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The idea that primordial black holes (PBHs) can comprise most of the dark matter of the Universe has
recently reacquired a lot of momentum. Observational constraints, however, rule out this possibility for
most of the PBH masses, with a notable exception around 10−12 M⊙. These light PBHs may be originated
when a sizable comoving curvature perturbation generated during inflation reenters the horizon during the
radiation phase. During such a stage, it is unavoidable that gravitational waves (GWs) are generated. Since
their source is quadratic in the curvature perturbations, these GWs are generated fully non-Gaussian. Their
frequency today is about a millihertz, which is exactly the range where the LISA mission has the maximum
of its sensitivity. This is certainly an impressive coincidence. We show that this scenario of PBHs as dark
matter can be tested by LISA by measuring the GW two-point correlator. On the other hand, we show that
the short observation time (as compared to the age of the Universe) and propagation effects of the GWs
across the perturbed Universe from the production point to the LISA detector suppress the bispectrum to an
unobservable level. This suppression is completely general and not specific to our model.
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I. INTRODUCTION

The possible presence and composition of dark matter
(DM) in our Universe constitutes one of the open questions
in physics [1]. The first direct observation of gravitational
waves (GWs) generated by the merging of two ∼30 M⊙
black holes [2] has increased the attention to the possibility
that all (or a significant fraction of) the dark matter is com-
posed by primordial black holes (PBHs) (see Refs. [3–8]
for recent reviews). Inflation and a mechanism to enhance
the comoving curvature perturbation ζ [9–11] at scales
smaller with respect to the cosmic microwave background
(CMB) ones are the only ingredients needed by the simplest
models describing the PBH formation without the request
of any physics beyond the Standard Model. In fact, the
perturbations themselves of the Standard Model Higgs may
be responsible for the growing of the comoving curvature
perturbations during inflation [12].
Perturbations generated during inflation are transferred

to radiation through the reheating process after inflation.
After they reenter the horizon, a region collapses to a PBH
if the density contrast (during the radiation era)

Δðx⃗Þ ¼ 4

9a2H2
∇2ζðx⃗Þ ð1:1Þ

is larger than the critical value Δc, which depends on the
shape of the power spectrum [13]. The temperature at
which the collapse takes place is

TM ≃ 10−1
�
106.75
g�

�
1=4
�
M⊙

M

�
1=2

GeV; ð1:2Þ

where we have normalized g� to the effective number of the
Standard Model degrees of freedom (d.o.f.). We define the
power spectrum of the comoving curvature perturbation as

hζðk⃗1Þζðk⃗2Þi0 ¼
2π2

k31
Pζðk1Þ; ð1:3Þ

where we used the prime to indicate the rescaled two-point
function without the ð2πÞ3 and the Dirac delta for the
momentum conservation.
It is useful to define the variance of the density

contrast as

σ2ΔðMÞ ¼
Z∞
0

d ln kW2ðk; RHÞPΔðkÞ; ð1:4Þ
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where we inserted a Gaussian window function Wðk; RHÞ
to smooth out the density contrast on scales given by the
comoving horizon RH ∼ 1=aH and the density contrast
power spectrum

PΔðkÞ ¼
�

4k2

9a2H2

�
2

PζðkÞ: ð1:5Þ

The mass fraction βM indicating the portion of energy
density of the Universe collapsed into PBHs at the time of
formation is

βM ¼
Z∞
Δc

dΔffiffiffiffiffiffi
2π

p
σΔ

e−Δ
2=2σ2Δ ≃

σΔ
Δc

ffiffiffiffiffiffi
2π

p e−Δ
2
c=2σ2Δ ; ð1:6Þ

under the assumption of a Gaussian probability distribu-
tion. For the non-Gaussian extension, see [14]. The present
abundance of DM in the form of PBHs per logarithmic
mass interval d lnM is given by

fPBHðMÞ≡ 1

ρDM

dρPBH
d lnM

≃
�

βM

6 × 10−9

��
γ

0.2

�
1=2
�
106.75
g�

�
1=4
�
M⊙

M

�
1=2

;

ð1:7Þ
where γ < 1 is a parameter introduced to take into account
the efficiency of the collapse and, for the masses of interest,
the number of relativistic d.o.f. g� can be taken to be the
Standard Model value 106.75.
A peculiar feature of such models is that, after being

generated during the last stages of inflation, the sizable
curvature perturbations unavoidably behave as a (second-
order) source [15–18] of primordial GWs at horizon reentry
[19]. One can relate the peak frequency of such GWs, close
to the characteristic frequency of the corresponding curva-
ture perturbations which collapse to form PBHs, to its mass
M by using entropy conservation:

M ≃ 33γ

�
10−9 Hz

f

�
2

M⊙: ð1:8Þ

Choosing as frequency the one at which the Laser
Interferometer Space Antenna (LISA) project [20] has its
maximum sensitivity, i.e., fLISA ≃ 3.4 mHz, Eq. (1.8) gives
a mass of M ≃ 10−12 M⊙ (taking γ ≃ 0.2). Therefore, as
also suggested in Ref. [21], LISA measurements can
provide useful information on the PBH dark matter of
such small masses.
As shown in Fig. 1, the fact that the current observational

constraints on the PBH abundances of such masses are
missing [22], permitting fPBH ≃ 1, is a serendipity. This is
possible due to the fact that the Subaru Hyper Suprime-
Cam (HSC) microlensing [23] constraint needs to be cut
around the value 10−11 M⊙ under which the geometric
optics approximation is not valid for radiation in the optical
wavelength [22,24]. Another constraint analyzed in the

literature comes from the presence of neutron stars in
globular clusters [25], but we do not include it because it is
based on controversial assumptions about the dark matter
density in these systems. We collect in Appendix A a more
detailed discussion of the issues related to these observa-
tional constraints.1

It is certainly an exciting coincidence that the frequency
range at which the LISA observatory has its maximum sensi-
tivity corresponds to a region of the mass spectrumwhere the
totality of dark matter composed of PBHs is allowed.
In this paper, we demonstrate that, if dark matter is

composed by PBHs of masses around 10−12 M⊙, then

FIG. 1. Overview on the present experimental constraints on
the abundance of PBH for a monochromatic spectrum (from
Ref. [33] and references therein): in orange, constraints from
the CMB; in green, dynamical constraints from white dwarves
and ultrafaint dwarf galaxies; in blue, micro- and millilensing
observations from Eros, Kepler, and Subaru HSC; in yellow, the
observations of extragalactic γ-ray background. Superimposed
can be found the PBH abundances as a function of the mass
obtained for both power spectra in Eqs. (2.14) and (2.16), where
we have defined k⋆ ¼ 2πfLISA. The total abundance is obtained
by integrating over the masses, and the parameters have been
chosen to get a PBH abundance equal to the one of dark matter,
respectively As ¼ 0.033, Aζ ¼ 0.044, and σζ ¼ 0.5.

1We briefly comment on the high-mass portion of Fig. 1. The
ultrafaint dwarf (UFD) galaxy constraint arises from the fact that
PBHs of this mass would cause the dissolution of star clusters
observed in UFDs such as Eridanus II [26]; this constraint is
strongly weakened in the presence of an intermediate-mass black
hole, providing a binding energy that stabilizes the cluster
[26,27]. We thank Juan García-Bellido for discussions on this
issue. Second, we do not show in Fig. 1 the lensing bounds
related to the measured luminosities of Supernovæ Ia derived in
Refs. [28,29], which constrain the abundance of PBHs above
1 M⊙. We are not showing also the stronger bounds from CMB
arising from disk accretion [30]. We also omitted the constraints
coming from Lyman-α forest observations [31], which overlap
with the ones from UFD. Similarly, in the low-mass region, we do
not show the constraints from Ref. [32] related to the production
of cosmic rays from evaporating PBHs, given that they overlap
with the constraints related to γ rays produced by the PBH
evaporation.
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LISA will be able to measure the power spectrum of the
GWs necessarily generated by the production mechanism
of PBHs. However, even though the GWs are non-Gaussian
in nature, being sourced at second order, their non-
Gaussianity may not be measured by an experiment like
LISA. The reason lies on the fact that the signal is a
superposition of waves coming with momenta of different
magnitudes and from all possible directions. Because of the
relatively small observation time (as compared to the age of
the Universe), measurements at LISA cannot resolve modes
of different momenta to a level of accuracy needed to
preserve coherency in the bispectrum. Moreover, even if we
could construct a large array of LISA-like detectors, to
collect observations over a cosmological time, GWs com-
ing from various directions propagate through different
long wavelength density perturbations. This creates differ-
ent time delays along different directions, thus making the
initially correlated phases of the GWs fully uncorrelated.
As we will show, this wipes out the bispectrum. It can also
be seen as the central theorem in action once the ensemble
averaging over the various directions is performed.
Unfortunately, this effect seems to be general and not
peculiar of our setup and invalidates some results about the
measurement of the tensor bispectrum through interferom-
eters which appeared recently in the literature.
The reader should also be aware of the fact that the PBH

abundance is exponentially sensitive to the amplitude of
the variance. This means that a small decrease of σ2Δ (and
therefore the amplitude of the power spectrum of the
comoving curvature perturbation) may reduce significantly
the abundance. This, to some extent, plays in our favor, as it
implies that, even if fPBH ≪ 1, the corresponding GWs
might be anyway tested by LISA.
The paper is organized as follows. In Sec. II, we describe

the calculation leading to the GW power spectrum for two
different shapes of the comoving curvature perturbations;
Sec. III is devoted to the calculation of the GW bispectrum.
Section IV contains the details of the effects of the short
observation time and of the propagation. Section V con-
tains our conclusions. The paper contains as well four
Appendixes where some technicalities are provided,
including an analysis of the LISA response functions for
the bispectrum.
A short version of this paper presenting some of the main

results can be found in Ref. [34].

