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The effect of the presence of obstacles on the dynamic response of
single-degree-of-freedom systems: study of the scenarios aimed at vibration
control

Giulia Stefani®*, Maurizio De Angelis®, Ugo Andreaus?,

“Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy

Abstract

In this paper, the effect of the presence of (existing or newly added) deformable and dissipative obstacles (bumpers)
on the nonlinear dynamic response of a single-degree-of-freedom system, is investigated via parametric numerical
analyses. Through the study of possible response scenarios which can occur by varying the bumpers’ parameters (i.e.,
the position, the stiffness, and the damping, respectively) it is observed that the presence of the bumpers is not always
unfavorable compared to the free flight condition. By properly selecting the bumpers’ parameters it is possible to
exploit the occurrence of impacts with beneficial effects. Furthermore, a relationship between the stiffness and the
damping parameters of the bumpers, which allows to minimize the maximum value of the mass acceleration in primary
resonance condition, is identified and discussed. Although this study is inspired by the practical problem of large
horizontal displacements in base-isolated structures, it has a transversal nature with respect to different disciplinary
fields. Consequently, the results obtained in this work can be extended also to further applications related to vibro-
impact dynamics.

Keywords: vibro-impact dynamics; deformable and dissipative bumpers; nonlinear scenarios; nonlinear vibration
control; isolation; parametric numerical study.

1. Introduction

Seismic isolation represents one of the most applied, reliable, and effective, passive control strategies to mitigate
the dynamic response of both new and existing structures [1-6], bridges [7-14], strategic facilities [15, 16], nonstruc-
tural components and equipment [17-26], works of art [27-29].

Seismically isolated structures, due to the greater flexibility offered by the isolators at the base, are expected
to experience large horizontal displacements relative to the ground, especially under near-fault (NF) earthquakes,
characterized by long-period pulses [3, 4, 30]. These large displacements, on the one hand, can seriously damage the
isolation system by exceeding its limit deformation, on the other, can lead to pounding with surrounding moat walls or
adjacent structures if the available seismic gap size is not sufficient. Potential pounding can produce detrimental effects
on the effectiveness of seismic isolation and can lead to consequences which range from local slight nonstructural to
serious structural damage or even collapse [31-35]. The existence of high spikes in the acceleration response, in
correspondence of the floors where pounding occurs, and whose amplitude is influenced by impact rigidity, may
affect floor response spectra and thus the response of vulnerable equipment housed in the buildings [36, 37].

To prevent the damage of the isolation system and avoid the occurrence of pounding against adjacent structures,
the horizontal displacements can be limited by inserting suitable obstacles, which can be placed at a certain distance
(gap) from the structure to be protected (outer pounding [38]) or can be incorporated into the isolation system (inner
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pounding [38]). In the latter case, the built-in buffer (self-braking) mechanism prevents pounding of the isolated
structure with the surrounding structures and limits the possible pounding (if any) to be only within the own body of
the isolator. Restraining rims are used to limit the motion of the double pendulum sliding bearings experimentally
investigated by Bao et al. [39]. Harvey et al. [40-42] examined the response of double Rolling isolation systems
(RISs), in which the motion is limited by the bowl lips acting as hard displacement limits. The roll-n-cage (RNC)
isolator introduced by Ismail et al. [43-45] incorporates isolation, energy dissipation, buffer, and inherent gravity-
based restoring force mechanisms in a single unit. In all these cases the built-in restrainers are quite rigid and impose
strict restrains on isolator horizontal displacement once a certain limit value is exceeded.

The occurrence of impact against the obstacles modifies the response of the isolated system, turning it into a
nonlinear vibro-impact system. Vibro-impact systems, even the simplest, exhibit complex nonlinear non-smooth
dynamics and a wide variety of phenomena (resonances, instabilities, bifurcations, periodic and quasi-periodic tra-
jectories, and chaotic regimes) that need to be carefully investigated [46]. There are several scientific works of both
numerical and experimental nature dealing with the nonlinear response of impacting systems. Extremely rich and
complex behaviors were observed by Christopher ef al. [47] in a multi-degree of freedom structure impacting a rigid
stop. Costa et al. [48] experimentally and numerically explore the complex dynamics of the mass excited impact os-
cillator presented in Wiercigroch et al. [49]. Several interesting behaviors, including period-doubling route to chaos,
period-adding cascade, interior and boundary crisis, complete and incomplete chaotic chattering, and different types of
bifurcations, were observed by Gritli and Belghith [50] considering a one-degree-of-freedom impact oscillator with a
single rigid constraint. Ing et al. [51] investigated the behavior of a nearly symmetrical piecewise linear oscillator with
flexible constrains, which is a modification of a rig originally designed by Wiercigroch and Sin [52] and examined the
bifurcation scenarios close to grazing. The effect of potential asymmetry in the gap and/or stiffness was also investi-
gated. The most complex and interesting behaviors were observed for small clearances, larger forcing amplitude, and
for values of the frequency ratio below the natural frequency [52]. The fundamental group of impact motions which
can occur in the response of a two-degree-of-freedom system with a clearance and subjected to harmonic excitation
were studied by Luo er al. [53]. Pattern types, occurrence and stability domains and bifurcation characteristics of
periodic motions in a two-degree-of-freedom mechanical impact oscillator with a clearance were investigated by Lyu
et al. [54]. Considering single and two degree-of-freedom impact oscillators Yin et al. [55] discussed the phenomena
of coexisting attractors and chaotic transitions including crisis.

Some of the above mentioned behaviors are undesirable as they can cause adverse effects [56]. The study of the
behavior of vibro-impact systems, allowing to highlight possible issues associated with the occurrence of impact,
is therefore necessary to identify suitable methods to mitigate and control the response of such systems. Several
authors proposed different strategies for the control of unstable orbits, bifurcation, co-existing orbits and chaos based
on the study of practical problem involving collisions. By using suitable control strategies or by properly selecting
the parameters which characterize the vibro-impact problem, it is possible to guide the behavior of the system, to
avoid certain scenarios and encourage others, and thus exploit the occurrence of impact with beneficial effects. Wang
et al. [57] developed a control scheme, named impulsive control method, to stabilize chaotic motions in a class of
vibro-impact systems, which consists in implementing the pulses just when the impact occurs. Lenci and Rega [58]
proposed to reduce the region of chaotic response of an inverted pendulum with rigid unilateral constraints subjected
to a periodic excitation by suitably adjusting the shape of the excitation. The control of multi-stability in a vibro-
impact capsule system driven by a harmonic excitation was addressed by Liu and Pdez Chavez [59]. The proposed
position feedback controller converts the multi-stable capsule system to a bistable one. A position feedback control
method, suitable for dealing with chaos control and coexisting attractors, was applied by Liu et al. [60] for enhancing
the desirable forward and backward capsule motion. Basins of attraction were used to investigate the possibility of
switching between coexisting attractors by using the proposed control method. Gritli and Belghith [50, 61] proposed
a state-feedback control law to control chaos exhibited by a SDOF impact mechanical oscillator with a single rigid
obstacle. A state-feedback controller was designed by Turki et al. [62, 63] to stabilize a 1-DoF, periodically forced,
impact mechanical oscillator subject to asymmetric two-sided rigid end-stops. Considering two periodically forced
oscillators that can interact via soft impacts, Brzeski et al. [64] showed that with properly selection of the system’s
parameters, such as the gap between the systems or/and the phase shift of external excitation, it is possible to decrease
the number of coexisting solutions via discontinuous coupling. The results of the analysis carried out by Sun et al.
[65] showed that by properly designing the dynamic parameters of viscoelastic end-stops, the nonlinear vibration of
a SDOF nonlinear suspension system at primary resonance can be effectively suppressed and the jump phenomena
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can be eliminated for both hardening and softening primary isolators. Furthermore, the end-stop can effectively
also attenuate the absolute acceleration response for a hardening primary isolator, while more damping is needed
to attenuate that for a softening primary isolator. A two-sided damping constraint control strategy was proposed by
Hao et al. [66] to improve the performance of the quasi-zero stiffness (QZS) isolator [67]. The proposed control
approach can largely lower the isolation frequency while enhancing the effectiveness of isolation in high frequencies
and preventing the severity of end-stop impacts. Based on the analysis of two-parameter bifurcations and basins of
attraction, the authors found that the key issue to realize such control objective, is the suppression of period-3 solutions
that coexist with the desired period-1 orbits.

This paper is part of a research work carried out by the authors and inspired by the practical problem of excessive
displacements in base isolated structures. The research concerns the numerical and experimental investigation of the
response of a vibro-impact single-degree-of-freedom (SDOF) system limited by two-sided deformable and dissipative
obstacles (bumpers) under harmonic base excitation [38, 68—73]. The study concerns the isolation at the base of
structures and equipment. The reference isolation system is the one that uses the support of High Damping Rubber
Bearings (indicated with the acronym HDRB), the mechanical characteristics of which can be found in [5, 74] with
10— 15% damping, but other devices can also be considered, such as friction pendulums, elastoplastic sliding bearings,
etc. As far as bumpers are concerned, we refer to those made of rubber, whose dissipative capacity depend on the
compound, while the stiffness depends not only on the compound but also on the shape of the bumper itself; the
identified values of stiffness and damping of the bumpers used in this work refer to the papers [69-71]. The materials
with which the damper and the bumpers are constituted are each made with its own compound and therefore each
have its own damping, which is partly hysteretic and partly viscous. In this work the dissipative behavior of the
damper and the bumpers is modeled by means of an equivalent linear viscous model. Most of previous (experimental
and theoretical) studies focused on the nonlinear behavior (scenarios, resonances, ...) exhibited by the vibro-impact
system varying selected parameters [68—73]. In the theoretical-numerical study presented in [68] the authors outlined
possible scenarios within the system response. This study guided subsequent experimental laboratory campaigns
conducted on a small-scale physical model of the system using the shaking table [69—71]. The study of the scenarios
was subsequently resumed and extended, both numerically and experimentally, in [72]. The scenarios observed
experimentally were characterized and were reproduced numerically showing a good agreement with the experimental
results. Further numerical investigations highlighted the existence of more complex and varied behaviors for gaps
smaller than those considered in the experimental tests [72, 73]. The experimental and numerical study presented
in [38], compared to the others, dealt with vibration control. The authors highlighted the existence of suitable pairs
of bumpers and gaps that allow to reach a trade-off between two conflicting objectives, namely control of excessive
displacements and control of excessive accelerations. This goal can be achieved combining small gaps with quite
deformable bumpers.

