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ABSTRACT. In this paper we are going to prove existence and regularity results for
positive solutions of the following elliptic system:

—div(M (z)Vu) + rou™"t = f + ",
—div(M (2)Vp) +rue™t =u".

where € is a bounded open subset of RN, M is a bounded, uniformly elliptic matrix,

r > 1, and f > 0 belongs to some Lebesgue space L™ (), with m > 1. We will also

prove the relationships of the solutions of the system with saddle points of the integral
functional

He) =5 [ M@ve-vo—3 [ M@ve-vos [ [ o= [ fo

1. INTRODUCTION

In this paper we study the existence and main properties of the weak (or distribu-
tional) solutions of the semilinear elliptic system

1) {u € Wo(9) 1 —div(M(2)Vu) +rou = f(z) + ¢,

0 e W2(Q): —div(M(z)Ve) +rug™" =u",

where ) is a bounded open subset of RN, N > 2, r > 1, f is a positive function
belonging to some Lebesgue space L™(€2), with m > 1, and M (z) is a measurable
matrix such that (for 0 < o < )

(1.2) M(x)€ - &€ > alé)?, a.e. in §, for every £ in RY,

(1.3) |M(x)] < B,  ae inQ

The motivations of the interest for the above system come from the paper [1], while
existence and properties of solutions of systems of Schrédinger-Maxwell equations have
also been studied in [4], [8], [11], where only the first equation of the system is semilinear.

A second motivation comes from a geometrical point of view: the solution (u, ) of
(1.1) are saddle points of the integral functional

Hoa) = 5 [ M@90-Fo =5 [ M@9e-To+ [ pro= [ wro- [ ro,

even if, at first sight, this fact is not so evident since some terms may not be well defined;
in this case, the regularizing effect on the solutions of the coupling of the equations in
system (1.1) plays an important role.

Our main results on system (1.1) are proved in the following theorem.
1
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THEOREM 1.1. Let r > 1 and let f > 0 be a function in L™(Q2), with m > 1. Then
there exist solutions u and ¢ of system (1.1), with ¢ < u, and the following Sobolev
regularities depending on the values of r and m:
o ifl<r< 5>
— ifm > ]312 then u and ¢ belong to Wy (Q);
—ifl<m< N+2 then u and ¢ belong to Wo'™ (), where m* =
— if m =1 then u and ¢ belong to WO (), for every q < N s
° if— <r< N+2
— 1fm > 2N then u and ¢ belong to Wy (Q);

N+2
—irf=l <m< N+2 then u and ¢ belong to Wol’m (Q);

— if 1 <m < §=1L then u and ¢ belong to Wy (Q) with q = QTIL;
— if m = 1 then u and ¢ belong to Wy(Q), for every q < 7“+1;

: N+2.
o ifr > 5

— if m > "2 then u and ¢ belong to Wy (9);

— if 1 <m < "L then u and ¢ belong to Wy*(Q) with ¢ = 2’1’1@;

— if m = 1 then u and ¢ belong to Wy(Q), for every q < 2

Furthermore, we have the following results for Lebesgue summability:
o ifl <r< 5
—ifm>7% then u and ¢ belong to L*™(2);

—ifl1<m< = then u and o belong to L™ (), with m** = N]X”Q”m;
—ifm=1 then u and ¢ belong to L*(Q), for every s < +;

o ifr> Ng:
—ifm > = then u and ¢ belong to L>(Q);
—if =1 1’ <m < & then u and ¢ belong to L™ (Q);
1f1 § m < g“'rl then u and ¢ belong to L™ ().

We point out that the results on u and ¢ in L™ (Q2) are strongly related to some
results of [9] (see also [7]).

m m oo
N
N r—1 AN
m= 5 2
2 1

2N |
N+2

1 N r
N-2

Dependence on r and m of the Sobolev and Lebesgue regularities of u and ¢

The plan of the paper is as follows: in the next section we will prove an existence
result for bounded solutions u, and ¢, of a “truncated” system which approximates
(1.1), while in Section 3 we will prove a result which will be fundamental in the sequel:
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namely, that ¢, < u, for every n. Sections 4 and 5 will be devoted to the proof of
Theorem 1.1 in the case m > % and 1 <m < % respectively, while the proof of the
case m = 1 of Theorem 1.1 is given in Section 6. Finally, in Section 7 we deal with the
case of measure data, and in Section 8 we prove that if m > ]3—12 the solution of system
(1.1) given by Theorem 1.1 is a saddle point of the functional J defined above.