II. THE POWER SPECTRUM OF
GRAVITATIONAL WAVES

The equation of motion for the GWs is found by
expanding the tensor components of the Einstein equations
up to second order in perturbations2:

h00ij þ 2Hh0ij −∇2hij ¼ −4T ij
lmSlm; ð2:1Þ

where we defined the prime to denote the derivative with
respect to conformal time η, dη ¼ dt=a, H ¼ a0=a as the
conformal Hubble parameter as a function of the scale
factor aðηÞ and the source term Slm which, in a radiation-
dominated (RD) universe, takes the form [15]

Sij ¼ 4Ψ∂i∂jΨþ 2∂iΨ∂jΨ − ∂i

�
Ψ0

H
þ Ψ

�
∂j

�
Ψ0

H
þ Ψ

�
:

ð2:2Þ

We note that the mechanism of generation of GWs takes
place when the relevant modes reenter the Hubble horizon;
in the case of interest, this happens deep into the radiation-
dominated epoch. It is also evident that the source is
intrinsically second order in the scalar perturbation Ψ.
For this reason, the GWs generated are expected to feature
an intrinsic non-Gaussian nature. Additionally, since the
source contains two spatial derivatives, the resulting bis-
pectrum in momentum space is expected to peak in the
equilateral configuration. The tensor T ij

lm contracted with
the source term in Eq. (2.1) acts as a projector selecting the
transverse and traceless components. Its definition in
Fourier space takes the form

T̃ ij
lmðk⃗Þ ¼ eLijðk⃗Þ ⊗ eLlmðk⃗Þ þ eRijðk⃗Þ ⊗ eRlmðk⃗Þ; ð2:3Þ

where eλijðk⃗Þ are the polarisation tensors written in the
chiral basis (L, R).
The scalar perturbation Ψðη; k⃗Þ appearing in Eq. (2.2)

depends directly on the gauge-invariant comoving curva-
ture perturbation through the relation [36]

Ψðη; k⃗Þ ¼ 2

3
TðkηÞζðk⃗Þ; ð2:4Þ

where the transfer function TðkηÞ in the radiation-
dominated era is

TðzÞ ¼ 9

z2

�
sinðz= ffiffiffi

3
p Þ

z=
ffiffiffi
3

p − cosðz=
ffiffiffi
3

p
Þ
�
: ð2:5Þ

By defining the dimensionless variables x ¼ p=k and
y ¼ jk⃗ − p⃗j=k, the solution of the equation of motion
(2.1) can be recast in the following form:

hλ
k⃗
ðηÞ ¼ 4

9

Z
d3p
ð2πÞ3

1

k3η
eλðk⃗; p⃗Þζðp⃗Þζðk⃗ − p⃗Þ

× ½Icðx; yÞ cosðkηÞ þ Isðx; yÞ sinðkηÞ�; ð2:6Þ

where we have introduced eλðk⃗; p⃗Þ ¼ eλijðk⃗Þpipj and [37]
2We do not consider the free-streaming effect of neutrinos on

the GW amplitude [35].
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Icðx; yÞ ¼ 4

Z∞
0

dττð− sin τÞ½2TðxτÞTðyτÞ þ ðTðxτÞ

þ xτT 0ðxτÞÞðTðyτÞ þ yτT 0ðyτÞÞ�;

Isðx; yÞ ¼ 4

Z∞
0

dττðcos τÞf2TðxτÞTðyτÞ þ ½TðxτÞ

þ xτT 0ðxτÞ�½TðyτÞ þ yτT 0ðyτÞ�g: ð2:7Þ

The complete analytical expressions of Icðx; yÞ and
Isðx; yÞ can be found in Appendix D in Ref. [37] (see
also Ref. [38]). We define the power spectrum of GWs
using the same primed notation of Eq. (1.3) as

hhλ1ðη; k⃗1Þhλ2ðη; k⃗2Þi0 ≡ δλ1λ2
2π2

k31
Phðη; k1Þ: ð2:8Þ

After having computed the two-point function, in the
radiation-dominated era, we find Phðη; kÞ to be

Phðη; kÞ ¼
4

81

1

k2η2

Z Z
S
dxdy

x2

y2

�
1 −

ð1þ x2 − y2Þ2
4x2

�
2

× PζðkxÞPζðkyÞ½cos2ðkηÞI2
c þ sin2ðkηÞI2

s

þ sinð2kηÞIcIs�; ð2:9Þ

where S is the region in the ðx; yÞ plane allowed by the
triangular inequality and shown in Fig. 2 in Ref. [37]. The
power spectrum of GWs is directly connected to their
energy density [37]:

ΩGWðη; kÞ ¼
ρGWðη; kÞ
ρcrðηÞ

¼ 1

24

�
k

HðηÞ
�

2

Phðη; kÞ; ð2:10Þ

where the overline denotes an average over conformal
time η.
So far, we have assumed a radiation-dominated universe

with constant effective d.o.f. g� for the thermal radiation
energy density (giving the analytic radiation-dominated
solutions for η,H, etc.). In the Standard Model, this will be
approximately valid until some time ηf before the top
quarks start to annihilate and g� decreases. The gravita-
tional wave density scales ∝1=a4 because they are
decoupled, but the radiation density ρrðηfÞ is related to
the value today using conservation of entropy, giving

cg ≡
a4fρrðηfÞ
ρrðη0Þ

¼ g�
g0�

�
g0�S
g�S

�
4=3

≈ 0.4; ð2:11Þ

where g�S is the effective d.o.f. for entropy density and
we assume g�S ≈ g� ≈ 106.75 from the Standard Model at
time ηf. Assuming ρcðηfÞ ≈ ρrðηfÞ, we can then express
the present density of GWs as

ΩGWðη0; kÞ ¼
a4fρGWðηf; kÞ

ρrðη0Þ
Ωr;0

¼ cg
Ωr;0

24

k2

HðηfÞ2
Phðηf; kÞ; ð2:12Þ

and Ωr;0 is the present radiation energy density fraction if
the neutrinos were massless. The time average of the
oscillating terms in Eq. (2.9), together with the simplifi-
cation of the time factor coming from H2ðηfÞ ¼ 1=η2f
(valid before ηf), give the current abundance of GWs:

ΩGWðη0;kÞ¼cg
Ωr;0

72

Z1ffiffi3p

− 1ffiffi
3

p

dd
Z∞
1ffiffi
3

p

ds

�ðd2−1=3Þðs2−1=3Þ
s2−d2

�
2

×Pζ

�
k
ffiffiffi
3

p

2
ðsþdÞ

�
Pζ

�
k
ffiffiffi
3

p

2
ðs−dÞ

�
× ½I2

cðxðd;sÞ;yðd;sÞÞþI2
sðxðd;sÞ;yðd;sÞÞ�:

ð2:13Þ

In the last step, we also have redefined the integration
variables as d ¼ ðx − yÞ= ffiffiffi

3
p

and s ¼ ðxþ yÞ= ffiffiffi
3

p
.

A. The case of a Dirac-delta power spectrum

In this subsection, we make the idealized assumption that
the scalar power spectrum has support in a single point

PζðkÞ ¼ Ask⋆δðk − k⋆Þ; ð2:14Þ

which can (obviously) be understood as the Gaussian case,
discussed in the following subsection, in the limit of very
small width. This idealization has the advantage that it allows
one to obtain exact analytic results for the number of GWs
produced at second order by the scalar perturbations. In this
subsection, we compute the GW abundance, postponing the
computation of the bispectrum to the next section.
Inserting Eq. (2.14) in the expression (2.13), the two

Dirac-delta functions allow one to perform the two inte-
grals, and one obtains (see also Refs. [39,40])

ΩGWðη0; kÞ ¼
cg

15552
Ωr;0A2

s
k2

k2⋆

�
4k2⋆
k2

− 1

�
2

θð2k⋆ − kÞ

×

�
I2
c

�
k⋆
k
;
k⋆
k

�
þ I2

s

�
k⋆
k
;
k⋆
k

��
: ð2:15Þ

This result is shown as a red line in Fig. 2.

B. The case of a Gaussian power spectrum

In this section, we generalize the computation of the GW
energy density to the case of a Gaussian-like comoving
curvature power spectrum. We take the perturbation,
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enhanced with respect to the power spectrum on large CMB
scales, to be

Pg
ζðkÞ ¼ Aζ exp

�
−
ln2ð2k=3k⋆Þ

2σ2ζ

�
: ð2:16Þ

This case differs from the former due to the wider shape of
the power spectrum. From the relation (1.8), we can infer
that PBHs of mass ∼10−12 M⊙ can amount for the totality
of the dark matter if βM ∼ 6 × 10−15 (considering γ ∼ 0.2),
where we assumed k⋆RH ≃ 1 and the threshold to be
Δc ≃ 0.45. Its rigorous value is determined also by the
shape of the power spectrum [13], but, since the most
relevant parameter Aζ is not altered copiously, its impact on
GWs is rather small. The corresponding abundance of
PBHs is shown by the blue line in Fig. 1, together with the
current experimental bounds. We choose Aζ ∼ 0.044
and σζ ¼ 0.5. We stress again that a PBH of mass
∼10−12 M⊙ is associated to a scale k⋆ ∼ kLISA ¼ 2πfLISA≃
2 × 1012 Mpc−1. The present abundance of GWs is given in
Fig. 2, where we see that it falls well within the sensitivity
curves of LISA. The different spectral shape with respect to
the Dirac-delta case is due to the tails of the Gaussian power
spectrum of Eq. (2.16). At high frequencies, there is no
upper bound at 2k⋆ as in the Dirac-delta case, because the
scalar power spectrum is nonvanishing for k > k⋆. At lower
frequencies, the spectral tilt for the Dirac-delta case is
smaller than þ2, whereas for the Gaussian case one can
show that the tilt is about ≳3 by arguments similar to the
ones exposed in Ref. [37].
It is clear that, if PBHs of such masses form the totality

(or a fraction of) dark matter, LISAwill be able to measure
the GWs sourced during the PBH formation time.

