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Abstract
In this work, we initially report a detailed advancement in the utilization of metal-N4 chelate macrocycles in the oxygen reduction
reaction (ORR). Then, iron(II) phthalocyanines supported on two different carbon-based supports specifically carbon nanotube
and black pearl (carbon spheres) were synthesized and their activities toward ORR in alkaline media were studied. With the help
of physical and surface characterization like Raman, BET, XRD, XPS, and electron microscopy analysis, the similarity in surface
chemistry and surface area of the materials and the differences in the structure and morphology of the supports were established.
This work also brings forth the effect of support properties on the electrocatalytic activity of the materials by a detailed
electrochemical analysis using rotating disk electrode in oxygen saturated 0.1 M KOH. Comparison with existing literature on
Fe-phthalocyanine supported on diverse carbon support is presented.
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Introduction

The demand for clean energy and sustainable development
has necessitated the use of energy generation devices like fuel

cells. Fuel cells are promising electrochemical devices for
energy production and they have several advantages com-
pared to existing technologies such as (i) higher conversion
efficiency compared to diesel/gas engines; (ii) water produc-
tion is the final product of the reaction; (iii) if hydrogen is
produced through electrolysis from renewable energy, the
overall production of electricity is sustainable and does not
produce greenhouse gases; (iv) utilization of hydrogen and
not oil or gas (http://www.fuelcelltoday.com/about-fuel-cells/
benefits). Despite deep and profound improvements and
enhancement in the fuel cell (FC) technology, especially in
the past decade, cost of large-scale deployment of FC systems
still remains the largest impediment toward a sustainable en-
ergy infrastructure. Particularly in the case of low temperature
fuel cells, known also as proton exchangemembrane fuel cells
(PEMFCs) or alkaline membrane fuel cells (AFCs) depending
from the operating pH, a significant reduction of cost is need-
ed in order to largely commercialize the technology.

Recently, the US Department of Energy (DoE) has done a
cost analysis on direct hydrogen fuel cell vehicles giving also
important outlooks and perspectives. Particularly, considering
the cost of the entire system to be 3500 US$ (500,000 units/
year), the fuel cell stack is estimated to cost 1531 US$ and the
auxiliary part named as balance of plant (BOP, air system,
cooling system, water humidifiers and recycling, etc.) instead
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1969 US$, corresponding to 44% and 56% respectively [1].
The main cost related to the fuel cell stack and the overall fuel
cell system is the catalyst and its application with roughly
contributing to 948$ to the overall system (27%) [1].

Both anodic and cathodic reactions in low temperature fuel
cells are catalyzed by the utilization of platinum or platinum
groupmetal catalysts [2]. The oxygen reduction reaction at the
cathode requires a large amount of platinum-based catalyst
owing to the sluggish nature of this reaction [3, 4]. Not only
platinum is an expensive element but platinum-based catalysts
are also prone to instability and poisoning especially in the
presence of anions [5–11].

US Department of Energy (DoE) suggested several strate-
gies for reducing the cost using a road map. Considering the
2017 baseline of 45US$/kWnet, a further reduction to 40 US$/
kWnet is expected in 2025 by reducing the cost of the Air
CEM Unit cost and the bipolar plates cost [12]. The ultimate
goal expected by the US DoE (30 US$/kWnet) envisions also
the reduction of platinum loading and decrease precious metal
cost [12]. This indirectly underlines that it is necessary and
important to act for reducing the catalyst cost and certainly
pursue different pathways for even try substituting platinum
with lower cost metal elements.

In the past decade, deep attention has been devoted to the
development of platinum group metal-free (PGM-free) cata-
lysts for oxygen reduction reaction [13–15]. These catalysts
comprehend transition metals (such as Co, Ni, Mn, Fe, and
Cu) that are coordinated with nitrogen (as defect on a
graphitic/graphene-like structure or as metal-N4 macrocycles),
nitrogen defects/moieties on a graphitic/graphene-like back-
bone as well as metal oxides [16]. It was recently shown that a
direct 4 e− occur only in the case of the transition metal coor-
dinated with nitrogen [16]. The latter mechanism is preferred
because it is faster and more efficient. A 2x2e− transfer mech-
anism can also occur on a single site in which the transition
metal is coordinated with nitrogen [16]. On this active site,
also the reduction of the peroxide (intermediate of the ORR)
can occur [16]. Transition metal oxides are generally very well
known for being peroxide reducing catalysts [17]. Transition
metal particles or nanoparticles are responsible for the reduc-
tion of oxygen to the first intermediate through a 2e− transfer
mechanism [17]. Nitrogen defects/moieties can reduce oxy-
gen to peroxide (pyrollic nitrogen) or operates as peroxide
reducing active site (pyridinic nitrogen) [16]. Among PGM-
free catalysts, several metal-N4 chelate macrocycles such as
porphyrins and phthalocyanines resemble possible structure
that act as efficient active site for ORR [18–20].