2. EXISTENCE OF APPROXIMATING SOLUTIONS

We begin with an existence result for a problem which approximates (1.1). For n in
N, let us define the truncation at levels £n as

T, (s) = max(—n, min(s,n)).

THEOREM 2.1. Let r > 1, let F > 0 be in L™(2), with m > %, and let n in N. Then
there exist solutions u, and , of the following system:
2.1) 0<u, € W2AQ)NL2(Q) : —div(M(2)Vu,) +re,u"t = F 4+ T,(¢"),

' 0 <@, € W2 () NLXQ): —div(M(z)V,) 4+ 7, @' = T,(ul).

n

Furthermore, u,, and ¢,, belong to L>(£2).

Proof. Let n in N, and let v > 0 be a function in L?(2). Then there exists (see [2]) a
unique weak solution v in W, *(Q) of

—div(M (2)V) +rv |2 = T,(v"),
that is

/ M)V -V + 7 / o2 w = / T w,  Ywe W),

Q Q Q

It is easy to see, using the fact that v > 0, that 1) > 0, so that v is the solution of
(2.2) —div(M(2) V) +roy™™" = T,(v").

Furthermore, by the results of Stampacchia (see [12]), ¢ belongs to L>(2) and is such
that

(2.3) Hw“wﬁ(m < Cﬂm

for some positive constant C'. Given 1, let z be the unique weak solution in Wy*(Q) of
—div(M(2)Vz) +rp |z 22 = F + T,(¥"),
that is

. r—2 — r 1,2
/QM(:C)VZ Vw—i—r/gz/z|z| cw /QFer/QTn(w)w, Vw € WH2(Q).

Using again the fact that both F and v are positive, z is positive as well, so that it
solves

(2.4) —div(M(2)Vz) +r¢ 2" = F+T,(¥").
Using once again the results by Stampacchia, one has that z belongs to L>(2) and is
such that

HzHWOw(Q
By Poincaré inequality, one thus has that

120200y < € (1F gy +7) = R

L2(Q
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which implies that the intersection of the positive cone of L?*(2) with the ball Br(0) of
L?(92) is invariant for the map S : v — z. We give now the (easy) proof that S is both
continuous and compact, so that it will have a fixed point by Schauder theorem. As
for compactness in L*((2), it easily follows from (2.5) and from Rellich theorem, so that
we only have to prove the continuity of S. To this aim, let v, be a sequence of positive
functions in L?(€2) strongly convergent to v in the same space. If 1, is the solution of

—diV(M(x)Vi/Jk) + U Qﬂ;il = Tn(’”%) )

then by (2.3) we have that v, is bounded in W;*(Q2). Therefore, up to subsequences,
still denoted by )y, it converges weakly in VVO1 2(9) and strongly in L*(Q) to some
function . Since the sequence T,,(v}) is strongly convergent to 7, (v") in LP(S2) for
every 1 < p < 400 it is easy to see that 1 is the solution of

—div(M (2)V) +rvy™t = T,(0").
Let now zj, = S(vg), which is the solution of
—div(M (z)V zx) + r 1y, z};_l =F+T,(¢) -

Using again (2.5), we have that z; is bounded in VVO1 ’Q(Q), so that, up to subsequences
still denoted by z, it converges weakly in Wol’Q(Q) and strongly in L?(Q) to some
function z. Due to the strong convergence, in L™(£2), with m > %, of the right hand
side F' + T, (¢}), it is again easy to see that z is the solution of

—div(M(2)Vz) +r¢ 2"t = F+T,(v"),

that is, z = S(v). Since the limit is independent of all the extracted subsequences, the
whole sequence S(vy,) strongly converges in L*(Q) to S(v), and so S is continuous, as
desired.

Thus, by Schauder theorem, there exists a fixed point u,, of S. If we define ¢,, as the
positive weak solution of

Pn € W () —div(M(2)Vip,) + ruy )t = To(uy,)
we than have that u,, > 0 solves
u, € Wy () 1 —div(M (2)Vuy,) 4+ r o, ul ' = F 4 T, (u”),
as desired, and that both u, and ¢, belong to L>(12).