III. THE PRIMORDIAL BISPECTRUM OF GWs

We already stressed the fact that, being intrinsically at
second order, the GWs are non-Gaussian; hence, their
primordial three-point correlator is not vanishing. One can
compute it following the procedure highlighted in Ref. [37].
Computing the three-point function using Eq. (2.6) gives

Bλiðk⃗iÞ ¼ hhλ1ðη1; k⃗1Þhλ2ðη2; k⃗2Þhλ3ðη3; k⃗3Þi0

¼
�
8π

9

�
3
Z

d3p1

1

k31k
3
2k

3
3η1η2η3

· e�λ1ðk⃗1; p⃗1Þe�λ2ðk⃗2; p⃗2Þe�λ3ðk⃗3; p⃗3Þ
Pζðp1Þ
p3
1

Pζðp2Þ
p3
2

Pζðp3Þ
p3
3

·

��
cosðk1η1ÞIc

�
p1

k1
;
p2

k1

�
þ sinðk1η1ÞIs

�
p1

k1
;
p2

k1

��
· ð1→ 2 and 2→ 3Þ · ð1→ 3 and 2→ 1Þ

�
; ð3:1Þ

where p⃗2 ¼ p⃗1 − k⃗1 and p⃗3 ¼ p⃗1 þ k⃗3.

A. The case of a Dirac-delta power spectrum

Inserting Eq. (2.14) into Eq. (3.1), we obtain

hhλ1ðη1; k⃗1Þhλ2ðη2; k⃗2Þhλ3ðη3; k⃗3Þi0 ¼
�
8π

9

�
3 A3

sk3⋆
k31k

3
2k

3
3η1η2η3

Z
d3p1e�λ1ðk⃗1; p⃗1Þe�λ2ðk⃗2; p⃗1 − k⃗1Þe�λ3ðk⃗3; p⃗1 þ k⃗3Þ

·
δðp1 − k⋆Þ

k3⋆
δðjp⃗1 − k⃗1j − k⋆Þ

k3⋆
δðjp⃗1 þ k⃗3j − k⋆Þ

k3⋆

Y3
i¼1

�
cosðkiηiÞIc

�
k⋆
ki

;
k⋆
ki

�

þ sinðkiηiÞIs

�
k⋆
ki

;
k⋆
ki

��
: ð3:2Þ

FIG. 2. Comparison of the estimated sensitivity for LISA [41]
[the proposed design (4 y, 2.5 Gm of length, six links) is expected
to yield a sensitivity in between the ones dubbed C1 and C2 in
Ref. [42]] with the GW abundance generated at second order by
the formation mechanism of PBHs for both power spectra in
Eqs. (2.14) and (2.16), where we used the following values for the
parameters: As ¼ 0.033, Aζ ¼ 0.044, and σζ ¼ 0.5. In the case of
the monochromatic power spectrum, a resonant effect at f ∼
2fLISA=

ffiffiffi
3

p
produces the spike; see, for example, Ref. [17]. The

slow falloff at low frequencies is an unphysical effect of assuming
such a power spectrum, while physical spectra would typically
give a white-noise (∝ f3) behavior [37], as one can observe in the
second case, but with similar overall amplitudes.
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As studied in Ref. [20], the bispectrum depends on the orientation of the three vectors k⃗i, as well as their magnitude. For
definiteness, we fix

k⃗1 ¼ k1v̂1; k⃗2 ¼ k2v̂2; k⃗3 ¼ −k⃗1 − k⃗2; ð3:3Þ

where

v̂1 ¼

0
B@

1

0

0

1
CA; v̂2 ¼

0
BBBBB@

k2
3
−k2

1
−k2

2

2k1k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
k2
3
−k2

1
−k2

2

2k1k2

�
2

r
0

1
CCCCCA: ð3:4Þ

We then use spherical coordinates for the integration vector p⃗1 ¼ p1ðcos θ; sin θ cosϕ; sin θ sinϕÞ, with cos θ≡ ξ.
We obtain (exploiting also the orthogonality of the polarization operator eλ)

hhλ1ðη1; k⃗1Þhλ2ðη2; k⃗2Þhλ3ðη3; k⃗3Þi0

¼
�
8π

9

�
3 A3

s

k6⋆k31k32k33η1η2η3

Y3
i¼1

�
cosðkiηiÞIc

�
k⋆
ki

;
k⋆
ki

�
þ sinðkiηiÞIs

�
k⋆
ki

;
k⋆
ki

��

×
Z∞
0

dp1p2
1

Z1
−1

dξ
Z2π
0

dϕe�λ1ðk⃗1; p⃗1Þe�λ2ðk⃗2; p⃗1 − k⃗1Þe�λ3ðk⃗3; p⃗1Þδðp1 − k⋆Þδ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 þ p2
1 − 2k1p1ξ

q
− k⋆

�

× δ

��
k23 þ p2

1 þ
ð−k21 þ k22 − k23Þp1ξ

k1
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk22 þ k23Þ − k21 −

ðk22 − k23Þ2
k21

s
p1

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
cosϕ

�
1=2

− k⋆
�
: ð3:5Þ

A careful study of the Dirac-delta functions shows that the integral has support at the two points

ðp⃗1ÞI;II ¼ k1

�
1

2
;
−k21 þ k22 þ k23
8A½k1; k2; k3�

;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16A2½k1; k2; k3�k2⋆ − k21k

2
2k

2
3

p
4A½k1; k2; k3�k1

�
≡ k1q⃗I;II; ð3:6Þ

where

A½k1; k2; k3�≡ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2 þ k3Þð−k1 þ k2 þ k3Þðk1 − k2 þ k3Þðk1 þ k2 − k3Þ

p
ð3:7Þ

is the area of the triangle of sides ki. The support is present provided that

A½k1; k2; k3� >
k1k2k3
4k⋆

: ð3:8Þ

With this in mind, the above integration gives (after some algebra)

Bλiðηi; k⃗iÞ ¼
A3
sθðA½r1; r2; r3� − r1r2r3

4
Þ

k21k
2
2k

2
3k

3⋆η1η2η3
1024π3

729
Dλiðk̂i; riÞ

·

�
16A2½r1; r2; r3�

r21r
2
2r

2
3

− 1

�−1=2 r41
r22r

2
3

Y3
i¼1

�
I�
i

2
eiηiki þ I i

2
e−iηiki

�
; ð3:9Þ

where we defined ri ≡ ki=k⋆ and introduced the combinations
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I i ≡ I
�
1

ri

�
≡ Ic

�
1

ri
;
1

ri

�
þ iIs

�
1

ri
;
1

ri

�
; ð3:10Þ

as well as the contractions

Dλiðk̂i; riÞ≡ e�ab;λ1ðk̂1Þe�cd;λ2ðk̂2Þe�ef;λ3ðk̂3Þf½q⃗aq⃗bðq⃗ − k̂1Þcðq⃗ − k̂1Þdq⃗eq⃗f�I þ ½same�IIg; ð3:11Þ

where we sum over the two points (3.6). The sum is performed as outlined in Appendix B. We find that the contractions
(and, therefore, the full bispectrum) are invariant under parity, namely, under the L ↔ R interchange. The resulting
expressions are rather lengthy in the general r1 ≠ r2 ≠ r3 case. In Appendix B, we provide the explicit expression for the
isosceles case r1 ¼ r2. In the equilateral case r1 ¼ r2 ¼ r3, the equal time bispectrum reads

BEQ
λi
ðη; jk⃗ij ¼ kÞ ¼ A3

s

k3⋆η3
·
1

k6
1024π3

729

θð ffiffiffi
3

p
k⋆ − kÞffiffiffiffiffiffiffiffiffiffiffiffiffi

3k2⋆
k2 − 1

q 				 1ffiffiffi
2

p I
�
k⋆
k

�				3 ·
(

365
6912

− 61
192

k2⋆
k2 þ 9

16
k4⋆
k4 −

1
4
k6⋆
k6

for RRR;LLL;

½−4þðk=k⋆Þ2�2½−12þ5ðk=k⋆Þ2�
768ðk=k⋆Þ6 ; otherwise;

ð3:12Þ

where we have averaged over the oscillations of the amplitude (as done for the power spectrum in Ref. [12]), which amounts
in the replacement

Ic

�
1

ri
;
1

ri

�
cos ðηikiÞ þ Is

�
1

ri
;
1

ri

�
sin ðηikiÞ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
I2
c

�
1

ri
;
1

ri

�
þ 1

2
I2
s

�
1

ri
;
1

ri

�s
≡ 1ffiffiffi

2
p
				I
�
k⋆
ki

�				: ð3:13Þ

In Fig. 3, we show the equilateral (left panel) and
isosceles primordial bispectrum generated by the Dirac
scalar power spectrum. We see that the bispectrum is
peaked in the equilateral configurations, at k ¼ 2k⋆=

ffiffiffi
3

p
(where the function I formally has a logarithmic diver-
gence). This is clear also by looking at the plot of the shape,
as defined in Eq. (3.14), shown in Fig. 5 (left).

