
BJR|Open

© 2022 The Authors. Published by the British Institute of Radiology. This is an open access article distributed under the terms of the Creative Commons 
Attribution 4.0 International License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source 
are credited.

Cite this article as:
Galati F, Rizzo V, Trimboli RM, Kripa E, Maroncelli R, Pediconi F. MRI as a biomarker for breast cancer diagnosis and prognosis. BJR Open 
(2022) 10.1259/bjro.20220002.

Received: 
17 January 2022

Accepted: 
04 May 2022

Revised: 
01 May 2022

REVIEW ARTICLE

MRI as a biomarker for breast cancer diagnosis 
and prognosis
1FRANCESCA GALATI, MD PhD, 1VERONICA RIZZO, MD, 2RUBINA MANUELA TRIMBOLI, MD, PhD, 1ENDI KRIPA, MD, 
1ROBERTO MARONCELLI, MD and 1FEDERICA PEDICONI, MD

1Department of Radiological, Oncological and Pathological Sciences, “Sapienza” - University of Rome, Viale Regina Elena, Rome, Italy
2Humanitas Clinical and Research Center – IRCCS, Via Manzoni 56 - 20089, Rozzano (MI), Italy

Address correspondence to: Francesca Galati
E-mail: francesca.galati@uniroma1.it

INTRODUCTION
In recent years, with the spread of molecular biology tech-
nologies and the increasing knowledge about the biological 
processes underlying cancer development, considerable interest 
in biomarkers has progressively grown. In 2016, the latest glos-
sary released by the U.S. Food and Drug Administration (FDA) 
- National Institutes of Health (NIH) Biomarker Working 
Group in its Biomarkers, Endpoints, and other Tools (BEST) 
Resource, defined a biomarker as “a defined characteristic that 
is measured as an indicator of normal biological processes, 
pathogenic processes or responses to an exposure or inter-
vention, including therapeutic interventions. Molecular, histo-
logic, radiographic or physiologic characteristics are types of 
biomarkers”.1 Moreover, the introduction of established tumor 
biomarkers in the most recent edition of Tumor Node Metas-
tasis (TNM) staging system by the American Joint Committee 
on Cancer for several tumor entities, including BC, illustrates 
the movement in progress towards precision approaches and 
therapies.2 Within the framework of precision medicine, 

biomarkers become an important element for developing study 
methodology, research hypotheses and selectively applying 
scientific findings in cancer care.1 Imaging findings were only 
recently officially recognized as biomarkers even if it is in the 
intrinsic nature of imaging to be applied in this sense.3 BC was 
the most frequent cancer diagnosed among females in 2020 
and breast MRI has been established as a non-invasive imaging 
modality for the detection, characterization and local staging 
of breast tumors with several recommendations including 
screening of high-risk females, pre-operative local staging and 
systemic therapy monitoring.4–6 Contrast-enhanced MRI (CE-
MRI), diffusion-weighted imaging (DWI) and magnetic reso-
nance spectroscopy (MRS)-based imaging biomarkers have 
shown to be highly correlated with BC molecular subtypes and 
other prognostic and predictive factors. Furthermore, multi-
parametric MRI (Mp-MRI) approaches have been introduced 
to investigate associations of imaging biomarkers with histo-
logical types and subtypes, response to treatment, risk of recur-
rence and overall survival in BC patients.6–8
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ABSTRACT:

Breast cancer (BC) is the most frequently diagnosed female invasive cancer in Western countries and the leading 
cause of cancer-related death worldwide. Nowadays, tumor heterogeneity is a well-known characteristic of BC, since 
it includes several nosological entities characterized by different morphologic features, clinical course and response 
to treatment. Thus, with the spread of molecular biology technologies and the growing knowledge of the biological 
processes underlying the development of BC, the importance of imaging biomarkers as non-invasive information about 
tissue hallmarks has progressively grown. To date, breast magnetic resonance imaging (MRI) is considered indispen-
sable in breast imaging practice, with widely recognized indications such as BC screening in females at increased 
risk, locoregional staging and neoadjuvant therapy (NAT) monitoring. Moreover, breast MRI is increasingly used to 
assess not only the morphologic features of the pathological process but also to characterize individual phenotypes for 
targeted therapies, building on developments in genomics and molecular biology features. The aim of this review is to 
explore the role of breast multiparametric MRI in providing imaging biomarkers, leading to an improved differentiation 
of benign and malignant breast lesions and to a customized management of BC patients in monitoring and predicting 
response to treatment. Finally, we discuss how breast MRI biomarkers offer one of the most fertile ground for artifi-
cial intelligence (AI) applications. In the era of personalized medicine, with the development of omics-technologies, 
machine learning and big data, the role of imaging biomarkers is embracing new opportunities for BC diagnosis and 
treatment.
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BIOMARKERS CLASSIFICATION
Medical imaging can be a source of biomarkers in diagnostic, predic-
tive, prognostic and monitoring settings.1 Breast imaging biomarkers 
can be divided into qualitative, ordinal and quantitative as shown in 
Table 1. Qualitative biomarkers are descriptive characteristics repre-
sentative of the underlying pathologic condition.1,9 The American 
College of Radiology Breast Imaging-Reporting and Data System 
(ACR BI-RADS) lexicon is the first and the best validated system of 
imaging descriptors in radiology.10 Ordinal biomarkers are categories 
with intrinsic rankings that can be arranged in a meaningful order.9 
Breast MRI background parenchymal enhancement (BPE) with 
minimal, mild, moderate and marked categories is an example of 
ordinal biomarkers. Quantitative biomarkers are objective, measur-
able and reproducible parameters.9 Anatomic structures 2D and 3D 
measurements are examples of quantitative biomarkers essential in 
diagnosis, staging and monitoring of response to treatment, as it is 
when applying the Response Evaluation Criteria in Solid Tumors 
(RECIST 1.1) criteria.11 Additional quantitative biomarkers derived 
from breast Mp-MRI, are apparent diffusion coefficient (ADC) 
maps values of DWI and the transfer constant (Ktrans) that provides 
a measure of capillary permeability with CE-MRI perfusion. The use 
of panels or scoring systems combining multiple imaging parame-
ters, such as TNM, can perform significantly better than individual 
ones.12,13 Further example is the increased diagnostic performance 
of Mp-MRI in BC molecular subtype prediction based on the 
underlying biological features. For instance, well-known imaging 
biomarkers of triple-negative BC (TNBC) are intralesional necrosis 
and peritumoral edema at T2 weighted images, smooth margin and 
rim enhancement at CE-MRI14–17 Figure 1. In recent years, researches 
have demonstrated that different BC phenotypes show specific 
imaging texture features.18 Thus, the new perspective of breast MRI 
includes artificial intelligence (AI) applications. The intrinsic multi-
parametric nature of MRI has the greatest potential to incorporate 
AI applications into the so called precision medicine. The number of 
breast imaging biomarkers will increase in the next future, expanding 
the role of imaging in breast care.

TECHNIQUES
Table  2 shows different biomarkers classified according to 
imaging modality.

CE-MRI
Over the past two decades, CE-MRI has improved breast MRI 
diagnostic accuracy with sensitivity up to 99% and variable 
specificities ranging from 47 to 97% in the detection and char-
acterization of breast lesions,9,19 assessing breast tissue vascular 

microenvironment and tissue permeability. As angiogenesis 
plays an important role in tumor biology, CE-MRI biomarkers 
and pharmacokinetic parameters were widely investigated.20 
BPE is described as the enhancement of fibroglandular tissue in 
the dynamic CE-MRI early phases.21,22 In the last decade, BPE 
has generated interest and has been added in the last edition of 
BI-RADS MRI lexicon that provides standard descriptors for 
BPE level and distribution.10,23 It has been shown that BPE is 
a hormonally sensitive feature that declines over time with the 
onset of menopause, after oophorectomy and in patients who 
have been treated with tamoxifen or aromatase inhibitors.24,25 
Initial results from two case–control studies on high-risk subjects 
have attested that BPE can be a predictive biomarker of BC risk. 
In particular, in females previously stated as at high risk of BC, a 
marked BPE increases the personal risk of BC up to tenfold.21,26 
Kim et al found a significant correlation between qualitative 
BPE and epidermal growth factor receptor (EGFR)-positive BCs 
compared to EGFR-negative BCs. In this paper, BPE was also 
measured with the semi-quantitative background enhancement 
coefficient (BEC), evaluated through regions of interest drawn 
on healthy breast tissue. BEC as well as ipsilateral whole breast 
vascularity, were significantly higher in >2 cm tumors than in 
tumors smaller in size.27 In addition, BPE may reduce breast 