3. COMPARISON BETWEEN u,, AND (@,

Aim of this sections is the proof of the following result, which will be fundamental in
the sequel.

THEOREM 3.1. Let r > 2, and let u,, and ¢, be the weak solutions of system (2.1)
given by Theorem 2.1. Then

(3.1) On < Uy , Vn € N.
Proof. Subtracting the two equations, we have

—div(M (2)V (¢ — un)) + ropunlel > —up 2] + To(eh) — To(ul) = —F.
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Taking (¢, — u,)+ as test function in the weak formulation of this equation, we have

[ M@= ) Tl — w7 [ ol = o~ )

+ 1B = B)len = w) = = [ Flon =)

We remark now that the right hand side is negative (since F' > 0), while the second
and third term of the left hand side are positive (since w, > 0, ¢, > 0, and r > 2).
Therefore, by (1.2) we have that

o [ 9= uhil < [ M@)V(en =) Vo =)y <0,

which implies that (¢, — u,)+ = 0, and so ¢, < u,, as desired. O

4. PROOF OF THEOREM 1.1 IF m > &

We begin this section proving that the sequences {u,} and {¢,} given by Theorem
2.1 are bounded in W,*(Q) N L>(1).

THEOREM 4.1. Let r > 2 and let F > 0 be a function in L™(2), with m > Z. Let
u, and ¢, be the solutions of system (2.1) given by Theorem 2.1. Then there exists a
constant C' > 0 such that

Proof We choose u,, as test function in the weak formulation of the first equation of
(2.1), and ¢, as test function in the second. We have

/ M(x)Vu, - Vu, + r/ Onl,, / Fu, + / (or)u / Fu, + / Oy U, 5
/ M<$>V90n -V + T/ UpPy, = / Tn(u:z)ﬁpn < / Uy, P -
Q Q Q Q

Using (1.2), and summing the two inequalities, we obtain

42) o [ Fufra [ (9ol =1 [t -1 [ug < [ Fu.
Q Q Q Q Q

which implies, dropping some positive terms, that

a/|Vun|2§/Fun.
Q

From this inequality, and since m > & >
exists a constant C' > 0 such that

(4.3) il

N +2, it is well known that one can prove there

<
so that (recalling (4.2)), one also has
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As for the estimate in L>(Q2) of (4.1), we choose Gi(u,) = (u, — k) as test function
in the first equation to obtain, after using (1.2),

o [ 9GP 47 [ i Gul) = [ FGutwn) + [ To(e) Galun)

Q

< / F Galun) + / o, i)
(¢} Q
:/FGk(Un>+/90n 90:;1 Gk(un)
0 Q
g/F@wmf/%%?@mm
0 Q

where in the last passage we have used that ¢,, < u,, thanks to Theorem 3.1. Thus, we
have that

(4.5) a/ VG ga/ VG ()2 + (r — 1) /%u;;l () g/Fkan).
Q Q Q Q

Using this inequality, Stampacchia proved in [12] that there exists a constant C' > 0

such that

From this estimate, and since ¢,, < u,, by Theorem 3.1, we also have that
as desired. 0

As a consequence of this result, one can prove Theorem 1.1 in the case r > 2 and
N
m > 4.
2

Proof of Theorem 1.1, case r > 2 and m > % . Thanks to the estimate (4.1), if n is

large enough one has that T, (ul) = ul and T,(¢") = ¢-. Therefore, for such n,

one has that u & U, and ¢ o ©n are solutions of the equations in (1.1), and both
belong to W, *(Q) N L®(Q). The fact that ¢ < u follows from (3.1). 0

Up to now, we have no results if 1 < r < 2. The next proof fills the gap.