B. The case of a Gaussian power spectrum

It is now interesting to analyze the bispectrum corre-
sponding to the Gaussian-like curvature perturbation power

spectrum in Eq. (2.16). First, we can compute it in the
equilateral configuration, where we set k1 ¼ k2 ¼ k3; the
result is shown in the left panel in Fig. 4. A few comments
can bemade at this point. First, we see that thewider shape of
the power spectrum compared to the Dirac-delta one results
in a lower peak in the equilateral configuration, making the
two peaks with opposite sign in the LLL configuration
comparable. Moreover, the width increase causes the bis-
pectrum to be peaked at lower values of the momenta
compared to k⋆. One has to keep in mind that, for the sake
of generality, in this case we assumed a power spectrum
centered at a different momentum, namely, ∼3k⋆=2. As we

FIG. 3. Dirac-delta power spectrum. Left: Plot of the rescaled primordial bispectrum in the equilateral configuration. The bispectrum
vanishes in the outmost right part of the plot, namely, for k >

ffiffiffi
3

p
k⋆. Right: Contour plot of the rescaled bispectrum for the isosceles

case. The bispectrum vanishes in the white region.
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shall see, this change of the pivot scale, even though it does
not introduce radical changes for what concern the PBH and
the GW abundances, can decrease the significance of the
detection at LISA. Finally, we note that the polarization
configurations LLR ¼ RRL (and their permutations) are
suppressed with respect to the LLL ¼ RRR ones.
In the right panel in Fig. 4, one can see the behavior of

the rescaled three-point function of GWs in the isosceles
configuration (k1 ¼ k2). Two important differences with
respect to the Dirac case are its more regular profile and the
absence of a cutoff present in the former case due to the
Heaviside θ function.

C. The shape of the primordial bispectrum

We may define the shape for the bispectrum as

Sλ1λ2λ3h ðk⃗1; k⃗2; k⃗3Þ ¼ k21k
2
2k

2
3

hhλ1ðη; k⃗1Þhλ2ðη; k⃗2Þhλ3ðη; k⃗3Þi0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Phðη; k1ÞPhðη; k2ÞPhðη; k3Þ

p :

ð3:14Þ

The shape, as defined in Eq. (3.14), is shown in
Fig. 5 (right). Our findings show that the primordial
bispectrum of GWs has its maximum at the equilateral
configuration, k1 ≃ k2 ≃ k3. This comes about because the
source of the GWs is composed by gradients of the
curvature perturbations when the latter reenters the horizon.
The measurement of this shape would by itself provide a
consistency relation between the bispectrum and the power
spectrum of GWs, which might help disentangle the signal
from other possible sources.

IV. MEASUREMENT OF THE BISPECTRUM

The fact that the primordial bispectrum of GWs is sizable
does not automatically imply that it can be measured by
LISA. Indeed, in this section, we are going to show that the
relatively short observation time (as compared to the age of
the Universe) and propagation of the GWs from the source
points towards the detector across the perturbed Universe
largely suppresses the bispectrum signal. This point has not

FIG. 4. Gaussian power spectrum. Left: Plot of the rescaled bispectrum in the equilateral configuration. Right: Contour plot of the
rescaled bispectrum for the isosceles case. The white region is not allowed due to the triangular inequality imposed on k1, k2, and k3 by
conservation of momentum.

FIG. 5. Shape of the three-point function. Left: Dirac-delta case. Right: Gaussian case.
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been noticed in the recent literature about the possibility of
measuring the tensor bispectrum at interferometers.

A. The effect of the short observation time

LISA can be considered as three time delay interferom-
eters. Each interferometer is placed at the vertex of an
(approximately) equilateral triangle, and the two arms of

this interferometer connect the vertex with the other two
vertices of the triangle. The various “LISA channels”
are linear combinations of the time delays measured at
the three vertices, as we discuss more in detail in
Appendix D. The time delay accumulated during a trip
from the point x⃗1 to the point x⃗2 ¼ x⃗1 þ L⃗, and return, is
given by [43]

ΔηðηiÞ ¼
L
2

Z
d3k
ð2πÞ3 e

ik⃗·x⃗1
X
λ

eλðk̂; L̂Þ½eikηihλðk⃗ÞMðL̂ · k̂; kÞ þ e−ikηih�λð−k⃗ÞM�ð−L̂ · k̂; kÞ�; ð4:1Þ

where eλðk̂; L̂Þ≡ eab;λðk̂ÞL̂aL̂b and

MðL̂ · k̂; kÞ ¼ eikLð1−L̂·k̂Þ=2sinc
�
kLð1 − L̂ · k̂Þ

2

�
: ð4:2Þ

We are interested in the Fourier transform of the three-point function of (4.1). This is proportional to the sum of quantities
of the type

hΔη̃ðp1ÞΔη̃ðp2ÞΔη̃ðp3Þi ∝
Y3
i¼1

Z
η0þδη

η0−δη
dηie−ipiηi

Z
d3kieix⃗i·k⃗ieþikiηiMðL̂i · k̂i; kiÞhhλ1ðk⃗1Þhλ2ðk⃗2Þhλ3ðk⃗3Þi

þ � � � þ
Y3
i¼1

Z
η0þδη

η0−δη
dηie−ipiηi

Z
d3kieix⃗i·k⃗ie−ikiηiM�ð−L̂i · k̂i; kiÞhh�λ1ð−k⃗1Þh�λ2ð−k⃗2Þh�λ3ð−k⃗3Þi;

ð4:3Þ

where the observation is done at the present cosmological time, in the interval η0 − δη ≤ η ≤ η0 þ δη. The integral over time
in the first term results in

Y3
i¼1

2δηe−ipiη0

Z
d3kisinc½ðki − piÞδη�eikiη0eix⃗i·k⃗iMðL̂i · k̂i; kiÞhhλ1ðk⃗1Þhλ2ðk⃗2Þhλ3ðk⃗3Þi; ð4:4Þ

and analogously for the other terms. Unless the observation
time δη is comparable to the age of the Universe η0 (see
below), the phases eið�kiη0Þ are by far the most rapidly
varying terms in the integrand of (4.4).3 As a consequence,
the integral over the magnitude of the momenta averages
to (essentially) zero due to these fast oscillations, except
from the configurations that satisfy η0

P
i � ki ≲ 1. We note

that these phases do not enter in the time-averaged power

spectrum (2.12). Therefore, this suppression is not present
for the observed power spectrum.
The GW bispectrum vanishes unless the three momenta

satisfy k⃗1 þ k⃗2 þ k⃗3 ¼ 0. Therefore, given that the GW
signal peaks at k1 ∼ k2 ∼ k3 ¼ Oðk�Þ and that η0k� ≫ 1,
the above condition can be satisfied only if the three
momenta are extremely well aligned. Assuming, for exam-
ple, k⃗1 ¼ k1ð1; 0; 0Þ and k⃗2 ¼ k2ðcos θ; sin θ; 0Þ, with

θ ≪ 1, we have η0ðk1 þ k2 − k3Þ ≃ η0k1k2θ2

2ðk1þk2Þ ¼ Oðη0k�θ2Þ.
For k� ¼ OðmHzÞ, corresponding to the peak of the LISA
sensitivity, and for η0 ∼ 1017 s, parametrically equal to
the age of the Universe, we must require θ ≲ 10−7. This
corresponds to the negligible fraction ∼ðη0k�Þ−1 ≪ 1 of the
integration region in (4.4). This scaling is consistent with
the fact that the GW signal reaching the detector at the time
η0 is generated in N ∝ ðk�η0Þ2 independent Hubble patches
(on all possible line of sight directions). Then the scaling

3The presence of these phases was missed in Ref. [43], since
the bispectrum considered there was a function only of the
difference of the observation times of the three signals and not of
the average time η0. This is a consequence of the ansatz for the
bispectrum considered in that paper, for which the bispectrum
resulted to be the sum of products of two unequal time power
spectra. This ansatz does not appear to be consistent with the time
evolution for the three GWs contributing to the bispectrum,
which is encoded in (4.1).
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1=
ffiffiffiffi
N

p
is what one expects from the measurement of the

bispectrum of the sum of N independent signals.
The phases in (4.4) cause the result to average to zero

if the range of k values included in each observed band
is large compared to 1=η0. The bandwidth that can, in
principle, be resolved in the observation time δη is ∼1=δη,
and this cancellation of the bispectrum disappears in the
unphysical limit of δη ∼ η0. At the mathematical level, in
the limit of δη → ∞, the product δη sinc½ðki − piÞδη�
reduces to the Dirac δ function of argument ki − pi, forcing
the momentum of the GW to be equal to the frequency of
the corresponding time delay signal. This observation time
cannot obviously be attained.
One might instead (at least, in principle) construct a

measurement that effectively uses a large array of LISA-
like detectors placed at large distances. These detectors
could capture the wavefront from each source horizon
volume at multiple locations today, resulting in observable
phase correlations. This would require having detectors that
are spread over a cosmologically large volume, since the
GWs generated by each region have spread over a shell of
radius ∼η0 today, and a sizable portion of this volume must
be sampled to obtain a significant correlation. Even in this
case, however, the GW phases decorrelate, due to a
different physical reason. Specifically, waves propagating
in different directions experience a differently perturbed
universe and accumulate a different Shapiro time delay.
This also reduces the bispectrum to an unobservable level,
as we demonstrate in the next subsection.

