 

PRISMA Selex Satellite 239 12nm 0.4 – 2.5 μm 

EnMAP OHB Satellite 232 10nm 0.4 – 2.5 μm 

Hyperion NASA GSFC Satellite 220 10nm 0.4-2.5 μm 

CHRIS 

Proba 
ESA Satellite up to 63 1.25nm 

0.415-1.05 

μm 

AVIRIS NASA JPL Aerial 224 10nm 0.4-2.5 μm 

HYDICE 
Naval 

Research Lab 
Aerial 210 7.6nm 0.4-2.5 μm 

PROBE-1 
Earth Search 

Science 
Aerial 128 12nm 0.4-2.45 μm 

CASI 550 
ITRES 

Research Ltd 
Aerial 288 1.9nm 0.4-1 μm 

CASI 1500 
ITRES 

Research Ltd 
Aerial 288 2.5nm 0.4-1.05 μm 

SASI 600 
ITRES 

Research Ltd 
Aerial 100 15nm 

0.95-2.45 

μm 

TASI 600 
ITRES 

Research Ltd 
Aerial 64 250nm 8-11.5 μm 

HyMap 
Integrated 

Spectronics 
Aerial 125 17nm 0.4-2.5 μm 

ROSIS-3 DLR Aerial 115 4nm 
0.43-0.85 

μm 

EPS-H 
GER 

Corporation 
Aerial 133 0.67nm 

0.43-12.5 

μm 

EPS-A 
GER 

Corporation 
Aerial 31 23nm 

0.43-12.5 

μm 
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DAIS 7915 
GER 

Corporation 
Aerial 79 15nm 

0.43-12.3 

μm 

AISA Eagle 
Spectral 

Imaging 
Aerial 244 2.3nm 0.4-0.97 μm 

AISA 

Eaglet 

Spectral 

Imaging 
Aerial 200 - 0.4-1.0 μm 

AISA 

Hawk 

Spectral 

Imaging 
Aerial 320 8.5nm 

0.97-2.45 

μm 

AISA Dual 
Spectral 

Imaging 
Aerial 500 2.9nm 0.4-2.45 μm 

MIVIS Daedalus Aerial 102 20nm 
0.43-12.7 

μm 

AVNIR OKSI Aerial 60 10nm 
0.43-1.03 

μm 

 

 

1.5. Hyperspectral Image Classification: Challenges  

The Earth Observation domain entails numerous open research issues to overcome, 

ranging from the hardware technology itself to the higher-level data analysis 

algorithms for the remote sensing image understanding. Focusing on the later, 

remote sensing image classification emerges as one of the major challenges. Image 

classification refers to the process of identifying the diverse objects, materials or 

items of interest with common properties that are group into the so-called “classes” 

of coverage present on the ground of the investigated area of interest. Product of 

this process is a thematic map, where pixels are characterised by a given label, 

usually represented by a colour or symbol, used to uniquely identify the items 

within a class. A general scheme of image classification is illustrated in Fig 2, in 

which available information can be exploited in both the data processing and the 

classification stage. If on the one hand the burst of informative content conveyed in 

hyperspectral images, represented by both high spectral and spatial resolutions, 

provides the base for obtaining high accuracy in the identification of different land-

covers, on the other hand it introduces a number of challenges that need to be 
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efficiently addressed. First, the high dimensionality of the data causes a variety of 

issues in hyperspectral classification referred to in literature as the “curse of 

dimensionality”. The high dimensionality, which is represented by the spectral 

dimension, makes the analysis computationally expensive, limiting the exploitation 

of traditional classification approaches, usually employed in multispectral image 

analysis. In the context of supervised classification, in which labelled samples are 

used in the classification process, the ratio between the number of available training 

samples (which is usually small) and the spectral dimension (which is high), affects 

the generalization capability of the classifier. In general, it has been observed that, 

beyond a certain point, the inclusion of additional features, while keeping the 

number of training samples constant, leads to a decrease of both the accuracy and 

the generalization of the classification process in the machine learning domain, this 

behaviour is known as the Hughes phenomenon (named after Gordon F. Hughes) 

(G. F. Hughes 1968). Second, the increase of the spatial resolution in the new 

generation of spectrometers introduces other important issues in the analysis and 

classification of hyperspectral images. The high geometrical detail of the scene leads 

to the presence of objects that are composed by several spatial correlated pixels, 

resulting in an increase of the intraclass variability (L. Bruzzone and B. Demir. 2014). 

The aforementioned phenomenon decreases the effectiveness of the analysis when 

only the spectral information is considered, enforcing the need of strategies that 

integrate the analysis of both spectral and contextual domains in order to maximize 

the exploitation of the information combined in these images. 
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Fig 2. General scheme of a supervised image classification approach. Available prior 

information can be used in both the classification stage and the data processing stage. 

 

1.6. State-of-the-Art 

 

1.6.1. Related Work on Wildfire Vulnerability Map 

In this context, evaluating the impacts of wildfire occurrence and developing 

approaches to prevent potential damages are critical for fire management. 

Vulnerability assessment provides particular tools to analyse the potential for loss 

and has received growing attention at the international level (Susan L. Cutter 2015; 

United Nations 2015). Previous efforts have been made to define logical and 

consistent vulnerability assessment approaches;  

Some studies focused specifically on the ecological dimension of wildfires as 

follows: 

(Aretano et al. 2015) has conducted has mapped ecological vulnerability to fire for 

effective conservation management of natural protected areas. Their research 

integrated the use of GIS–based Decision Support System (DSS) with a conceptual 

linear model of vulnerability to foster conservation strategies in protected areas, by 

identifying: (1) the most vulnerable areas, requiring specific protection measures to 

enhance the natural features, as well as the prevention of natural and human risks; 
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(2) the most effective management interventions to reduce system vulnerability to 

fire. 

(Duguy et al. 2012) modelled the ecological vulnerability to forest fires in 

Mediterranean ecosystems using Geographic Information Technologies. An 

innovative GIS-based modelling approach to evaluate the ecological vulnerability 

to fire of an ecosystem, considering its main components (soil and vegetation) and 

different time scales was developed. The evaluation was structured in three stages: 

short-term (focussed on soil degradation risk), medium-term (focussed on changes 

in vegetation), and coupling of the short- and medium-term vulnerabilities. The 

model was implemented in two pilot sites: Arago´n (inland North-eastern Spain) 

and Valencia (eastern Spain). 

Whereas some studies were centred at socio-economic aspects as follows: 

(Rodríguez Silva, Ramón Molina Martínez, and Castillo Soto 2012) has developed a 

methodological approach for assessing the economic impact of forest fires using 

MODIS remote sensing images. They have summarised as, the ability to incorporate 

satellite image processing into economic damage assessment allows identifying 

with greater precision the delimitation of the affected areas based on the 

‘normalized vegetation index’. Analysis and interpretation of MODIS images, 

combined with the energy intensity emitted by the spread of fire, can be integrated 

into econometric models in order to obtain, in a geo-referenced manner, the 

economic value per hectare resulting from wildfire damage. 

(Román, Azqueta, and Rodrígues 2013) has conducted methodological approach to 

assess the socio-economic vulnerability to wildfires in Spain. Their study aimed to 

develop a methodology for the assessment of the socio-economic vulnerability to 

fire using Geographic Information Systems. We have conducted the vulnerability 

assessment by estimating the potential losses fire might cause during the time 

required for the recovery of the pre-fire environmental conditions. 
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1.6.2. Related Work on Wildfire Fuel Map 

Spatially and thematically accurate vegetation cover is critical for the suppression 

and prevention of fire in fire-prone areas and ecosystems. In order to generate 

wildfire fuel maps, researchers around the world are trying to develop techniques 

for fuel mapping using hyperspectral data as follows: 

(Goodenough et al. 2003) have compared forest classification accuracies between 

EO-1's Hyperion and ALI sensors and Landsat 7 ETM+ and concluded that 

hyperspectral sensors provide better discrimination with greater accuracy in 

comparison with multi-spectral sensors in several forest types. 

The potential of wildfire fuel mapping using hyperspectral data of Hyperion was 

evaluated by (Yeosang Yoon and Yongseung Kim 2007) almost a decade ago and 

concluded that the Hyperion imagery has good potential for wildfire fuel mapping. 

(Smith et al. 2021) has mapped Boreal Forest fuel types for interior Alaskausing 

AVIRIS-NG hyperspectral data with 80 percent accuracy when LANDFIRE's 

Existing Vegetation Type product derived from Landsat-8 has 33 percent accuracy. 

For the same region of interest, (Badola et al. 2021) has simulated hyperspectral data 

using Sentinel-2 was used to map boreal forest fuel type with 89 percent accuracy, 

which was better than the accuracy obtained using multi-spectral Sentinel-2. 

A detailed review was conducted by (Veraverbeke et al. 2018c) on hyperspectral 

remote sensing of fire. The authors commented that hyperspectral data had proven 

utility in the temporal stage of the fire disturbance continuum, including pre-fire 

applications, i.e., in exact fuel type and condition assessment. Also, added that till 

2018 there was only airborne hyperspectral data, and the upcoming spaceborne 

missions like PRISMA, EnMAP, and HyspIRI will provide opportunities to explore 

further the linkages between ecosystem properties and fires at regional to global 

scale.  
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1.7. Objectives of this Dissertation 

This dissertation was carried under the framework of two projects: 

1. S2IGI: An Integrated System for Forest Fire Management funded by Regional 

Administration of Sardinia under the POR (Programma Operativo 

Regionale) FESR (Fondo Europeo di Sviluppo Regionale) Sardegna 2014 – 

2020. Supporting wildland fire prevention and management is the key 

objective of the S2IGI (Sistema Satellitare Integrato Gestione Incendi) project, 

which aims to provide a short- and medium-term forecasting of wildfire 

danger, an early detection of wildland fires, a real-time forecast of wildland 

fire propagation, and an assessment of fire damages, based on the use of 

advanced technologies as Earth Observation (EO) data exploitation.  

2. ASI_HYP (Progetto per sviluppo di prodotti iperspecttrali prototipali 

evoluti) project funded by Italian Space Agency and coordinated by e-geos 

SpA for developing various prototypes viz., fuel map, vegetation indicators, 

water quality, forest fire front, volcanic parameters etc., using PRISMA (a 

satellite of Italian Space Agency) hyperspectral imagery. A real-time forecast 

of various environmental factors using PRISMA is the major goal. 

The objectives of this dissertation are as follows: 

(1) To develop a wildfire vulnerability map for the Sardinian Island of Italy 

using the vulnerability index developed in the previous project PREFER. 

(2) To develop a procedure to classify wildfire fuel types using hyperspectral 

imagery from PRISMA launched by the Italian Space Agency (ASI) in 2019. 

(3) To develop forest fires fuel map based on Anderson fuel models that can 

support in extracting parameters such as fuel load [t/ha] for the living and 

dead component of the vegetation, the height of the fuel (litter) to the ground, 

extinction humidity [%], flame height [m] and propagation rate [m/sec]. 
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(4) To develop wildfire dynamic fuel map based on Scott/Burgan models that 

can support in extracting parameters such as fuel parameters such as fuel 

bed depth (ft), fine fuel load (t/ha), characteristic SAV (1/m), packing ratio 

(dimensionless), heat content (KJ/kg) and extinction moisture content 

(percent). 

(5) To automate the process of fuel mapping using Graphic User Interface so that 

any part of Europe can be mapped for wildfire fuel types using LUCAS 

points as input. 

(6) To conduct SWOT (Strength, Weakness, Opportunities and Threat) analysis 

to evaluate the feasibility and maturity of PRISMA hyperspectral imagery for 

mapping wildfire fuel types. 

1.8. Structure of the Thesis 

 

Chapter 2 is about wildfire vulnerability map. The procedure used for mapping 

vulnerable areas on the Island of Sardinia. Chapter 3 focusses on classification of 

fuel types using PRISMA hyperspectral imagery. The procedure developed for 

classifying the fuel types implementing machine learning techniques were 

explained in this chapter. Chapter 4 presents the procedure of correlating the 

classified fuel types to Anderson fuel models. Similarly, chapter 5 presents the 

procedure of Scott/Burgan based fuel mapping. Chapter 6 explains the system 

architecture i.e., the procedure used to automate the process of fuel mapping. Then, 

next chapter concludes the thesis by summarizing the important points in this 

thesis. 

 

 

 

 



   

 

30 
 

WILDFIRE VULNERABILITY MAP 

 

 2.1. Introduction to Vulnerability Map 

The analysis of vulnerability is a main requirement for the assessment of fire risk. 

In a general sense, vulnerability means the potential for loss (M. A. Cutter 2006) 

and, despite differences in the precise definition of this concept, it is rather well 

established that it relates to the degree of loss that can affect different types of assets, 

either biophysical or anthropogenic (M. A. Cutter 2006; Birkmann et al. 2013a). 

The United Nations (United Nations 2015) defines vulnerability as “the conditions 

determined by physical, social, economic and environmental factors or processes 

which increase the susceptibility of a community to the impact of hazards”. As such, 

the assessment of vulnerability to forest fires requires the analysis of a rather large 

set of variables that represent the different types of assets or elements potentially 

affected by fires. 