Proof of Theorem 1.1, case 1 < r < 2 and m > % We go back to the approximating
solutions u, and ¢, of (2.1):

(4.6) 0 <u, € Wy () NL2Q) : —div(M(x)Vuy,) +ropul "t = F +T,(¢h),
' 0< p, € Wol’Q(Q) NL®(Q) : —div(M(2)Ve,) +ru, it = Ty(uh).

n

Repeating the same steps of the proof of Theorem 4.1 we arrive (without using that
©n < Up) to (4.3) and (4.4): that is, both u, and ¢, are bounded in W,*(Q2). Therefore,
there exist u and ¢, their weak limits in VVO1 () up to subsequences. Since r < 2 < 2%,
this means (by Rellich theorem) that, always up to subsequences,

u! strongly converges to u” in L'(2), ¢! strongly converges to ¢" in L'(Q),

and similar convergences hold for both ¢, "' and u, ¢"~!. Thus, it is possible to pass
to the limit in the weak formulations of (4.6) to find that u and ¢ belong to W,*(Q),
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and are such that

/M(az)VquH—r/gourlw:/Fw—l—/go’"w, Yw € Wy 2(Q) N L¥(Q),
Q Q Q Q
and

/M(I)VQO'V’LU—FT/UQOTIUJ:/UTU), Vw € Wy (Q) N L2(Q).
Q Q Q

Subtracting the second equation from the first, and choosing w = T1((¢ — u)) as test
function (which is an admissible choice since it is in W, *(Q) N L>(€2)), we obtain, after
using (1.2),

o [ I9Ti(e = w0F 47 [ g Tile = w0 =7 [ w TG —u))
< [wTite—wa - [ ¢ Tille—u) = [ Fhile=w.),

which can be rewritten as

e / VT3 (0 — u)) + / &t rug —rpur —w) Ti((p — w)s)

s—/QFTl«go—u)nso,

where the last inequality is due to the fact that both F' and T7((¢ — u)y) are positive
functions. Let us define the function

Glou) =¢"+rug"™ —rou" —u’,

which we will only consider on the set where ¢ > u. Since Q(t) = t" is convex being
r > 1, we have, for every s and ¢ in R,

Qt) = Q(s) + Q'(s) (t — 5),
so that
" >u"+ru (o —u).
Therefore,

Glou)=¢" +rug™ —rou™" —u’

>u+ru (o —u) Frupt —rpu —u”

:TU(,DT_I—’I“UT:TU(()OT_I—U,T_l)207

where ¢ > u > 0, since ¢ — t"! is increasing. Thus, from (4.7) we have that

o / VT3 (- u))]? < o / VT3 (0 — u)) + / G, u) Th((p — w)4) <0,

which implies that ¢ < u.
Once we have that ¢ < u, it follows that both u and ¢ belong to L*>°(2). Indeed, if
w > 0 is a function in W,?*(Q) N L>(Q), we have

/M(w)Vu~Vw+r/gpu”_lw:/Fw+/c,0’"w§/Fw+/gpu”_1w,
Q ) Q Q Q Q
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so that
/QM(x)vu-vw+ (r — 1)/Q¢uf“—1w < /QFw, Yw >0, we Wy (Q)NL2(Q).
Since u, ¢ and w are positive, one thus has that

/QM(x)Vu - Vw < /QFw, Yw >0, we Wy (Q)NL2(Q).

Recalling that u is in Wy*(Q), and F is in L™(Q), with m > ¥ >
density that

N+2, we have by

/M(x)Vu~Vw§/Fw, Vw >0, we W% (Q).
0 0

Choosing w = Gi(u) = (u— k)4 we can then proceed as in [12] to prove that u belongs
to L>°(Q2), and then that ¢ belongs to L>(Q2) as well since ¢ < w. This concludes the
proof. O

5. PROOF OF THEOREM 1.1 IF 1 <m< %

In this section we are going to prove Theorem 1.1 if f belongs to L™(Q2), with 1 <
m < % Our first result yields a priori estimates on the solutions u and ¢ given by
Theorem 1.1 for L>(Q2) data, depending on the norm of f in L™(§2). To obtain such
estimates, will use some techniques used in [11] in a similar framework.

THEOREM 5.1. Let r > 1, let F' > 0 be a function in L>(Q2), and let m > 1. Then, if
u and ¢ are the solutions of (1.1) given by Theorem 1.1, the following holds:

a) if 1 <m < &, then there exists a constant C' > 0 such that

(5.1 1017y + 10y S CIF -

b) if ™ <m < &, then there exists a constant C' > 0 such that

2
52) ol g,

¢) if 1 <m < ™2, then there exists a constant C' > 0 such that

2
Rl gy < CIFIE

2rm

q q < m 1 e
63 Tl el SONPI, . withg= 2

Proof. Let v > 0, let ¢ > 0, and choose v = [(u + €)? — £7] as test function in the first
equation of (1.1). We obtain

v/ﬂM(x)Vu-Vu (u+5)7_1+r/ﬂgour_1[(u+6)7—z—:”]

:/QF[(H@)v—evH/gor[(uﬂ)v—gﬂ.