Table 1. Brief description of the different types of biomarkers and respective examples

Category of biomarkers Characteristics Examples
Qualitative Descriptive characteristics that are visually assessed BI-RADS descriptors (e.g. tumor shape and margins, 

mass or non-mass lesion, enhancement morphology)

Ordinal Descriptive characteristics that can be arranged in ranks BPE

Quantitative Characteristics susceptible of quantitative assessment 
with a unit of measurement

RECIST criteria (linear and volume measurement), 
ADC value, Ktrans, Kep, DTI, IVIM, DKI (D value, K 
value), tCho, PE/PC ratio

ADC, apparent diffusion coefficient; BPE, background parenchymal enhancement; DKI, diffusion-weighted kurtosis; DTI, diffusion tensor imaging; 
IVIM, intravoxel incoherent motion; PC, phosphocholine; PC, phosphoethanolamine.

Figure 1. 31-year-old female with triple-negative breast cancer 
of the right breast. (a) Axial fat-suppressed T2 weighted 
image shows a slight hyperintense round mass in the upper 
inner quadrant of the right breast, with mild intratumoral 
high signal intensity consistent with intralesional necrosis. (b) 
Axial ADC map shows a corresponding hypointense area of 
diffusion restriction. (c) Sagittal post-contrast T1 weighted 
image confirms the presence of a round mass lesion with rim 
enhancement. ADC, apparent diffusion coefficient.
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MRI sensitivity by obscuring enhancing cancers or may decrease 
specificity by determining enhancement patterns that mimic the 
appearance of malignancies.28,29 Nevertheless, current evidences 
have not confirmed a significant correlation between BPE and 
an increase in either false-positive or false-negative findings on 
breast MRI.22,30 However, a recent systematic review highlights 
the wide variability in the quantitative evaluation of BPE on 
breast MRI, thus uniform criteria should be defined to consol-
idate BPE as a biomarker.31

Furthermore, in the era of new cellular signaling pathways and 
molecular therapies, CE-MRI can be used for quantitative assess-
ment of the vascular microenvironment and the tissue permea-
bility.9 Breast lesions kinetic patterns differ between malignant 
and benign lesions; thus, enhancement time/intensity curve 
characteristics can be used in combination with morphologic 
features to improve differential diagnosis. Semi-quantitative 
parameters can be extracted from the enhancement curves, 
including the onset time, maximum signal intensity, gradient or 
rate of contrast uptake and washout, and initial area under the 
time signal curve.32,33 In recent years, the associations between 
contrast-enhancement kinetics and molecular subtypes were 
widely investigated.32,34 According to Blaschke and Abe,32 HER2 
positive tumors demonstrated a faster and earlier enhancement 
than other subtypes, while luminal A and basal cancers showed a 
reduced washout during the delayed phase. This can be attributed 
to the frequent association of luminal A cancers with ductal 
carcinoma in situ, which rarely demonstrates washout kinetics; 
while basal subtype cancers are often characterized by tumoral 
necrosis and central scarring, which typically shows a persistent 
enhancement.32 Quantitative analysis involves pharmacokinetic 