The vulnerability approach applied in PREFER is comprehensive, combining 

variables that reflect multiple dimensions: social, environmental, economic and 

institutional. The vulnerability level results from the combination of three different 

components: exposure, sensitivity and coping capacity. 

Exposure refers specifically to the presence of people, property, systems, or other 

elements in hazard zones that are, for that reason, subject to potential losses (United 

Nations 2015). Sensitivity represents the conditions that influence the 

predisposition of the exposed elements to suffer a certain level and extension of 

damages (Rodrigues et al. 2013; Birkmann et al. 2013b; S. L. Cutter 2011). Coping 

capacity is related to the circumstances that reduce or amplify the ability of the 

elements to respond and recover from the impacts of a hazard (Birkmann et al. 

2013b).  
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2.2. Fire Vulnerability Indices 

From the conceptual approach defined for vulnerability assessment, a proposal for 

the analysis of data, for the integration of the variables and for the creation of the 

composite indices that represent each component as shown in Fig 3, as well as the 

production of the final vulnerability and economic value maps, was outlined and it 

is explained in detail in this section. Examples of the results obtained for the AOI of 

Sardinia are also presented. 

 

Fig 3. Description of Vulnerability Index 

As vulnerability results from the combination of different datasets and variables, 

which are obtained from diverse sources and at different scales and/or formats, a 

set of rules and conditions were defined for the processing chain of the data, to 

ensure the consistency of the products, as explained below: 

a) Vulnerability assessment is comprehensive but it should be rather simple to 

interpret, in order to be applied by different users; 

b) The processing chain is defined considering the possibility to integrate new 

or better data when these become available. It was verified that, for specific 
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areas within Mediterranean Europe, and depending on the quality of the 

national data sources, if additional data are available; as such, better maps 

can be produced for these areas. Furthermore, the processing chain allows 

for maps to be updated seasonally, as defined in the products requirements, 

and these maps can then include other data that was not available 

beforehand;  

c) Each component of vulnerability is, first, analysed individually, creating 

composite indexes. The three indexes (components) are then combined in a 

vulnerability map; 

d) For each component, the variables represent different dimensions of 

vulnerability (social, environmental or institutional); each variable can also 

be represented cartographically; 

e) The spatial resolution of the maps is 1 ha (100 x 100 m), resulting as the best 

compromise between the spatial resolution of data obtained from different 

sources (e.g.: remote sensing data at very high resolution and statistical data 

at municipality level); a grid at 100 m was created based on the European 

grid available from the EEA at 1 km (http://www.eea.europa.eu/data-and-

maps/data/eea-reference-grids-2); 

f) Similar methodologies are applied to analyse and integrate the variables and 

components: 

i. Variables: each variable is transformed in a numerical scale, representing 

proportions, densities, distances or ratios; there is a value per each 1 ha cell; all 

variables are normalized to a common scale;  

ii. Components: are analysed in an ascending order, i.e., higher values represent 

higher levels of exposure or sensitivity. The component of coping capacity is, 

instead, presented in an inverted scale, to be consistent with the other components 

and to represent the higher values as the areas where more urgent attention is 

http://www.eea.europa.eu/data-and-maps/data/eea-reference-grids-2
http://www.eea.europa.eu/data-and-maps/data/eea-reference-grids-2
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needed. Table 2 shows the components, definitions of considered components and 

their variables. 

Table 2: Definition of the three components of vulnerability and the corresponding 

variables collected 

Components Definition Variables 

Exposure Presence of elements in hazardous 

areas that can suffer losses in case a 

fire occurs. It is related to the 

location of urban areas and forests, 

to the density of buildings and the 

location of infrastructures, among 

others.  

 

 

✓ Population density 

✓ Building’s density 

✓ Road’s density 

✓ Land cover type  

✓ Presence of 

protected areas 

 

Sensitivity Conditions that influence the 

predisposition of the exposed 

elements to suffer different types 

and levels of damages. It is 

associated with their intrinsic 

characteristics (species type, 

buildings’ materials, population 

characteristics) and/or with their 

degree of protection, for example. 

 

 

✓ Elderly (> 64 years) 

✓ Education level 

✓ % People working 

in primary sector 

 

Protected Areas (JRC) 

✓ Number of 

classifications 

(national, 

international) 

✓ International 

Union for 

Conservation of 

Nature categories 

(IUCN) 

 

Coping 

Capacity 

Implementation of actions to reduce 

the probability and susceptibility of 

the exposed elements to suffer 

losses. They can be anticipation 

measures (surveillance activities, 

prevention campaigns) or response 

measures (fire-fighting planning, 

emergency services available), 

among others. 

 

 

✓ Density of forest 

access roads 

✓ Nr. 

Firefighters/forest 

area 

✓ Surveillance 

towers (visibility 

area) 
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For each component, a set of variables was selected, each of them representing one 

type of element potentially affected by fires and one of the dimensions of 

vulnerability, or, in the case of coping capacity, the elements or activities that 

potentially influence the ability to prevent or to fight a fire. Figure 1 below presents 

the variables collected hitherto for each component. 

 

2.3. Study Area 

The study area is Sardinia, Italy, the second largest island of the Mediterranean 

Basin. The island has a topography characterized by the most relevant hills and 

mountains on the eastern side and plains located in the western part, with two main 

flat areas: Campidano in the South, and Nurra in the North. The highest peak is 

situated in central Sardinia and reaches about 1850 m a.s.l. The climate, albeit with 

some gradients from the coastal areas to the mountains, and from South to North, 

is characterized by a mild and rainy period, from October to May, and a warmer 

one, from June to September, with peaks above 30 °C in several days, and with a 

low incidence of rainfall. The annual cumulative precipitation ranges from 500 mm 

in the coastal areas to about 1200 mm in the mountain peaks. Approximately half of 

Sardinia is covered by broadleaf forests (about 16 %), in particular Quercus spp., 

and Mediterranean shrubs and garrigue (about 30 %) (Fig. 4) (Sardinia land use map 

of 2003, www.sardegnageoportale.it). Unlike other Mediterranean areas, the 

presence of Pinus spp. is limited (nearly 3 %). A significant part of the island is 

represented by grasslands and mixed agricultural areas (approximately 40 %), 

while the remainder is composed by herbaceous pastures, vineyards and orchards, 

and urban areas. 

http://www.sardegnageoportale.it/
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Fig 4. Region of Interest for Wildfire Vulnerability Analysis 

 

This Island has the characteristics of frequent fire occurrences. In the last decade, 

1008 fires per year have been recorded only in Sardinia, which is 20% of the total 

fires at the national level. Sardinia has a typical Mediterranean climate, with mild 

and rainy winters and warm and dry summers with evaporation exceeding 

precipitation from April to September. Mean annual precipitation rises with 

increasing altitude and is lowest at the coast. 
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2.4. Materials and Methods 

2.4.1. Exposure 

The analysis of exposure required the integration of variables that represent the 

different types of elements that may suffer losses in case a fire occurs. Table 3 shows 

the data, parameters and variables considered for the exposure component. 

Table 3: Parameters and variables for the analysis of exposure 

ID Parameters Dimension Variables Sources 

1 Population Social 
Population 

density 

JRC Earth Observation Data and 

Processing Platform 

( www.cidportal.jrc.ec.europa.eu 

) 

2 
Land cover / 

use 
Environmental 

Categories of 

land cover 

(weighting) 

Remote sensing  

Corine Land Cover 2018 

(www.eea.europa.eu) 

3 Buildings Social 
Building’s 

density 

www.download.geofabrik.de 

4 Infrastructures Social Road’s density www.download.geofabrik.de 

5 
Protected 

natural areas 
Environmental 

% Area 

occupied by 

protected 

areas 

Protected Planet 

(http://www.protectedplanet.net) 

National sources 

(www.sardegnageoportale.it/) 

 

Processing of exposure component was carried out for each variable as described 

in Table 4. 

 

 

 

 

 

 

http://www.cidportal.jrc.ec.europa.eu/
http://www.sardegnageoportale.it/
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Table 4: Brief description of the process of analysis of the variables included in exposure 

assessment 

ID Variables Processing 

1 
Population 

density 

Population density map available at 1 ha resolution; the 

vulnerability grid at 1 ha was overlapped and each cell received the 

corresponding value of population density 

2 

Categories 

of land 

cover 

6 categories of land cover were created by aggregating CLC classes; 

a specific weighting was given to each category depending on their 

relationship with fire and based on literature review 

3 
Building’s 

density 

Number of buildings calculated per ha for the minimum spatial unit 

available (municipality, LAU5 or below); the vulnerability grid at 1 

ha was overlapped and each cell received the corresponding value; 

in case the cell overlapped more than one spatial unit, the weighted 

mean of the spatial unit’s values was calculated and attributed to 

the respective cell 

4 
Road’s 

density 

Length of roads per ha for each cell of the vulnerability grid 

5 

Area 

occupied by 

protected 

areas 

The polygons of all the classified protected areas (Natura 2000 ZSP 

and SCA, UNESCO Biosphere Reserve, national classifications and 

Ramsar wetlands) were merged and overlapped with the 

vulnerability grid. The proportion of area occupied by protected 

areas, regardless of their classification, was retrieved for each grid 

cell 

 

CORINE land cover map of 2018 was considered and weightage to each land cover 

type was given as shown in Table 5. Non-fuels were given a weightage of zero 

whereas other fuel types were given a weightage according to the proneness to fire. 

Table 5: Weighting of land cover categories, relation with fire and references 

Category Weighting Characteristics 

Water and other non-fuels 

(bare rocks, glaciers…) 
0 

Non-burnable due to lack of 

vegetation 

Artificial surfaces 0 
Non-burnable due to lack of 

vegetation 
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Agricultural areas (excluding 

pastures) 
0.3 

Burnable, with less susceptibility 

than shrubs and forests. Easily 

recovered 

Discontinuous urban surfaces 

(proxy of WUI) + Burnt areas 
0.6 

WUI relation with fire; re-

incidence of fires in burnt areas 

due to type of vegetation growth 

after fire 

Shrubs and grasslands 

(including pastures) 
0.8 

Susceptible to fire. Moderate fuel 

loads 

Forests 1 
Susceptible to fire. Heavy fuel 

loads 

 

All the variables described above were normalized to the [0-1] numerical scale, with 

the formula of minimum (min) and maximum (max) values:  

𝑁𝑜𝑟𝑚 [0 − 1] =  
𝑣𝑎𝑟 (𝑣𝑎𝑙𝑢𝑒) − min (𝑣𝑎𝑟)

max(𝑣𝑎𝑟) − min(𝑣𝑎𝑟)
 

with  

- Norm, being the resulting normalized value in the scale 0 to 1, 

- the var (value), the value of the variable processed, 

- the min (var), the minimum value of that variable in the study area; 

the max (var), the maximum value of that variable in the study area 
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Fig 5. Map of population density, road density and land cover, with normalized values 

divided in 5 classes, for the AOI of Sardinian Island 

The map of exposure was obtained with an additive model and maps of population 

density, road density and land cover were shown in Fig 5. Each variable received 

an equal weight (1/5 or 0.2), considering the relative importance of each dimension 

for forest fires. This weight was multiplied by the normalized value of the variable 

and, finally, these 5 values were summed up.  

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 0.2) + (𝑙𝑎𝑛𝑑 𝑐𝑜𝑣𝑒𝑟 ∗ 0.2) + (𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠 ∗

0.2) + (𝑟𝑜𝑎𝑑𝑠 ∗ 0.2) + (𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎𝑠 ∗ 0.2)  

The value of exposure, thus, represents the density or proportion of each element 

exposed and the number of exposed elements present in each grid cell (ha). Higher 

density of an element or proportion of area occupied by a variable is represented by 

higher exposure as shown in Fig 4; more variables present are expressed as higher 

exposure. 
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Fig 6. Map of exposure for the AOI of Sardinia 

 

 

 2.4.2. Sensitivity 

The analysis of sensitivity includes the variables whose differentiated conditions 

can be assessed. Hitherto, only the conditions of population and the level of 

protection of protected areas were available (Table 6). As the exposure of land cover 

already included a weighting according to its relationship with fire, no further 

sensitivity analysis was done for this parameter, to prevent co-linearity. Building’s 
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materials, whose sensitivity to fire may differ, are currently being explored by 

remote sensing data interpretation and were not yet included in this assessment. 

For the analysis of sensitivity, parameters and variables considered are tabulated in 

Table 6. Other columns of table provide the dimension, justification and sources of 

the data considered. 