This work represents a deepening and an extension of the study presented in [38]. The aim of the paper is to in-
vestigate, through numerical parametric analyses, the effect of the presence of the obstacles (existing or newly added)
on the response of the system under harmonic base excitation, compared to the free flight condition, that is without
obstacles. Compared to previous works by the authors [72, 73, 75], here the study of the response scenarios which
can occur by varying the bumpers’ parameters (namely, position, stiffness, and damping, respectively) is directed at
vibration control. In particular, the possibility to exploit the occurrence of impact with beneficial effects, by properly
selecting the bumpers’ parameters, is investigated. Firstly, the effect of forcing frequency and damping factor on the
response of a viscously damped SDOF system excited by a harmonic base acceleration will be analyzed through trans-
missibility and displacement response factor curves in free flight condition (i.e without obstacles). Then, the presence
of obstacles will require the effect of dimensionless parameters, namely gap, stiffness, and damping of the obstacles to
be taken into account as well and will be studied through parametric numerical analyses, by employing a suitable an-
alytical model and keeping fixed the damping factor of the isolation damper; for several appropriately selected values
of dimensionless gap, the response of the system will be studied by varying the dimensionless stiffness of the bumpers
and keeping their dimensionless damping fixed. The bumpers decrease - almost always - the displacement, while -
unfortunately - the impact increases the acceleration. The conflicting objectives are precisely to reduce displacement
without paying a high price in terms of increased acceleration. The purpose of the work is the optimal design, that is to
reduce the displacement without excessively increasing the acceleration, reaching an acceptable trade-off. The study
of the response scenarios which can occur by varying the bumpers’ parameters (specifically, gap and stiffness, and
keeping fixed the damping of damper and bumpers) is directed at vibration control, while at the same time wanting to
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reach the conflicting objective that the displacement be lower compared to the free flight condition. In particular, the
possibility to exploit the occurrence of impact with beneficial effects, by properly selecting the bumpers’ parameters,
is investigated.

The paper is organized as follows. In Sect. 2 the numerical model and the governing equations are presented;
in Sect. 3 preliminary considerations on control are made; the results of the numerical simulations are discussed in
Sect. 4; the mechanical justification of the condition corresponding to the minimum peak acceleration is given in
Sect. 5; finally, the main conclusions and further developments of the work are drawn in Sect. 6.

2. Model and equations of motion

The study was carried out considering a single-degree-of-freedom (SDOF) system (Fig. 1), composed of a mass
M (highlighted in green) and an isolation damper (D, highlighted in blue), with two-sided deformable and dissipative
bumpers (highlighted in red), denoted as right bumper (Br) and left bumper (By) respectively. The bumpers are
symmetrically positioned on both sides of the mass at an initial distance (initial gap) Go; (j = R, L). The damper (D)
is modeled by a linear elastic element, with stiffness K, and a linear viscous dashpot, with damping coefficient C,
arranged in parallel. The two bumpers are massless and, as the damper, they are modeled by a linear elastic element,
with stiffness K; (j = R, L), and a linear viscous dashpot, with damping coeflicient C; (j = R, L), arranged in parallel.
The system is subjected to a harmonic base acceleration A(f) = Ag sin Qt, characterized by amplitude Ag and circular
frequency Q. The relative displacements of the damper and of the bumpers with respect to the ground are denoted as
uand u; (j = R, L) respectively.

LEFT BUMPER (B,) MASS RIGHT BUMPER (By)
) EEE——— T~ Y N
ur, u Ur
—> — —>
K]_ KR
R~ i o
K 0L I OR
MWW
[ F
c QOO

A(?)
DAMPER (D)

Fig. 1. Model of the SDOF system with two-sided bumpers.

To attempt a more general description of the problem, the equations of motion are written in dimensionless
form by introducing the following characteristic quantities [73]: the natural circular frequency of the SDOF system
w = VK/M, the maximum relative displacement u* = uyRqmax and the maximum force F* = Mw?u* in the SDOF
system in free flight (without obstacles) resonance condition. Rym.x(€) = 1/(2€+/1 — &) is the maximum value of
the dynamic amplification factor Ry(&,5) (Table A.1), defined as the ratio between the amplitude of the dynamic
displacement to the static displacement ug = MAG/K.

The following dimensionless quantities were subsequently defined: the dimensionless time 7 = wt, the dimension-
less relative displacements of the mass ¢ = u/u* and of the bumpers g; = u;/u* (j = R, L), the damping ratio of the
SDOF system & = C/(2Mw), the dimensionless amplitude of the base excitation ag = 2&€ /1 — &2, the frequency ratio
B = Q/w and the dimensionless gap 6p; = Go;/u” (j = R, L). Based on the adopted normalization, for 0 < 6p; < 1
the mass beats and deforms the j-th bumper, whereas the mass will be in free flight condition (no impact) for 6o; > 1.
Finally, the generic dimensionless force f was denoted as f = F//F*, where F is its physical value.

By virtue of the above-mentioned dimensionless quantities, the equations of motion of the system can be written
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in the following dimensionless form:

{ q"(7) + 264 (1) + q(¥) + (1) - Y1 |6,(0)| - v | £1(0)] = —ag sinpr (1)
fi(t)=0 (1b)

where it is assumed that whether j = L in Eq. (1a), then i = R in Eq. (1b), or whether j = R in Eq. (1a), theni =L
in Eq. (1b); in other words, Eq. (1a) governs the motion of the mass in contact with the j—th bumper, while Eq. (1b)
refers the free evolution of the i—th bumper; therefore, if the mass is in contact with the right bumper, hence j = R
and i = L, vice-versa if the mass is in contact with the left bumper, hence j = L andi = R.

In Eq. (1a) the apex (") denotes differentiation with respect to the dimensionless time 7 and the Heaviside functions
Vi (k = 1,2) are defined as follows:

Contact i [6 j(‘r)] = {(1)’ ? Z; i 8 (2a)
> 0j(1)=
. 0, <0 >0
S e ver

where f;(r) = 2&y jq}(T) + 4;q;(7) (j = R, L) is the normalized contact force occurring during the contact period
with the j-th bumper, y; = C;/C (j = R, L) is the ratio between the viscous damping coefficient of the j-th bumper
and that of the damper and A; = K;/K (j = R, L) is the ratio between the stiffness of the j-th bumper and that of the
damper. 0;(t) = 6p; + Aq(7) (j = R, L), where Agr(7) = gr(7) — q(7) and Agr(1) = q(1) — q.(7), is the clearance
function. The latter represents the distance, at each time instant, between the mass and the j-th bumper. When the
mass is in contact with the j-th bumper 6 ;(r) = 0, otherwise 6;(7) > 0.

Despite the relative simplicity of the model, in which both the bumpers and the damper have been modeled with
a Kelvin-Voigt model, the system is however strongly nonlinear, due to the presence of clearance, the unilateral
constrains and the occurrence of impact that causes abrupt changes of stiffness and damping at the contact time. In
the following the model shown in Fig. 1 will be denoted as Simplified Nonlinear Model (SNM).

In this study two equal bumpers symmetrically arranged on the two sides of the mass were considered. Conse-
quently, Ag = A, = 4, yr = yL =y and dgr = doL = p-

The equations of motion (Egs. (1a)-(1b)) were numerically solved using the central difference method [76], im-
plemented with a Matlab code. As concerns the identification of the period in which impact occurs, this was done
as follows. The beginning of the contact phase between the mass and the j-th bumper was identified based on the
value of the clearance function 6;(7) (j = R, L), as illustrated in Eq. (2a). Impact occurs when 6 () = 0. Regarding
instead the evaluation of the time instant of detachment, this was made based on the value of the contact force fj(r)
(j =R, L), as illustrated in Eq. (2b). This choice was motivated by the necessity to overcome one of the drawbacks of
the Kelvin-Voigt model, when used to model the contact, that is the existence of attracting forces after the restitution
phase [77-80]. Since this does not make sense from a physical point of view, in this study the change of sign of the
contact force was assumed as indicator of the end of the contact phase.

3. Preliminary considerations

In this section some preliminary considerations on the influence of the involved parameters on the system re-
sponse (acceleration and displacement) are made, referring to both the situations without and with bumpers. These
considerations represent the starting point of the subsequent analyses.

3.1. Without obstacles

In the absence of obstacles (free flight condition, FF) the response of a viscously damped SDOF system excited by
a harmonic base acceleration is influenced by the forcing frequency and the damping. The effect of these parameters
on the absolute acceleration and relative displacement response of the system can be seen by observing the trend of
the transmissibility and the displacement response factor curves as a function of the frequency ratio 8 and for several
values of the damping ratio £. In this study, consistently with the normalization adopted in the governing equations
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(Sect. 2), both the transmissibility and the displacement response factor were redefined, compared to the classical
definition [81]. In particular, in both cases, the normalization was made with respect to the maximum response
in resonance condition. The analytical expressions of the transmissibility and the displacement response factor so
defined, and denoted as TR(&, 8) and R(&, B) respectively, are reported in the lower part of Table A.1 (new definition).
The upper part of the same table refers to the classical definition. In Fig. 2, the trends of both TR(&, 8) (Fig. 2a) and
R(£,B) (Fig. 2b) are plotted as a function of 8 and for different values of the damping ratio ¢ (different colors). The
thickness of the line increases with &.

Effect of B. Concerning the transmissibility TR(&, 8) (Fig. 2a), due to the adopted normalization, the assumed value
for § = O (highlighted with colored squares) increases with & (Table A.1). Increasing 3, the transmitted acceleration
increases until a maximum is reached for 8 = Bgr, (Table A.1), highlighted with colored dots. Due to the adopted
normalization the maximum value is equal to unity regardless of damping. By further increasing the frequency ratio
B, TR(&, B) starts to decrease and tends to zero as 8 — co. The maximum transmitted acceleration becomes lower than
the ground acceleration, that is TR(&, 8) < TR(&, 0), regardless of &, for 8> V2 (to the right of the colored triangles).
Consequently, referring to the transmissibility, this frequency value (8 = V2) divides the frequency interval in two
parts:

e for B < V2 the amplitude of the absolute acceleration transmitted to the mass is greater than the amplitude of
ground acceleration, that is TR(¢, 8) > TR(£, 0).

e for B > V2 the amplitude of the absolute acceleration transmitted to the mass is lower than the amplitude of
ground acceleration, that is TR(£, 8) < TR(¢, 0).

Regarding the displacement response factor R(¢, 8) (Fig. 2b), similar considerations apply with some differences.
The assumed value for 8 = 0 (highlighted with colored squares) increases with £ if 0 < £ < V2/2. For V2/2 <& <1,
instead, R(¢,0) = 1. The maximum, equal to one due to the adopted normalization, occurs for 8 = Srq (Table A.1).