In the current work, initially, we report a brief review
concerning the state of the art of the utilization of metal-N4

chelate macrocycles for oxygen reduction reaction. Then, the
synthesis of iron(II) phthalocyanine supported on two differ-
ent carbon morphologies (multi-walled carbon nanotubes and
black pearl carbon) is reported. The catalytic materials are

analyzed by physical characterization technique (Raman spec-
troscopy). The electrochemical oxygen reduction catalytic ac-
tivity of these materials is then studied in alkaline electrolyte
by means of rotating ring disk electrode measurements. A
discussion on the association and differences of morphology
and its impact on electrocatalysis is presented. A critical com-
parison of the obtained results with existing literature on the
interaction of support structure and active catalytic sites is
presented.

Advancement in the utilization of metal-N4
chelate macrocycles for oxygen reduction
reaction

Out of the several alternatives for platinum or platinum group
metal catalysts that have been experimented and tested, metal-
N4 chelate macrocycles supported on carbon materials are
some of the best performing alternatives for the cathodic ox-
ygen reduction reaction in alkaline electrolytes [18]. However,
in many cases, the synthesis process is quite tedious and the
search for the ideal inexpensive and high-performance catalyst
in this class of materials continues. Iron(II) phthalocyanines
(FePcs) are an attractive metal-source catalyst due to its
unique properties such as centrosymmetric structure and
electron-donating ability, thanks to their large conjugated mo-
lecular structure and strong interactions between aromatic
rings [21, 22]. On the other hand, many investigations have
been designed that FePc as catalysts for ORR have poor elec-
tron conductivity, stability and are prone to aggregation phe-
nomena, contributing to a decrease of active sites and respec-
tively difficult electron transfer in the ORR process [23–25].
Therefore, to supply these disadvantages, as previously men-
tioned, a conductive carbon support is needed to improve its
electrocatalytic activity.

In a previous study, Zagal et al. have demonstrated different
electron transfer mechanisms for oxygen reduction through the
electrocatalytic activity of different metallophthalocyanines, in-
cluding Fe-N4 adsorbed on oriented pyrolytic graphite (OPG)
[26]. Further on, Zagal and co-authors presented a variety of
electrochemical reactions involving active catalysts based on
metal-N4 chelate confined on the modified the surface elec-
trodes [27]. Wu and co-collaborators on the other hand add an
ionic surfactant on the Fe-N4 complexes to create an electric
field at the electrode double layer and consecutively modulate
the oxygen reduction selectivity of Fe-N-C catalysts [28].
Zhang et al. have shown the use of graphitized carbon black
as support for iron(II) phthalocyanine (FePc) to tune its elec-
tronic properties by the delocalized π-electron cloud. This cat-
alyst exhibited high performance in alkaline fuel cells [29]. Cui
et al. have performed extensive studies on the role of FePc
supported on graphene in oxygen reduction in alkaline electro-
lyte [30]. Taniguchi et al. have studied oxygen reduction by
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self-assembled structure of FePc on reduced graphene oxide
[31]. While Jiang et al. have shown the effects of stabilization
and solubilization between reduced graphene oxide and FePc
through the π-π interaction. These effects provided more active
sites and improved the stability of the catalyst in alkaline media
[32]. In previous study, Jiang et al. and Zhang et al. reported
nitrogen-doped graphene to support FePc composite as catalyst
for oxygen reduction with electrocatalytic activity compared to
commercial Pt/C [32, 33]. Recently, high performed composite
FePc onto N-doped graphene obtained via electrochemical ex-
foliation demonstrated good oxygen reduction activity followed
by long-term durability in alkaline media. Komba et al. con-
firmed the best activity of their catalyst in comparison with
precious metal Pt/C [34]. Cheng and co-workers, however,
have developed a class of ultrafine transition metal oxide
(TMO—Fe, Co, and Ni) incorporated with Fe-N4 macrocycles
on graphene. The ultrafine TMO/FePc-based catalysts have
shown a high performance for ORR in alkaline ambient, and
the enhanced ORR activity is attributed to the effect of syner-
getic TMO ultrathin assist the oxygen reduction on FePc with
graphene substrate [35].