modeling and requires more complex methods for estimating 
changes in tissue contrast agent concentration following intrave-
nous injection. The transfer constant, Ktrans, describes the tran-
sendothelial transport of contrast medium by diffusion from the 
vascular space to the tumor interstitium and provides a measure 
of vascular permeability. Gradually, gadolinium diffuses back 
into the vascular system, with Kep representing the transfer 
constant from the interstitium to blood plasma and Ve the extra-
vascular–extracellular volume fraction. Ktrans and Kep are gener-
ally high in tumors. A significant reduction up to a third has been 
detected in both parameters in patients with locally advanced 
BC early responding to NAT,35 while an increase in Ve has been 
shown in non-responders.36 According to the authors O’Flynn 
and Nandita M. de Souza,33 Ktrans can be used as a predictive 
biomarker to evaluate response to antiangiogenic drugs or 
vascular disruptive agents such as bevacizumab, a humanized 
monoclonal antibody directed against the vascular endothe-
lial growth factor (VEGF), with a change in Ktrans value >40% 
commonly considered as the threshold for definitive disease 
response.37 In summary, the available literature shows an ample 
consensus on the diagnostic value of CE-MRI measurements for 
non-invasive characterization and prognostication of BCs as well 
as for therapy monitoring during NAT.

DWI
A review of the literature emphasizes DWI as a potential source 
of biomarkers to increase breast MRI specificity, significantly 
improving diagnostic accuracy and reducing unnecessary 
biopsies.38 DWI explores different functional tissue features 
including water molecules motion in the extracellular space, 
density of neoplastic cells, tissue microstructure, cell wall 

Table 2. Different biomarkers classified according to imaging modality

Imaging modality Biomarkers
CE-MRI
 �
 �
 �
 �

Morphologic features

Enhancement T/I kinetics

BPE

Transfer constant from the vascular space to the 
tumor interstitium (Ktrans)

Transfer constant from the interstitium to the 
blood plasma (Kep)

Extravascular–extracellular volume fractions 
(Ve)

 � DWI ADC value

 �  IVIM Tissue diffusivity, tissue microcapillary 
perfusion

DTI Directional diffusivity of water molecules

DKI D value, K value

 � MRS
 �

Total choline peak (tCho)

PE/PC ratio

Lipid concentration

ADC, apparent diffusion coefficient; BPE, background parenchymal enhancement ; DKI, diffusion-weighted kurtosis; 
DTI, diffusion tensor imaging; IVIM, intravoxel incoherent motion; PC, phosphocholine; PE, phosphoethanolamine; TI 
curve, time/intensity curve.
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integrity and permeability. Compared to normal gland, tumor 
tissue is characterized by a lower water molecules diffusion and, 
consequently, lower ADC values due to the high cell density and 
the presence of numerous intra- and intercellular membranes, 
thus the ADC map allows to quantitatively evaluate diffusivity of 
water molecules.4 In recent years, the association between ADC 
value and standard histopathological and immunohistochemical 
breast tumor features such as histological type, grade, hormonal 
receptor and Ki-67 expression, HER2 status, were widely inves-
tigated.39–42 Bickel et al tested DWI as an imaging biomarker to 
differentiate ductal carcinoma in situ from invasive lesions.43 
Authors demonstrated that ADC value ‍≤‍1.01 10−3 mm2/s allows 
the identification of invasive tumors with 78% sensitivity and 
90% specificity (Figure  2). In the same research, no signifi-
cant differences in ADC values were found between high- and 