-—=()9

&-\22

£=05
—E=04
—&=03
—&=02
—&=0.1

£=0.05

0 1 2 2 3
B

Fig. 2. (a) Transmissibility TR and (b) displacement response factor R for several values of the damping ratio & (new definition). The thickness of
the line increases with &.

Effect of £&. As concerns the effect of the damping ratio &, it reduces the amplitude of motion at all excitation fre-
quencies, particularly in the neighborhood of the resonance. From Fig. 2b, it can be observed that, as & increases
(for0 < ¢ < \5/2), while the maximum value of the response in resonance condition (colored dot), always equal
to 1, moves to the left, the other points of the curve move upwards both to the left and to the right of the resonance.
For V2/2 < & < 1, instead, the maximum value of R(£,8) is obtained for 8 = 0 (colored square). Referring to the
transmissibility (Fig. 2a), damping produces opposite effects depending on whether 8 < V2 or 8 > V2. In particular,
for B < V2 the increase in the damping ratio £ reduces the maximum transmitted acceleration, whereas for § > V2
the damping ratio £ increases the transmitted acceleration. Comparing Figs. 2a and b, it can be observed that for small
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values of the damping ratio ¢ in the neighborhood of the resonance the curves of TR and R are close, both in terms of
maximum values and resonant frequencies.

These preliminary considerations give us indications on how, by acting on the damping and frequency ratios (¢
and ), it is possible to mitigate the system response (acceleration and/or displacement) in the absence of obstacles.
In particular, the mitigation of the system response can be achieved in two ways: by increasing S for the transmitted
acceleration to be less than the ground acceleration (isolation), or by increasing the dissipative capability (increasing
¢) to reduce the dynamic amplification in resonance condition. In the first case the attention is directed towards the
frequency interval 8 > V2, in which, theoretically, it would be preferable not to have damping; in the second case,
instead, the attention is directed towards the frequency interval 8 < V2 in which the effect of damping is beneficial.

3.2. With obstacles

The presence of obstacles (existing or newly added) increases the number of parameters that influence the system’s
response. In addition to the frequency ratio S and the damping ratio &, also the effect of the gap &y and of the
mechanical properties of the obstacles (4 and y) must be considered.

For a given value of the dimensionless gap dy, it is possible to preliminary identify the frequency interval in
which impact surely will occur, based on geometric considerations, as illustrated in [73]. The limits of this frequency
interval, denoted as 8; and 3, respectively (with 8; < 3,), can be determined analytically by solving, for each & — g
pair, the equation R(&, 8) = 9y, that is by finding the intersections between the curve representative of the displacement
amplification factor R(&, 8), corresponding to the selected & value, and the horizontal line 69 = constant, as shown in
Fig. 3 for ¢ = 0.1. In this figure, §; and 3, are represented with red and blue dots respectively for some ¢y values
(horizontal dashed lines), and the frequency interval 8, < 8 < (3, is highlighted, for each ¢y, with thick horizontal
yellow lines.

The roots of equation R(&,8) = 6o (Table A.1) have the following expressions:

2

Bi(E,60) = \/ -2 - 5—f J&-ne - (3a)
2

falé, 60) = \/ 1-28+ 6—f NI (3b)

—for0<é< V272

1
B1(£,60) = \/1 - 262~ 5 \/1 + (2860022 - 1) (4a)
—for V22<é<1: k

1
Ba(£,60) = \/1 -2+ % \/1 +(2660)%(€2 - 1) (4b)

For a given ¢ value (i.e. & = 0.1), different situations may occur depending on the dimensionless gap dy. For
0o = 1, that is in free flight (FF) condition, the two roots coincide (8; = > = Brq) and thus impact never occurs
for any B value. On the contrary, for 6o = 0, that is when the bumpers are initially in contact with the mass, the
equation R(&,3) = 0 does not admit roots (Egs. (3a)-(3b)), and consequently impact occurs for each 8 value. The
interval 0 < §p < 1 can be divided into two sub-ranges through the value &; = 2£ /1 — &2 (6 = 0.199 for £ = 0.1).
For 6;; < 6g < 1 (for example 69 = 0.6) the two roots 8 and 5, are both non null and different from each other, with
B1 < Bra and B, > Bra. They diverge as 0y decreases until, for 69 = &, 81 becomes zero, meaning that impact occurs
already starting from 8 = 0. For 0 < §p < &; (for example dp = 0.1), the equation R(&,5) = d9 admits only one
solution () which increases as dy decreases. Also in this case, impact occurs immediately starting from 8 = 0. It is
worth noting that impact can occur also outside the frequency range §; < 8 < 3;, depending on the nonlinear behavior
of the system, the values of the parameters and the initial conditions, as it will be shown in the following sections.

The introduction of the obstacles changes the response of the system, which will be influenced not only by &
and S but also by the parameters which characterize the obstacles (position and mechanical properties). Preliminary
considerations can already be made based on the position of the obstacle §y (geometrical condition). The response
will be further modified considering also the mechanical (stiffness and damping) properties of the obstacles (1 and ).
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Fig. 3. Dynamic amplification factor R for & = 0.1 (thick black curve) with the location of B (red dots) and B, (blue dots) for some &y values
(horizontal dashed lines) [73]. For 81 < B < B2 (thick horizontal yellow lines) impact surely occurs for geometric reasons.

Based on these preliminary considerations, it is of interest to investigate the effect of obstacles’ parameters (5, 4 and
) on the system response, to identify possible scenarios and make some reasoning on control. The study is carried
out numerically assuming a fixed value of the damping ratio £ = 0.1. The curves of the transmissibility TR and of the
displacement response factor R, corresponding to & = 0.1, will be taken as reference curves in the next.

4. Numerical investigations

The effect of the introduction of deformable and dissipative obstacles (bumpers), placed at a certain distance, on
the dynamic response of a SDOF system, was studied through parametric numerical analyses, considering the model
described in Sect. 2 (SNM) subjected to a stepwise forward and backward sine sweep base excitation.

The study concerns the isolation at the base of structures and equipment. The reference isolation system is the
one that uses the support of High Damping Rubber Bearings (indicated with the acronym HDRB), the mechanical
characteristics of which can be found in [5, 74] with 10 — 15% damping. The analyses were conducted by assuming
¢ = 0.1 by way of example and fixing the dissipative capability of the bumpers (y = 5). In this section it is shown how
the response of the system varies through the introduction of the obstacles, if compared to the free flight condition.

To this aim, the evolution of the forward and backward Pseudo-Resonance-Curves (PRCs) of selected response
quantities is traced in terms of the stiffness ratio 4. The response quantities were suitably normalized. The parameter
0o varies between 1 in the case of no impact (free flight) and O in the case of a bumper positioned adjacent to the mass
(pre-contact); in other works by the authors the case of 6y < 0 was also considered, i.e. the bumper is pre-stressed and
pre-deformed [75], the parameter A varies between 0 in the case of zero stiffness (i.e. damping constraint) and 100 in
the case of very high stiffness compared to that of the isolated system, which produces an impact that can be considered
rigid. The parameter y is chosen equal to 5 because it represents the value identified in the dynamic experimentation on
the vibrating table conducted on the isolation damper and on a real bumper [69-71]; it also represents an example case
for y = constant. The damping value, y, constant, characteristic of the constrained optimization Eq. (6), represents a
real situation, as the damping of the rubber bumpers depends on the compound and can be considered known or fixed.

The selected response quantities are: the normalized excursion of the absolute acceleration of the mass 17, =
Aa/Aay, the normalized excursion of the relative displacement of the mass g = Ag/Aqo, the normalized excursion
of the contact force 7r = Afs/Aa and the normalized excursion of the deformation of the bumpers g = Agp/Aqo.
The absolute acceleration of the mass «(7) is given by the sum of the acceleration of the ground a,(7) = ag sin7
and the relative acceleration between the mass and the ground ¢” (), that is a(7) = ai(t) + ¢"’(r). The excursion (Ai,
i=a, q, fa, gg) was calculated as the difference between the maximum and minimum values recorded at steady state
of each sub-frequency range. To calculate the excursion of the contact force (A fg) and of the bumpers’ deformation
(Agg), both the bumpers have been considered. Afg and Agg were calculated as the sum of the maximum absolute
values of the contact forces and of the deformations of the two bumpers respectively, recorded at steady state of each
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sub-frequency range. The normalization was made with respect to the free flight condition. In particular, Aeg and Agy
denote the maximum excursion of the absolute acceleration and of the relative displacement of the mass respectively
in free flight resonant condition. In addition to these response quantities, also some considerations regarding the
resonant frequency of the acceleration Sr and the excursion of the static displacement of the mass 74 ¢ will be made.

Starting from the free flight (FF) condition (69 = 1), the investigated ¢y values were chosen based on the con-
siderations made in Sect. 3, involving vibration isolation and the parameters 81, 8>, d;, etc. First, the gap interval
0 < §p < 1 was divided, through the value 6, = 0.199, into two sub-ranges, namely J;, < §p < 1 and 0 < ¢y < J;,
to distinguish the situations in which the equation R(¢,8) = Jp admits two or one roots. Subsequently, inside these
two sub-ranges, some &y values were selected. Referring to the sub-range 6;; < 6y < 1, the following values of the
dimensionless gap were selected: 6o = 1, 69 = 0.7, 6o = 0.4 and 69 = ;. As concerns the sub-range 0 < 6y < , in

addition to the limit value 6, = 0, the values of dimensionless gap at which 8, = V2 and 8, = 2, that is 6o =~ 0.1915
(denoted also as ) and 5y =~ 0.066 respectively, were considered.

4.1. Results

In the following figures (Figs. 4-8) the thick black curves represent the PRCs of 7, and 74 in free flight condi-
tion (FF). The other curves represent the forward (solid lines) and backward (dashed lines) PRCs corresponding to
increasing values (increasing thickness of the lines) of A between 0.1 and 100 (the latter assumed conventionally as
representative of the impact against a rigid obstacle and denoted as Ap,x). Only the curves corresponding to some A
values inside this range (namely A4 = 0.1, 1, 10, 50, 100) were represented to make the figures more readable.

As concerns the symbols, the black dots identify the primary resonance condition for all the investigated A values
(even those for which the PRCs are not shown). The yellow squares represent the values of 1, and 74 for 8 = 0. The
cyan symbols identify the boundaries of the frequency interval in which, for the considered value of ¢y, impact will
surely occur, based on purely geometric considerations (8; < 8 < f3;, Sect. 3.2). In particular, the cyan diamond
corresponds to B; (lower limit of the “geometric” impact range) while the cyan circle corresponds to 8, (upper limit
of the “geometric” impact range). The green triangle was used to represent the 8 value (denoted as ;) such that, for
B > Bc the maximum absolute acceleration of the mass is lower than the ground acceleration (17, < 1alg0)-

Finally, the vertical arrows identify the jumps.