The importance of the specific surface area and surface-
active sites of three different carbon matrixes to a uniform
dispersion of FePc was shown in the study of Li et al. Here,
reduced graphene oxide, mesoporous carbon vesicle, and or-
dered mesoporous carbon have combined with FePc
macrocycle through non-covalent π-π stacking interaction.
Ordered mesoporous carbon/FePc displayed best ORR perfor-
mances in acidic and alkaline media [36]. Liu et al. designed a
novel FePc-graphene hybrid obtained by an amination reac-
tion of carboxyl-functionalized graphene and FeTAPc with an
exhibited high activity and stability toward ORR displaying a
direct 4-electron pathway to water and tolerance to metal
crossover in alkaline conditions [37]. Zhang et al. utilized
FePc on modified porous graphene via pyrolysis of porous
freeze-dried composites. The electrocatalysts exhibit three-
dimensional interpenetrated porous structure, with high num-
ber of active sites for a direct 4-electron pathway [38].
Ohtsuka and co-workers fabricated FePc embedded in the
composite thin film with different mixing ration of the two
components. They have demonstrated the understand phe-
nomenon of the adsorption and interactions of organic mole-
cules on the carbon support [39]. Ultrathin FePc self-
assembled on reduced graphene oxide has exhibited an excel-
lent catalytic activity superior to precious Pt/C catalysts for an
ORR alkaline media. Takaaki Taniguchi et al. suggest that this
kinetic behavior is caused by hybrid architecture and its syn-
ergistic effects that afforded an ultrafast 4-electron transfer
during reduction step [40]. Recently, Qiu et al. revealed a
catalyst based on isolated Fe-N4 single atomic anchored on
graphene hollow nanospheres with excellent oxygen reduc-
tion performance, long-term stability, and good tolerance to
NOx and SO2 in basic media [41].

Pyrolysis treatment is usually required to improve the
metal-nitrogen complex active sites, stability and structural
changes, as consequence increase significantly the ORR ac-
tivity. These two effects depend on the temperature. Nabae
and co-workers demonstrated that FePc supported on carbon
after heat treatment at 600 °C maintain Fe-N4 coordination
and very high active sites for oxygen redox in alkaline pH
[42]. Miller et al. in its study have focused on the influence
of heat treatment (400–1000 °C) on the structure of
electrocatalysts based on FePc and Ketjen superconductive
carbon black. The active sites of Fe-N4 annealed at tempera-
ture higher than 800 °C have presented a decrease of Fe-N
coordination and electrochemical catalytic stability due to the
decomposition of FeN4 structure, while composite treated up
to 700 °C were thermally stable [43]. Young et al. have pro-
posed hybrid FePc-carbon nanoribbon catalyst as an efficient
oxygen reduction reaction by low temperature process, with
higher activity that the current state-of-the-art Pt catalyst in
alkaline ambient [44]. Zagal et al. have revisited the correla-
tions between catalytic activity and formal potentials of MN4

complexes. From the different complexes, Mn and Fe display
a 4-electron pathway during the oxygen reduction while Cr
and Co involves 2-electron pathway ORR in alkaline media
[45]. Additionally, Zuniga and co-workers have tested
pyrolysed Fe-N4 catalysts in pH 13. In this study, they have
found a direct relation between Fe(III)/Fe(II) redox transition
of the catalysts with the onset potential, indicating that the
electrogeneration of Fe(II) from Fe(III)OH− controls the catal-
ysis during the ORR [46].

Pyrolysis treatment, however, has been widely used as a step
in the synthesis process of electrocatalysts based on Fe-N4

macrocycle as a self-support, avoiding the use of carbon
support. Thanks to the composition of these macrocycles
(carbon, nitrogen, and transition metal), it is possible to
obtain a catalyst containing high active ensembles site den-
sity [47, 48]. In this context, Osmieri and co-workers have
demonstrated in their study of different pyrolysed M (II)-
phthalocyanines (M as Fe, Co, Cy, and Zn) as catalysts for
ORR, where Fe was the metal led to the highest catalytic
activity with selectivity toward a complete 4-electron re-
duction to water [49]. Monteverde Videla et al. have stud-
ied Fe-N-C catalyst obtained through hard template meth-
od from FePc. The performance of the catalyst in a direct
methanol fuel cell (DMFC) has pointed that Fe-N-C cata-
lyst displays high methanol tolerance [50]. In succession,
Osmieri et al. have demonstrated that Fe-N4 catalyst is
tolerant to ethanol with a promising stability in an alkaline
direct ethanol fuel cell (DEFC) device [51].

Single and multi-wall carbon nanotubes (SWCNTs and
MWCNTs) offer properties such as large surface area of high-
ly crystallized graphite surface area, in comparison with re-
duced graphene and carbon black, easily to form a free-
standing film and fast oxygen diffusion. These properties are
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excellent for FePc deposition, allowing a high stability and
control of the catalyst microstructure. Meanwhile, its use has
been reduced for FePc-based electrocatalysts, due to the fail-
ure to coat Fe-macrocycle on MCWNTs. Based to this point,
Yan et al. have shown in their investigation that the oxidation
of N-dopedMWCTNs have a benefit effect to load more FePc
molecules on its surface [52]. Yang et al. have presented a
pristine multi-wall carbon nanotube, with highly crystallized
graphitic surface, to support iron(II) phthalocyanine hybrid
composite with a well-defined nanostructure for an efficient
redox of the oxygen in alkaline electrolyte [53]. Dong et al.
synthetized FePc coated on single-walled carbon nanotube
composite with high properties for the oxygen reduction.
The catalyst exhibited an excellent activity than commercial
Pt/C and anti-crossover effect for methanol oxidation [54].
Amino-functionalized multi-walled carbon nanotubes
(MWCNT-NH2) modified with FePc display of a great surface
area for the reduction of molecular oxygen in basic media,
according to Cañete et al. [55]. Years later, in alkaline media,
the electrochemical performance of Fe-N4-macrocycle
adsorbed on the edge plane of carbon nanotubes has the same
order of magnitude of commercial Pt/C catalysts. Venegas
et al. explained that both catalysts own one order of higher
surface concentrations of Fe-N4 complex per geometric area
implicate in its possible adsorption contributing for an increas-
ing overpotential ORR [56].