Table 6: Parameters and variables for the analysis of sensitivity 

N

o 
Parameters 

Dimensio

n 
Variables Justification Sources 

1 

Protected 

Natural 

Areas 

Environment

al 

Number of 

classification

s of 

protection (1 

to 5) 

Number of 

classifications in 

each 1 ha cell, 

from Natura 

2000 SPA and 

SCA, UNESCO 

Biosphere 

Reserve, Ramsar 

wetlands and 

national 

classification 

http://www.

protectedpla

net.net 

National 

sources 

(www.sarde

gnageoporta

le.it/) 

Level of 

sensitivity by 

IUCN 

category (1 to 

6) 

Each IUCN 

category is 

weighted 

according to the 

level of protection 

and management 

objectives it 

corresponds to 

http://www

.iucn.org 

2 Fuel 
Environment

al 

Level of fire 

proneness 

Each category is 

weighted 

according to the 

level of fire 

proneness 

Oliveira et 

al., 2014 

3 
Populati

on 
Social 

% Elderly 

(> 64 years) 

Elderly people are 

more susceptible 

to injuries and 

www.istat.i

t 

http://www.protectedplanet.net/
http://www.protectedplanet.net/
http://www.protectedplanet.net/
http://www.sardegnageoportale.it/
http://www.sardegnageoportale.it/
http://www.sardegnageoportale.it/
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require special 

care. 

 

Processing of each parameter is as follows: 

Protected Natural Areas 

a) Number of classifications (national and international importance–higher 

natural value) 

✓ National Protected Area (PA) 

✓ Special Protection Areas (SPA, Natura 2000) 

✓ Special Areas of Conservation (SAC, Natura 2000) 

✓ Ramsar – Wetlands 

✓ UNESCO – Biosphere Reserves 

 

Each classification weights 0.2. Sum of classifications (maximum 5*0.2 = 1) 

 

b) Level of classification by IUCN  

 

6 categories, according to the management objectives and level of protection: 

 

I (a e b)  – Natural Reserves and Wilderness Areas 

II   – National Parks 

III   – Monument or Natural Resource 

IV   – Area of Management of Habitats or Species 

V   – Protected Landscape 

VI   – Protected Landscape with sustainable use of Natural Resources 
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Weightage given to each protected area: I – 6/6; II – 5/6; III – 4/6; IV – 3/6; V – 2/6; VI 

– 1/6. Areas not classified by IUCN get the value of 0.1  

The final sensitivity map of protected areas results from the aggregation of (a) * (b).  

 

Example:  i) 2 classifications (0.2*2 = 0.4) * 5/6 (IUCN level II) = 0.33  

ii) 5 classifications (0.2*5 = 1) * 6/6 (IUCN level I) = 1  

 

Population 

The sensitivity of population is calculated by using the most significant component, 

which is a combination of % Elderly and % People with up to the elementary education 

level, each variable with correlation above 0.5. 

Fuel Map 

The fuel map was generated according to the where weights to different categories 

of land cover type were given with standardised selection ratio (SR). 

𝑆𝑅 =
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑎𝑛𝑑 𝑐𝑜𝑣𝑒𝑟 𝑡𝑦𝑝𝑒 𝑢𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑟𝑛𝑡 𝑎𝑟𝑒𝑎

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑎𝑛𝑑 𝑐𝑜𝑣𝑒𝑟 𝑡𝑦𝑝𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑓𝑓𝑒𝑟
  

The map of sensitivity was obtained with an additive model, similar to the method 

applied for exposure. Each variable received different weight according to its 

importance, which can change as other variables are added to the sensitivity 

analysis. This weight was multiplied by the normalized value of the variable and, 

finally, the all values are summed up. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 0.4) + (𝑓𝑢𝑒𝑙 ∗ 0.4) +

(𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎𝑠 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 0.2)  

Fig 7 shows the sensitivity map with values ranging from [0-0.9]. The value of 

sensitivity represents the predisposition of the elements present in an area to 

suffer a higher level of losses in case a fire occurs. 
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Fig 7. Map of sensitivity for the AOI of Sardinia 

 

 2.4.3. Coping Capacity 

The variables included in the analysis of coping capacity are mainly obtained from 

national sources (civil protection and forest services). Furthermore, it is likely that 

not all the variables exist in the different countries nor that they will be directly 

available to researchers, thus the processing of this index may include a different 

number of variables in each area. Despite this limitation on data availability, the 

structure of the processing chain is maintained.  
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Table 7 explains the parameters and variables considered in the coping capacity. 

Dimensions include surveillance and firefighters and the source of this data was 

also shown. 

Table 7: Parameters and variables for the analysis of coping capacity 

No Dimension Variables Source 

1 Surveillance Sedi_postazioni_avvistamento_Forestas

_2019 (SS) 

 

Regional 

Administration 

of Sardinia 

(RAS) 

2 Firefighters Sedi_organizzazioni_volontari_2019 

(FF1) 

 

RAS 

3 Sedi_presidi_VVF_2019 (FF2) 

 

RAS 

4 Sedi_squadre_Forestas_2019 (FF3) 

 

RAS 

5 Sedi_Stazioni_Forestali_2019 (FF4) 

 

RAS 

6 Compagnie_barracellari_2019 (FF5) 

 

RAS 

 

Processing of sensitivity map is as follows. The map of coping capacity is obtained 

with an additive model. Each variable receives different weight, which is multiplied 

by the normalized value of each variable. These values are then summed up.  

𝐶𝑜𝑝𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 1 − [(𝐹𝐹1 ∗
1

6
) + (𝐹𝐹2 ∗

1

6
) + (𝐹𝐹3 ∗

1

6
) + (𝐹𝐹4 ∗

1

6
) + (𝐹𝐹5 ∗

1

6
) + (𝐹𝐹6 ∗

1

6
) + (𝑆𝑆 ∗

1

6
)]  
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Fig 8. Coping Capacity in the AOI of Sardinia 

The method of analysis is similar to exposure and sensitivity, except in what 

concerns the scale of values, which are presented in an inverted form (1-value), to 

be consistent with the other indexes: the higher values of coping capacity represent 

the areas with less resources for prevention, preparedness or fire-fighting, 

contributing to higher values of vulnerability. Coping capacity map is shown in Fig 

8 and the values are ranging from [0-1]. 
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In this work, density of different categories of fire-fighters were found for each 

municipality and in some cases, according to the scope of their area. For 

surveillance, towers visibility considering the tower height as 15 metres and Digital 

Elevation Model (DEM) were found for all the towers. 

2.5. Results and Discussions 

2.5.1. Vulnerability Map 

The vulnerability value results from the combination of the three composite 

indexes, by applying an additive model. A similar weight is given to each 

component (1/3) and the value of each component is multiplied by this weight. The 

three resulting values are then summed up. 

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = (𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∗
1

3
) + (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗

1

3
) + (𝐶𝑜𝑝𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗

1

3
)  

Vulnerability is then expressed in 5 different classes, from 1 (low vulnerability) to 

5 (very high vulnerability). 
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Fig 9. Vulnerability maps for the AOI of Sardinia, expressed in normalized value and by 

classes 

 

The Fig 9 shows the resulting map of vulnerability for the AOI of Sardinia, 

expressed in the normalized value [0-1]. For this area, the minimum value of 

vulnerability is above zero and the higher class (above 0.75) is not found. The 

maximum value recorded in this area is 0.73 which is equivalent to 1 after 

normalization. 
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FUEL TYPES CLASSIFICATION USING PRISMA 

HYPERSPECTRAL DATA 

 

This chapter presents the procedure applied to develop the wildfire fuel map using 

hyperspectral imagery of PRISMA in a semi-supervised machine learning 

approach. The main objective of the work presented in this chapter is to develop an 

automatic procedure for wildfire fuel mapping using the maps from Copernicus / 

National / Regional portals as reference maps. 

The steps followed to develop a wildfire fuel map that involves various steps viz., 

pre-processing, pixels extraction, dataset preparation by pseudo-labelling, machine 

learning algorithm details, unmixing, further classification of fuel types, and fuel 

map are illustrated in the flowchart as shown in Fig.  10. Details of the process are 

described in subsections. 
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Fig 10: Process Flow Chart 

 

 3.1. PRISMA Hyperspectral Data 

In this work, hyperspectral imagery from the PRISMA satellite is being used to map 

vegetation fuel types. PRISMA has taken us into a new era of hyperspectral imaging 

spectroscopy. This imaging spectrometer can capture a continuum of spectral bands 

with 400 to 2500 nm at a spatial resolution of 30 m. The sensor counts 173 bands in 
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the shortwave infrared (SWIR) within 920-2500 nm, and 66 bands are in the visible 

near-infrared (VNIR) portion of the spectrum (400-1010 nm). The widths and 

spectral sampling intervals are ≤12 nm. A panchromatic camera providing a single 

band (400 – 700 nm) image at 5 m spatial resolution is also onboard the ASI's 

satellite. PRISMA is an on-demand mission, and the available data in the archive 

(https://prisma.asi.it) are limited but acquires imagery for the required location 

upon request (Niroumand-jadidi, Bovolo, and Bruzzone 2020). 

There are four different levels of PRISMA hyperspectral images with the name of 

L1, L2B, L2C and L2D.  

- Level 1 products: TOA (Top of Atmosphere) radiometrically and 

geometrically calibrated HYP and PAN radiance images  

- Level 2 products: Geolocated (L2B, L2C) and Geocoded (L2D) 

Atmospherically corrected HYP and PAN images; atmospheric constituents 

maps (aerosols, water vapour, thin cloud optical thickness) (for L2C and L2D 

products). 

 

 3.2. Study Area 

Sardinia is an island in the south of Italy and is the second-largest island in the 

Mediterranean Sea, as shown in Fig. 9., which has the characteristics of frequent fire 

occurrences. In the last decade, 1008 fires per year have been recorded only in 

Sardinia, which is 20% of the total fires at the national level (J et al. 2021). This is a 

windy island with somewhat rainy winters, hot sunny summers, and an average 

temperature range of 10oC in winter (January/February) to 24/25 oC in summer 

(July/August). 

As a demonstration, an image on the southern part of this Mediterranean island was 

selected from the archived data shown in Fig.  11. This image [acquired on 

16/06/2021] comprises Monte-Arcosu Forest, one of the immense holm oak forests 

http://www.prisma.asi.it/
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of the Mediterranean region, which falls on the East of Cagliari city. The region of 

interest has a hilly and mountainous system with around 800m altitude and a total 

area of 32 km2. Found in this forest is holm oak (Quercion ilicis) and mastic scrubs 

of two different families (Ericion arboreae and Oleo Ceratonian). The highest areas 

have low vegetation, specifically, the meadows of two different families (Teucrion 

mari and Periballio-Trifolion subterranei) whereas the lowest areas (around 200-

300m altitude) have evergreen broadleaved trees (Quercetalia ilicis) (L. Mossa et al. 

2016)(Caudullo et al. 2016). 

 

Fig 11. Geographic location of the image considered for processing [images are provided by 

e-geos under ASI-HYP project]. 

3.3. Materials and Methods 

3.3.1. Pre-processing of Hyperspectral data 

Level 2C and Level 1 products from the PRISMA archive with minimal cloud cover 

were considered. The atmospheric correction of the level 2C products is based upon 

inverting the radiative transfer model, i.e., minimizing a cost function representing 

the difference between the simulated spectrum and the measured one. The 

MODTRAN model has performed the simulations, and they are stored as a lookup-
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table (LUT) to speed up the inversion. Geo-referencing of the image was carried out 

by creating a geographic look-up table (GLT) using the latitude and longitude 

values given in the image’s metadata R software (Pepe et al. 2020). Further details 

about the mission and products are available in the PRISMA products specification 

document. 

Removal of Deadlines: Fig. 12 shows the noisy lines of the PRISMA hyperspectral 

image on the region of interest. These lines are unstable and will be change 

depending upon the image. These lines were filled by assigning to a nearest value 

by linear interpolation. 

 

Fig 12. Noisy Lines on PRISMA Imagery 
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For most hyperspectral remote sensing applications, removing noisy bands is a 

required preprocessing step. In this work, noisy bands were removed by giving a 

threshold in algorithm that bands having greater than 20% as noisy values were 

removed. The 197 spectral bands in the 400 to 2500 nm range, with a spectral 

bandwidth within ~9–12 nm, were extracted from Level 2C data to perform the 

classification leaving 32 noisy and water absorption bands. 

Extraction of Vegetation Pixels: Level 2C was considered for the fuel mapping, 

whereas the Level 1 product provides a basic land cover map with classes viz., water 

pixel, snow pixel, bare soil, cropland, forest, wetland, and urban component used 

to classify vegetation pixels from non-vegetated pixels as shown in Fig. 13. Thus, 

the processing time was reduced by applying the proposed procedure only to 

vegetation areas. 