Free flight (69 = 1). For 6y = 1 impact does not occur for any S value (8; = B> = Bra = 0.99) regardless of A,
since the amplitude of the gap is equal to the maximum displacement of the mass in resonance condition. Since
in the adopted model (SNM), both the bumpers and the damper were modeled through a linear spring in parallel
with a linear viscous dashpot (Kelvin-Voigt model), the corresponding PRCs of 1, and 14, represented with thick
black curves in Figs. 4-8 (FF), coincide with the curves representative of the transmissibility TR and the displacement
response factor R for & = 0.1 (Fig. 2). Due to the considered small value of damping ratio &, the PRCs of 7, and 74 in
free flight condition are close to each other. Forward and backward curves overlap, without jumps or hysteresis, and
the acceleration becomes lower than the ground acceleration for 8 > V2.

6o = 0.7. For 6y = 0.7 (Fig. 4), impact can occur since §; (cyan diamond) and 3, (cyan circle) (Egs. (3a)-(3b)) are
both different from zero, with 81 < Brq and B, > Brg. In addition to the frequency range in which impact surely
occurs, due to geometric considerations (8; < 8 < f3»), the nonlinear behavior of the system causes the occurrence of
impact even outside this range.

Due to the hardening caused by the impact, compared to the free flight condition (FF, black curve), the PRCs
bend to the right, and the bending becomes more pronounced as the stiffness ratio A increases. Exceeded a certain
value of A, which will be denoted as Ay, the system exhibits jump phenomena (highlighted with arrows), leading to
the appearance of a hysteresis region between the jumps. The jump phenomena and the hysteresis are observable in
the PRCs of both n, (Fig. 4a), nq (Fig. 4b), nr (Fig. 4c) and np (Fig. 4d). For the selected value of the dimensionless
gap Ay =~ 2.2. As it can be seen from Fig. 4, the frequency value at which the upward jump (blue dashed arrow)
occurs, decreasing the forcing frequency (backward sweep), is the same for each A value and corresponds to 8,. On
the contrary, the downward jump (blue solid arrow) occurs, increasing the forcing frequency (forward sweep), at a
frequency value, in the following denoted as 83, which increases with 4. Consequently, 8, and 83 give a measure of
the extent of the hysteresis region in terms of frequency. As A increases, this frequency range increases.
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Fig. 4. Sections of the PRCs for & = 0.1, y = 5, §p = 0.7 and for several values of the stiffness ratio 1 (0 < 2 < 100): (a) 175; (b) ng; (¢) nF; (d)
nB. The black curves in (a) and (b) represent the free flight (FF) condition, the red curves identify the PRCs corresponding to the A value at which
the envelope of the maximum values of the acceleration shows a minimum (1 = Aopt), while the blue curves represent the PRCs corresponding to
the other values of A (the thickness of the line increases with ). The black dots identify the primary resonance condition. In (a) and (b) the yellow
squares indicate the values of 17, and 14 for 8 = 0; the cyan symbols represent the location of 81 (cyan diamond) and B, (cyan circle). Finally, in
(a) the green triangle identifies the . value, for all the considered values of A, such that 17, < 1alg—q for 8 > Bc (thick horizontal green line).

In the frequency range corresponding to the hysteresis (8, < 8 < 83), for each 8 value, and depending on the initial
conditions, it is possible to observe two steady-state stable solutions, corresponding respectively to large-amplitude
(with impact) and small-amplitude (without impact) oscillations. Actually, there would be also a third unstable so-
lution, that could not be obtained with the used methodology. At the hysteresis region, making a comparison with
the free flight condition at the same frequency, the introduction of the obstacle can be counter-productive (occurrence
of impact), depending on the initial conditions. It can lead to an increase not only of accelerations, but also of dis-
placements, or, at best, the response does not change (absence of impact). Therefore, the introduction of the obstacle
does not always reduce the displacements compared to the free flight condition, as one would expect. Based on these
considerations, the hysteresis, if possible, should be avoided (choosing 4 < Ay).

Regarding the primary resonance (highlighted with black dots), it moves to the right, that is it occurs for increasing
values of S, as the stiffness ratio A increases. As concerns the acceleration (Fig. 4a) the maximum value in resonance
condition (denoted as 7;), starting from the free flight condition (black curve) and increasing A, first increases, then
decreases showing a minimum and subsequently starts to grow again, tending to an almost vertical asymptote for large
values of stiffness ratio. For each A value, the maximum value of 7, is always greater than that corresponding to the
free flight condition (7; > 1). The introduction of the obstacle, on the contrary, always reduces the peak value of the
excursion of relative displacement (77 < 1), and the extent of the reduction increases with A4 (Fig. 4b). No changes in
the excursion of the static displacement (highlighted with a yellow square) are observed. As concerns the bumpers,
both the contact force and the deformation are null in the absence of impact. When impact occurs, the values of the
contact force at resonance (black dots in Fig. 4c) show a trend with the stiffness ratio similar to that of the maximum
values of the acceleration, with the occurrence of a minimum. The deformation of the bumpers (Fig. 4d), instead,
quite small for the selected dy value, always decreases with A.

From Fig. 4, it can be also noted that, for the considered combination of parameters (¢, y and dp) and for 0 < A <
100, the occurrence of impact modifies the response of the system only for 8 < V2, keeping unaltered the frequency
range of interest for the isolation in the linear case, that is § > V2.

Finally, by looking at the PRCs of 7, (Fig. 4a), it is possible to identify a value of stiffness ratio (denoted as Ay)
for which the envelope of the maximum values of 1, shows a minimum (min[7;]), although it is, in any case, 77; > 1.
For the considered value of &y, this occurs for Ay =~ 2 (thick red curve). In this condition, the resonance occurs for
Br = 1.05 and since Aqp = 2 < Ay, no hysteresis is observed. Furthermore, for all the considered values of 4, the
acceleration transmitted to the mass becomes smaller than the ground acceleration for 8 > V2 (thatis 8. = V2, green
triangle). In Fig. 4a this frequency range was highlighted with a horizontal green thick line.

In the condition corresponding to the minimum peak value of 77, (4 = Aqp), also a reduction of the peak value of
the relative displacement of the mass, compared to the free flight condition, was noticed (red curve in Fig. 4b). On the
other hand, no reduction of the static displacement was observed.

By comparing the PRC corresponding to Aoy (thick red curve) and the PRC in free flight condition (thick black
curve) at the same frequency (for §; < 8 < »), it can be noted that, in the condition corresponding to the minimum
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peak value of the acceleration, while the acceleration is always greater than the free flight condition, the displacement
is in general lower, except for frequency values slightly lower than §,, at which the red curve appears to be above the
black one.

6p = 0.4. By reducing the dimensionless gap, always remaining in the range o; < d9 < 1, the amplitude of the
frequency interval in which impact occurs increases (Fig. 5, for 6o = 0.4). Compared to the previous case (59 = 0.7,
Fig. 4), it is possible to identify a value of the stiffness ratio (denoted as A; < Amax), beyond which the occurrence
of impact modifies the response of the system, compared to the free flight condition, also for 8 > V2. For 6y = 0.4
this occurs for A, ~ 14. For A > A, the transmitted acceleration becomes lower than the ground acceleration after the
downward jump, which occurs for increasing values of 8 as A increases. Consequently, compared to the linear case,
the isolation frequency range decreases.
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Fig. 5. Sections of the PRCs for & = 0.1, y = 5, §p = 0.4 and for several values of the stiffness ratio 2 (0 < 2 < 100): (a) 175; (b) ng; (¢) nF; (d)
nB. The black curves in (a) and (b) represent the free flight (FF) condition, the red curves identify the PRCs corresponding to the A value at which
the envelope of the maximum values of the acceleration shows a minimum (4 = Aopt), While the blue curves represent the PRCs corresponding to
the other values of A (the thickness of the line increases with ). The black dots identify the primary resonance condition. In (a) and (b) the yellow
squares indicate the values of 17, and 54 for 8 = 0; the cyan symbols represent the location of 81 (cyan diamond) and B> (cyan circle). Finally, in
(a) the green triangle identifies the ¢ value, for 4 = Aopt, such that 17, < nalg—g for 8 > Bc (thick horizontal green line). The vertical gray band
in (a) highlights the frequency interval in which the PRC of 7, corresponding to A = Aop (red curve) is below the PRC corresponding to the free
flight condition (FF, black curve).

Compared to the scenarios observed for 69 = 0.7 (Fig. 4), for 5o = 0.4, increasing the stiffness ratio, secondary
resonances in the low frequency range appear and become gradually evident, affecting increasingly larger frequency
ranges. At these secondary resonances, particularly evident in the PRCs of 1, (Fig. 5a) and g (Fig. 5c¢), periodic and
quasi-periodic responses can be observed, and the acceleration of the mass appears to be always greater compared to
the free flight condition.

As concerns the values of the response in resonance condition (black dots), similar considerations apply to those
made for §p = 0.7. Also in this case the envelope of the maximum values of the acceleration, in resonance condition,
shows a minimum for Adgy = 1. Since Aqpy is slightly lower than Ay =~ 1.2, no hysteresis occurs. Furthermore,
always referring to Aop (thick red curve), it can be observed that the maximum value of the acceleration in resonance
condition, which occurs for Br =~ 1.12, is close to the value corresponding to the free flight condition (77} =~ 1). We can
see therefore the possibility of reducing the maximum value of the acceleration compared to the free flight condition,
also in the presence of impact, by further reducing the dimensionless gap. Furthermore, since Aqp < A, the response
of the system is not altered for 8 > V2 (8. = V2, green triangle in Fig. 5a).

Finally, by comparing the PRC of 7, (Fig. 5a) corresponding to A, (thick red curve) and the PRC in free flight
condition (thick black curve) at the same frequency (for 5; < 8 < 82), it can be noted that there is a frequency range
(highlighted with a vertical gray band) in which, despite the occurrence of impact, the acceleration is lower than in
the free flight condition.