As above mentioned, many studies were concentrated on
the catalytic activity of Fe-N4 complex because its crucial role
for the ORR from the iron redox couple. However, FePc plays
a pivotal role also with respect to the nitrogen content as a
precursor source. In fact, by using MN4 nitrogen content and
Fe-Nx species can be easily controlled and reach high levels
[57, 58]. Nitrogen-dopant in various structural configurations
(e.g., pyrrolic, pyridinic, graphitic) can improve the conduc-
tivity of hybrid carbon, determining its electronic features, as
an electron on the valence shell [59]. Yang et al. have studied
the effect of N-doped platelet ordered mesoporous carbon
using FePc as a single nitrogen precursor, indicating that the
role of Fe in the structure of N-doped catalysts cannot be
responsible only for enhancing the ORR, but also for creating
more active sites and increase the electrical conductivity [60].
So that, Fe-N-C catalysts can be developed via thermal treat-
ment of FePc supported on a variety of carbon materials. In
agreement, Zhang et al. selected FePc/Pc macrocycles with
graphitized carbon black as carbon support, to demonstrate a
superior ORR via the delocalized π-coordination environment
in FePc. In addition, the phthalocyanine of the composite was
fundamental to tune the coordination of Fe during pyrolysis,
even as Fe dispersion in porous carbon support [61].

Pyrolyzed FePc-coated activated carbon (AC) was pre-
pared by Liu et al. By using evaporation-induced method
self-assembly, the Fe-N-AC catalyst exhibits enhanced oxy-
gen redox catalytic activity, owing the high content of nitrogen

and iron in its composition, beyond high surface area, poros-
ity, and crystalline structure [62]. Since then, other investiga-
tions have been demonstrating that nitrogen and iron content
and species are highly influent on the base of catalytic activity
of Fe-N4 on the modified carbon materials as ORR catalysts
[63, 64]. Zhang and co-authors have shown a high-
performance 3D hierarchical Fe-N-C catalyst composed via
a combination of structured porous carbon framework with
unsubstituted Pc/FePc complexes. The authors attributed high
activity of this material to the well-defined dispersion of Fe on
the 3D carbon support [65].

Ao et al. have demonstrated that Fe/N-functionalized three-
dimensional (3D) porous carbon networks as a high per-
formed and high durability catalyst toward oxygen reduction
in alkaline media. Their pyrolysed electrocatalysts have
shown an activity comparable and superior to most Fe-N-C
catalysts reported to date [66]. Recent studies have elucidated
the correlations between structure-property and the nature of
active sites of catalysts toward oxygen redox by using con-
trolled catalyst synthesis for developing advanced single-
metal-site catalysts. In this way, Chen et al. have studied ex-
tensively for the synthesis of 3D electrocatalysts based on Fe-
N-C obtained by zeolitic imidazolate frameworks (ZIFs), as a
subfamily of metal-organic frameworks (MOFs). In this study,
they proposed a material with high surface area, porosity, and
single-metal-site catalyst [67], while Zhang and co-workers
provide a recent and innovative 3D frame network from the
unique and well-defined MOF precursors. These advanced
catalysts can avoid the degradation phenomena of metal due
to 3D structure isolate and anchor single metal atom effective-
ly into a hydrocarbon complex [68]. As mentioned by Huang
et al., the uses of high-temperature pyrolysis ofMOFs produce
not only conductive carbon but also contribute to agglomera-
tions of the N-doped porous carbon matrix. In this view, they
have proposed aMOFs-based route by using in situ “two-step’
annealing to fabricate Fe-N-C with numerous active sites [69].

In a recent study, Jiao et al. have demonstrated Fe-N4-MOF
electrocatalysts developed via single atom catalysts (SACs)
multiscale control, with excellent performance in terms of fast
oxygen diffusion and electron transfer in alkaline media [70].
Wang and co-authors developed a FePc encapsulated into the
zeolitic imidazolate frameworks (ZIFs) catalyst with high ac-
tive sites for the ORR [71]. A robust triple-component
electrocatalyst composed by FePc and platinum nanoparticles
(Pt NPs) onto reduced graphene oxide was fabricated to eval-
uation of oxygen reduction in potassium hydroxide (KOH)
aqueous electrolyte [72]. Reio et al. in their recent research
revealed the applicability of new catalysts based on metal-N4