B. GW propagation in a perturbed Universe

Even if we could collect measurements over a cosmo-
logically long observation time, or from a cosmologically
large region, the fact that GWs arriving to the detector
propagate in a perturbed Universe would by itself still
render the bispectrum unobservable. The physical reason is
the following. A nonvanishing non-Gaussianity requires
the correlation among the phases of the GWs at the
detection point. This is the reason why non-Gaussianity
is a synonym of phase correlations in the same way
Gaussianity is characterized by random phases [44].
In the case studied in this paper, the phases of the GWs
are correlated at the moment of production thanks to
the coherence generated during the inflationary stage.
However, this coherence is destroyed due to the fact that
the GWs measured by LISA travel from different direc-
tions. Because of the Shapiro time delay, caused by the
presence of large-scale gravitational potentials along the
line of sight, different directions experience different
delays, thus destroying the phase correlation. We will show
that this effect is not present in the power spectrum but
appears, unfortunately, in the bispectrum under the form of
a large suppression factor. This is a consequence of the
central limit theorem: the time delay does not suppress the
non-Gaussianity of the signal arriving from a single line of

sight. However, averaging over many directions makes the
signal Gaussian.
We divide this discussion in three parts: in the first one,

we compute the solution for the GW propagation in the
geometrical optic limit; in the second one, we show that
the power spectrum is unaffected; and in the third part, we
compute the effect on the bispectrum.

1. The propagation equation and its solution
in the geometrical optic limit

Our starting point is the metric in the Newtonian
longitudinal gauge (neglecting the shear such that Φ ¼ Ψ)
and in cosmic time

g00 ¼ −ð1þ 2ΦÞ; g0i ¼ 0;

gij ¼ a2½ð1 − 2ΦÞδij þ hij�: ð4:5Þ
The spatial components of the Einstein tensor up to second
order in the metric perturbations written above are

Gi
j ¼ δij

�
−H2 −

2ä
a

�
þ 1

2
ḧij þ

3

2
H _hij −

1

2a2
hij;kk þOðΦÞ

þ ðΦ̈þ 3H _ΦÞhij −
1

a2
½Φhij;kk þ ðΦhijÞ;kk

− ðΦ;khikÞ;j − ðΦ;khkjÞ;i� þ δij

�
−

1

a2
hmnΦ;mn

�
þOðΦ2Þ þOðh2Þ: ð4:6Þ

In the following, we study the propagation of the GWs in
the matter-dominated phase neglecting the tiny generation
of the GWs caused by the OðΦ2Þ during the propagation.
From now on, we will work in the geometrical optic limit
which amounts to assuming that the frequency of the GW is
much larger than the typical momentum associated to the
gravitational potential Φ. To recover the suppression due to
the time delay, it is therefore enough to consider the leading
term in an expansion in gradients of Φ. The corresponding
equation reads, going back to conformal time,

h00ij þ 2Hh0ij − ð1þ 4ΦÞhij; kk ¼ 0; ð4:7Þ
where the transverse-free and traceless part will be taken
off by the projector operators later on. In momentum space,
we write the mode function as

hijðk⃗; ηÞ ¼ hAijðk⃗; ηÞ þ h�Aij ð−k⃗; ηÞ; ð4:8Þ
which makes the mode function real in coordinate space.
We make the ansatz

hAij ¼ Aijeikηe
i
R

η dη0FAðη0Þ: ð4:9Þ
If we disregard the spatial derivatives acting on FA and
separate the equations at zeroth order in FA and the rest, we
obtain
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A00
ij þ 2ikA0

ij − k2Aij þ
4

η
½A0

ij þ ikAij� þ k2Aij ¼ 0;

2iFAA0
ij þ ½iF0

A − 2kFA − F2
A þ 4

η
iFA þ 4k2Φ�Aij ≃ 0:

ð4:10Þ

The first equation is solved by

Aij ¼
CA
ij

k2η2

�
1þ i

kη

�
; ð4:11Þ

with CA an integration constant. We are interested in the
subhorizon limit of these solutions, where only the first
term in the sums is kept. We then have A0

ij ¼ −2
η Aij. The

second equation then becomes

iF0
A − 2kFA − F2

A þ 4k2Φ ≃ 0: ð4:12Þ

To leading order, we find FA ¼ 2kΦ, such that

hAij ¼ Aije
ikηþ2ik

R
η dη0Φðη0Þ: ð4:13Þ

To match with the solution (2.6), we write hAij and its
conjugate appearing in (4.8) as a sum of cosine and sine.
Matching the wave function and its derivative in the
subhorizon limit gives

hλðk⃗Þ ¼
ηeq
η2

½hRD;c
λ ðk⃗Þ cosðΩη;k⃗Þ þ hRD;s

λ ðk⃗Þ sinðΩη;k⃗Þ�

¼ 4

9

Z
d3p
ð2πÞ3

ηeq
k3η2

e�λðk⃗; p⃗Þζðp⃗Þζðk⃗ − p⃗Þ

× ½Icðx; yÞ cosðΩη;k⃗Þ þ Isðx; yÞ sinðΩη;k⃗Þ�;
ð4:14Þ

where now

Ωη;k⃗ ¼ kηþ 2k
Zη
ηeq

dη0Φðη0; x⃗0 þ ðη0 − η0Þk̂Þ ¼ kηþ 6

5
k
Zη
ηeq

dη0ζLððη0 − η0Þk̂Þ: ð4:15Þ

Here x⃗0 is the location of the detector (that from now on we set to zero for simplicity), and k̂ identifies the direction of
motion of the GW. In order to stress that the gravitational potentialΦ has a typical momentummuch smaller than k, we have
used the relation Φ ¼ 3ζL=5. We take ζL Gaussian with the corresponding power spectrum PL

ζ scale invariant.
We have also used the matter-dominated relation, so that ζL is time independent on linear scales. However, it has a time

dependence due to the motion of the GW (that sees a time-varying profile). The solution can be then written as

hλðk⃗Þ ¼
2

9

Z
d3p
ð2πÞ3

ηeq
k3η2

e�λ;ijðk̂Þp⃗ip⃗jζðp⃗Þζðk⃗ − p⃗Þ

×

�
I�
�
p
k
;
jk⃗ − p⃗j

k

�
e
ikηþi6

5
k
R

η

ηeq
dη0ζLððη0−η0Þk̂Þ þ I

�
p
k
;
jk⃗ − p⃗j

k

�
e
−ikη−i6

5
k
R

η

ηeq
dη0ζLð−ðη0−η0Þk̂Þ

�
; ð4:16Þ

where ζ in the first line is in momentum space, while ζL in the second line is in real space. One can easily verify that the
corresponding Fourier transform is real.

2. No effect on the power spectrum

In order to see the effect of the propagation onto the power spectrum, it is convenient to define the quantity

Ẑðη; k⃗Þ≡ 6

5
k
Zη
ηeq

dη0ζLððη0 − η0Þk̂Þ: ð4:17Þ

Using the results of Sec. II, we find

hhλ1ðη; k⃗Þhλ2ðη; k⃗0Þi ¼
π5

81

A2
s

k2�

η2eq
k7η4

ðk − 2k�Þ2ðkþ 2k�Þ2θð2k� − kÞδð3Þðk⃗þ k⃗0Þe�ab;λ1ðk⃗Þeab;λ2ðk⃗Þ

×


�
I�
�
k�
k
;
k�
k

�
eikηþiẐðη;k⃗Þ þ I

�
k�
k
;
k�
k

�
e−ikη−iẐðη;−k⃗Þ

�

×

�
I�
�
k�
k
;
k�
k

�
eikηþiẐðη;−k⃗Þ þ I

�
k�
k
;
k�
k

�
e−ikη−iẐðη;k⃗Þ

��
; ð4:18Þ

TESTING PRIMORDIAL BLACK HOLES AS DARK MATTER … PHYS. REV. D 99, 103521 (2019)

103521-11



where we have exploited the fact that the short mode ζ, responsible for the GW production during the radiation-dominated
era, and the long mode ζL are not correlated, and therefore the average splits into the product of two different averages, the
one on short modes being already done. The contraction of the polarization operators enforces e�ab;λ1ðk⃗Þeab;λ2ðk⃗Þ ¼ δλ1;λ2 .
Therefore, we get

PhðkÞ ¼ 1

1296

A2
s

k2�

η2eq
η4

�
4k2�
k2

− 1

�
2

θ

�
2 −

k
k�

�
�
I�
�
k�
k
;
k�
k

�
eiðkηþẐðη;k⃗ÞÞ þ I

�
k�
k
;
k�
k

�
e−iðkηþẐðη;−k⃗ÞÞ

�

×

�
I�
�
k�
k
;
k�
k

�
eiðkηþẐðη;−k⃗ÞÞ þ I

�
k�
k
;
k�
k

�
e−iðkηþẐðη;k⃗ÞÞ

��
: ð4:19Þ

In the product, the terms proportional to I2 and I�2 are fast oscillating and average out, while in those proportional to jI j2
all phases drop out, and therefore there are no propagation effects in the power spectrum. This leaves us with

Phðη; kÞ ¼ 1

648

A2
s

k2�

η2eq
η4

�
4k2�
k2

− 1

�
2

θ

�
2 −

k
k�

��
I2
c

�
k�
k
;
k�
k

�
þ I2

s

�
k�
k
;
k�
k

��
: ð4:20Þ

3. The effect of the propagation onto the GW bispectrum

We proceed as in Sec. III, but starting from the solution (4.16). From now on, we consider the equilateral configuration
jk⃗1j ¼ jk⃗2j ¼ jk⃗3j ¼ k. The resulting bispectrum is of the form

Bλi
h ðηi; k⃗iÞ ¼ N


�
I�
�
k�
k
;
k�
k

�
eikη1þiẐðη1;k⃗1Þ þ I

�
k�
k
;
k�
k

�
e−ikη1−iẐðη1;−k⃗1Þ

�

×

�
I�
�
k�
k
;
k�
k

�
eikη2þiẐðη2;k⃗2Þ þ I

�
k�
k
;
k�
k

�
e−ikη2−iẐðη2;−k⃗2Þ

�

×
�
I�
�
k�
k
;
k�
k

�
eikη3þiẐðη3;k⃗3Þ þ I

�
k�
k
;
k�
k

�
e−ikη3−iẐðη3;−k⃗3Þ

��
; ð4:21Þ

where we have defined

N ≡ θð ffiffiffi
3

p
k� − kÞ
k6

×
A3
sη

3
eq

k3�η21η
2
2η

2
3

×
1024π3

729
×Dλi

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3k2�
k2

− 1

s !−1=2

×
1

8
: ð4:22Þ

We also set all times equal, since small relative variations of the three times (hours vs the age of the Universe) will not affect
our result. By defining