Q

(5.4)

Recalling that ¢ < u and that F' > 0, we have that

/QF[(u—l—s)“’—s'y]+/Qg07°[(u+€)7—57] S/QF(U"‘E)’Y“‘/QCPUT_l[(U‘Fg)’Y_S’Y])
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so that (5.4) becomes, after using (1.2),

a”y/Q]VuP(u—irs)V1+(r—1)/<p”(u+5)7

Q

(5.5) < ow/Q [Vul*(u+¢e)" 1+ (r — 1)/9g0ur_1(u +¢e)?

< [Flurertir-ve [ pu

-1

Choosing ¢ (u+¢)Y~" as test function in the second equation yields (always using (1.2))

that
a/ |Vg0\2(u+€)”1+r/ugor(u—|—e)”1 S/wur(u—l—a)”l—%C/ Vol Vu|(ute)2p.
Q Q Q Q

We now have

/wur(U+6)”‘1=/<p u <u+e>7§/w—1<u+s>v,
Q Q Q

u-—+e

and

[1velvalu+ o2 < [ 19eliVul(u+ 2 < [ velValu o

Q Q U+ € Q

since ¢ < u < u+¢e. Thus, by Young inequality, and dropping a positive term, we have

a/ VolP(u+e)™ ' <C / Fu+e)+Ce / put

Q Q Q
+2 / IVol2(u+e)™ +C / |Vul?(u+e)"!
2 Ja Q
<C / Fu+e)+C& /gour_l + g/ IVol?(u+e) .
Q Q 2 Ja

Therefore,

(5.6) g/ Vool (u+e) SC/F(U—!—E)’Y—G—CE’Y /gour_l
2 Ja Q 0

We follow now the ideas of [11], and use (u + ¢)” — €7 as test function in the second
equation of (1.1) to obtain, after reversing the identities

/Q Wl(ute)y — e =r / wg (ute) — & 4 / M(2) Ve Vu(u+ ey

By Young inequality with exponents r and " and by (5.5) we have

and, by (5.5) and (5.6),

‘7 /Q M(2)Ve-Vu (u+e)’™t

§C’/F(u+€)7+067/g0ur_1
Q Q
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Therefore, we have

1/u’”[(u—l—e)”—as”]§C’/F(u—i—5)7—i—0<€7/gpu”1.
2 Jo 0 Q

Letting ¢ tend to zero, and using both Fatou lemma and Lebesgue theorem (note that
every function in the above inequality is positive and bounded), we arrive at

1
M*'YSC/FU”SCHFHT” </u7m/)m.
/Q Q L@\ Ja

Choosing v so that r++ = ym/ yields v = r(m—1), which is positive by the assumptions
on r and m. Therefore, we have (using that ¢ < u) that

fem< [um<cir,,.

which is (5.1). Letting € tend to zero in (5.5) and (5.6), we obtain (dropping some
positive terms), recalling the value of v, and using (5.1)

(57) /|vu|2u7‘(m—1) 1 /|V§0|2 r(m—1)— <C/Fur(m—1) SCHF”m
Q Q Lm(Q

Suppose now that r(m —1) < 1, which is true if and only if 1 < m < %1, and let ¢ < 2.
We then have, following [6],

2—gq

q 2-q
/‘Vu‘q:/llv—u’lug(l—r(m—l)) < (/%)2 (/u2 (1 r(m— 1))) 2 ‘
Q o u3i=rim=1) o ul—r(m i

Let g be such that

2rm
Sl = g= 2
and note that ¢ < 2 since m < "1, Thus, by (5.1) and by (5.7),

mgq rm K mgq m( m
/mrqsann sn / <CIF|E FIPES = o Fm
0 @)\ Jq oy 1 I pmia Lm(Q)

which is half of (5.3). The other half, the estimate on ¢ in W,9(Q) for the same value
of ¢, can be obtained in the same way starting from (5.7).
Suppose now that r(m — 1) = 1, that is m = T“ . In this case, (5.7) becomes