6o = 6;. Moving to the value of the dimensionless gap 6y = 6, = 2 +/1 — &2 = 0.199 (Fig. 6), a limit condition is
reached in which the impact already occurs for 8 = 0 (since 8; = 0). In the low frequency range secondary resonances,
of different type compared to those observed for 5y = 0.4, appear and become gradually evident, affecting increasingly
larger frequency ranges as A increases. In the condition corresponding to the minimum value of the acceleration at
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resonance (min [7;], thick red curve), which occurs for Ay, > 1, no hysteresis is observed (Ao < Ay =~ 1.8). Since
in this condition 8. = V2 (Aopt < Ac = 2), the response of the system is not altered for § > V2, compared to the free
flight condition. Furthermore, the maximum value of the acceleration, which occurs for Sg =~ 1.22, is lower than the
value corresponding to the free flight condition (77; < 1). Finally, always for A = A (thick red curve), it can be noted
that, compared to 69 = 0.4, the amplitude of the frequency range (highlighted with a vertical gray band) in which,
despite the occurrence of impact, the acceleration is lower than in the free flight condition, has increased.
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Fig. 6. Sections of the PRCs for & = 0.1, y = 5, 6o = o = 0.199 and for several values of the stiffness ratio 4 (0 < 4 < 100): () 7a; (b) 17q;
(c) nr; (d) m. The black curves in (a) and (b) represent the free flight (FF) condition, the red curves identify the PRCs corresponding to the A
value at which the envelope of the maximum values of the acceleration shows a minimum (4 = Aop), while the blue curves represent the PRCs
corresponding to the other values of A (the thickness of the line increases with 1). The black dots identify the primary resonance condition. In (a)
and (b) the yellow squares indicate the values of 1, and 7y for 8 = 0; the cyan symbols represent the location of B, (cyan diamond) and B8 (cyan
circle). For this value of § it is 8; = 0 and, consequently, the cyan diamond is superimposed to the yellow square. Finally, in (a) the green triangle
identifies the 8. value, for A = Agp, such that 7, < 77a|,/;:o for 8 > B¢ (thick horizontal green line). The vertical gray band in (a) highlights the
frequency interval in which the PRC of 7, corresponding to A = Aop (red curve) is below the PRC corresponding to the free flight condition (FF,
black curve).

8o = 6oc. By further reducing the gap, the condition in which 8, = V2 is reached. Due to the considered damping
ratio &, the value of dimensionless gap at which this condition occurs, calculated using Eq. (3b) and denoted as dq.., is
slightly lower than 6;; (6oc = 0.1915). The corresponding PRCs are similar to those shown in Fig. 6 and consequently
most of the considerations made for 6y = & (Fig. 6) apply also in this case. However, some differences should be
highlighted. Since now 0 < 6gc < ¢j;, the equation R(¢,8) = 6o admits only one solution (8>, cyan circle) and impact
occurs already starting from § = 0. Compared to 69 = J;, the increase in A causes a slight decrease also of the
static displacement. Finally, for this value of the dimensionless gap Ay =~ A, =~ 1.8 and the minimum value of the
acceleration in resonance occurs again for Ao, = 1. In this condition i; < 1, no hysteresis occurs (4 < Ay) and, since

Be=pr=\2 (Aopt < A¢), the response of the system is not altered for 8 > V2, compared to the free flight condition.

6o = 0.066. Let us now consider the value of the dimensionless gap at which 8, = 2, that is §p =~ 0.066 (Fig. 7). At
this ¢y value, as A increases, more complex behaviors appear in the low frequency range. Different types of secondary
resonances (with left hysteresis or of non-regular type), of a different nature from those observed for greater values
of ¢y, appear and become gradually evident, affecting increasingly larger frequency ranges as A increases. At these
secondary resonances, more evident in the PRCs of n, (Fig. 7a) and ng (Fig. 7c), both periodic, quasi-periodic and
even chaotic solutions can be observed. Furthermore, always at the secondary resonances, the number of impacts
between the mass and each bumper, per forcing cycle, is found to increase as 8 decreases and, for a given £ value, as
A increases.

At this ¢ value, the reduction of the static displacement with increasing A, already observed for 8y = dg, is more
evident (yellow squares in Fig. 7b). Compared to &y, since in this case 8, = 2 > V2, the occurrence of impact
modifies, in any case and regardless of A (with 0 < A < 100), the response of the system also for 8 > V2, compared
to the free flight condition. The extent of the frequency range affected by such changes does not vary if 1 < Ay ~ 4.4
(no hysteresis), whereas it becomes gradually larger as A increases beyond Ay.

The minimum value of the acceleration in resonance condition occurs for Ay, = 1. In this condition, since
Aopt < Ay no hysteresis occurs and furthermore . ~ 1.9. At resonance, which occurs for g =~ 1.32, n7; < 1 and,
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Fig. 7. Sections of the PRCs for & = 0.1,y = 5, §p =~ 0.066 (value of &y so that 8, = 2) and for several values of the stiffness ratio 2 (0 < 1 < 100):
(@) 172; (b) ng; (c) nr; (d) ne. The black curves in (a) and (b) represent the free flight (FF) condition, the red curves identify the PRCs corresponding
to the A value at which the envelope of the maximum values of the acceleration shows a minimum (4 = Aop), While the blue curves represent the
PRCs corresponding to the other values of A (the thickness of the line increases with 2). The black dots identify the primary resonance condition.
In (a) and (b) the yellow squares indicate the values of 17, and nq for 8 = 0. The cyan circles represent the location of 3,. Finally, in (a) the green
triangle identifies the Bc value, for 4 = Aopt, such that 1, < 1alg—g for B > Bc (thick horizontal green line). The vertical gray band in (a) highlights
the frequency interval in which the PRC of 1, corresponding to A = Aop (red curve) is below the PRC corresponding to the free flight condition
(FF, black curve).

in addition to a substantial reduction of the peak value of acceleration, a noticeable reduction of both the peak value
of the displacement and the static displacement is observed. Compared to the previous considered oy values, the
amplitude of the frequency range in which, despite the occurrence of impact, the acceleration is lower than in the free
flight condition (vertical gray band in Fig. 7a) is increased. However, also the amplitude of the frequency range in
which the displacement in presence of impact is greater than in the free flight is increased (Fig. 7b).
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Fig. 8. Sections of the PRCs for ¢ = 0.1, y = 5, 6o = 0 and for several values of the stiffness ratio 1 (0 < 2 < 100): (a) n,; (b) n4; (¢) nr; (d) 7B.
The black curves in (a) and (b) represent the free flight (FF) condition, the red curves identify the PRCs corresponding to the A value at which the
envelope of the maximum values of the acceleration shows a minimum (4 = Aop), while the blue curves represent the PRCs corresponding to the
other values of A (the thickness of the line increases with 1). The black dots identify the primary resonance condition. In (a) and (b) the yellow
squares indicate the values of 7, and 574 for § = 0. Finally, in (a) the green triangle identifies the 8. value, for 4 = Agpt, such that n, < 173|,3=0
for B > B (thick horizontal green line). The vertical gray band in (a) highlights the frequency interval in which the PRC of 5, corresponding to
A = Aopt (red curve) is below the PRC corresponding to the free flight condition (FF, black curve).

60 = 0. When the bumpers are initially positioned in contact with the mass (5o = 0) the situation returns to be quite
smooth, as shown in Fig. 8, although impact occurs for each 8 value (Sect. 3.2). Due to the occurrence of impact, the
behavior of the system is still nonlinear [72], although the PRCs do not show neither jump phenomena nor hysteresis.
As A increases, the primary resonance moves to higher frequency values, up to about 10 for 2 = Ay, = 100. The
occurrence of impact modifies, in any case and regardless of A (with 0 < A4 < 100), the response of the system for each
B value and the PRCs, once exceeded the resonance (black dots), tend to the curve corresponding to the free flight
condition (thick black curve) for § — co. This happens also in the condition corresponding to the minimum peak
value of the acceleration (A = A, thick red curve), which still occurs for Aqp = 1. In this condition, compared to the
free flight condition, significant reductions of both the peak value of acceleration, the peak value of the displacement
and the static displacement of the mass, are observed. For 4 = Aqp (thick red curve), the primary resonance occurs for
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Br =~ V2 and the acceleration of the mass becomes lower than that of the ground for 8 > 8. =~ 2.3.

4.2. Discussion

The study of the evolution of the PRCs with the stiffness ratio 4, for fixed values of both the damping ratios & and
v and the dimensionless gap dy, allowed to investigate the influence of dy, 4 and 8 on the system (mass and bumpers)
response. Based on the obtained results, some preliminary conclusions can be drawn.

Scenarios. Starting from the free flight condition (69 = 1) and reducing the gap, gradually more complex scenarios
were observed, characterized by the occurrence of a primary hysteresis, secondary resonances of different types in
the low frequency range, periodic, quasi-periodic and chaotic responses, multiple impacts, to mention a few. Some of
these scenarios do not go in the desired direction thinking of control. However, by properly selecting the bumpers’
parameters, it would be possible to guide the system response to reach specific objectives.

Frequency ranges. Starting from 6y = 1 and decreasing dy, the amplitude of the frequency interval in which impact
will surely occur, due only to geometric considerations (8; < 8 < 8, Sect. 3.2), increases. In Fig. 9, the thick black
curve represents the PRC of 74 in free flight (FF) condition. For each dy value (right vertical axis), the extremes of the
frequency interval 81 < 8 < 3, are given by the intersections between this PRC and the horizontal line 6y = constant.
For the considered system and parameters, impact does not occur for S < 81 (on the left of the ascending branch of
the thick black curve in Fig. 9), with §; becoming zero when 6y reaches the value 6 ~ 0.199. Furthermore, due to
the hardening caused by the impact, when 4 > Ay (occurrence of hysteresis), where Ay depends on ¢y, impact can
occur also for 8, < 8 < B3. B3 denotes the frequency value at which, during the forward sweep (increasing forcing
frequency), the downward jump occurs. In Fig. 9 the blue curves represent the locus of the 3 values for different
stiffness ratios (the thickness of the lines increases with A1).

1
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041 ! A <04
|
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. | .
k
0 e 0
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B

Fig. 9. PRC of 54 in free flight condition for ¢ = 0.1 (FF, black curve) together with the envelopes of the downward jump frequencies (83, blue
curves) for y = 5 and several A values. The thickness of the line increases with A.

In the two limit cases, namely dg = 1 (free flight condition, absence of impact) and 6y = O (bumpers initially in
contact with the mass, occurrence of impact for each 8 value) hysteresis never occurs, regardless of A. For 0 < dp < 1,
if the horizontal line 69 = constant intersects one of the blue curves, it means that for that pair §p — A the jump
phenomenon, and thus the hysteresis, will occur. The amplitude of the frequency range associated with the hysteresis
(B2 < B < B3, between the descending branch of the black curve and one of the blue curves) increases, for a given dy
value, as A increases (increasing thickness of the blue line) and, for a given A value, as §, decreases.