Gc1;c2;c3 ½k⃗1; k⃗2; k⃗3�≡ heic1Ẑðη;k⃗1Þeic2Ẑðη;k⃗2Þeic3Ẑðη;k⃗3Þi; ð4:23Þ

we can express our result as

Bλi
h ðη; k⃗iÞ¼N fI�3e3ikηGþþþ½k⃗1; k⃗2; k⃗3�þI�2Ieikη½Gþþ−½k⃗1; k⃗2;−k⃗3�þGþ−þ½k⃗1;−k⃗2; k⃗3�þG−þþ½−k⃗1; k⃗2; k⃗3��

þI�I2e−ikη½Gþ−−½k⃗1;−k⃗2;−k⃗3�þG−þ−½−k⃗1; k⃗2;−k⃗3�þG−−þ½−k⃗1;−k⃗2; k⃗3��þI3e−3ikηG−−−½−k⃗1;−k⃗2;−k⃗3�g;
ð4:24Þ

where, having all the same argument, we set Iðk�k ; k�k Þ → I . Next, we use the identity

heφ1eφ2eφ3i ¼ e
hφ2
1
i

2
þhφ2

2
i

2
þhφ2

3
i

2
þhφ1φ2iþhφ1φ3iþhφ2φ3i; ð4:25Þ

valid for a general Gaussian operator, and write
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Gc1;c2;c3 ½k⃗1; k⃗2; k⃗3� ¼ exp−
1
2
c2
1
Cðk⃗1;k⃗1Þ−1

2
c2
2
Cðk⃗2;k⃗2Þ−1

2
c2
3
Cðk⃗3;k⃗3Þ−c1c2Cðk⃗1;k⃗2Þ−c1c3Cðk⃗1;k⃗3Þ−c2c3Cðk⃗2;k⃗3Þ; ð4:26Þ

where we defined

Cðk⃗1; k⃗2Þ≡ hẐðη; k⃗1ÞẐðη; k⃗2Þi ¼
36

25
k1k2

Zη
ηeq

dη0
Zη
ηeq

dη00hζLððη0 − η0Þk̂1ÞζLððη00 − η0Þk̂2Þi: ð4:27Þ

We Fourier transform

ζLððη − η0Þk̂Þ ¼
Z

d3p
ð2πÞ3 e

iðη−η0Þk̂·p⃗ζLðp⃗Þ ð4:28Þ

and compute the correlator

hζLððη0 − η0Þk̂1ÞζLððη00 − η0Þk̂2Þi ¼
Z

d3p1d3p2

ð2πÞ6 eiðη0−η0Þk̂1·p⃗1eiðη00−η0Þk̂2·p⃗2hζLðp⃗1ÞζLðp⃗2Þi

¼
Z

d3p1d3p2

ð2πÞ6 eiðη0−η0Þk̂1·p⃗1eiðη00−η0Þk̂2·p⃗2ð2πÞ3δð3Þðp⃗1 þ p⃗2Þ
2π2

p3
1

PL
ζ ðp1Þ

¼
Z

d3p
4πp3

eiðη0−η0Þk̂1·p⃗e−iðη00−η0Þk̂2·p⃗PL
ζ ðpÞ: ð4:29Þ

Therefore,

Cðk⃗1; k⃗2Þ ¼
36

25
k1k2

Zη
ηeq

dη0
Zη
ηeq

dη00
Z

d3p
4πp3

eiðη0−η0Þk̂1·p⃗e−iðη00−η0Þk̂2·p⃗PL
ζ ðpÞ ð4:30Þ

or, changing the order of times in the exponent (so to have a positive time difference in the bracket),

Cðk⃗1; k⃗2Þ ¼
36

25
k1k2

Zη
ηeq

dη0
Zη
ηeq

dη00
Z

d3p
4πp3

e−iðη0−η0Þk̂1·p⃗eiðη0−η00Þk̂2·p⃗PL
ζ ðpÞ: ð4:31Þ

Next, we use the expansion in spherical harmonics

eik⃗·r⃗ ¼ 4π
X∞
l¼0

Xl
m¼−l

iljlðkrÞYlmðr̂ÞY�
lmðk̂Þ ð4:32Þ

so that

Cðk⃗1;k⃗2Þ¼
36

25
k1k2

Zη
ηeq

dη0
Zη
ηeq

dη00ð4πÞ2
X∞
l¼0

Xl
m¼−l

X∞
l0¼0

Xl0
m0¼−l0

ðiÞ−lþl0Y�
lmðk̂1ÞYl0m0 ðk̂2Þ

Z
dp
p
PL

ζ ðpÞjlððη0−η0ÞpÞjl0 ððη0−η00ÞpÞ

×
Z

dΩp̂

4π
Ylmðp̂ÞY�

l0m0 ðp̂Þ: ð4:33Þ

The last line being equal to δll0δmm0=4π, we obtain
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Cðk⃗1; k⃗2Þ ¼
36

25
k1k2

Zη
ηeq

dη0
Zη
ηeq

dη004π
X∞
l¼0

Xl
m¼−l

Y�
lmðk̂1ÞYlmðk̂2Þ

Z
dp
p

PL
ζ ðpÞjlððη0 − η0ÞpÞjlððη0 − η00ÞpÞ: ð4:34Þ

Notice that the integral diverges logarithmically due to the l ¼ 0 term, that is, due to the constant zero mode of the
gravitational potential. It being unphysical, we follow the procedure of Ref. [45] and remove the monopole from the sum.
For the other multiples, we use the approximation (which, strictly speaking, requires l ≫ 1) [46]

Z
∞

0

dpp2fðpÞjlðpηÞjlðpη0Þ ≃
π

2η2
f

�
lþ 1=2

η

�
δDðη − η0Þ; ð4:35Þ

where for us

fðpÞ ¼ PL
ζ ðpÞ
p3

¼ AL

p3
: ð4:36Þ

With this in mind, we can write

Cðk⃗1; k⃗2Þ ¼
36

25
k1k2

Zη
ηeq

dη0
Zη
ηeq

dη004π
X∞
l¼1

Xl
m¼−l

Y�
lmðk̂1ÞYlmðk̂2Þ

π

2

1

ðη0 − η0Þ2
ALðη0 − η0Þ3
ðlþ 1

2
Þ3 δDðη0 − η00Þ; ð4:37Þ

which gives

Cðk⃗1; k⃗2Þ ¼
36

25
k1k2 × 2π2

Zη
ηeq

dη0ðη0 − η0Þ
X∞
l¼1

Xl
m¼−l

AL

ðlþ 1
2
Þ3 Y

�
lmðk̂1ÞYlmðk̂2Þ: ð4:38Þ

In the time integration, we now put η0 also as the extremum of integration and disregard the equality time. Furthermore, in
the spherical harmonics we can always orient k̂1 along the z axis, so that the sum involves only the m ¼ 0 terms. We then
note that cos k̂2 becomes k̂1 · k̂2 ≡ μ. With this convention, then

Y�
lmðk̂1ÞYlmðk̂2Þ ¼ δm0

2lþ 1

4π
Plð1ÞPlðμÞ ¼ δm0

2lþ 1

4π
PlðμÞ; ð4:39Þ

where in the last step we used Plð1Þ ¼ 1. All this gives

Cðk⃗1; k⃗2Þ ¼ ALk1k2η20 ×
18π

25

X∞
l¼1

Plðk̂1 · k̂2Þ
ðlþ 1

2
Þ2 ≡ ALk1k2η20 × Sðk̂1 · k̂2Þ: ð4:40Þ

The equilateral bispectrum involves the following momentum configurations:

i ¼ j∶ Cðk⃗i; k⃗jÞ ¼ ALk2η20 × Sð1Þ ≃ 18π

25

�
π2

2
− 4

�
ALðkη0Þ2 ≃ 2.11ALðkη0Þ2;

i ≠ j∶ Cð�k⃗i;�k⃗jÞ ¼ ALk2η20 × Sð−1=2Þ ≃ −0.50ALðkη0Þ2;
i ≠ j∶ Cð�k⃗i;∓k⃗jÞ ¼ ALk2η20 × Sð1=2Þ ≃ 0.37ALðkη0Þ2: ð4:41Þ

Inserting them into Eq. (4.24), then we obtain

Bλi
h ðη0; k⃗iÞ ¼ N fI�3e3ikη0e−1.67ALðkη0Þ2 þ I�2Ieikη0 ½e−1.93ALðkη0Þ2 × 3�

þ I�I2e−ikη0 ½e−1.93ALðkη0Þ2 × 3� þ I3e−3ikη0e−1.67ALðkη0Þ2g: ð4:42Þ
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The first and last terms are the least suppressed ones, giving

Bλi
h ðη0; k⃗iÞ ¼ N e−1.67ALðkη0Þ2 ½I�3e3ikη0 þ I3e−3ikη0 �: ð4:43Þ

Therefore, we have

Bλi
h ðη0; k⃗iÞjinhom

Bλi
h ðη0; k⃗iÞjno inhom

¼ e−1.67ALðkη0Þ2 : ð4:44Þ

We further define and compute the rms of the (relative) time delay d (see [45]) as

d2rms ¼
4

η20


Z
dη0dη00Φðη0ÞΦðη00Þ

�
¼ 4

η20k
2
×

9

25
k2

Z

dη0dη00ζLðη0ÞζLðη00Þ
�

¼ 1

η20k
2
Cðk⃗; k⃗Þ ¼ 2.11AL; ð4:45Þ

where in the last step we have used the first of Eqs. (4.41). With this, the above ratio is finally rewritten as