(5.9 [ e+ [ 1968 < O G

which is (5.2) in this case. If r(m—1) > 1, that is if m > %, then by Holder inequality
one has

7‘

Thus from (5.8), and the above inequality, it follows that

L9+ [ e < cle
Q Q ™)

which is (5.2) in this case. This concludes the proof. O

Once the a priori estimates have been obtained, we can prove the existence result of
Theorem 1.1 in the case 1 <m < %, reasoning by approximation.
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Proof of Theorem 1.1, case 1 <m < 5. Given f as in the statement, let F, = T,(f).
Then F,, belongs to L>*(Q2), and strongly converges to f in L™(2). Let u, and ¢,
be the solutions of (1.1) with data F},, whose existence is guaranteed by Theorem 1.1.
Thanks to the results of Theorem 5.1, the sequences u,, and ¢,, are bounded in L™ (),
and in either Wy %(Q) (if m > 1) or in Wy (), with ¢ = 2”” L (if 1 <m < HH).

On the other hand, since both {u!'} and {¢!} are bounded in L™(Q), as is {F,},
classical elliptic regularity results (see for example [12], [5], [6]) yield that both {un}
and {¢,} are bounded in W,*(Q) if m > 5, and in W™ (Q)if 1 <m < N+2,
Lebesgue summability, both the sequences {u,} and {¢,} are bounded in L™ (£2).

Therefore, comparing the exponents, we have the following results depending on the
values of 7r:

eif 1 < 7 < & then {u,} and {g,} are bounded in Wy?*(Q) N L™ (Q) if

as for

N-2
m > ]352, and in W™ (Q) if 1 <m < 5
o if 5 < r< %*3, then {u,} and {@n} are bounded in W,?(Q) N L™ (Q) if
m > N+2, in W, ™ (Q) if STl <m < 1\2,52, and in W,%(Q) N L™(Q), with
q—ii’”’f,lf1<m<% Tl,
o if r > %J“g, then {u,} and {¢,} are bounded in Wy*(Q) N L™ (Q) if m > ol
and in Wy %(Q) N L"™(Q), with ¢ = m i 1 <m < B

Thus, up to subsequences, they weakly converge respectlvely to u and ¢ in the
various Sobolev and Lebesgue spaces where they are bounded, and almost everyhwere.
Thanks to these convergences, and to the fact that m > 1, the sequence u] is strongly
convergent in L'(€) to u"; since it dominates the sequences ¢!, u, ¢! and @, u" !
(being ¢, < u,), we have strong convergence in L'(Q2) of ¢, u, ¢" " and ¢, u" ! to
their respective almost everyhwere limits. All these results allow to pass to the limit in
the weak formulation of the equations for u, and ¢,, that is:

/M(a:)Vun~Vw+r/g0nuzlw:/an+/¢Zw7 Vw € Cy(Q),
Q Q Q Q
and
/M(:U)Vgon-Vw+r/un<p;1w—/u;w, Vw € Cy(9)
Q Q )
to have that

/M(:U)Vu-Vw—irr/cpu’"_lw:/fw+/90Tw, Yw € Cy(Q),
Q Q Q Q
and
/M(x)VgO-VerT/USOT_lw:/UTW, \V/”LUGC&(Q),
Q Q Q
as desired. O

REMARK 5.2. If f belongs to L™(€2), with m such that u and ¢ are in W;"*(2), then
we can choose test functions w in Wy 2(Q) N L=(Q) in the formulations for u and ¢,
which thus become weak solutions (instead of “only” distributional ones).

6. PROOF OF THEOREM 1.1 IF m =1

In this section we prove Theorem 1.1 in the case m = 1. We begin, as usual, with
some a priori estimates on the solutions u and ¢ given by Theorem 1.1 with L>()
data.
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THEOREM 6.1. Let r > 1 and F' > 0 be a function in L*(S2). Then, if u and ¢ are the
solutions of (1.1) given by Theorem 1.1, the following holds:

2r
r+1°

Proof. We choose Ty (u) as test function in the first equation; after using (1.2), and that
¢ < u, we obtain

o [19B@P+-1) [ i) < a [ [VR@P+He-D [ o0 i < [ PR

Dividing by k, we have that

(6.1) 3 |VTk<u>|2+/Q¢@s/QF@.