macrocyclic compounds supported on an innovative carbide-
derivate carbons (CDCs) as a support for metal-N4 macrocy-
clic compounds. Moreover, CDCs are a porous carbon with
very high and tenable surface area, establishing a key role for
electrochemical performance [73]. Theoretical studies on
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FePc systems have been performed to study their catalytic
activities by Seo et al. and Mussell et al. [74, 75]. Chemical
tuning of FePc systems on carbon nanotubes to afford addi-
tional stability was done by the Cho group [76]. De la Torre
et al. have demonstrated insight into interaction and control
over the spin state of Fe single atom in the FePc complex by its
positioning on N-doped carbon support [77]. Furthermore,
there are other groups who have studied the catalytic perfor-
mance of these systems in oxygen reduction reactions [78,
79]. Different factors are known to affect the catalytic activity
of such materials ranging from nature and morphology of the
carbon support, interaction between the active molecule and
support and the nature of active sites.

Experimental section

Synthesis

Synthesis of the catalysts Fe-BP(N) and Fe-CNT(N) was done
as described in our previous article [80]. Particularly, initially,
the carbon support based on multi-walled carbon nanotubes
(CNTs, Sigma Aldrich), and black pearls 2000 (BP, Cabot
Corporation) passed through a nitrogen doping procedure
consisting in two consecutive treatment. The first step was
based on a reflux treatment with concentrated HNO3

(65 wt%) at a temperature of 90 °C for a total time of 16 h.
After this treatment, the material passed through fine filtration
and washing procedure for neutralizing the pH. The obtained
powder was then dried (70 °C overnight) and manually
ground with a mortar and a pestle. The second step of nitrogen
doping procedure consisted into a heat treatment at controlled
temperature of 400 °C (5 °C min−1 heating ramp) for an
amount of time equal to 4 h. The obtained CNT(N) and
BP(N) had a BET surface area of 359 and 1317 m2 g−1, re-
spectively. After the procedure of nitrogen doping, iron(II)
phthalocyanine (FePc), purchased from Sigma-Aldrich, was
deposited onto the carbon support. Equal quantity (0.5 g) of
FePc and CNT(N) or BP(N) were dispersed within 30 mL of
methanol used as solvent. The mixture was subject to stirring
for 30 min into a water bath keep at constant temperature of
70 °C in order to allow methanol evaporation. After this op-
eration, the powder was fully dried at 70 °C for 3 h. The
obtained powders were named as Fe-CNT(N) and Fe-BP(N)
depending from the carbon support utilized. The BET surface
area of Fe-CNT(N) and Fe-BP(N) are observed to be 112 and
115 m2 g−1, respectively.

Characterization

The catalyst surface morphology was investigated using scan-
ning electron microscopy (SEM) and transmission electron
microscopy (TEM). SEM images were takes through Hitachi

S-800 instrument at different magnification. Transmission
electron microscopy (TEM) imaging was carried out on a
JEOL 2010 instrument on a copper grid. The XPS spectra
were measured and described in a previous work [80].

Electrochemical measurements

The catalyst ink was prepared by mixing 5 mg of the catalyst
with 150 μL of 0.5 wt% Nafion solution (FuelCellStore,
USA) and 850 μL of DI: IPA 1:1 ratio. This mixture was then
sonicated in order to obtain a uniform dispersion. Ten micro-
liters of the ink was drop cast on the glass carbon disk of the
working electrode (3 times). The loading obtained for each
catalyst was 0.6 mg cm−2. The electrolyte used was either
N2- or O2-saturated 0.1 M KOH. The reference electrode used
was Hg/HgO calibrated against RHE. Cyclic voltammograms
were recorded from 0 to 1.0 V vs. RHE at a scan rate of
5 mVs−1. The double-layer capacitance was calculated by in-
tegrating the voltammetric double-layer (CV in N2-saturated
electrolyte) over a one-volt-wide potential range [81, 82].
ORR activity was evaluated by linear sweep voltammetry
from 1.0 to 0 V vs. RHE, using 5 mVs−1 potential scan rate.
The electrode rotation rate was 1600 rpm. The ORR kinetic
current density (Jk) was determined from the Koutecky-
Levich equation at 0.9 V, removing background current and
normalizing to the electrode geometric area [83]. The RRDE
setup is used to measure the current density produced by the
disk (Jdisk) but also the current density of the ring (Jring) to
quantify the intermediate (HO2

−) produced during the ORR.
N is the collection efficiency (0.37). The percentage peroxide
generated was calculated from the following Eq. (1):