 

Fig 13. Classification Map (Vegetation and Non-Vegetation) 
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 3.3.2. Reference Data 

Reference data is necessary to train the machine learning model and to later validate 

the predicted output. Usually, remote sensing specialists conduct field campaigns 

to collect ground truth data as reference data, but field campaigns were not 

performed due to the COVID pandemic and also the goal is to use LUCAS points 

as input for the automatic algorithm. During the COVID situation, researchers 

around the world have tried other alternatives, such as using readily available maps 

/ ground truth data collected by volunteers/ airborne data as the reference (Duveau 

2021)(Jawak et al. 2021)(Global Development Lab, n.d.). In this work, Nature system 

map (Sardinia) accessed through Sardinia geoportal and CORINE land cover (CLC) 

and Grassland maps accessed from Copernicus Land Monitoring Service as 

reference data. The nature system map (Carta della natura) prepared by Italian 

National Institute for Environmental Protection and Research (ISPRA) is more 

detailed and accurate (Santarsiero et al. 2021)(Tucci et al. 2021) than the CLC having 

an accuracy of around 85% (Büttner et al., n.d.). Nature system map has 93 classes 

for Sardinian Island, CLC has 44 land cover types (Büttner et al., n.d.) at third level 

classification system for Europe whereas grasslands map shows presence/absence 

of grasslands. For the considered region of interest, the nature system map had 43 

classes, among which 18 fuel types were selected, as shown in Fig. 14, depending 

upon the area covered by each class. These three maps were used to differentiate 

and cross-check the pixels corresponding to trees, shrubs, and grasslands. Three 

classes, namely coniferous vegetation, holm oak trees, and grasslands near the 

Mediterranean coast, were cross verified using CLC as shown in Fig 15 and 

grassland maps as shown in Fig 16. 
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Fig 14. CORINE Land Cover Map 

 

Fig 15. Nature System Map 

 



   

 

57 
 

 

 

Fig 16. Grasslands Map 

 

3.3.3. Pixel Extraction 

Pixel’s extraction of the HIS (Hyperspectral Image) is one of the imperative pre-

processing mechanisms. It assists in handling the data and implementing the 

machine learning algorithms giving it as input data as shown in the flowchart (Fig. 

4). The individual elements in this HSI are pixels of which the spectra are formed as 

vectors. Nature system map, CLC, and grassland maps obtained from sources such 

as Sardinia Geoportal and Copernicus Land Monitoring Service as described in 

section 3.3 were considered reference maps for input data. Pixels that correspond to 

fuel types were selected and inputted for dataset preparation. Fig. 11 shows the 

points selected for each vegetation type to be classified. Points marked in Fig. 11. 

represents: 1 - Halophyte vegetation with the dominance of annual succulent 

Chenopodiacea,  2 - Matorral of evergreen oaks, 3 - Matorral with olive and mastic,  

4 - Matorral of Juniper,  5 - Low Olive and Mastic scrub, 6 - Low Shrubs (from 

Calicotome family),   7 - Formations at Euphorbia dendroids, 8 - Garrigues and 
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meso-mediterranean silicicole spots, 9 – Garrigue and meso-mediterraneal spots, 10 

- Arid Mediterranean Meadow, 11 - Mediterranean Grassland (incl. Mediterranean 

and post-cultural sub-Mediterranean vegetation), 12 - Riparian Mediterranean Ash 

forest, 13 - Tamarisk and oleander, 14 - Tyrrhenian Cork, 15 - Sardinian Leccete 

(Holm Oak), 16 - Vegetation of reeds and similar species, 17 - Coniferous Vegetation 

and 18 - Eucalyptus plantations. 

3.3.4. Techniques Used 

 

Jeffries Matusita-Spectral Angle Mapper 

 

Spectral Angle Mapper (SAM) is one of the popular techniques in the field of 

hyperspectral data analysis as it is a measure of the spectral angle between the 

reference spectra and the target spectrum. Angle decreases with increase in 

similarity between spectra. 

𝛼 =  cos−1 (
∑ 𝑡𝑖𝑟𝑖

𝐶
𝑖=1

√∑ 𝑡𝑖
2𝐶

𝑖=1 √∑ 𝑟𝑖
2𝐶

𝑖=1

)     (1) 

  Given the test spectra t and a reference spectra r of length C, the SAM score α is 

calculated as in (1). 

SAM has the ability to detect intrinsic properties of materials in terms of spectral 

angle but it is in-sensitive to shade and illumination effects. Thus, different 

materials/vegetation types having similar spectral shape with some offsets are 

classified with difficulty (Vishnu, Nidamanuri, and Bremananth 2013). To 

overcome this limitation, SAM is used in combination with the stochastic 

divergence measures (Chang 2004). 

In the computation of transformed divergence or divergence, a priori probability of 

each spectral class is used as weights. The limitation of this approach is that 

divergence behaves as a function of normalized distance between the classes and 
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there will be a considerable difference from the behaviour of the probability of the 

correct match. Thus, Jeffries-Matusita (JM) distance measure was considered to 

combine with SAM for identifying the similar spectra. JM distance between two 

spectra is the measure of average distance between the spectra. The exponential 

factor involved in this method gives an exponentially decreasing weight to 

increasing separation between the spectra and this approach overcomes the 

limitation of transformed divergence (Laliberte, Browning, and Rango 2012). JM 

distance measure band wise information between spectral vectors (Padma and 

Sanjeevi 2014). JM distance between the target spectra (S1) and reference spectra (S2) 

can be represented as (2). 

𝐽𝑀 (𝑆1, 𝑆2) = 2 (1 − 𝑒−𝐵)       (2) 

Where Bhattacharya distance (B) measuring the mean (m) and variance (V) of the 

spectral vectors is defined as in (3). 

𝐵 (𝑆1, 𝑆2) =  
1

8
(𝑀𝑠1 −  𝑀𝑠2)𝑇 [

𝑉𝑠1+ 𝑉𝑠2

2
]

−1
(𝑀𝑠1 − 𝑀𝑠2)  +

1

2
ln [

|Vs1+Vs2 2|⁄

√|Vs1||Vs2|
]   (3) 

In order to identify similar spectra, JM-SAM (TAN) was used in which the 

deterministic SAM was combined with stochastic JM distance using tangent 

function as it projects target spectrum and reference spectrum perpendicularly. This 

method considers both the geometrical aspects (angle, distance) and band-

information between the spectral vectors. The least separable distance between the 

spectral vectors at each band along the least spectral angle between the vectors is 

considered to be the best match (Padma and Sanjeevi 2014; Chang 2004). 

Guided Image Filtering 

 

The guided filter is an edge preserving smoothing algorithm that could smooth out 

the fine details of the input image while retaining the sharp edges. Fine details could 

be noise, for example, a random pattern with a zero mean, or texture, such as a 
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repeated pattern with regular structure. So, applications of guided filtering include 

denoising, image mapping, dehazing and compression and tone mapping of high 

dynamic range (HDR) images (He, Sun, and Tang 2013, 2012; F. et al. 2017).  Output 

image (q) can be obtained using input image (p) and a guided filter image (g) as in 

(4). Generally, q is a linear transform of g in a window ωk centered at the pixel k. If 

the radius of k is r, the size of local window ωk is (2r + 1)*(2r + 1).  

𝑞𝑖 =  𝑎𝑘𝑔𝑖 +  𝑏𝑘   ∀ 𝑖 ∈ 𝜔𝑘          (4) 

Where 𝑏𝑘 and 𝑎𝑘 are bias and linear coefficient which can be found as in (7) and (6), 

respectively. It can be observed from the model that output (q) will have a similar 

gradient with guidance image (g). Minimum cost function can be used to solve the 

bias and coefficient as in (5). 

𝐸 (𝑎𝑘 , 𝑏𝑘) =  ∑ ((𝑎𝑘𝑔𝑖 +  𝑏𝑘 −  𝑝𝑖)
2+ ∈ 𝑎𝑘

2)𝑖 ∈ 𝜔𝑘
            (5) 

Here, ∈ is the regularization parameter. Solution to this can be obtained from (He, 

Sun, and Tang 2013) 

𝑎𝑘  =  
1

𝜔
 ∑ 𝑔𝑖– 𝑖 ∈ 𝜔𝑘

− 𝜇𝑘− 𝑝𝑘̅̅ ̅̅

𝜎𝑘
2+ ∈

       (6) 

    𝑏𝑘  =  𝑝𝑘̅̅ ̅ − 𝑎𝑘𝜇𝑘                (7) 

Where 𝜎𝑘
2 and 𝜇𝑘 are the variance and mean of g in ωk, ∣ω∣ is the number of pixels 

in ωk, and 𝑝𝑘̅̅ ̅  is the mean of p in ωk. After obtaining the coefficient bk and ak, filtering 

output qi can be computed. Through this process, linear transform image q can be 

obtained (Kang, Li, and Benediktsson 2014; He, Sun, and Tang 2013). Guidance 

image can be obtained by perform Principal Component Analysis (PCA). The first 

three principal components were considered as a color guidance image for the 

guided filtering process. 
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K-means clustering analysis 

 

As it is a useful unsupervised learning technique that can divide unknown objects 

into several groups. The members in each group have similar characteristics and 

properties. K-means is a simple and popular machine learning algorithm used for 

clustering data where the number of clusters (K) is either known, presumed, or 

indicated beforehand. As per the suggestion of (Thai, Hai, and Thuy 2012) (Jones et 

al. 2020) it would be better if the number of clusters K is greater than the number of 

expected or actual classes, so three clusters were formed since it is a binary 

classification. The k-means algorithm was carried out using the Machine Learning 

Toolbox of MATLAB. 

A certain initial number K of centroids of the given input data are determined 

randomly, then the data are divided in to several groups. The Euclidean distance 

(d) between data and centroids are calculated as in (8). 

𝑑 (𝑋𝑡, 𝑋𝜖) =  √∑ (𝑋𝑢𝑡 − 𝑋𝜀𝑢
2 )𝑛

𝑢=1                             (8) 

Where 𝑋𝑡 𝑎𝑛𝑑 𝑋𝜖 are input data and given centroids, respectively, l is the number of 

the properties and u is the data property. 

By the first-time calculation of d, the result obtained is recorded as 𝐷(𝑜) =

{𝐷1
(𝑜)

, 𝐷2
(𝑜)

, … 𝐷𝐾
(𝑜)

}, and as the relationship shown in (9), the new centroids are 

updated. 

𝑋𝜀
(𝑚)

=  
1

ℎ∈
(𝑚−1) ∑ 𝑋𝑡𝑋𝑡=𝐷𝑡∈

(𝑚−1)                   (9) 

Where m is the number of iterations, 𝑋𝜀
(𝑚)

 is the new centroid, ℎ∈
(𝑚−1)

 is the amount 

of data in the new group based on new centroids. Iterating the above step and 

ending the calculation process when 𝐷(𝑚) = 𝐷(𝑚−1) and ∈(𝑚)= ℎ ∈(𝑚−1). The 

obtained centroids are the clustering centroids of the data. Three groups were 
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formed having similar spectral signatures, dissimilar spectral signatures and very 

noisy spectral signatures respectively (Vakalis et al. 2004a; Jones et al. 2020). 

Support Vector Machine for HSI Classification 

 

There are numerous supervised learning-based algorithms in artificial intelligence 

field which can be applied for classification (Thai, Hai, and Thuy 2012). In the 

current framework, SVM (with Radial Basis Function, RBF) was applied because of 

its reputation in training data set to achieve high accuracy irrespective of the size of 

dataset and outstanding generalization capability. This method works on statistical 

learning theory and structural risk minimization principle (Guo et al. 2019). The 

optimal separating hyperplane with the maximum margin between the classes will 

be found using the strategy of this classifier using the training samples located at 

the edge of the class distribution (Thai, Hai, and Thuy 2012). The formula for the 

output of a linear SVM is shown in (10): 

𝑢 = 𝑤. 𝑥 − 𝑏      (10) 

Where x and w are the input and normal vectors respectively to the hyperplane. The 

separating hyperplane forms at the plane u=0 having the nearest points lying on the 

planes at u = ±1. The equation for margin m is shown in (11). 

𝑚 =  
1

||𝑤||
2

        (11) 

Since it is a non-linear data, kernels are required for training the model. So, in our 

case, RBF kernels were implemented. RBF (Gaussian) kernels are a family of kernels 

where smoothening of distance measure is done by radian function (exponential 

function) (Cervantes et al. 2020; Sabat-Tomala, Raczko, and Zagajewski 2020), as 

shown in (12). This kernel, unlike the linear kernel, can handle the problem when 

relation between class labels and attribute is nonlinear and can map samples into a 

higher dimensional space (Maxwell, Warner, and Fang 2018). 
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𝑘 (𝑥𝑖 , 𝑥𝑗) = exp (−𝜎 ||𝑥𝑖 − 𝑥𝑗||
2

) , 𝜎 > 0             (12) 

The adjustable parameter plays a major role in the performance of the kernel and 

should be carefully tuned. If underestimated, the function will lack regularization 

and the decision boundary will be highly sensitive to noise in training data whereas 

if overestimated, the exponential will behave almost linearly. Highly sensitivity to 

noise in training data occurs at boundary so the complete behaviour of SVM 

depends on the choice of the width parameter (Thai, Hai, and Thuy 2012). Initially, 

the optimal values were found by hyperparameter optimization in classification 

learner app of MATLAB but observed slowly leading to overfitting. So, Bayesian 

optimization technique was applied to just optimize few parameters such as sigma, 

box constraint etc. 