From the same figure, it is also possible to see if, for the considered values of ¢y and A, due to the occurrence of
impact, the response of the system will be modified, compared to the free flight condition, also for 8 > V2 (to the right
of the vertical dashed line). It depends on the value of 83. Three gap ranges can be identified. For g > 0.67 (above
the upper horizontal green line) the occurrence of impact will modify the response of the system only in the frequency
range 8 < V2, for each considered A value, with 0 < 1 < 100, since B3 is always lower than V2 (all the blue curves
are to the left of the vertical dashed line 8 = V2). It is worth noting that the threshold value of the dimensionless gap
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0o = 0.67 depends on the maximum value of the stiffness ratio considered in the analysis (dnax = 100 in this study)
and it increases as Am,x increases. For dg < dg. (below the lower horizontal green line), where dg. ~ 0.1915 is the value
of the dimensionless gap at which 8, = V2, the response will be modified in any case, regardless of A, not only for
0 < B < V2,butalso for 8 > V2. The extent of the frequency range beyond V2, affected by the occurrence of impact,
becomes gradually larger as A increases. For dp. < dp < 0.67 (between the two horizontal green lines), the response
will be modified also for 8 > V2 only if A > A.. For each dimensionless gap within this range, the corresponding
Ac value is that associated with the blue curve which, for the considered 8y value, intersects the vertical dashed line
B= V2. It can be observed that A, starting from A, = Ayax = 100 for §p ~ 0.67, decreases as dy decreases.

Resonance condition. For a given ¢, value, the increase in the stiffness ratio A causes a gradually more pronounced
bending of the PRCs, with the increase in the resonant frequency and the occurrence of the jump phenomena and the
hysteresis, for 4 > Au(do). As concerns the values of the selected response quantities in resonance condition (777, i =
a, d, F, B), it was observed that, compared to the free flight condition, the increase in A causes an increasing reduction
of the displacement of the mass and of the deformation of the bumpers, while the acceleration of the mass and the
contact force, after a first increase, for very small values of A, decrease, reach a minimum and then start to grow again.
Regarding the static displacement, it decreases, as A increases, only if 0 < 6y < ;.

1 it

(@) ()
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0.6 0.6
do do
04 04
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1
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04
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........ Ap === A i<l no hysteresis no erosion

Fig. 10. Contour maps of: (a) n7;; (b) 173 (¢) 175 (d) m; (€) Br; () Mg for § = 0.1, = 5,0 <2 < 100 and 0 < 6o < 1. The solid black curve
highlights the contour level corresponding to a unit value of 7;. The dashed red, dotted blue and dash-dotted green curves represent the values
of Aopt. An and A. respectively, for each &y value. Meaning of the shaded regions: light gray: n; < 1 (between the solid black curve and the 1

axis); light blue: no hysteresis (to the left of the dotted blue curve); light green: no erosion of the isolation frequency range 8 > V2 (above the
dash-dotted green curve). The black diagonal hatch highlights the region of the A — §y plane in which the three shaded areas overlap.

By extending the range of investigation to other values of the dimensionless gap, for 0 < §p < 1 and 0 < 4 < 100,
always assuming & = 0.1 and y = 5, the contour maps shown in Fig. 10 have been obtained. In particular, Figures
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10a-d show the contour maps of the maximum values of the excursion of the absolute acceleration of the mass
(17,), the relative displacement of the mass (7)), the contact force (7)) and the deformation of the bumpers ()
respectively. Figs. 10e.f, instead, correspond to the resonant frequency of the acceleration S and the excursion of the
static displacement 4 respectively. The use of logarithmic scale for the A axis allows to see better the evolution of
the selected quantities in the range of small stiffness ratios.

From Fig. 10a it can be observed that, in most cases (1 — dp pairs), the occurrence of the impact against the
obstacles causes an increase of the peak value of the acceleration compared to the free flight condition (;7; > 1). For
large values of A, 17; can reach values up to 5. However, for small values of A (1 < 20) and for g < 0.4, the peak value
of the acceleration, despite the occurrence of impact, can be lower than in free flight condition (57; < 1). The contour
line corresponding to 77; = 1 (solid black curve) divides the 1 — §y plane in two regions in which z7; > 1 and n; < 1
respectively. The latter was highlighted with a light gray background.

For each ¢y value, it is possible to identify the value of A at which the envelope of the maximum values of
the acceleration shows a minimum. The locus of the A values corresponding to this condition (denoted as Aqpy) is
represented with a dashed red curve. By focusing the attention on the range 0 < ¢y < 0.4 at which, through the
introduction of the obstacles, it is possible to obtain a reduction of the acceleration, compared to the free flight
condition (77; < 1), it can be observed that the minimum occurs for Aoy = 1, regardless of 6.

The dotted blue curve represents the locus of the values of A, denoted as Ay, beyond which, for a given ¢y value,
the jump phenomena, and thus the primary hysteresis, occur. This curve divides the A — ¢y plane into two regions.
To the left of the dashed blue curve no hysteresis occurs (this region was highlighted with a light blue background),
whereas to the right there will be the hysteresis. While in the two limit cases (6p = 1 and 6y = 0), the hysteresis never
occurs, for 0 < §y < 1, Ay decreases as dy decreases, reaching the lower values (g ~ 1.4) for 0.3 < §y < 0.5, then it
starts to increase again as d¢ further decreases. It can be noted that, for each ¢y value, Aoy < Ay (the dashed red curve
is always to the left of the dotted blue curve), meaning that in the condition corresponding to the minimum peak value
of the acceleration of the mass (4 = Aoy, the hysteresis never occurs.

Finally, the dash-dotted green curve represents the locus of the values of A, denoted as A, beyond which, for a
given ¢y value, the occurrence of impact causes a modification of the system response, compared to the free flight
condition, also for 8 > V2. This curve divides the 1 — &, plane into two regions. Above the dash-dotted green curve
the occurrence of impact will modify the response of the system only in the frequency range 8 < V2 (this region
was highlighted with a light green background), whereas below the curve also the frequency range 8 > V2 will be
affected. For 8y > 0.67 (upper horizontal dashed line), since there are no intersections between the dash-dotted green
curve and the horizontal line 6y = constant (meaning that A, > An.x = 100), the response will be modified, due to the
occurrence of impact, only in the frequency range 8 < V2. On the contrary, for &y < 6o, = 0.1915 (lower horizontal
dashed line) the response will be modified also for 8 > V2 regardless of A. For dp. < dp < 0.67 (between the two
horizontal dashed lines), the isolation frequency range will be reduced, compared to the free flight condition, only if
A > A (on the right of the dash-dotted green curve).

The curves corresponding to 1; = 1 (solid black curve), Aoy (dashed red curve), Ay (dotted blue curve) and A
(dash-dotted green curve), together with the shaded regions, were reported in all the contour maps in Fig. 10. It can be
observed that there is a portion of the 1 — §y plane that remains white. This means that, for the A — ¢ pairs belonging
to it, n; > 1, the hysteresis occurs and furthermore the impact causes an erosion of the isolation frequency range
B> V2, compared to the linear case (absence of obstacles). Then there are regions in which only one of the shaded
areas exists. Finally, for the other A — §y pairs, two or all the shaded regions can overlap. In particular, the black
diagonal hatch highlights the portion of the 4 — dy plane where all the three shaded areas overlap. This is particularly
attractive because, for a A — ¢y pair inside this region, not only 7} < 1 but also no hysteresis occurs and furthermore
the impact does not reduce the isolation frequency range compared to the linear case.

As concerns the peak value of the excursion of the relative displacement of the mass (773, Fig. 10b), it is always
lower than in the free flight condition (my <. It decreases as 9y decreases, for a given A value, and decreases as A
increases, for a given ¢y value. In the latter case, the extent of the reduction decreases as A increases (the contour lines
tend to become horizontal).

The contour map of the peak value of the excursion of the contact force (7, Fig. 10c) is quite similar to that of the
acceleration. 7y, increases with 4, for a given 6o value. For a given value of A, for example A = 10, as 6 decreases, 1y,
increases, reaches a maximum and then starts to decrease.
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As concerns the peak value of the excursion of the deformation of the bumpers (17, Fig. 10d), it decreases with
A, for a given dy value, becoming particularly small for large values of the stiffness ratio. For a given value of A, for
example A = 10, as 6y decreases, i increases, reaches a maximum and then starts to decrease.

As concerns the resonant frequency of the acceleration (8g, Fig. 10e) it varies between 0.99 and about 10, and the
greater values are reached for quite small dimensionless gaps and large values of the stiffness ratio. It increases with
A, for a given §, value, and it increases as d decreases, for a given A value.

Finally, regarding the excursion of the static displacement of the mass 74, Fig. 10f shows that for 65 < §p < 1 it
remains equal to 0.199 independently of 6y and 4. On the contrary, for 0 < 6y < ¢, the static displacement decreases
as dy decreases, for a given A value, and as A increases, for a given ¢y value. In the latter case, the extent of the
reduction decreases as A increases (the contour lines tend to become horizontal).

The case A = Aoy Let us now focus the attention on the condition corresponding, for each §¢ value, to the minimum
value of the acceleration of the mass in resonance condition. Let us make a section of the contour maps shown in
Fig. 10 along the dashed red curve. From Fig. 11a it can be observed that, starting from the free flight condition
(6o = 1) and decreasing 6y, the peak value of the normalized excursion of the absolute acceleration of the mass 7; (red
curve), starting from a unit value for 6o = 1 increases, reaches a maximum for 6y =~ 0.8 (77; =~ 1.27) and then starts
to decrease, becoming again equal to 1 for §p ~ 0.4 (vertical dashed line) and lower than 1 for 0 < §y < 0.4. The
minimum value (77; = 0.41) is reached for §y = 0.

o

n 0.8

0 02 04 06 08 1
%

Fig. 11. Trends with the dimensionless gap &y of: (a) values of the system response 1} (i = a, d, F, B) at resonance and static displacement of the
mass 7145, (b) frequency ratios (Br and Bc), for & = 0.1, ¥ = 5 and A = Aopt(d0)-

The peak value of the normalized excursion of the relative displacement of the mass 77} (blue curve), starting from
a unit value for 69 = 1, decreases as dy decreases, reaching the minimum value (7} =~ 0.15) for 6o = 0. As concerns

the excursion of the static displacement (light blue curve), it does not vary, remaining equal to 2£ /1 — £ =~ 0.199, if
0y < 6o < 1, whereas for 0 < 69 < 6y, it starts to decrease as 6 decreases, reaching the value 7 ~ 0.09 for 6o = 0.