%H2O2 ¼
200� I ring

N

Idisk þ I ring
N

ð1Þ

The number of electrons transferred (n) is a good indicator
of ORR reaction mechanism. It is calculated by Eq. (2):

n ¼ 4� Idisk

Idisk þ I ring
N

ð2Þ

Results and discussion

The morphology of these FePc-based catalysts was observed
by electron microscopy techniques (Fig. 1). Scanning electron
microscopy (SEM) image (Fig. 1a) of Fe-BP(N) catalyst dem-
onstrates the micrometer sized agglomerations which is fur-
ther explored by the transmission electron microscopy (TEM)
image (Fig. 1c) at high resolution, that confirms the presence
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of spherical carbon nanoparticles (in the size range of 10–
50 nm). The presence of dark areas on the TEM image indi-
cates the presence of iron component of the catalyst. The
multi-walled carbon nanotube based catalyst Fe-CNT(N) ex-
hibits a different morphology as compared to the black pearls
based catalyst. The lower resolution SEM image of Fe-
CNT(N) (Fig. 1b) demonstrates the presence of nanotubes in
larger crystallites. The higher resolution TEM image (Fig. 1d)
reveals the structure and agglomeration of the carbon nano-
tube support in the Fe-CNT(N) catalyst. Again, the darker
region represents presence of iron containing species. As men-
tioned before, BET surface area of Fe-BP(N) and Fe-CNT(N)
are observed to be ~ 115 and 112m2g−1 respectively. Since the
surface area of these catalysts is similar, the differences in
catalytic activity cannot be attributed to this factor. The X-
ray diffraction (XRD) pattern of the samples shows the char-
acteristic carbon peaks (Fig. 2a). The Fe-CNT(N) and Fe-
BP(N), both exhibit a prominent 002 graphitic peak at 2θ

value of 26.2. The Fe-CNT(N) and Fe-BP(N), a 101 peak at
2θ value of ~ 43.4 and 43.7, respectively. In addition to the
carbon content, additional peaks are exhibited at 2θ = 18.2,
23.8, 26.2, and 30.4 in Fe-BP(N) and 2θ = 18.2 in Fe-
CNT(N). These peaks result from the metallic content of these
catalysts.

Raman spectroscopic analysis of the morphology (Fig. 2b)
reveals interesting details of the surface properties of these
catalysts. The characteristic carbon peaks D and G appear at
1353 cm−1 and 1593 cm−1 respectively along with a 2D peak
at 2686 cm−1 for both the catalysts [80]. The ID:IG ratio (ratio
of peak intensity), which reflects on the defect density of these
materials, is different. The ID:IG ratio for Fe-BP(N) is ~ 1.04
indicating a higher defect concentration as compared to Fe-
CNT(N), which has a value of ~ 0.73. Since the amount of
active catalyst is similar in both cases, it can be safely assumed
that this difference arises due to structure of the support.
Clearly, the black pearl carbon support possesses higher

Fig. 1 SEM images showing
morphology of a Fe-BP(N) and b
Fe-CNT(N); TEM images
showing the nanostructure of c
Fe-BP(N) and d Fe-CNT(N)

Wavenumber (cm-1) 

In
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.u

.)
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Fe-BP(N) 
Fe-CNT(N) 

Fig. 2 a XRD and b Raman
spectroscopy for the catalysts
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defects because of the decreased graphitization and spherical
morphology. The carbon nanotubes on the other hand are
highly conducting with less number of defect sites. The de-
fects in Fe-BP(N) can contribute to the catalytic activity as
does the better electron conductivity of carbon nanotubes in
Fe-CNT(N) [84, 85]. XPS results are discussed in detail in our
previous article and correlated to oxygen reduction in neutral
medium. It is clearly observed that the N content in Fe-BP(N)
and Fe-CNT(N) is 5.8 at% and 10.0 at% and the carbon con-
tent ranges from 79 to 82 at% [80]. It has been previously
established that pyridinic nitrogen and nitrogen coordinated
to Fe sites contribute most efficiently to the 4-electron reduc-
tion of oxygen [16]. The pyridinic N content in Fe-BP(N) and
Fe-CNT(N) is 62.2 and 47.4 at%, respectively [80].
Furthermore, the N-Fe content of Fe-BP(N) and Fe-CNT(N)
is 26.7 and 28.3 at%, respectively.

The remarkably high content of pyridinic and N-Fe content
of the catalysts Fe-BP(N) and Fe-CNT(N) contributes to their
high oxygen reduction catalytic activity in alkaline electrolyte.
The catalysts also show a high percentage of Fe content of
which the Fe-N active sites form a major part. This overall

surface chemistry significantly enhances the ORR catalysis of
the materials under study.

Figure 3 shows cyclic voltammograms of Fe-BP(N) and Fe-
CNT(N) (Fig. 3a and c) together with those of bare BP(N) (Fig.
3b and d) in either O2- and N2-saturated alkaline electrolyte
(0.1 M KOH). While no faradic peaks were detected under N2

purging for both BP(N) and CNT(N), the weak and broad redox
peaks just detectable at 0.8 V for Fe-BP(N) and Fe-CNT(N) are
associated with the Fe(III)/Fe(II) redox transition of the metal
macrocycle [84]. When the electrolyte is saturated with oxygen,
all samples showed a well-defined reduction peak, indicating the
oxygen reduction catalysis of both Fe-based catalysts and bare
carbon supports. In particular, the deposition of FePc on carbon
supports results in a positive shift of the oxygen reduction poten-
tial and in an increase of peak current density with respect to bare
BP(N) and CNT(N).