low-grade tumors, in contrast to a previous study in which a 
correlation between high histopathological grade (G3) and low 
median ADC values was found.39 Subsequently, a significant 
association was found between high ADC values and luminal A 
subtype.40 Guvenc et al described a correlation between low ADC 
values and more aggressive subtypes of BC, secondary to high 
cell density.42 In particular, a statistically significant relationship 
was found between low ADC values and low hormone recep-
tors positivity along with the presence of abnormal lymphnodes. 
In 2007, Hamstra et al44 first introduced DWI as a biomarker to 
assess the response to NAT in different types of cancer, including 
BC. Significant preclinical and clinical studies were performed to 
support the hypothesis that DWI was a promising biomarker for 
early evaluation of response to NAT. ADC values variations may 
give early information regarding response to therapy, due to ADC 
peculiarity to reflect tumor cellularity and necrosis status.45,46 
Park et al47 found an association between BCs pre-treatment 
low ADC value and better response to chemotherapy. The accu-
racy of ADC in predicting the response to NAT was evaluated 
by Richards et al48 who concluded that pre-treatment tumor 
ADC values varied according to breast tumor phenotypes and 
were predictive of pathologic response in TNBCs (Figure 3).49–51 
However, the wide variability of results in the literature and the 
lack of standardization are two major limitations of DWI and 
DWI-derived biomarkers. To overcome these drawbacks, the 
European Society of Breast Imaging (EUSOBI) has established 
a multicenter, international working group composed of clin-
ical experts, MRI physicists and MRI equipment suppliers with 
experience in breast DWI.52 DWI working group objectives 
include the promotion of DWI in MRI protocols, the diffusion 
of technical guidance for DWI protocols and the creation and 
improvement of quality control methods, to finally find agree-
ment on the optimal image processing, visualization and inter-
pretation. In a recent review, Iima et al addressed advanced DWI 
models, such as intravoxel incoherent motion (IVIM), diffusion 
tensor imaging (DTI) and diffusion weighted kurtosis (DKI).38 
IVIM is a biexponential model that simultaneously evaluates 

Figure 2. 54-year-old female with bilateral breast cancer, inva-
sive ductal carcinoma on the right breast and ductal carci-
noma in situ on the left breast. (a) Axial DWI image (b value 
= 1000 s/ mm2) shows an hyperintense lesion between the 
upper quadrants of the right breast, (b) with corresponding 
0,8 × 10−3 mm2/s ADC values. (c) Axial DWI image (b value = 
1000 s/mm2) shows an hyperintense area in the upper outer 
quadrant of the left breast, (d) with higher ADC values (1,02 
× 10−3 mm2/s). ADC, apparent diffusion coefficient; DWI, 
diffusion-weighted imaging.

Figure 3. 61-year-old female with triple-negative breast cancer of the right breast, before (a,b,c) and after 3 months (d,e,f) of 
neoadjuvant chemotherapy. (a) Axial fat-suppressed T2 weighted image shows a 27 mm hyperintense oval mass with regular 
margins between the lower quadrants of the right breast. (b) The mass appears homogeneously hypointense in the ADC map with 
0,7 × 10−3 mm2/s ADC value. (c) Axial post-contrast T1 weighted image shows a corresponding oval mass with rim enhancement. 
(d) Axial fat-suppressed T2 weighted image shows a reduction in size of the lesion, which appears as a round hyperintense mass 
with blurred margins. (e) The ADC map shows a hypointense lesion with increased ADC values (1,2 × 10−3 mm2/s). (f) Axial post-
contrast T1 weighted image shows a residual 12 mm round mass lesion. ADC, apparent diffusion coefficient.
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tissue diffusivity and tissue microcapillary perfusion. DTI gives 
quantitative data on the water molecules directional diffusivity 
in biological tissues. The information obtained about diffusion 
anisotropy could be a potential biomarker of malignancy. It 
has been hypothesized that proliferating neoplastic cells, which 
generally destroy the normal structure of the mammary gland, 
could reduce anisotropy. DKI quantifies the incoherent move-
ment of water molecules and tissue microperfusion typical of 
non-Gaussian phenomena, useful in the detection and charac-
terization of breast lesions. A model proposed to quantify the 
Gaussian and non-Gaussian diffusion is able to estimate the D 
value, which represents the Gaussian diffusion, and the K value, 
a kurtosis parameter that represents the deviation from the 
Gaussian diffusion. These technological advances are supported 
by several studies and revealed to be useful in establish benign 
or malignant nature of breast lesions, in evaluating Ki-67 and 
tumor grading and in predicting treatment response. DWI is a 
promising qualitative and quantitative biomarker, a valid tool in 
lesion characterization and therapy monitoring. However, stan-
dardization of the acquisition and interpretation modalities of 
the extracted DWI data will enhance its clinical value.