The peak value of the normalized excursion of the contact force 777, (magenta curve), starting from zero for 6o = 1
(absence of impact), increases, reaches a maximum for 69 = 0.45 (y; = 0.5) and then starts to decrease, reaching the
value 77 = 0.28 for 69 = 0. In the gap range of interest (0 < 6o < 0.4, highlighted with a light gray band) nj: decreases
as 6p decreases. The peak value of the normalized excursion of the deformation of the bumpers 7 (orange curve),
starting from zero for 69 = 1 (absence of impact), increases, reaches a maximum for 6o ~ 0.15 (75 =~ 0.17) and then
slightly decreases, reaching the value iy ~ 7} ~ 0.15 (the deformation of the bumpers and the displacement of the
mass are comparable) for 6o = 0. In the gap range of interest (0 < 6o < 0.4, highlighted with a light gray band) ny
tends to a constant value as dy decreases.

From Fig. 11b it can be observed that, always for A = A, the resonant frequency ratio Sr (black curve), starting
from Br =~ 0.99 (horizontal dashed line) for 6y = 1, increases as d, decreases, reaching the value Sr ~ 1.47 for 6oy = 0.
As concerns the 8 value beyond which the absolute acceleration of the mass is lower than the ground acceleration (8,
green curve), it is equal to V2 if 6o < 8 < 1 (the isolation frequency interval is the same as in the linear case), then
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it starts to increase, reaching the value S, =~ 2.37 for o = 0. Consequently, for 0 < 6y < doc, as dp decreases, the
occurrence of impact causes a greater reduction of the isolation frequency interval, compared to the linear case.

Based on these considerations, although the reduction of the gap allows to reduce the peak value of the response
of the system in resonance condition and, for 0 < §y < d;, also the static displacement, very small values of ¢, involve
an increasing modification of the system response in the frequency range of interest for the isolation in the linear case
(8 > V2). Consequently, it would be preferable not to reach too low values of &, in order not to alter, or alter to a
limited extent, the system response for 8 > V2, accepting higher peak values for acceleration, displacement and static
displacement of the mass, contact force and deformation of the bumpers.

Other considerations. By comparing, at the same frequency, the PRCs of 5, and nq for 4 = A, with those cor-
responding to the free flight condition, other interesting considerations have emerged. In general, in the condition
corresponding to the minimum value of the acceleration in resonance condition (1 = Aoy), and for §; < 8 < B,
the displacement is lower compared to the free flight condition, except for a small frequency interval, just before
2, where the occurrence of impact causes a slight increase of the displacement. As concerns the acceleration, for
0 < 69 < 0.4, there is a frequency range, within 8; < 8 < B, (highlighted in Figs. 5-8 with a vertical gray band), in
which, the acceleration of the mass, despite the occurrence of impact, is lower compared to the free flight condition.
As 9y decreases, the amplitude of this frequency range increases. Consequently, if the comparison with the free flight
condition is made at the same frequency, and not referring to the resonance condition, contrary to what one would
expect, the introduction of the obstacle does not always reduce the displacement and does not always increase the
acceleration.

5. Mechanical justification of the condition corresponding to the minimum peak acceleration

From the results of the parametric analysis, it was observed that, for each investigated o, value, and for & = 0.1
and y = 5, as A increases, while the envelopes of the maximum values of the displacement of the mass 7} and of the
deformation of the bumpers n decrease, the envelopes of the peak values of the absolute acceleration of the mass
1, and of the contact force nf; show a minimum. At this condition (1 = Aop), in addition to the occurrence of the
minimum of 7; and 7y, also a reduction of the peak value of both the relative displacement of the mass and of the
deformation of the bumpers was observed. Furthermore, to this is also added the reduction of the static displacement
for 0 < 69 < 0.

With reference to the range of ¢y values of greatest interest in this study, that is 0 < §y < 0.4, at which it is possible
to obtain a reduction not only of the displacement, but also of the acceleration of the mass, compared to the free flight
condition (77; < 1), it was found that the minimum peak value of acceleration occurs for Ay = 1, regardless of .
Based on this observation, the aim of this section is to try to give a mechanical justification to why, for & = 0.1 and
v =5, a unit value of the stiffness ratio A is preferable to the others.

In the following figures, referring, for illustrative purposes, to the value of the dimensionless gap corresponding
to B2 = 2 (69 = 0.066), a comparison between different values of stiffness ratio A is carried out. In addition to the free
flight condition (FF), three values of A were considered, namely the one that corresponds, for the selected dy value,
to the minimum of 77; (4 = Aq, = 1), and two other values of 4, one lower and the other greater than 1, respectively
A=0.1 <Agprand A =5 > Agp.

In Fig. 12 the comparison between the different A values is made in terms of force-displacement cycles in res-
onance condition. Figure 12a refers to the mass (inertia force f; vs. relative displacement ¢ of the mass), whereas
Fig. 12b refers to the bumpers (contact force f; vs. position d; of the bumper, j = R, L). The position of the extremity
of the bumper, measured from the side of the mass at time 7 = 0, is related to its deformation g; through the expression
dj(t) = qj(t)+60j (j = R, L). Starting from zero initial condition, the thin lines represent the transient response, while
the cycles at steady state are highlighted with thicker lines. The gray curve refers to the free flight condition (FF), the
blue curve to A = 0.1, the red curve to A = Agy = 1 and the black curve to 4 = 5. The two black dashed vertical lines
represent the initial position of the bumpers (initial gap dp).

In Fig. 13 the comparison is made in terms of time histories (first 10 cycles), starting from zero initial conditions.
The first column (Figs. 13a, d, g) refers to 4 = 0.1, the second (Figs. 13b, e, h) to 4 = 1 and the third (Figs. 13c,
f,1) to 4 = 5. In Figs. 13a-c the gray line and the black line represent the position d(7) of the mass (which is
nothing more than its displacement relative to the ground d(7) = ¢(7)) in free flight condition (FF, gray line) and after
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Fig. 12. Force-displacement cycles (¢ = 0.1, y = 5, §p = 0.066) in resonance condition (8 = Sr(4)), without obstacles (free flight FF, Sr =~ 0.99,
gray line), and for three values of the stiffness ratio, namely A = 0.1 (8r = 1.1, blue line), A = 1 (Br = 1.32, red line) and 2 = 5 (Br =~ 1.85, black
line): (a) mass; (b) bumpers. Starting from zero initial conditions, the thin lines represent the transient response, while the thick lines highlight the
cycle at steady state.

the introduction of the obstacles (black line). The red and blue lines represent the position of the extremity of the
right (Bgr) and left (Br) bumper respectively. In Figs. 13d-f the gray line and the black line represent the absolute
acceleration (1) of the mass in free flight condition (FF, gray line) and after the introduction of the obstacles (black
line). Finally, Figs. 13g-i show the time histories of the contact forces fj(r) (j = R, L) between the mass and the right
(Bg, red line) and left (B, blue line) bumper, respectively.

From Fig. 12a it can be observed that, compared to the free flight condition (FF, gray curve), the introduction of
gradually stiffer obstacles (increasing 1), keeping fixed the gap dp, results in a gradually increasing reduction of the
maximum displacement of the mass, while the peak value of the inertia force (and thus of the absolute acceleration of
the mass) shows a minimum for A = 1 (red curve) and then it starts to increase. As concerns the bumpers (Fig. 12b),
the increase in A causes a reduction of the deformation of the bumpers, while the peak value of the contact force shows
a minimum for 4 = 1 and then it starts to increase. Furthermore, it can be noted that, compared to 4 = 1 (red cycle)
and A4 = 5 (black cycle), for 4 = 0.1 (blue cycle), as time goes by, the distance between the mass and the bumpers
(gap) gradually increases, reaching, at steady state, a value greater than the initial one (6o in = 0.34 > 9§y, represented
with blue dotted vertical lines in Figs. 12a,b).

As it can be seen from Fig. 13a, for 4 = 0.1, the mass impacts the bumper before the complete recovery of its
deformation, causing the impact to occur, for each forcing cycle, for a value of the gap gradually greater than the
initial one (horizontal dashed lines), reaching the final value of about 0.34 at the steady state. This behavior is due
to the relatively large value of the relaxation time of the bumpers, that is the time the bumper needs to completely
recover its deformation, which depends on its dissipative capabilities. It is defined as:

Ci Vi .
= w— = 28— =R, L 5
Trj K; g/lj ( ) (5)

For a fully elastic material (y; = 0) 7;; = 0 (j = R, L), and so the recovery is instantaneous, whereas a fully viscous
material (4; = 0) 7;; — oo (j = R, L) remains deformed after the detachment, without recovering its deformation. In
presence of both elastic and viscous components, the relaxation time is finite and depends on the dissipative capability
of the material. For ¢ = 0.1, y = Sand 4 = 0.1 itis 7;; = 10 (j = R, L). The bumper does not have enough time
to completely recover its deformation, and thus to dissipate all the stored energy during the contact, before the mass
impacts it again. Consequently, when impact occurs it has a residual deformation, which causes the actual gap to be
greater than the initial one (dy).

For A = 5 (Fig. 13c), on the contrary, the bumper quickly recovers the deformation after the detachment from the
mass (7;; = 0.2, j = R, L) and it remains, for a certain time, in the undeformed configuration until the mass impacts it
again.

For 4 = 1 (Fig. 13b), instead, the mass impacts the bumper practically at the time instant when it has finished
recovering all its deformation. Consequently, the bumper has enough time to recover, and, at the same time, it does
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Fig. 13. Time histories of the first ten cycles of the response starting from zero initial conditions, for & = 0.1, y = 5, o =~ 0.066. Position of
the mass (black line) and the bumpers (red line for the right bumper Br and blue line for the left bumper B): (a) 4 = 0.1, Br =~ 1.1;(b) A = 1,
Br =~ 1.32;(c) A =5, Br = 1.85. Absolute acceleration of the mass (black line): (d) 1 =0.1,Br =~ 1.1;(e) A =1,Br = 1.32;(f) 1 =5, Br =~ 1.85.
Contact force between the mass and the bumpers (red line for the right bumper Br and blue line for the left bumper By.): (g) 4 = 0.1, Br ~ 1.1; (h)
A=1,Br = 1.32;(1) 1 =5, Br = 1.85. In (a)-(f) the gray line represents the response (position and absolute acceleration) of the mass in free flight
(FF) condition (without obstacles).

not remain inactive. For & = 0.1 and ¥y = 5, this value of A corresponds to an approximately unit value of the
dimensionless relaxation time (7; = 1, j =R, L).

From the time histories of the absolute acceleration of the mass (Figs. 13d-f) it is possible to observe the spikes
due to the occurrence of impact. Furthermore, as concerns the amplitude of the acceleration after the introduction of
the obstacle (black curve), it can be noted that for A = 0.1 (Fig. 13d) it is comparable with that corresponding to the
free flight condition, while for the other two values of stiffness ratio, it is lower. In particular, for A = 1, the reduction
is greater, as already observed by looking at the force-displacement cycles (Fig. 12a). At the value of the stiffness
ratio corresponding to the minimum of the peak value of the acceleration, also a minimum of the peak value of the
contact force corresponds, as shown in Fig. 13h.