Then, the SVM model developed was allowed to find posterior probabilities by 

training parameters of an additional sigmoid function to map the outputs into 

probabilities. Constructing classifier to produce a posterior probability is very 

useful in practical recognition situations. For example, a posterior probability 

allows to make decisions using the utility model. Posterior probabilities play an 

important role in making overall decision when classifier has limitation of making 

a small part of an overall decision (Guo et al. 2019) 

Linear Mixing Model 

 

Linear mixing model is necessary when the pixel comprises of materials with 

different reflectance properties and the spectral variability within the scene results 

from varying proportions of the endmembers (Manolakis, Siracusa, and Shaw 2001; 

Heinz, Chang, and Althouse 2003). The spectrum of mixed pixel can be represented 

as linear combination of component spectra (endmembers) in LMM. The weight of 

each endmember (abundance) is proportional to the fraction of the pixel area 

covered by the endmember(Gewali, Monteiro, and Saber 2018). If there are L 
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spectral bands, the spectra of the endmembers and the spectrum of the pixel can be 

represented by L-dimensional vectors. 

The general equation (Heinz, Chang, and Althouse 2003; Manolakis, Siracusa, and 

Shaw 2001)can be given as in (13), (14) and (15). 

𝑥 =  ∑ 𝑎𝑘𝑠𝑘 +  𝜔 ≜ 𝑆𝑎 +  𝜔𝑀
𝑘=1                    (13) 

𝑆 ≜ [𝑠1, 𝑠2 . . . 𝑠𝑀]      (14) 

𝑎 ≜ [𝑎1, 𝑎2 . . . 𝑎𝑀]                                      (15) 

Where x = spectrum of the mixed pixel; 𝑠𝑘 = spectra of the endmember; 𝑎𝑘 = 

abundances of the endmembers; M = number of the endmembers; 𝜔 = L-

dimensional error vector accounting for the lack-of-fit and noise effects. In this 

work, fully constrained LMM was implemented in which the LMM was with a 

following additivity constraint (Heinz, Chang, and Althouse 2003; Wei and Wang 

2020) as shown in (16). 

∑ 𝑎𝑘
𝑀
𝑘=1  = 1      (16) 

 

 3.3.5. Dataset Preparation 

 

The flowchart shown in Fig. 17 illustrates the procedure followed to generate and 

pseudo-label the samples for the dataset preparation and is as follows: 

Step 1: Pre-processing of PRISMA data was carried out as explained in section 3.2.  

Step 2: HSI was denoised using the Guided image filtering technique as explained 

in section 3.5.2. It was performed on MATLAB software, giving the degree of 

smoothness parameter as 0.01. 

Step 3: Spectral signatures corresponding to the pixels extracted following the 

procedure explained in section 3.4 were collected for all 18 classes. Since one of the 
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main objectives of this work is to create a dataset using a single spectral signature 

as input, only one pixel per class was extracted, and one spectral signature per class 

was considered.  

Step 4:  JM-SAM (TAN) was applied to collect similar and dissimilar spectral 

signatures from the image. This technique has provided us with a score map with 

values ranging from lower to higher according to the similarity of the given spectral 

profile. The score map was used to extract similar profiles by visually inspecting 

and giving a threshold, but an unsupervised clustering technique (K-means) was 

preferred to remove the threshold system. 

Step 5: K-means clustering technique was applied to JM-SAM (TAN) scores to 

cluster the obtained values into three groups. Though we need only two groups 

(similar and dissimilar), three groups were formed referring to the literature as 

explained in section 3.5.3. 

Step 6: A dataset of 500 samples was planned to be prepared for each class/fuel 

type by pseudo-labelling, as shown in Fig. 5. Spectral signatures corresponding to 

the pixels having up to 300 scores in group-1 (similar profiles) were collected and 

labelled ‘s’'1', which refers to pure samples. Then, 200 spectral profiles were 

randomly collected using the scores of group-2 (dissimilar) and group-3 (noisy) and 

labelled ‘s’'0', which refers to impure samples. This process of dataset preparation 

was repeated for each fuel type. 

Step 7: This pseudo-labelled dataset was used for training and testing the SVM 

model (one vs all) for binary classification, due to which it is named a semi-

supervised learning approach. 
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Fig 17. Process Flowchart of Dataset Preparation 

3.4. Results and Discussions 

3.4.1. Fuel Types Classification 

 

Support Vector Machine classifier was considered for training using the generated 

dataset on MATLAB R2021b with Machine Learning Toolbox. In addition, accuracy 

implemented to assess the trained model performance is the ratio of correctly 

classified testing samples to the total number of testing samples. The procedure 

followed to perform training, testing, and predicting is as follows: 

Step 1: Dataset was divided into two datasets: 70% dataset as training dataset and 

30% dataset as testing dataset. 

Step 2: K-fold cross-validation was performed with k as 10 to fit the model with a 

minor error. 
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Step 3: Hyperparameters given for tuning are as follows: Radial Basis Function as 

kernel, sigma of range [1e-5 1e+5], and Box constraint of range [1e-5 1e+5]. 

Step 4: Defined hyperparameters were optimized with Bayesian optimization on 

MATLAB Statistical Tool Box. 

Step 5: The SVM classifier model was trained using the optimal hyperparameters 

and RBF as the kernel. 

Step 6: The SVM posterior probability model was trained using the trained SVM 

classifier model as input. This step created the score-to-posterior transformation 

function (sigmoid function) and computed posterior probabilities for the samples 

classified as the positive class. 

Step 7: The cross-validation classification model was trained to perform 10-fold 

cross-validation and to find classification (kfoldLoss). For every class, less than 5% 

of classification loss was obtained. 

Step 8: The trained SVM posterior probability model was validated using the testing 

dataset for accuracy. If accuracy is greater than 0.95, the model was considered for 

prediction. 

The same steps were repeated for every class, and classes obtained as output from 

the SVM classifier is shown in Fig. 18. 
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Fig 18. Classification Map of 18 classes 

 

Fully constrained LMM was applied to unmix the unclassified pixels as per the 

method described in section 3.5.5. Before unmixing, classes (1 to 18) were 

categorized into three groups as forests comprising of classes (12, 14, 15, and 17), 

shrubs comprising of classes (1, 2, 3, 4, 5, 6, 7, 8, 9, 13 and 18) and grasslands 

comprising of classes (10, 11 and 16). Then, unmixing was carried out to identify the 

percentage of forests, shrubs, and grasslands in each pixel. The value for each pixel 

was assigned by knowing the percentage of each group in a pixel. Accordingly, 

mixed pixels were classified into six classes as, 111 – pixel with 50% forests and 50% 

unvegetated area, 112 – pixel with 50 % shrubs and 50% unvegetated area, 113 – 

pixel with 50 % of grasslands and 50% unvegetated area, 123 – pixel with 50 % 

forests, 20 % shrubs and 30 % grasslands, 231 – pixel with 50% shrubs, 20% 
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grasslands and 30 % forests and 312 – pixel with 50 % grasslands, 20 % forests and 

30% shrubs. Fig. 19. shows the classification map obtained from fully constrained 

LMM. 

 

Fig 19. Classification Map of Mixed Pixels 

 

3.4.2. Stability Analysis 

 

In order to evaluate the robustness of the machine learning classifier algorithm, 

PRISMA hyperspectral imagery on the same region of interest for the different dates 

i.e., 27-06-2021 and 31-07-2021 were selected from the archive for fuel mapping. 

Fig. 18. shows the fuel maps developed for two different dates according to the 

Anderson fuel models. Fig. 20 [left] shows the fuel map developed for 27-06-2021 

on the imagery acquired on Lazio (Rome) comprising Castel Porziano. Fig. 20 [right] 

shows the fuel map developed for 31-07-2021 and is slightly rotated with respect to 
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the Fig. 20 [left]. Fuel values were assigned in the range of [1-10] for both the maps 

and the similarity between the maps can be observed. 

 

 

Fig 20. (left) Fuel Map [27-06-2021] and (right) Fuel Map [31-07-2021] 

 

Since Fig 20 [right] is slightly rotated, a common region from both the images were 

selected for stability analysis. Images covering Castel Porziano clipped from both 

these images are shown in Fig 21 [left] and 21 [right]. Similarity between these two 

images can be observed from the Fig 21 and in terms of numerical values was given 

in the Table 10. NDVI was calculated for the ROI to compare the number of 

vegetated pixels among the two images as shown in Fig 22 and are mentioned in 

the same Table 10. 

Stability of a learning algorithm refers to the changes in the output of the system 

when we change the training dataset. A learning algorithm is said to be stable if the 

learned model doesn’t change much when the training dataset is modified. When 

selecting a training dataset from the same image in classification problem of 

PRISMA hyperspectral imagery, using cross validation, kfloss of less than 5 % was 

obtained which refers to greater than 95% stable. But this alone cannot be 

considered when the algorithm is developed generally for different images. 
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Mathematically, there are many ways for stability analysis such as hypothesis 

stability, cross validation etc. 

Here, cross validation was performed between the two fuel maps developed using 

images on same region of interest but acquired on different dates. 

 

Fig 21. (left) Castel Porziano [27-06-2021] and (right) Castel Porziano [31-07-2021] 

 

 

Fig 22. (left) NDVI Castel Porziano [27-06-2021] and (right) NDVI Castel Porziano [31-

07-2021] 

Table 8. Cross Validation of Images 

Fuel Types Value Number of Pixels on  

27-06-2021 image 

Number of Pixels on  

31-07-2021 image 

Difference (in %) 
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2 33255  32234 ~ 3 

4 57339  49117 ~ 14 

5 8259  7813 ~  5.4 

10 7472  6155 ~  17 

Vegetated 144030 118064 ~  18 

 

Table 10 shows the number of pixels and difference between two images for each 

fuel type. Difference in number of pixels ranged from less than one percent to 

seventeen percent for specific classes. From the RGB of two images, it was observed 

that image acquired in July is not as dense as the image in June and it was proved 

by extracting the number of vegetated pixels in both the images using NDVI. Image 

acquired for 31-07-2021 has 18% less vegetated pixels than the image of 26-06-2021. 

Variation in density of vegetated pixels is in line with difference percentage of 

specific classes. Considering these difference percentages, it can be observed that 

overall stability / robustness of this algorithm can be given around 90%.  

Apart from the variation in vegetated pixels, the other major difference between 

these two images is number of bands. Image on 31-07-2021 has higher number of 

noisy bands (22) in comparison with the previous image (4) which was also one of 

the reasons for variation in classification. 
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ANDERSON-BASED FUEL MAPPING 

 

 4.1. Introduction to Anderson fuel models 

In the EFFIS and FUELMAP projects under JRC (Toukiloglou et al. 2013a), (Scott 

and Burgan 2005a), the correlation of vegetation types in Europe to Anderson fuel 

models was obtained. Under these projects, fuel of 42 types (as shown in Table 9) 

available in Europe were categorized into 9 groups as Peat bogs (FT_1 and FT_2), 

Grasslands (FT_3 to FT_6), Shrublands (FT_7 to FT_12), Transitional 

Shrubland/Forest (FT_13 to FT_19), Coniferous Forest (FT_20 to FT_28), 

Broadleaved Forest (FT_29 to FT_34), Mixed Forest (FT_35 to FT_38), Aquatic 

Vegetation (FT_39 to FT_41) and Agro-Forestry areas (FT_42). Then, the correlation 

of fuel types to the fuel models of Anderson (1982)(San-Miguel-Ayanz et al., n.d.) 

was made, as shown in the Table 11. A fuel map was generated by referring to these 

JRC-Anderson Codes in this work. This correlation was used in this work to 

correlate the classified fuel types to Anderson Codes (Anderson 1982), (San-Miguel-

Ayanz et al., n.d.), (Toukiloglou et al. 2013a), (Scott and Burgan 2005a). 