MRS
MRS is a non-invasive functional technique that provides infor-
mation on biochemical changes in specific anatomic structures 
by identifying and monitoring the chemical composition of the 
tissue under examination. In the last decades, proton MR spectros-
copy (1H-MRS) based on the detection of the total choline peak 
(tCho) has been implemented in breast Mp-MRI protocols, since 
several studies reported higher levels of tCho in BCs compared 
to benign lesions and normal breast tissue.53,54 Therefore, on the 
basis of different choline peaks, MRS is a potential biomarker to 
improve diagnostic accuracy and predict tumor aggressiveness.55 
The diagnostic accuracy of a high-spatial-resolution 3D 1H-MRS 
protocol at 3 T was evaluated for the characterization of breast 
lesions, based on tCho signal-to-noise ratio threshold levels and 
proved its potential in becoming a valuable adjunct to CE-MRI 
in distinguishing between benign and malignant breast lesions.56 
Other authors demonstrated that tumor tCho measurements 
were significantly higher in invasive ductal carcinomas vs in 
situ cancers and that tCho correlated with numerous prognostic 
factors, including histologic and nuclear grade, and estrogen 
receptor status.57 Thus, the addiction of MRS in multiparametric 
protocol leads to significantly higher diagnostic accuracy than 
CE-MRI, also significantly reducing false-negative and false-
positive cases.58 However, tCho sensitivity significantly decreases 
for smaller cancers, due to insufficient detection of tCho signal.59 
Available data suggest tCho as a potential biomarker for treat-
ment response assessment and early prediction of the final NAT 
effect. In treated lesions, an early decrease in tCho levels, after 
the initial course of therapy, is consistent with tumor response 
and is even more sensitive than other morphological and func-
tional criteria. Instead, it was demonstrated an increase in tCho 
concentration in patients with local recurrence.60–62 Beyond 
tCho further metabolites can be detected and monitored, above 
all, the most promising seems to be the assessment of lipid 
metabolism. Thakur et al demonstrated that intratumoral lipid 
concentration allows to distinguish benign from malignant 

tumors and to differentiate among BC molecular subtype.63 
Ramadan and colleagues64 described that healthy breast tissue 
in patients with BRCA-1 and BRCA-2 mutation was likely to 
differ from non-mutation carriers in unsaturated fatty acids 
triglycerides and cholesterol levels. Further studies are needed to 
support these results, that could open new scenarios in high-risk 
females screening programs. Recently, phosphorus spectroscopy 
(31P MRS) has been introduced as a new functional MRI param-
eter for BC diagnosis and therapy monitoring. In particular, it 
has been demonstrated that a decrease in the phosphoethanol-
amine/phosphocholine (PE/PC) ratio is a sensitive cellular-level 
indicator of malignancy.65 Moreover, changes in PE/PC ratios are 
observed during NAT. These promising results of 31P MRS have 
been obtained with 7 T-scanners. Thus, due to the lack of data 
collected with ultra-high field scanners certainly related to their 
limited diffusion, the use of 31P MRS as a breast MRI biomarker 
is still limited in clinical practice.

ARTIFICIAL INTELLIGENCE
AI is a computer science branch able to analyze a multitude of 
complex data. In recent years, AI potential has been exploited 
in diagnosis, treatment and outcome prediction of many clinical 
conditions, including BC. Breast MRI, due its intrinsic multi-
parametric concept, is inherently suitable for AI applications. 
Each breast MRI generates multiple volumes of images that can 
be integrated and arranged according to the different diagnostic, 
therapeutic or prognostic purposes.66 CE-, T1- and T2 weighted, 
DWI and MRS images provide large datasets fitting AI appli-
cations and potential MRI biomarkers. In Gilles et al landmark 
paper was clearly stated that “images are more than pictures, they 
are data”, focusing on the hidden power of imaging, including 
information not always perceptible by human eye.67,68 The term 
“radiomics” was first used in 2010, to describe the process of 
building predictive models via quantitative data extracted from 
radiological examinations. Radiomics consists of different stages, 
which includes image acquisition, reconstruction, segmentation 
and rendering, features extraction and qualification, database 
and data sharing for any ad hoc computer analysis.69 The goal of 
radiomics is to provide valuable diagnostic, prognostic or predic-
tive information derived from biological and medical data.70