From the data collected, it can be seen that iron phthalocyanine
alone is the catalytically active species while the role of the sup-
ports is for transporting electrons and providing larger surface area
for deposition of catalytic sites. The electrochemical surface area
(ECSA) was obtained by integrating CV curves (N2 atmosphere)

Fig. 3 Cyclic voltammograms for Fe-BP(N) (a), BP(N) (b), Fe-CNT(N) (c), and CNT(N) (d) in N2- (dashed line) and O2-saturated (solid line) 0.1 M
KOH (scan rate 5 mVs−1)
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in Fig. 3, resulting to be 1055 m2g−1 (BP(N)), 57 m2g−1 Fe-
BP(N), 553 m2g−1 (CNT(N)), 45 m2g−1 for Fe-CNT(N). As ex-
pected, those values are lower than BET surface area values.

To get deeper insights on ORR activity and mechanism at
the surface of Fe-based catalysts, RRDE experiments were
carried out. Linear sweep voltammetry (Fig. 4a, both cathodic
and anodic trace) shows the oxygen reduction catalysis of Fe-
CNT(N) and Fe-BP(N) in O2-saturated alkaline electrolyte.
The onset potential (~ 0.95 V vs RHE) and the half-wave
potential (~ 0.84 V vs RHE) are similar for both catalysts
because of the similar iron phthalocyanine based active sites.
Nevertheless, the impact of different substrates is appreciable
in terms of diffusion limited current density (Jd) and kinetic
current density (Jk); in fact, Jd was 6.12 mAcm−2 and
5 .37 mAcm− 2 , whi l e Jk was 1.26 mAcm− 2 and
0.835 mAcm−2 for Fe-BP(N) and Fe-CNT(N), respectively.
LSVs were also done in N2-saturated electrolyte showing
practically no activity. LSVs were also run for BP(N) and
CNT(N) and presented in Figure S1. These curves showed
much lower electrocatalytic activity toward ORR compared
to the catalysts supporting Fe-Pc.

The peroxide percentage calculated from the ring current
observed in the RRDEmeasurements is found to be in the low
range of 2–3% for both the catalysts (Fig. 4b). Oxygen reduc-
tion process is known to follow either 2-electron kinetics that

generates hydrogen peroxide as the product or the 4-electron
process, which generates water as the product. The latter is the
preferred mechanism because it yields more current per mol-
ecule of hydrogen making it more efficient and also due to the
fact that peroxide is a catalytic poisons which affects the cat-
alyst durability. The number of electrons is calculated using
the disk and ring currents in the RRDE measurements (Fig.
4c). It is clear that the ORR process on both the catalysts is
close to the ideal 4-electron transfer process, making them
efficient catalysts.

Discussion and comparison with existing
literature

As previously argued, two Fe-N-C-based electrocatalysts ob-
tained from iron(II) phthalocyanine (FePc) supported onto
two different carbonaceous supports: (i) carbon black pearls
(BP) with spherical morphology and high structural defects
and (ii) carbon nanotubes (CTN) with channel morphology
and high conductivity. The non-pyrolysed catalysts have
shown promising catalytic activity toward oxygen reaction
reduction in alkaline media comparable with FePc-based cat-
alysts existing in literature.
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The Fe-macrocycle on carbon black pearls and carbon
nanotubes exhibits very similar performance in terms of onset
potential, half-wave potential, limiting current, and electrons
transfer pathway. This similar electrochemical behavior can be
attributed to the use of FePc on the surface of carbon support.
That is, the role of carbon support consists specially on the
improvement of active sites, in the keep stick open the Fe-
macrocycle and avoiding the aggregation phenomena typical
of FePc without support [79, 83, 86, 87]. In addition, other
characteristic of carbon support to facilitate the electrochemi-
cal performance of composites is the presence of N-
functionalities and high structural defects and conductivity,
in terms of charge dispersion, stability through the π-π inter-
action, and increasing overpotential ORR [34, 56, 65, 66].