Table 9. Fuel Models (With correspondence to JRC) 

FT Code FT Description 
Anderson    

Code 

FT_1 Peat bogs 5 

FT_2 Wooded peatbogs 6 

FT_3 Pastures 1 

FT_4 Sparse grasslands 1 

FT_5 Mediterranean grasslands and steppes 2 

FT_6 Temperate, Alpine and Northern grasslands 1 

FT_7 Mediterranean moors and heathlands 5 

FT_8 
Temperate, Alpine and Northern moors and 

heathlands 
5 

FT_9 Mediterranean open shrublands (sclerophyllous) 2 

FT_10 Mediterranean shrublands (sclerophyllous) 4 

FT_11 Deciduous broadleaved shrublands (thermophilus) 5 
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Ft_12 Alpine open shrublands (conifers) 6 

FT_13 Shrublands in Mediterranean conifer forest 7 

F_T14 Shrublands in Mediterranean sclerophyllous forest 4 

FT_15 Shrublands in Mediterranean mountain conifers forest 7 

FT_16 Shrublands in thermophilus broadleaved forest 5 

FT_17 
Shrublands in beach and meso-phytic broadleaved 

forest 
5 

FT_18 Northern open shrublands in broadleaved forest 5 

FT_19 Shrublands in Alpine and Northern conifers forest 7 

FT_20 
Mediterranean long needled conifer forest 

(Mediterranean pines) 
10 

FT_21 
Mediterranean scaled needled open woodlands 

(Juniperus, Cupressus) 
8 

FT_22 
Mediterranean mountain long needled conifer forest 

(black and Scots pines) 
10 

FT_23 
Mediterranean mountain short needled conifer forest 

(firs, cedar) 
8 

FT_24 Temperate conifer plantation 8 

FT_25 Alpine long needled conifer forest (pines) 10 

FT_26 Alpine short needled conifer forest (fir, alp, spruce) 8 

FT_27 Northern long needled conifer forest (Scots pines) 10 

FT_28 Northern short needled conifer forest (spruce) 8 

FT_29 Mediterranean evergreen broadleaved forest 4 

FT_30 Thermophilus broadleaved forest 9 

FT_31 Meso-phytic broadleaved forest 9 

FT_32 Beach forest 9 

FT_33 Mountain beach forest 10 

FT_34 White birch boreal forest 10 

FT_35 
Mixed Mediterranean evergreen broadleaved with 

conifer forest 
4 

FT_36 Mixed meso-phytic broadleaved with conifer forest 9 

FT_37 Mixed meso-phytic broadleaved with conifer forest 10 

FT_38 Mixed beach with conifer forest 9 

FT_39 Riparian vegetation 5 

FT_40 Coastal inland and halophytic vegetation and dunes 1 

FT_41 Aquatic Marshes 3 

FT_42 Agroforestry areas 2 
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4.2. Further classification 

Concerning the JRC-Anderson correlation [Table 9], Anderson codes differ for 

sparse grasslands from typical grasslands. According to the EFFIS project, sparse 

grasslands will have 1.83 tons/hectare of biomass (San-Miguel-Ayanz et al., n.d.). 

So, a biomass map was obtained from EU Copernicus and differentiated spare 

grasslands from grasslands. Fig. 23., shows the classification of sparse grasslands 

(class 2) from grasslands (class 1). 

 

Fig 23. Classification of Sparse Grasslands 

4.3. Fuel map generation 

By referring to the correlation of JRC-Anderson Codes as shown in Table 11, 

Anderson codes were assigned to the pixels of classified map with respect to the 

fuel types as tabulated in Table 12. For mixed pixel, whichever the fuel type has 

higher percentage of occupancy, Anderson code corresponding to that fuel type was 

assigned. 
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Table 10. Fuel Types with correspondence to Anderson Codes 

 

Class 

 

JRC Fuel Type 

 

Anderson 

Code 

1 FT_40 1 

2 FT_29 4 

3 FT_10 4 

4 FT_14 4 

5 FT_14 4 

6 FT_9 2 

7 FT_9 2 

8 FT_10 4 

9 FT_10 4 

10 FT_4 1 

11 FT_4 1 

12 FT_32 9 

13 FT_42 2 

14 FT_29 4 

15 FT_29 4 

16 FT_4 1 

17 FT_20 10 

18 FT_15 7 

 

Fig. 24. shows the wildfire fuel map obtained by following the procedure described. 

The fuel map has values ranging from 1 to 10, representing the fuel models of 

Anderson's classification. By associating the classified fuel types to standard fuel 

models, each fuel type in this map is correlated to the attributes of fuel models such 

as fuel load [t/ha] for the living and dead component of the vegetation, the height 

of the fuel (litter) to the ground, extinction humidity [%], flame height [m] and 

propagation rate [m/sec] (San-Miguel-Ayanz et al., n.d.).  
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Fig 24. Wildfire Fuel Map 
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SCOTT/BURGAN-BASED FUEL MAPPING 

 

5.1. Introduction to Scott/Burgan dynamic fuel models 

    In this chapter, Scott and Burgan’s standard fire behavior fuel model (Scott and 

Burgan 2005b) was followed for dynamic fuel mapping. Their standard fire 

behavior fuel models were based on Rothermel’s surface fire behavior fuel models. 

There are 52 fuel types as per the Scott/Burgan fuel model with the combination of 

7 main fuel types as follows: Non-burnable (NB), Grass (GR), Grass-Shrub (GS), 

Shrub (SH), Timber – Understory (TU), Timber – Litter (TL) and Slash – Blowdown 

(SB). To facilitate both communication and computation, fuel types were 

represented with three-part reference scheme as fuel model number (between 1 to 

256), fuel model code (three digits) and fuel model name (description with any 

number of characters) as shown in Table 13. For example, number – 102, code – GR2 

and name – Low load, dry climate grass. The naming of the fuel model represents 

the dead fuel moisture extinction content and the climatic condition which is very 

useful while correlating the classified fuel types to the standard fire behavior fuel 

models. By correlating with these standard fuel models, it is possible to obtain fuel 

parameters such as fuel bed depth (ft), fine fuel load (t/ha), characteristic SAV (1/m), 

packing ratio (dimensionless), heat content (KJ/kg) and extinction moisture content 

(percent) (Scott and Burgan 2005b). 

 

Table 11. Scott/Burgan Standard Fire Behaviour Models, Fuel Types and Fuel Numbers 

Fuel Types Fuel Codes Fuel Number 

Short, Sparse, Dry 

Climate Grass 

GR1 1 

Low Load, Dry Climate 

Grass 

GR2 2 
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Low Load, Very Coarse, 

Humid Climate Grass 

GR3 3 

Moderate Load, Dry 

Climate,  

GR4 4 

Low Load, Humid 

Climate Grass 

GR5 5 

Moderate Load, Humid 

Climate Grass 

GR6 6 

High Load, Dry Climate 

Grass 

GR7 7 

High Load, Very Coarse, 

Humid Climate Grass 

GR8 8 

Very High Load, Humid 

Climate Grass 

GR9 9 

Low Load, Dry Climate 

Grass-Shrub 

GS1 10 

Moderate Load, Dry 

Climate Grass-Shrub 

GS2 11 

Moderate Load, Humid 

Climate Grass-Shrub 

GS3 12 

High Load, Humid 

Climate Grass-Shrub 

GS4 13 

Low Load, Dry Climate 

Shrub 

SH1 14 

Moderate Load, Dry 

Climate Shrub 

SH2 15 

Moderate Load, Humid 

Climate Shrub 

SH3 16 

Low Load, Humid 

Climate Timber-Shrub 

SH4 17 

High Load, Dry Climate 

Shrub 

SH5 18 

Low Load, Humid 

Climate Shrub 

SH6 19 
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Very High Load, Dry 

Climate Timber-Shrub 

SH7 20 

High Load, Humid 

Climate Shrub 

SH8 21 

Very High Load, Humid 

Climate Shrub 

SH9 22 

Low Load Dry Climate 

Timber-Grass-Shrub 

TU1 23 

Moderate Load, Humid 

Climate Timber-Shrub 

TU2 24 

Moderate Load, Humid 

Climate Timber-Grass-

Shrub 

TU3 25 

Dwarf conifer with 

understory 

TU4 26 

Very High Load, Dry 

Climate Timber-Shrub 

TU5 27 

Low Load, Compact 

Conifer Litter 

TL1 28 

Low Load Broadleaf 

Litter 

TL2 29 

Moderate Load Conifer 

Litter 

TL3 30 

Small downed logs TL4 31 

High Load Conifer Litter TL5 32 

Moderate Load Broadleaf 

Litter 

TL6 33 

Large Downed Logs TL7 34 

Long-Needle Litter TL8 35 

Very High Load 

Broadleaf Litter 

TL9 36 

Load Load Activity Fuel SB1 37 
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Moderate Load Activity 

Fuel or Low Load 

Blowdown 

SB2 38 

High Load Activity Fuel 

or Moderate Load 

Blowdown 

SB3 39 

High Load Blowdown SB4 40 

Dwarf Conifer with 

Understory deciduous 

TU4 126 

Low Load Compact 

Conifer Litter Deciduous 

TL1 128 

Low Load Broadleaf 

Litter Deciduous 

TL2 129 

Moderate Load Conifer 

Litter Deciduous 

TL3 130 

High Load Conifer Litter 

Deciduous 

TL5 132 

Moderate Load Broadleaf 

Litter Deciduous 

TL6 133 

Long-Needle Litter 

Deciduous 

TL8 135 

Very High Load 

Broadleaf Litter 

Deciduous 

TL9 136 

Not burnable - 50 

Water bodies - 51 

Sea Water - 52 

 

   The main objective of this work is to develop a dynamic fuel map with reference 

to the Scott/Burgan standard fire behaviour fuel models. Concerning this, PRISMA 

hyperspectral data were used to classify fuel types available in our area of study 

and then a Relative Greenness map was developed considering Sentinel – 2 

multispectral data over the past 5 years. Referring to the iso-bioclimatic map 
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accessed from regional geoportal and fuel model naming, classified fuel types were 

correlated to Scott/Burgan fuel models. Procedure followed to develop dynamic 

fuel map is shown in Fig. 25. 

 

Fig 25. Procedure of dynamic fuel mapping 

 

 5.2. Study Area and Classification 

An image [acquired on 26-06-2021] on the west of Latium was selected for 

demonstration purposes due to the availability of relevant data in the archive, as 
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shown in Fig. 26. This area is located between many small towns of Italy such as 

Tivoli, Olevano Romano etc., and is covered mainly by Oak trees. This is also the 

region with subhumid to humid climatic conditions, and the temperature in this 

area varied from 3.5o C to 30.5o C from winter to summer, respectively. 

 

Fig 26. PRISMA Image of the Study Area. 

5.3. Relative Greenness 

Knowledge of the proportion of live and dead herbaceous fuel is essential in 

determining the fire danger. (Burgan, 1998 and Glenn, 2011) and has suggested that 

the relative greenness map can support us in finding the proportion of live and dead 

herbaceous in the area of study. Relative Greenness (RG) index can be represented 

as equation (17). 

𝑅𝐺 =  
𝑁𝐷𝑉𝐼−𝑚𝑖𝑛5𝑦𝑁𝐷𝑉𝐼

𝑚𝑎𝑥5𝑦𝑁𝐷𝑉𝐼−𝑚𝑖𝑛5𝑦𝑁𝐷𝑉𝐼
. 100    (17) 

Where min5yNDVI and max5yNDVI are the minimum and maximum NDVI values 

registered in each pixel in the past five years (Laneve, Pampanoni, and Shaik 2020). 

Whereas Normalized Difference Vegetation Index (NDVI) can be computed using 

equation (18). 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
        (18) 
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Where NIR and RED are the reflectance values of near infrared and red channels. 

Relative greenness map was generated in Google Earth Engine considering 

Sentinel–2 multispectral data over the past 5 years as shown in Fig 27. One image 

per month with a cloud pixel percentage of less than 10 was chosen for processing. 

Initially, maximum, minimum and on-date NDVI was calculated, and then the RG 

index as shown in equation (17) was applied to generate an RG map for the area of 

study. In Fig 27., RG value of 100 signifies that this is the highest greenness level 

ever reached during the multiyear period and vice versa. This map is further 

classified into three levels as low (1 - 30%), moderate (31 – 60%) and high (61 – 100%) 

RG levels according to the Scott/Burgan fuel model naming which is required for 

correlating to the fuel models appropriately. 

 

Fig 27. Relative Greenness Map 
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5.4. Fuel Map Generation 

In order to generate dynamic fuel map with reference to the naming of Scott/Burgan 

standard fire behaviour fuel model, information from both classified and RG map 

was taken. Along with this, iso-bioclimatic map obtained from regional geoportal 

provided us the climatic condition of the study area. Considering these three inputs, 

dynamic fuel map was generated by assigning the fuel model number (between 1 

to 256). 

Fig. 28 shows the classified map for West-Latium of Italy, and classes labelled in the 

figure represents as follows: Not-burnable (-1), Beech Forest (1), Hornbeam (2), 

Chestnut (3), Downy Oak (4), Shrubland (5), Holm Oak (6), Oak Forest (7), Riparian 

Forest (8), Grasslands (9), Trees – Shrubs – Grasslands (123), Major Shrubs – Minor 

Grasslands (231) and Major Grasslands - Minor Shrubs (321).  

 

Fig 28. Classified Map for West-Latium 
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Fig. 29 depicts the dynamic fuel map generated as explained in section 5.4. The 

values of the fuel models in this map were assigned according to the fuel types 

available in this study area. Using this map, it is possible to correlate the standard 

fuel models (Scott/Burgan) parameters (Uddien Shaik, Giovanni, and Fusilli 

2021). In addition, Scott/Burgan also considers the mixed fuel types, which is an 

advantage when using remote sensing systems to map fuel types. 

 

Fig 29. Dynamic Fuel Map 
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VALIDATION OF ALGORITHM 
 

6.1. Validation with reference data 
 

As per the methodology explained in the previous section, hyperspectral imagery 

of PRISMA on the south of Sardinian Island comprising of Monte-Arcosu Forest has 

been classified into 18 classes and 6 mixed-pixel classes as shown in Fig. 23 & 24. 