In a review published in 2018, radiomics models based on different 
imaging methods including MRI were investigated. Studies that 
analyzed BC using a radiomic approach and that provided data 
on BC diagnosis (detection or characterization), BC prognosis 
(response to therapy, morbidity, mortality) or provided data on 
technical challenges (software application: open source, repeat-
ability results) were included. Authors concluded that the appli-
cation of radiomics in BC patients was an emerging translational 
research topic, with the capability of improving the knowledge 
of the breast lesions specifics.71 Currently, radiomics encounters 
many obstacles: the need for large clinical data and standardized 
protocols, the dispersion of data in different centers, the exces-
sive costs for technological development. In recent years, several 
countries have already adopted many approaches to control 
variability in clinical trial protocols, data acquisition and anal-
ysis. For instance, across Europe, consistent protocol guidance 
was achieved with the help of European Association of Nuclear 
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Medicine. The Quantitative Imaging Biomarker Alliance initia-
tive also aims to reach the same task in a much broader level. 
The known clinically significant genetic variables in BC and 
the good time and spatial resolution of breast MRI provide an 
excellent basis for radiogenomics research.72 At present, breast 
imaging radiogenomics has primarily centered on CE-MRI 
sequences, focusing on differentiation of molecular subtypes 
and assessment of recurrences.73 Several authors identified an 
association between different radiomic tumor phenotypes and 
various genomic features involved in multiple layers of molec-
ular regulation and gene expression profiles of BCs.74,75 Other 
authors76 investigated possible correlation between imaging 
features and prognostic genomic tests such as Oncotype Dx, 
concluding that breast MRI has the potential to serve as a source 
of imaging biomarkers in the prediction of cancer recurrence. 
Further studies demonstrated a correlation between the expres-
sion of some genetic markers and the MRI variables during NAT 
although these results are still preliminary. A recent literature 
review77 found that radiogenomics, combining genomic infor-
mation with emerging deep learning (DL) modalities, could 
predict the effectiveness of NAT and provide information on 
disease progression. Among AI applications specific methodol-
ogies are machine learning (ML) and DL.66 ML is a technology 
that allows the automatic training of machines with the aim of 
obtaining predictive data set based on the data and algorithms 
provided, without explicit programming. DL, a subset of ML, is 
characterized by a high accuracy, less need of human interven-
tion but requires a huge amount of training data and expensive 
hardware and software.78 Due to MRI intrinsic multiparametric 
nature, ML application in breast MRI is fast-paced developing and 
many studies are demonstrating ML usefulness in lesion detec-
tion and classification, prediction of NAT response and recur-
rence risk, and therefore to guide therapeutic decisions.79,80 DL 
demonstrated high diagnostic accuracy to differentiate benign 
from malignant lesions,79 improving the diagnostic performance 
of breast MRI by decreasing the false positives and improving 

the positive-predictive value.81 Furthermore, DL has also been 
exploited extensively for evaluating the response to NAT.77

The integration of AI into breast imaging may enable the creation 
of new imaging biomarkers that incorporate patient clinical and 
tumor structural characteristics. Moreover, biomarkers could 
be incorporated into patient risk stratification via personalized 
imaging.82 Nevertheless, AI applications are not ready to be 
incorporated into clinical practice, nor to replace expert human 
observers with the ability to critically evaluate MRI images and 
patient history.

CONCLUSIONS
Breast MRI may act as a diagnostic and prognostic tool to 
improve BC management through the extraction of a plenty of 
functional cancer parameters serving as imaging biomarkers. 
The intrinsic multiparametric nature of MRI provides specific 
information to visualize and quantify the functional processes 
of cancer development and progression, in order to improve 
detection and characterization of breast lesions, monitoring and 
prediction of response to therapy, and differentiation of biolog-
ical BC subtypes. Moreover MRI images, due to their complex 
information content, are a fertile ground for AI applications. 
These may improve the integration of imaging biomarkers in 
clinical decision-making through the building of accessible 
predictive integrated models aiming at individualized medicine.
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