Several studies were discussed previously considering Fe-
based electrocatalysts with different architecture to oxygen re-
duction in alkaline media. Zhang et al. used FePc dispersed on
3D hierarchically porous carbon. These pyrolytic composites
have a content of pyridinic nitrogen 87% and aE1/2 of 0.89V vs
RHE, while our Fe-BP(N) and Fe-CNT(N) have a 62.2% and
47.4% of pyridinic N content with a correspondent E1/2 of
0.84 V vs RHE. The comparison between the Fe-N-C catalysts
indicate a similar potential for all catalysts with a range of
0.05 V and the performance here reported are slightly lower,
this mainly due to the higher content of pyridinic N equivalent
to 40–25% that influencing to create more active sites and en-
hance ORR [65]. As extensively studied and discussed, N-
dopants modify the surface chemistry and local electronic prop-
erties enhancing the ORR rate. So that, N-doped carbon enable
the synergism with Fe-macrocycle active sites toward higher
ORR performance [87, 88]. In fact, high temperature pyrolyzed
FePc/N-doped graphene contained a pyridinic N content of
88%, higher than our materials but with electrochemical perfor-
mance very close to 0.86 V vs RHE. The high porous defect of
Fe-BP(N) and Fe-CNT(N) high electrical conductivity, proba-
bly contributed for the similar ORR performance of catalyst.
Furthermore, the N-rich coordination structure in FePc with
carbon facilitates the tuning coordination environment of Fe
atoms during pyrolysis. In this case, our catalysts take advance
due to fact that non-pyrolysed method was used [56]. Recent
workers used Fe-porphyrin over carbon Vulcan after pyrolysis
and their pyridinic N content is 42% with a E1/2 of 0.71 V vs.
RHE. The performance here reported are slightly higher than
the catalysts presented in that work [46, 73].

Transition metal oxide with FePc on graphene have exhib-
ited E1/2 of 0.88, 0.86, 0.85 V vs. RHE for FeOx/FePc, CoOx/
FePc, and NiOx/FePc respectively. It is notable that the half-
wave potential of the TMO/FePc-graphene composites is
higher when FeOx in present compared to the others TMO.
However, the enhancing oxygen reduction activity very sim-
ilar to the samples can be attributed to the synergistic effect of
the ultrafine TMO assist the ORR on FePc-graphene and to
nanostructured carbon substrates CNT(N) and BP(N) [35].

Raman spectroscopy gave information on the structure and
topologies of Fe-BP(N) and Fe-CNT(N). Results show both D
and G bands at 1353 cm−1 and 1593 cm−1 respectively. As
previously reported, the D band is associated with structural
defects and G the G band corresponds to the E2g vibration
mode Sp2 carbon domains. ID:IG ratio is proportional to the
degree of defect sites in the carbon structure. Thereby, the
ID:IG relative intensity ratio of both materials is 1.04 and
0.73 respectively. As shown in literature, Qiu et al. synthe-
sized a FePc-graphene nanospheres with an ID:IG ratio of
0.88 and corresponding of 0.86 V vs RHE. Li and co-works
developed a FePc macrocycle onto three different carbon sup-
ports: graphene oxide, mesoporous carbon vesicle, and or-
dered mesoporous carbon both display two eminent peaks at
1355, 1592 cm−1, 1343 and 1590 cm−1 and 1345, 1598 cm−1

of D and G band respectively, with an ID:IG relative intensity
ratio of 1.44, 1.74, and 1.93 with a E1/2 of 0.83, 0.86, and
0.89 V vs RHE. Here, results suggest that highest intensity
ratio is correlated to the presence of more edge plane-like
defective sites of the material and may provide more anchor-
ing sites for ORR. In this view, Raman results of composites
confirm an interaction between FePc and carbon support orig-
inating from the G band of carbon materials.

A shift of G band of Fe-composite with respect to carbon
support indicates the activity of nitrogen active sites in the
interaction improvement of Fe-macrocycle/support via π-π
stacking interaction [41, 84]. The previous FePc anchored in
different carbon materials has very similar results in terms of
electrochemical, even when the structural defects are higher.
Functionalized multi-walled carbon nanotubes with FePc
have a half-wave potential the same to our catalyst [52]. The
above discussion comparing different FePc-based carbon ma-
terials clearly shown that in alkaline media, these catalysts
have a very similar electrochemical performance even when
the chemical and structural morphology were different. In
addition, all of results are in accordance when our composite
possesses a superior ORR activity to commercial Pt/C catalyst
[52, 56, 65]. Particularly, Fe-BP(N) and Fe-CNT(N) may ex-
hibit competitive or even better oxygen reduction activity in
basic pH with positive onset potential, half-wave potential in
comparison with previously reported FePc-based catalysts.

Conclusion

A recent literature overview on Fe-phthalocyanine supported
on carbonaceous support is presented. Particularly, in this
work, we describe the non-pyrolytic synthesis of two high-
performance supported oxygen reduction catalysts using dif-
ferent carbon-based supports, carbon nanotubes, and black
pearls (spherical carbon nanoparticles). The active catalytic
material on both these supports is iron(II) phthalocyanine.
Catalytic properties for both catalysts are quite similar because
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of the similarity in surface chemistry and surface area of the
materials. The cause for some differences in activity is the
morphology and structure of the support materials that has
been explored in this article. The Fe-BP(N) exhibits higher
defect density in the structure which is a contributing factor
toward enhanced oxygen reduction. However, the higher con-
ductivity of carbon nanotube support in Fe-CNT(N) enhances
electron transport and generates a slightly higher half-wave
potential for ORR in alkaline electrolyte.
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