Details of classes are mentioned in section 3.3.3. (pixel extraction). It can be observed 

from the obtained maps that the significant fuel types available in this region of 

interest are fuel type 2 (evergreen oak), fuel type 15 (holm oak), and fuel type 5 

(mastic scrubs/bushes), which is in align with the literature stating that this forest 

has these three vegetations majorly at different altitudes (L. Mossa et al. 2016; 

Caudullo et al. 2016). This region also contains Eucalyptus plantations (fuel type 18) 

which are highly flammable than the majorly covered broadleaved forest. 

Eucalyptus plants contain a high concentration of volatile compounds and 

accumulate larger amount of flammable litter from the leaves and barks (Pettinari 

and Chuvieco 2016). 

One of the main factors of fire behaviour is how the fuels are distributed but 

understanding the fuel density heterogeneity effect on fire behaviour is limited. A 

study concluded that increased fuel density had decreased forward fire spread due 

to a combination of fuel discontinuities and increased fine-scale turbulent wind 

structures. In contrast, a decrease in local fuel continuity and wind entrainment into 

the forest canopy maintained near-surface wind speeds had driven forward fire 

spread. Considering this point, mixed pixels with partial vegetation are also 

necessary to be considered as fuel-containing pixels. In this work, mixed pixels were 

classified into six types as explained among which class 111 (50% forests and 50% 

unvegetated area) were in higher amount. 
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Table 12. Confusion Matrix of Classified Map 

S.No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 FN Row 

Total 

Commissi

on 

Error (%) 

1 20 0 0 0 1 1 2 0 0 0 2 1 0 0 1 2 0 0 9 30 30 

2 1 26 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 4 30 13.33 

3  0 3 24 0 2 0 0 0 0 0 1 0 0 0 1 1 1 0 9 30 20 

4 0 2 0 26 0 0 0 0 2 0 0 0 0 0 0 0 0 0 4 30 13.33 

5 0 0 2 0 26 1 1 0 0 0 0 0 0 0 0 0 0 0 4 30 13.33 

6 0 0 0 0 0 25 3 0 1 0 0 0 0 0 0 0 1 0 5 30 16.67 

7 0 0 0 0 0 0 28 0 2 0 0 0 0 0 0 0 0 0 2 30 6.67 

8 0 0 0 2 0 0 0 27 1 0 0 0 0 0 0 0 0 0 3 30 10 

9 0 0 0 0 0 0 2 0 26 0 2 0 0 0 0 0 0 0 4 30 13.33 

10 0 0 0 1 0 1 0 0 0 26 0 0 0 0 0 0 0 2 4 30 13.33 

11 0 0 0 0 0 0 0 0 0 2 27 0 0 0 0 0 0 1 3 30 10 

12 0 0 0 0 0 0 0 0 1 0 0 28 0 0 0 0 1 0 2 30 6.67 

13 0 0 2 1 0 0 0 0 0 0 0 0 26 0 0 0 0 1 4 30 13.37 

14 0 1 0 0 0 0 0 0 1 0 0 0 0 28 1 0 0 0 2 30 6.67 

15 0 0 0 0 0 0 0 0 2 0 0 0 0 0 27 1 0  3 30 10 

16 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 27 1 1 3 30 10 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 1 30 3.33 

18 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 1 0 26 4  13.33 

FP 1 5 4 4 3 5 7 0 11 2 5 1 1 0 6 5 4 6 70/ 

68 

  

Column 

Total 

22 31 28 30 29 30 35 27 37 28 32 29 27 28 33 32 33 32  510  

Omission 

Error (%) 

4.54 16.1

2 

14.2

8 

13.3

3 

10.3

4 

16.67 20 0 29.72 7.14 15.6

2 

3.44 3.73 0 18.1

8 

15.6

25 

12.1

2 

18.7

5 

  OA = 

86% 
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The classified map was validated using different sources, i.e., the nature system 

map of Sardinia, CLC, and grasslands maps, accessed from regional/or EU 

Copernicus geoportals as described. Each class was validated by randomly taking 

30 points to measure the classification accuracy, which is the ratio of correctly 

classified points to the total number of points.  Table 14 shows the confusion matrix 

validated using 30 points for each class and the overall accuracy of 86% was 

achieved. 

Table 15. Performance Metrics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performance metrics for each class was identified to check the accuracy of the 

machine learning model. Performance metrics involve precision, recall, and F1 score 

for analyzing. Therefore, these scores take false positives and false negatives 

together into account. Understanding F1 score is intuitively not easy as accuracy, 

but F1 is usually more beneficial than accuracy, especially if the uneven class 

 

Class 

 

Precision 

 

Recall 

 

F1 

Score 

 

Accuracy (%) 

1 0.95 0.70 0.80 70 

2 0.83 0.86 0.85 86 

3 0.85 0.72 0.78 80 

4 0.86 0.86 0.86 86 

5 0.89 0.86 0.88 86 

6 0.83 0.83 0.83 83 

7 0.80 0.93 0.86 93 

8 0.86 0.90 0.94 90 

9 1 0.86 0.77 86 

10 0.70 0.86 0.89 86 

11 0.92 0.90 0.87 90 

12 0.84 0.93 0.94 93 

13 0.96 0.86 0.91 86 

14 0.96 0.93 0.96 93 

15 1 0.90 0.85 90 

16 0.81 0.90 0.87 90 

17 0.84 0.96 0.92 96 

18 0.87 0.86 0.83 86 



   

 

90 
 

distribution is present. Accuracy works best if false positives and false negatives 

have similar costs. In the case of different false positives and false negatives, it is 

better to look at Precision and Recall. 

Table 13 shows each class's precision, recall, and F1 score. This image's major fuel 

types (class 2, 5, and 15) have obtained 86%, 86%, and 90% accuracy. Almost every 

class has obtained an accuracy of above 80% except class 1. It was observed that 

halophyte vegetation (class 1) is spread over the forest in small areas, but the 

reference map shows only near the Mediterranean coast, leading to less accuracy. 

The validation details showed an Overall Accuracy of 87.10%, which is the ratio 

of correctly classified points for all classes to the total number of points. Due to the 

lack of recent reference/ground truth data to validate, the uncertainty of ±5 % 

inaccuracy can be expected. EFFIS pan-European fuel map was prepared using CLC 

having 8 vegetation classes/fuel types with 250m of spatial resolution and at an 

accuracy of around 85% (San-Miguel-Ayanz et al., n.d.). Fuel map under the 

framework of the ArcFuel project was prepared using CLC and Landsat – 7 data 

with eight fuel types at a resolution of 50m and obtained an accuracy of 76% in 

Italian pilot sites (Bonazountas et al. 2014; Toukiloglou et al. 2013b). Comparison 

with other fuel products is problematic since regional fuel maps use many different 

classification systems to produce (Pettinari and Chuvieco 2016). 

 

6.2. Validation with ground data 

 

To evaluate the repeatability and reproducibility of the algorithm, an image (of 19th 

January 2022) on the part of Bulgaria was selected since a fuel map acquired from 

the local authorities is available as a reference. The classification and fuel map are 

generated for this image with six classes, as shown in table 16. The input for this 

image was taken from the specified reference map, as shown in Fig 30a. 
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Table 16. Fuel Types and its corresponding Anderson Fuel Models 

 

Fig. 30b shows the classification map with six classes and its corresponding 

fuel map in Fig. 30c. Again, the fuel Map based on PRISMA is clipped for the 

region of interest. Details of classes and the Anderson codes are shown in table 16. 

S.No. Fuel Types Anderson fuel models 

1 Winter Oak Mesophytic Broadleaved Forest (9) 

2 White Pine Broadleaved with Coniferous Forest (9) 

3 Black Pine Broadleaved with Coniferous Forest (6) 

4 Hairy Oak Agroforestry (2) 

5 Pasture and Meadows Pastures / Sparse grasslands (1) 

6 Mixed Land Use Pastures / Grasslands (1) 
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Fig 30. (a) Reference Fuel Map (Courtesy of FirEUrisk project) (b) Classification Map 

(from PRISMA) (c) Fuel Map (from PRISMA) and d) RGB (from PRISMA) 

 

Reference fuel map has fuel types assigned to only four fuel models (1,2,6, and 9). 

The major vegetation available in this area is Black Pine (coniferous forest), followed 
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by other fuel types, as shown in table 16. This scenario is also similar to PRISMA 

based fuel map except that the fuel types assigned to fuel model 9 have sparse 

vegetation, which is inadequately classified due to the dark pixels in the 

hyperspectral data (as shown in RGB of PRISMA image). 

Table 17. Confusion Matrix for Fuel Types 

  

 

 

 

 

 

 

Detailed evaluation, including misclassifications, can be shown only by the 

confusion matrix in Table 17. A confusion matrix was created by considering 30 

points for each category in the fuel map and obtained an overall accuracy of ≅ 84 %. 

It can be observed from the overall accuracies that the degree of confidence obtained 

is greater than 95%. 

6.3. Validation with field data 

 

Field campaigns were conducted to collect information on the fuel/vegetation types 

in the areas. Three areas within Lazio and Sardinia were selected for field campaign 

are (i) north-east Latium, (ii) south-east Sardinia and (iii) north Sardinia and the 

images for them were acquired on 28-06-2021, 16-06-2021 and 12-08-2021 

respectively. Fig. 31 shows the ROIs on map and details of them are explained in the 

following sections. 

S.No. 1 2 6 9 
User’s 

Accuracy 

Commission 

Error (%) 

1 27 2 1 0 0.90 10 

2 2 24 4 0 0.80 20 

6 0 1 26 3 0.86 13.33 

9 0 1 3 25 0.86 13.33 

Producer’s 

Accuracy 
93.10 85.17 76.47 89.65   

Omission 

Error (%) 
6.89 14.28 23.52 10.34  OA ≅ 84% 
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Fig 31. Validation Areas 

 

6.3.1. North - East Latium 

 

The area, around the lake Bracciano comprises the Parco Naturale Regione of 

Bracciano-Martignano. The forest, which occupy more than 30% of the entire 

surface of the park, is distributed above all in the northernmost part and is 

characterized by a stand with a clear prevalence of chestnut and Turkey oak 

coppices as well as by areas with high trunk of Turkey oak and beech. On very steep 

and often rocky slopes and, in particular, on the hills facing north and west of the 

lakes of Bracciano and Martignano, among the evergreen species is the holm oak 

(Quercus ilex). The holm oak groves are sometimes interrupted by small groups of 

deciduous trees consisting of downy oak (Quercus pubescens), black hornbeam 

(Ostrya carpinifolia), ash (Fraxinus ornus), elm (Ulmus minor) and hackberry 

(Celtis australis). However, there is no lack of areas invaded by dense thicket of 

blackthorn (Prunus spinosa), hawthorn (Crategus monogyna), dogwood (Cornus 
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mas), broom of charcoal burners (Citysus scoparius) and the common broom 

(Spartium junceum) whose blooms in spring turn yellow intense these areas. 

Turkey oak (Quercus cerris) is the most widespread oak in the area and represents 

the main constituent component of extensive wooded areas governed by coppice, 

which form the backdrop to the northern and western shores of Lake Bracciano. 

 

6.3.2. South-East Sardinia 

 

The area comprises Monte Arcosu Forest, one of the largest holm oak forests of the 

Mediterranean region, which is east of Cagliari. The region of interest is hilly with 

an altitude of around 800 m and a total area of 32 km2. The primary vegetation in 

this forest is holm oak (Quercion ilicis) and mastic shrubs of two different families 

(Ericion arboreae and Oleo ceratonian). The highest areas have low vegetation, 

specifically meadows of two different families (Teucrion mari and Periballio-

Trifolion subterranei), whereas the lowest areas (around 200–300 m altitude) have 

evergreen broadleaved trees (Quercetalia ilicis). 

The three PRISMA images corresponding to the above-described test sites were 

trained using the input data from three different reference maps such as fire fuel 

map (for Bulgaria), CNAT (for Sardinia) and forest types map (for Latium) 

respectively. 

 

6.3.3. North-Sardinia 

 

This area comprises of a commune of Alghero and the major vegetation found in 

this area are different types of shrubs mainly the large juniper bushes. This area has 

a Mediterranean coast on one side due to which the sand is more saline and can 
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observe discontinuous vegetation. The Figure (Fig 32) shows the areas visited 

during field campaigns. 

 

Fig 32. Validation Points for (i) North-West Sardinia, (ii) South-West Sardinia and (iii) 

West Latium 

 

The following table list the fuel types (according to Anderson) encountered in the 

field campaign. 

 

Table 13. Fuel models encountered during the field campaigns 

Fuel 

model 

FT description Photo 

0 
Agriculture 

land 

 

1 Pastures 
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2 

Mediterranean 

Grasslands and 

Steppes 

 

 

4 

Mediterranean 

shrublands 

(sclerophyllous) 

 

7 

Shrublands in 

Mediterranean 

coniferous 

Forest 

 

9 

Mesophytic 

broadleaved 

forest 

 

10 

Mesophytic 

broadleaved 

forest with 

conifer forest 

 

 

Point based validation was also carried out for the three fuel maps by conducting 

the field visits. Totally 82 points were collected for the validation and they are 

organized into confusion matrix. Photographs were taken on four different 
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directions (North/East/West/South) and the visits were carried between February 

and March 2022. 