Based on these considerations, it would seem that, for a given ¢ value, for 0 < §yp < 0.4, and foré = 0.1 andy =5,
when the stiffness ratio is such that the dimensionless relaxation time is close to unity (7;; = 1, j =R, L), the maximum
value of the acceleration of the mass 7, reaches a minimum. This is probably due to the fact that the bumpers are fully
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exploited, meaning with this that they have enough time to recover their deformation by dissipating energy and, on the
other hand, they do not remain inactive because impact practically occurs immediately after recovery. Consequently,
foré = 0.1,y = 5and 0 < ¢y < 0.4, the condition 7; =~ 1 (j = R, L) can be reasonably assumed as representative of
the condition which corresponds to the minimum value of the acceleration of the mass in resonance condition. This
allows to reduce the number of parameters which characterize the obstacles (position ¢y, and mechanical properties y
and A), since two of them (y and 1) are related to each other through the relationship:

1
~— (j=R, L) (6)

6. Conclusions

In this paper, the effect of the presence of deformable and dissipative obstacles (bumpers), existing or newly added,
on the nonlinear dynamic response of a base excited SDOF system was investigated through numerical parametric
analyses. The study of the nonlinear dynamic behavior of the system is necessary to get some indications on how
to guide the system response to reach specific objectives, albeit conflicting ones. In fact, this study was inspired by
the practical problem of large horizontal displacements in base-isolated structures, the limitation of which can cause
unwanted and dangerous increases in the acceleration peak.

The selected response quantities are absolute acceleration and relative displacement of the mass, contact force and
deformation of the bumpers, resonant frequency of the system, static displacement of the mass.

Some general conclusions can be preliminary established:

e The parametric study allowed to highlight possible scenarios, characterized by the occurrence of primary hys-
teresis, secondary resonances of different types in the low frequency range, periodic, quasi-periodic and chaotic
responses, multiple impacts, to mention a few, that may be encountered due to the occurrence of impact, varying
the obstacle’s parameters (position and mechanical properties).

o As part of the control, while some of these scenarios (for example jumps and hysteresis, secondary resonances
at low frequencies, coexistence of multiple solutions) do not go in the desired direction, others are desirable
(displacements and acceleration with obstacles smaller than those ones in free flight).

e By properly selecting the bumpers’ parameters it is possible to guide the system’s response to reach specific
objectives, avoiding some undesirable scenarios and encouraging others, and thus exploiting the occurrence of
impact with beneficial effects.

By fixing the value of the damping factor & of the isolation damper and the dissipative capabilities y of the bumpers
(in this work exemplary values ¢ = 10% and y = 5 were assumed), the results showed that the occurrence of the impact
against the bumpers can significantly modify the system response, depending on the values of the dimensionless gap
and of the stiffness ratio, both for 8 < V2 (isolation not effective in the linear behavior) and 8 > V2 (isolation
effective in the linear behavior). The value V2 is decisive in the case of linear behavior, because it is the separation
value between the frequency interval in which the isolation is not effective (8 < V2) and the frequency interval in
which the isolation is effective (8 > V2).

While the peak value of the displacement of the mass is always reduced compared to the free flight condition, the
peak value of the acceleration in general is increased, except for small values of both the stiffness ratio (0.2 < A < 8§,
around the optimal value Aoy = 1, see the solid black curve in Fig. 10) and the dimensionless gap (0 < 6y < 0.4, see
Fig. 10), for which the peak acceleration can be lower compared to the free flight condition.

It is worth noting that, when the comparison with the free flight condition is made at the same frequency, and
not comparing the values at the primary resonance, there could be a small frequency interval where the occurrence of
impact can cause a slight increase of the displacement, contrary to what is expected. With reference to the exemplary
case £ = 0.1 and y = 5, and with reference to Figs. 5b-8b, this phenomenon begins at 6y = 0.4 with 1.2 < 8 < 1.25
(Fig. 5b), when the red optimality curve (denoted with the symbol Aqp) begins to fall below the black curve of free
flight (FF), in the interval in which the control achieved through the impact is beneficial, and arrives at 5o = 0 with
1.3 < B < 4 (Fig. 8b); as dp decreases, the far right grows little compared to unit value, while the far left goes
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to zero. The abovementioned phenomenon of the so called “bouncing” extends both to the right and to the left
on the 3 abscissa axis; in the absence of control this phenomenon acquires relevance, while control attenuates its
intensity. Equally, there could be a small frequency interval where the occurrence of impact can cause a decrease of
the acceleration, compared to the absence of obstacles. With reference to Figs. 5a-8a, such an interval starts from
0.9 <B < 1.1atdy = 0.4 (Fig. 5a) and reaches 0 < 8 < 1.2 at §, = 0 (Fig. 8a).

It was observed that, for each value of the dimensionless gap, inside the range of interest, it is possible to identify a
condition preferable to the others at which the envelope of the values of the acceleration in resonance condition shows
a minimum. This occurs, regardless of the dimensionless gap, when the stiffness ratio and the damping ratio, which
define the mechanical properties of the bumpers, are such that the relaxation time 7, is about 1. In this condition the
bumpers, on the one hand, have enough time to recover their deformation, after the detachment from the mass, by
dissipating energy and, on the other, they do not remain inactive because impact practically occurs immediately after
recovery. Consequently, two important conclusions can be drawn, at least limited to the situations explored with the
parametric survey carried out here:

e For & = 0.1, y = 5 and, the condition 7, =~ | can be reasonably assumed as representative of the condition
which corresponds to the minimum value of the acceleration of the mass in resonance condition. In addition,
the dimensionless acceleration becomes less than unity in the range 0 < §y < 0.4.

e This allows to reduce the number of parameters which characterize the obstacles (position dyp, and mechanical
properties y and 1), since two of them, namely y and A, are related to each other through the relationship:

y/A = 1/(28).

In the condition corresponding to the minimum value of the acceleration in resonance neither jumps nor hysteresis
occur, and in addition to the minimum value of the acceleration in resonance condition, also a significant reduction
of the displacement was observed. In Fig. 11 left, the dimensionless displacement decreases almost linearly from a
value of 1 for g = 1 to a value of 0.18 for §; = 0. To this is also added the reduction of the dimensionless static
displacement for small gaps; it maintains the constant value 0.2 (= ¢7)) in the range ¢ < d9 < 1 and decreases linearly
to the value 0.1 in the range 0 < 6o < 6. The results of Fig. 11 left also showed the trends of the system’s response in
resonance condition as the dimensionless gap decreases. The dimensionless acceleration first starts from the unitary
value at §p = 1, rises to the value 1.3 for §y = 0.8 touching the maximum, drops to 1 for §o = 0.4 and reaches the
minimum value 0.4 for 5y = 0. The dimensionless displacement starts from the unitary value for §p = 1 and decreases
almost linearly up to the value 0.2 for 6o = 0. The dimensionless contact force starts from the zero value for §y = 1,
attains the maximum value 0.5 for 6 = 0.4, and then falls to the value 0.3 for 6o = 0. The dimensionless static
displacement starts from 0.2 for 69 = 1, remains constant up to 6o = 0.2 (= ¢)), and then goes down almost linearly
up to the value 0.1 for 6p = 0. Furthermore, the results of Fig. 11 right showed that the resonant frequency ratio starts
from the unit value for o = 1, grows almost linearly up to the value 1.25 for 6o = dp. = 0.2, and then rises to the
value 1.5 for 6y = 0 with a slightly greater slope.

However, very small values of ¢, involve an increasing modification of the system response in the frequency range
of interest for the isolation in the linear case (8 > \/5). In fact, up to 69 > 0.2 = . there is no erosion, being o
the separation value between the effective and non-effective range of the isolation in the linear field. Below the value
0o = 0.2, the isolation zone begins to be eroded, up to 8. = 2.5 for 5y = 0; therefore, the zone of effectiveness is
eroded because it exists only for 3 values greater than . = 2.5. For the above reason, that is in order not to alter, or
alter to a limited extent, the system response in the effective range of isolation, it would be preferable not to reach too
low values of dy, accepting slightly higher peak values of the response in terms of acceleration and displacement. A
reasonable suggestion could be to stay below ¢y = 0.4 to have dimensionless acceleration and displacement less than
1 and for example choose dp = 0.2, thus obtaining 77; = 0.8 and r7}; = 0.4.

Regarding to the future developments of this work, there is the intention to exploit the obtained results to give
guidance on the optimal design of the bumpers.
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Appendix A. Analytical expressions of transmissibility and displacement response factor according to the new
definition

The following Table A.1 provides the analytical expressions of the transmissibility (left column) and of the dis-
placement response factor (right column), referring to both the classical (upper part) and the new (lower part) defini-
tions. In addition, also the analytical expressions and/or the values they assume for 8 = 0 and in resonance condition,
are shown, together with the expressions of the resonant frequency. The given expressions for Srq, Rqmax, and R are
valid for 0 < £ < v2/2. For V2/2 <& < 1,no peaks occur for Ry and the maximum response occurs for 8 = 0 and,
consequently, Rqmax = 1. It follows that, for V2/2 < & < 1, R(&,B8) = 1/+/(1 = B2)% + (2£8)? and R(£,0) = 1.

Table A.1. Analytical expressions related to the transmissibility and the displacement response factor for a viscously damped SDOF system excited
by a harmonic force considering both the classical and the new definitions

Transmissibility Displacement response factor
L+ ey [+ oepr !
g TREB) = |75 = V1 + 2B R, B) Ry¢.p) = ———
=1 1-p2 2 /
E (1-82)"+(2¢B) (1 _,32)2 + (2513)2
S TRGEO =1 Vé Ry&,0)=1 V&
<
2 2V2&8 1
2 TRa,max(é‘:) = = Rd.max(é‘:) =
S J-1-4g 4860+ T 88 28N -8
1

Bra(§) = E\/_l-'- V1 + 8¢ Bra(é) = 1 -2&

1 1+ Q27| (=1 — 4% + 8&* + /1 + 842 261 = &2
R [ ](1 i ZJ ) Rep - N8
E‘E:' & (1-52)" +(2¢B) /(1 — ) + (2£B)
<=
S \/—1—4§’2+8.$4+ V1 +8& 1 1
8 TRE0) = : = RE0) =2%T-8=—
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Highlights

The occurrence of impact can significantly modify the response of SDOF systems.
The study of the scenarios is functional to identify suitable control strategies.
It is possible to exploit the occurrence of impact with beneficial effects.

A unit value of the relaxation time allows to minimize the peak mass acceleration.

Very small gaps involve an increasing reduction of the linear isolation frequency range.
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