Bλi
h ðη0; k⃗iÞjinhom

Bλi
h ðη0; k⃗iÞjno inhom

¼ e−1.67ALðkη0Þ2 d2rms
2.11AL ¼ e−0.8k

2η2
0
d2rms : ð4:46Þ

The conclusion of this calculation shows that the primordial
bispectrum is not preserved after the propagation of the
GWs and is largely suppressed being kη0drms ∼ 109, if we
take k ∼ 10−3 Hz.
It is interesting to notice that, in the squeezed limit

k1 ∼ k2 ≫ k3, the bispectrum should reduce to the average
of the short-mode power spectrum in a background
modulated by the long mode k3. Indeed, repeating the
steps we have performed above for the squeezed limit, it is
easy to see that the bispectrum reduces to

Bλi
h ðη; k⃗iÞ ∝ jI1j2ðI�

3e
iηk3 þ I3e−iηk3Þe−1

2
k2
3
η2
0
d2rms ; ð4:47Þ

where we have kept the term which is least suppressed by
the propagation. This indeed is proportional to the power
spectrum of the short-mode times a suppression from the
long mode due to the fact that the average over the long
mode has to be performed over many directions.
Unfortunately, the suppression is still sizable. We conclude
that propagation effects are present for arbitrary shapes.

V. CONCLUSIONS

In this paper, we have investigated the capability of the
LISA project to detect the non-Gaussian GWs generated
during the physical process giving rise to PBHs. The latter
are formed through the collapse of the initial large scalar
perturbations generated during inflation at the moment
when they reenter the horizon in the radiation-dominated
phase. The very same scalar perturbations act as a second-
order source for the GWs, which therefore are born non-
Gaussian.

If the corresponding PBH masses are in the range around
∼10−12 M⊙, not only these PBHs may form the totality of
the dark matter, but also the present frequency of the
corresponding GWs happens to be in the ballpark of the
millihertz, precisely where LISA has its maximum sensi-
tivity.We have shown that LISAwill detect such a signal, but
only through the two-point correlator. For the first time, we
have proven that the relatively short observation time (as
compared with the age of the Universe) and the propagation
effects of the GWs in the perturbedUniversemake the three-
point correlator not measurable in its simplest form. The
propagation effects have been obtained by solving the
equation for the GWs in the geometrical optic limit, making
explicit the suppression factor arising when averaging over
the directions of propagation. We should stress, however,
that the power spectrum in this regime is unaffected, and we
will devote further investigations to analyze the implications
of the propagation effects going beyond the geometrical
optic limit.
Finally, the absence of a GW signal will tell us that PBHs

of masses around ∼10−12 M⊙ are not the dark matter we
observe in the Universe. As already mentioned in the
introduction, however, a detection of a GW signal will be
still compatible with our Universe populated by such PBHs
in smaller abundances. Of course, our considerations hold
within the setup considered in this paper, leaving open the
possibility that the PBHs originate from mechanisms.
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Note added.—While completing this work, Ref. [47]
appeared which also noted that PBHs as dark matter with
masses around 10−12 M⊙ are associated to GWs which can
be detected by LISA. However, there the investigation is
limited to the GW power spectrum (with non-Gaussianity
in the scalar perturbations), and the study of the bispectrum
and its detectability is not present. Reference [47] consid-
ered the case in which the scalar perturbations have a non-
Gaussian statistics of the local type. This non-Gaussianity
results in a greater PBH production (at an equal power
spectrum of the scalar perturbations). This therefore results
in stricter bounds on the scalar power spectrum and on a
smaller GW production, which is, however, still detectable
at LISA [47]. The GW production from non-Gaussian
scalar perturbations leading to a PBH was also previously
studied in Ref. [48], that assumed a non-Gaussian param-
eterization of the probability density function of the scalar
perturbations, and in Ref. [21], that studied the case of a χ2

distribution, which emerges in models of axion inflation
with the inflaton coupled to gauge fields.

APPENDIX A: ABSENCE OF CONSTRAINTS ON
PBHs AS DARK MATTER FOR 10 − 13–10− 11 M⊙

In this Appendix, we review the reasons why the PBH
mass region of interest to our paper, between 10−13 and
10−11 M⊙, is currently unconstrained by observational
constraints.4

One controversial bound falling in this mass window
is the dynamical constraint related to the effect of PBHs
on neutron stars in their surroundings. For low masses
MPBH ∼ 10−14–10−13 M⊙, PBHs could be dense enough to
collide with white dwarves (WDs), compact stars which
could be dynamically heated by the passage PBHs and
explode as supernovae. The observed WD density prevents
PBHs in this mass range from forming all of DM [49].
Neutron stars (NSs) are much smaller and denser than

WDs, and a PBH could be captured by a NS within a longer

time through multiple oscillations around it. This process
is eased if the velocity of the PBHs is small. The authors
of Ref. [25] consider NSs in the cores of globular
clusters, where the velocity dispersion is of the order of
Oð10Þ km=s, and derive a constraint in the range
MPBH ∼ 10−14–10−10 M⊙. The critical assumption that
they make concerns the DM density in globular clusters,
which is needed to be 102–104 times larger than the
average 0.3 GeV=cm3 in the halo in order to yield a
constraint. For more conservative assumptions, this bound
disappears.
Another bound that we cut at MPBH ∼ 10−11 M⊙ comes

from the observations with the HSC of the Subaru tele-
scope of stars in the Andromeda galaxy M31, at 770 kpc
from us. Reference [23] analyzed its data in the search
for microlensing events of the stars measured by HSC
in the optical window and derived a constraint in the
range 10−13–10−6 M⊙.
A first major effect which was unaccounted for in the

analysis is the finite size of the sources. The projected size
of the main sequence star onto the lensing plane radius is
larger by more than order of magnitude than the Einstein
radius for PBHs of mass 10−11 M⊙. Therefore, the mag-
nification of the star drops well below 10%, a factor of 10
below what is needed to detect a signal.
Another important phenomenon which further weakens

the microlensing constraints below ∼10−10 M⊙ and makes
them disappear below ∼10−11 is the so-called wave effect
[22,24,50,51]. When the observed light has a wavelength λ
smaller than the Schwarzschild radius rS of the lens, then
the framework of geometrical optics does not provide a
good description of the system, and the diffraction effects
give a small or vanishing magnification of the source. It is
interesting to understand why rS is a relevant quantity in
this discussion, since the deflected images of the source
travel at a larger distance rE ≫ rS from the lens. The
explanation is related to the expression of the Einstein
radius rE ∼

ffiffiffiffiffiffiffiffi
rSD

p
. We denote by D the distance between

the observer and the lens, which we assume for simplicity
to be of the same order as the distance between the lens and
the source. One can interpret the travel of the lensed rays
at opposite sides of the lens as a double-slit interference
experiment. The first maxima of the diffracted pattern
occur at angles θ1 ∼ λ=rE, where rE is the equivalent of
the distance between the slits. With respect to the line of
sight to the PBH, the deflected rays are at an angle
θS ∼ rE=D. If θS ≫ θ1, then the interference pattern is
not resolvable, the wave effects of light diffusion are
negligible, and the PBH appreciably magnifies the back-
ground objects. On the other hand, if θS < θ1, then the
interference pattern is visible, and the geometrical optics
approximation breaks down. The condition for magnifica-
tion θS ≳ θ1 yields λ≲ r2E=D ∼ rS.
Because of these reasons, we cut the constraints from

the Subaru HSC observations below MPBH ∼ 10−11 M⊙.
4We thank A. Katz for illuminating discussions on the micro-

lensing and neutron star constraints on the PBH abundance.
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APPENDIX B: COMPUTATION OF Dλi

In this Appendix, we present the results for the con-
tractions

Dλiðk̂i; riÞ≡ e�ab;λ1ðk̂1Þe�cd;λ2ðk̂2Þe�ef;λ3ðk̂3Þ
× f½q⃗aq⃗bðq⃗− k̂1Þcðq⃗− k̂1Þdq⃗eq⃗f�I þ ½same�IIg;

ðB1Þ

where the momenta k⃗i are given in Eq. (3.3), while the
momenta q⃗I;II are given in Eq. (3.6). We construct the
polarization operators as is standard, following the notation
of Ref. [43]. We define the two unit vectors orthogonal to
the GW momentum through an external fixed unit vector
êz, that we choose to be the unit vector along the third axis

û≡ k̂ · êz
jk̂ · êzj

; v̂≡ k̂ · û ðB2Þ

(clearly, any other fixed vector can equivalently be chosen).
Starting from this choice, we then introduce the left-handed
and right-handed polarization operators

eab;R ≡ ûa þ iv̂affiffiffi
2

p ûb þ iv̂bffiffiffi
2

p ; eab;L ≡ ûa − iv̂affiffiffi
2

p ûb − iv̂bffiffiffi
2

p :

ðB3Þ
These operators are symmetric, transverse, traceless, and
normalized according to e�ab;λeab;λ ¼ 1. They are also
related to the operators eþ; e× as

eab;R=L ¼ eab;þ � ieab;×ffiffiffi
2

p : ðB4Þ

The contractions can be readily obtained from these
expressions for the polarization operators and from
Eqs. (3.6). The resulting expressions are rather lengthy.
We report them here in the isosceles case r1 ¼ r2, where
these expressions acquire a more compact form:

DRRR ¼ DLLL ¼ 1

256

�
32r31

ð2r1 þ r3Þ3
−
24ð3r21 þ 8Þ
ð2r1 þ r3Þ2

þ 32ðr21 þ 4Þr3
r51

þ 32ðr21 − 1Þ2
r31ð2r1 − r3Þ

þ 32ð2ðr21 þ 6Þr21 þ 9Þ
r31ð2r1 þ r3Þ

−
ðr41 þ 24r21 þ 16Þr23

r61
−
4ð33r41 þ 24r21 þ 16Þ

r61
− 32

�
;

DLRR ¼ DRLL ¼ DRLR ¼ DLRL ¼ ðr21 − 4Þ2ð8r41 − 4r21ðr23 þ 4Þ þ r43 þ 4r23Þ
256r61ð4r21 − r23Þ

;

DRRL ¼ DLLR ¼ 1

256

�
−

32r31
ðr3 − 2r1Þ3

−
24ð3r21 þ 8Þ
ðr3 − 2r1Þ2

−
32ðr21 þ 4Þr3

r51
−
32ð2ðr21 þ 6Þr21 þ 9Þ

r31ðr3 − 2r1Þ

þ 32ðr21 − 1Þ2
r31ð2r1 þ r3Þ

−
ðr41 þ 24r21 þ 16Þr23

r61
−
4ð33r41 þ 24r21 þ 16Þ

r61
− 32

�
: ðB5Þ

We note that the contractions are invariant under parity
(L ↔ R). Moreover, we note that LRR ¼ RLR (due to the
fact that r2 ¼ r3).

APPENDIX C: REDSHIFT

The bispectrum (3.1) can be rewritten as

hhðη; k⃗1Þhðη; k⃗2Þhðη; k⃗3Þi0 ¼
B̂
η3

; ðC1Þ

where we have factored out the conformal time η, that
accounts for the decrease of the amplitude of the GWmode
functions while inside the horizon during radiation domi-
nation. Since, in general, the GW amplitude scales as the
inverse power of the scale factor inside the horizon,
hhhhi ∼ 1=a3, the bispectrum evaluated today at η0 is
given by

hhðη0; k⃗1Þhðη0; k⃗2Þhðη0; k⃗3Þi0

¼
�
aeq
a0

�
3

hhðηeq; k⃗1Þhðηeq; k⃗2Þhðηeq; k⃗3Þi0

¼
�
aeq
a0

�
3 1

η3eq
B̂; ðC2Þ

where ηeq represents the conformal time at the radiation-
matter equality. During the radiation-dominated phase, the
scale factor goes as a ∼ η, and so we can write

aeq ¼ ak ·
ηeq
ηk

; ðC3Þ

where the subscript k denotes the moment at which the
comoving momentum k reenters the horizon. The crossing
happens when k ¼ aH such that during the radiation era we
have ηk ¼ 1=k ¼ 1=2πf. Appendix G of Ref. [20] gives
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a0
ak

∼ 2 × 1017
f

10−3 Hz
; ðC4Þ

that can be used to derive the present bispectrum

hhðη0; k⃗1Þhðη0; k⃗2Þhðη0; k⃗3Þi0

¼ ðπ × 10−20 HzÞ3 · B̂ðk⃗1; k⃗2; k⃗3Þ: ðC5Þ

Although in this discussion, for brevity, the equal time
bispectrum had been considered, this relation applies also
to the unequal time bispectrum considered in the main text.

APPENDIX D: LISA RESPONSE FUNCTIONS
FOR THE BISPECTRUM

Even thoughwe have shown that propagation effectsmake
the primordial bispectrum of GWs highly suppressed, it is
nevertheless interesting to analyze the LISA response func-
tions for the three-point correlator. Implicit expressions for the
response functions are given in Ref. [43]; here we improved
over those results by providing explicit simple approxima-
tions of the response functions close to their maxima.
The LISA constellation consists of three satellites

placed at the vertices of an equilateral triangle of side
L ¼ 2.5 × 106 km (the actual distance slightly varies

during the orbit; this effect is disregarded in our compu-
tations). Laser light is sent from each satellite to the other
two, so that each vertex acts as a time delay interferometer.
The three measurements are not noise orthogonal, as any
two interferometers share one arm. The noise covariance
matrix can, however, be diagonalized to provide noise-
orthogonal combinations. We consider the three linear
combinations A, E, T introduced in Ref. [52]. If we think
of LISA as three interferometers, one centered at each
satellite, and we denote by σX;Y;Z the time delay measured
by each satellite, the A, E, T channels are the linear
combinations

σA ≡ 2σX − σY − σZ
3

; σE ≡ σZ − σYffiffiffi
3

p ;

σT ≡ σX þ σY þ σZ
3

: ðD1Þ

These combinations are also signal orthogonal; moreover,
in the case of equal arms, the combination T is insensitive
to the signal, and it is often denoted as the null channel. We
denote as ΣO the signal (measurement minus noise) in the
O channel (whereO is either A or E). The expectation value
for the three-point function of the signal can formally be
written as [43]

hΣOΣO0ΣO00 i ¼
X

λ1;λ2;λ3

Z
df1df2df3f1f2f3Bλ1λ2λ3ðf⃗1; f⃗2; f⃗3ÞROO0O00

λ1λ2λ3
ðf⃗1; f⃗2; f⃗3Þ: ðD2Þ

In this expression, λi and f⃗i denote, respectively, the
polarization and frequency (more precisely, the frequency
vector, related to the wave vector by f⃗ ¼ k⃗=2π) of the
GWs involved in the correlator; Bλiðf⃗iÞ is the GW bispec-
trum, and R the three-point response function. As the
measurement is a time delay, ΣO has the dimension of an

inverse mass. The bispectrum has mass dimension−6. With
these conventions, the response function is therefore di-
mensionless. Because of the planar nature of the instrument
[53], the response function is invariant under parity, namely,
RRRR ¼ RLLL;RRRL ¼ RLLR (and so on). Moreover, due
to the highly symmetric configuration, only the EEE and

FIG. 6. Equilateral configuration. Left: Response function REEE
3 for RRR ¼ LLL (red curve) and RRL ¼ LLR (green curve), as a

function of the frequency. At f ¼ 0.002 Hz, the response function in the RRR case is about 500 times grater than in the RRL case.
The blue dotted line indicates the expansion at small frequencies of Eq. (D3). Right: Comparison between the response function
on equilateral triangles and its 1d fit; see Eq. (D4).
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AAE (and permutations) correlations of the channels are
nonvanishing, and they are one the opposite of the other
REEE ¼ −RAAE [43].
All the relevant formulas for the computation of R can

be found in Sec. 3 of Ref. [43], so we do not copy them
here. In Fig. 6, we show the two response functions REEE

LLL
(red line) and REEE

LLR (green line) in the equilateral case
f1 ¼ f2 ¼ f3. We note that the instrument is significantly
more sensitive to equal-helicity bispectrum LLL (and,
equivalently, RRR). Moreover, we see that, in the outmost
left range shown in Fig. 6 (left panel), the response function
can be very well approximated by

REEE
LLL ðjfijÞ ≃ 2000

�
f
Hz

�
2

; 10−4 ≲ f
Hz

≲ 10−2: ðD3Þ

It is also useful to approximate the response function at its
greatest peak. As shown in the right panel in Fig. 6, the
peak is well fitted by

REEE;pk
RRR ðf; f; fÞ ≃

h
Ae−

ln2
f
fr

2σ2

i
≡ ½Rfit−1dðfÞ�3; ðD4Þ

with (matching the peak position, amplitude, and curvature)

A ≃ 0.802; fr ≃
0.203
L

≃ 0.0243 Hz; σ2 ¼ 0.686:

ðD5Þ

In Ref. [43], only the equilateral f1 ¼ f2 ¼ f3 and
squeezed isosceles f1 ¼ f2 ≫ f3 configurations were
computed. Here, we compute and study the generic
isosceles configuration f1 ¼ f2 ≠ f3.
As we see in Fig. 7, the response function is peaked in

the equilateral configuration, at f1 ¼ f2 ¼ f3 ¼ fr. A
significant result is also found in the squeezed limit
f3 ≪ f1 ¼ f2 ≃ fr. The fitting formula (D4) can be used
to provide a fit of the generic shape next to the peak:

REEE;pk
RRR ðf1; f2; f3Þ ≃ Āðf1; f2; f3Þ ·Rfit−1dðf1ÞRfit−1dðf2ÞRfit−1dðf3Þ; ðD6Þ

where

Āðf1; f2; f3Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðf1 þ f2 þ f3Þð−f1 þ f2 þ f3Þðf1 − f2 þ f3Þðf1 þ f2 − f3Þ

p
ffiffiffi
3

p ðf1f2f3Þ2=3
ðD7Þ

is the ratio between the area of a triangle of sides f1, f2, f3, divided by the area of an equilateral triangle of sides
ðf1f2f3Þ1=3. This factor evaluates to one at the peak, and it suppresses the bispectrum at its boundaries, so that the fitting
formula (D4) can be integrated over all possible shapes. In the right panel in Fig. 7, the fitting function (D4) is compared
against the exact bispectrum for isosceles shapes.

FIG. 7. Isosceles configuration. Left: 3d plot of the response function RLLL
3 ðf1; f2; f3Þ in the isosceles configuration. Right: Contour

plot of REEE
RRRðf1; f2; f3Þ for EEE and for RRR. We verified that the response function for AAE (and EAA) is the opposite to the one

shown here. The black solid line corresponds to the f3 ¼ 2f1 folded case (notice that the axes are in log units), and the upper-left corner
does not exist (it violates the triangular inequality). The bottom part of the region corresponds to squeezed configurations. The dashed
lines correspond to the 3d fit for the response function on isosceles triangles (D6).
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