Three images corresponding to this validation points are on South-West Sardinia, 

West Latium and North-West Sardinia. South-West Sardinia has classified the 

vegetation types corresponding to fuel models as follows: Cropland (0), 

Mediterranean grasslands and steppes (2), Mediterranean shrublands 

(sclerophyllous) (4), Deciduous broadleaved shrublands - thermophilus (5), 

Shrublands in Mediterranean coniferous forest (7) and Mixed mesophytic 

broadleaved with conifer forest (10). West Latium has vegetation types 

corresponding to Cropland (0), Mediterranean grasslands and steppes (2), 

Mediterranean shrublands (sclerophyllous) (4), Deciduous broadleaved shrublands 

- thermophilus (5), Mesophytic broadleaved forest (9). Whereas North-Sardinia has 

vegetation types corresponding to pastures (2) and Mediterranean shrublands 

(sclerophyllous)/ Mediterranean broadleaved forest (4). 

Error! Reference source not found.14 shows the confusion matrix based on fuel m

odel for the algorithm. It can be observed from the confusion matrix that the main 

misclassification has occurred between pastures, grasslands and shrublands. 

Totally, 70 validation points were correctly classified out of 82 that leads to an 

overall accuracy of around 85%. 
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Table 14. Confusion Matrix for field campaign 

Number 

of Points 
Fuel Model (0) (1) (2) (4) (7) (9) (10) 

2 Cropland (0) 2 0 0 0 0 0 0 

1 Pastures (1) 0 1 0 0 0 0 0 

8 
Mediterranean grasslands 

and steppes (2) 
0 1 6 1 0 0 0 

62 

Mediterranean shrublands 

(sclerophyllous)/ 

Mediterranean evergreen 

broadleaved forest (4) 

0 0 1 53 2 5 2 

2 
Shrublands in Mediterranean 

coniferous forest (7) 
0 0 0 0 2 0 0 

3 
Mesophytic broadleaved 

forest (9) 
0 0 0 0 0 3 0 

4 
Mesophytic broadleaved 

forest with conifer forest (10) 
0 0 0 0 0 0 3 
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SYSTEM ARCHITECTURE 

 

6.1. MATLAB based Graphic User Interface 

Graphical user interfaces (GUIs), also known as apps, provide point-and-click 

control of software applications, eliminating the need for others to learn a language 

or type commands in order to run the application. GUIs can be shared for use within 

MATLAB and also as standalone desktop or web apps. A good GUI makes an 

application easy, practical, and efficient to use, and the marketplace success of 

today's software programs depends on good GUI design. 

In this work, Graphic User Interface for the wildfire fuel mapping was developed 

on MATLAB GUIDE. There are four stages of creating the GUI in MATLAB. 

1. Designing the GUI 

Prior to start creating GUI, a creative design should be prepared on paper 

considering the inputs and outputs. In our case, file paths of the georeferenced 

images extracted from the PRISMA hyperspectral package is to be given. 

Followingly, details of the spectral signatures including the pixel [X, Y], type of 

vegetation [Forests / Shrubs / Grasslands], Anderson fuel models [0-10] and Scott / 

Burgan fuel models [1-256] have to be given. 

2. Laying out the GUI 

MATLAB GUIDE have provided a blank GUI template with different options such 

as push button, radio button, edit text, static text etc., which was used to place the 

required attribute on the template. At the end, a RUN attribute was placed to 

transfer all the input given for the processing. Call-back functions were 

programmed in GUI’s M-file after the layout was designed. Fig 33 shows the layout 

that will be used to form the GUI. 
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Fig 33. MATLAB GUI Layout 

3. Programming the GUI 

A callback is a sequence of commands that are execute when a graphics object is 

activated. It is stored in the GUI’s M-file and is a property of a graphic object (e.g., 

CreateFcn, ButtonDwnFcn, Callback, DeleteFcn). This is also called as event handler 

in some programming languages. Callbacks were programmed after creation of 

layout to access the inputs from the Graphic User Interface of MATLAB. 

4. Saving and Running the GUI 

After designing the layout and programming the callbacks, layout can be saved and 

can Run using the developed GUI. Fig 34 shows the MATLAB based GUI developed 

for mapping wildfire fuel types using PRISMA Hyperspectral Imagery. For better 

understanding of the inputs to be given in this GUI, a README file as shown in Fig 

33, Anderson fuel models chart and Scott/Burgan fuel models chart will be provided 

in the package. 
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Fig 34. MATLAB based Graphic User Interface for Wildfire Fuel Mapping 

 

 

Fig 35. README file for using GUI 
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SWOT ANALYSIS OF HYPERSPECTRAL REMOTE 

SENSING FOR WILDFIRE FUEL MAPPING 

 

To conduct a proper SWOT analysis, firstly, the internal and external factor 

evaluation matrices, IFE and EFE, need to be prepared. Then, a SWOT analysis 

needs to be conducted based on which the positives and negatives can be 

understood. In the following, we first explain IFE and EFE and then the SWOT 

analysis. 

The external factors evaluation (EFE) matrix is a tool that allows strategists in urban 

planning to analyse external factors such as environmental, economic, social, 

political, cultural and technological factors relevant to a specific issue at a certain 

period of time. On the other hand, the internal factors evaluation (IFE) matrix is a 

tool for analysing the internal factors of a city. The matrices are usually developed 

based on expert opinion and yield an assessment of the opportunities and threats 

(for EFE), and strengths and weaknesses (for IFE) of a city. 

SWOT analysis is an efficient structured method of planning that identifies each 

factor of strength, weakness, opportunity and threat, and reports the corresponding 

possible strategies to deal with an issue. 

The aim of a SWOT analysis is to classify the main internal and external factors 

relevant for the issue. In normal mode, the SWOT analysis consists of a 2 × 2 table 

as shown in Table 14 (SWOT Matrix) and each of its four cells shows a group of 

strategies with each group targeting an objective as follows: 

SWOT analysis is a cognitive process studying the interrelations between internal 

and external surroundings of a processing, based on a mixed (subjective–objective) 

evaluation of strengths, weaknesses, opportunities, and threats. Combining these 
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analysis strategies will serve to provide an exhaustively and updated picture and a 

detailed assessment of the situation being examined. 

Table 15. SWOT Matrix 

Technology Internal External 

P
o

si
ti

v
es

 

Strengths 

 

- Better accuracy in Fuel Types 

Classification 

- Possibility of automation using 

machine learning 

- Extension to any part of earth 

 

 

Opportunities 

 

- Saves time and cost by avoiding 

field-based fuel types detection 

- Technology can be transferred 

between organizations/research 

labs. 

- Possibility of image fusion with 

multispectral, radar, lidar etc., 

N
eg

at
iv

es
 

Weaknesses 

 

- PRISMA is an on-demand 

mission and acquisition are not 

so easy. 

- The availability of data in 

archive is limited 

- Revisiting time of ~16 days. 

- Long processing time 

- High computational power is 

required 

- Unstable noisy bands 

- Unstable noisy lines on few 

bands 

Threats 

 

- Interdisciplinary knowledge is 

required for processing. 

- Lifetime of satellite. 

- Satellite based environmental 

issues 

 

7.1.  Breakdown of SWOT category 

Strengths:  

(1) One of the major strengths in using PRISMA hyperspectral imagery is its 

accuracy in detecting wildfire fuel types in comparison with multispectral 

imagery. Because of the higher number of bands and with the support of 
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machine learning, it is possible to detect all the available fuel types in the area 

of interest with better accuracy. 

(2) Since it is a spaceborne data with global coverage, the algorithm developed 

for one region can be implemented on other parts of world to extract the 

wildfire fuel types. 

(3) By providing the inputs for one specific region, it is possible to automize the 

procedure for continuous monitoring of forests which could be one of the 

key strategies for preventing wildfires. 

Weaknesses: 

(1) PRISMA is an on-demand mission and the acquisition of data for the specific 

date is not easy due to the high traffic of requests. 

(2) Moreover, the availability of data in the archive is limited due to which the 

analysis cannot be performed for the complete desired region. 

(3) The revisiting time of the satellite is ~16 days which is also one of the 

constraints of this satellite. 

(4) Regarding the processing of data, due to the large number of bands (239), the 

processing carried out using machine learning techniques will take longer 

hours. 

(5) In order to automate the process or for predicting the wildfire fuel types for 

a complete region, high computation power is required. 

(6) Hyperspectral data has unstable noisy bands in the hyper cube.  

(7) PRISMA data has dead/noisy lines on some of the bands in the hypercube. 

 

Opportunities: 

(1) Though the processing time is longer for hyperspectral data, it is better in 

comparison with traditional approach of field-based fuel types detection. 
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(2) Once the algorithm/procedure is developed, it could be transferred between 

institutions/research centres. 

(3) Image fusion with other remote sensing data such as multispectral, radar, 

lidar etc., can support in extracting wildfires fuel types in more accurately. 

For examples, Lidar data can help in extracting understory forest vegetation 

which has high proneness to fire. 

Threats: 

(1) Prediction of forest fuel types with hyperspectral data is an interdisciplinary 

field and the personnel employed on this topic have to have interdisciplinary 

knowledge (about forests, remote sensing data, machine/deep learning etc.,). 

(2) Since PRISMA is not a constellation of satellites, is only as single satellite, 

procedure developed would be useful only till the lifetime of satellite (5 to 7 

years) if there is no degradation in sensor. 
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CONCLUSIONS 

This final chapter summarises the goals, methodologies and the most relevant 

results presented in this thesis. It describes the contributions of this thesis in the 

prevention and management of wildfires. Finally, it proposes possible lines of 

research derived from this work. 

8.1. Contributions of this Dissertation 

 

Vulnerability Analysis- Vulnerability assessment is of utmost importance in 

wildfire management and scientific research can provide valuable tools useful in 

other sectors. In this context, a holistic vulnerability assessment was carried for 

Sardinian Island of Italy, one of the largest islands of Mediterranean Sea. This work 

followed a stepwise procedure that allows for local or regional adjustments while 

maintaining consistent and comparable steps. Also, it provided a set of cartographic 

tools and different outputs besides the overall vulnerability map, such as exposure 

maps, environmental sensitivity or coping capacity evaluation, depending on users' 

needs and considering current institutional procedures. Therefore, the map 

developed has a strong relevance for fire managers and civil protection activities, 

contributing to define a systematic evaluation of wildfire vulnerability that can be 

easily translated into operational practices. 

Wildfire Fuel Mapping- In the thesis, wildfire fuel mapping procedure using 

machine learning on hyperspectral imagery of PRISMA satellite has been put 

forward. All the necessary fuel types in the image covering the southern part of 

Sardinian Island were detected. However, there is no suitable dataset or literature 

available, so a semi-supervised learning approach was proposed for fuel mapping. 

Support Vector Machine classifier was implemented to identify the fuel types using 

the posterior probabilities and obtained an Overall Accuracy of 87% by validation. 

The stability of the procedure and machine learning model was checked by 
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repeating the same procedure on HSI of PRISMA covering the north of Latium, 

Italy, and by validation, an Overall Accuracy of 88% was obtained. A degree of 

confidence greater than 95% was obtained concerning stability analysis for this 

procedure. 

Dynamic Fuel Mapping- A methodology to develop a dynamic wildfire fuel map 

using PRISMA hyperspectral, Sentinel-2 multispectral data and iso-bioclimatic map 

was presented. Initially, a fuel types classification map was generated using 

PRISMA data and then Relative Greenness map was generated using the 5 years’ 

time-series data on Google Earth Engine. Scott/Burgan standard fire behaviour fuel 

models were referred for converting classified map to dynamic fuel map 

considering classification and relative greenness map. 

System Architecture- Algorithm of wildfire fuel mapping was automated using the 

MATLAB GUI. In order to provide the input for pixel extraction, LUCAS maps can 

be referred. 

SWOT- SWOT analysis of PRISMA hyperspectral data for wildfire fuel mapping 

was performed to understand the Strengths, Weaknesses, Opportunities and 

Threats of this imagery. 

8.2. Future Research Developments 

This thesis has developed the vulnerability map for Sardinia and automatic 

procedure of wildfire fuel mapping using PRISMA hyperspectral data for the 

Europe. 

- Further, the vulnerability map of Sardinia can be updated with the fuel map 

prepared using PRISMA hyperspectral imagery if the satellite can acquire data 

for the complete Island. All the three components of vulnerability assessment 

can be improved considering various other dimensions and variables. 

- The validation of the outputs and the full implementation of the framework in 

context-specific areas require further research. The application of efficient fire 
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prevention and coping strategies depend on robust and consistent evaluations 

of damage potential. 

- Scott / Burgan standard fuel models have some of the fuel types specifically 

assigned for understory vegetation which is not possible to be predicted using 

Hyperspectral Imagery. Fusing hyperspectral data with LiDAR data can predict 

both overstorey and understorey vegetation. 

- An interlink between overstorey vegetation, climatic condition and understorey 

vegetation can be formed to predict the understorey vegetation using 

hyperspectral data and iso-bioclimatic map. 
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