Choosing Ty (i) as test function in the second equation yields, after dividing by k, using
(1.2) and the fact that ¢ < u, that

T T, T
k Ja Q k Q k Q k
Therefore,

(6.2) 2 / V() < / LU

We now choose T (u) as test function in the second equation of system (1.1); after
reversing the identity, and dividing by £, we have

‘/Mzﬁﬁzr/uﬁlﬂj /A[ W - VTi(u).
Q k Q

We now remark that the last integral is on the set {0 < u < k}; since ¢ < u, on this
set we have ¢ < k too, so that Vi = VT (p). Therefore, using Young inequality twice,
we have

[P < [wlie [y 2 [wnep+ [ 19w,

Using both (6.1) and (6.2) we thus have

1 T, 1,
(6.3) —/u “)<0/ plilw)
2 ), Tk ok
Letting k tend to zero, we obtain
(6.4) Jwr=ciFl,,.
which then implies (since ¢ < u) that
. "<
(6.5) L& <ClFlg,
Now we follow [3]: recalling (6.1) and dropping a positive term, we have that
(6.6) / VT (w)|* < Ck HFHLl(Q

Let A > 0. Then
{IVu| > A} ={|Vu| > A, u <k} U{|Vu| > X\, u>k}.
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Therefore,
{IVul > A} < {IVul > A, u <K+ [{[Vu] > A u > kY
< H{IVul 2 A, u< kY +{u > B,
Thus, from (6.4) and (6.6) it follows that

k: 1 k 1
> < —_ < — ).
Choosing k™! = A2, we obtain
1

2r
r+1

[{IVul 2 AH < CIFI L

which yields an estimate on Vu in the Marcinkiewicz space M T%(Q), thanks to the
well known inclusions between Marcinkiewicz and Lebesgue spaces, we thus have

2r
q
sy < CMFNys Vo< 7
as desired. The analogous estimate for ¢ is proved in the same way, using that ¢ <
U. U

We can now conclude the proof of Theorem 1.1.

Proof of Theorem 1.1, case m = 1. Let f > 0 be as in the statement, and let F, =
T.(f). Then, if u, and ¢,, are the solutions of (1.1) with data F,,, from Theorem 6.1 it
follows that

q q < T T <
(6.7 ||un||W01,q o 1ol S CW g [+ [ <Cllg,

for every ¢ < =% 7“+1

On the other hand, since both {u”} and {¢"} are bounded in L'(Q), as it is {F,},
classical elliptic results (see for example [5], [6]) yield that both {u,} and {¢,} are
bounded in Wy(), for every q < % Therefore, comparing the exponents, we have
the following, depending on the values of 7:

eifl <r< N 5, then both {un} and {p,} are bounded in W,“(Q) N L*(Q), for
every q < N 7, and every s < N 5

e if r > &= then both {u,} and {¢,} are bounded in Wy (Q)N L™ (Q), for every
q < 2.

Thus, there exist u and ¢, such that u, and ¢, weakly converge, up to subsequences,
to u and ¢ respectively, in the Sobolev and Lebesgue spaces as above, as well as almost
everyhwere in ).

From the boundedness of u,, in L"(2) it follows that

lim [{u,>h} =0, uniformly in n in N,
h—+o00

which then, since f belongs to L'(Q), implies that

(6.8) lim f=0, uniformly in n in N.
Pt00 Junzhy
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Going back to (6.3) written for u, we have, since F,, < f, and since Ti(u,) = k where
un Z k’

(6.9) / uzg/u;Tk(un) SC/FnTk(un) SC/ka(un)
{un>k} Q k 9 k ok

Let now 0 < ¢ < 1; then

/Qf@ - /{un<k6} f@ " /{un>k6} f@ =0 /Qf i /{un>k5} I

Using (6.8), we have that

lim f=0, uniformly in n in N|

so that

T,
lim sup / f k(ttn) < / f, uniformly in n in N.
Q Q

k—+o0 k
Since ¢ is arbitrary,

T (un . o
lim / f k(tn) =0, uniformly in n in N.

Using this fact, let ¢ > 0, and let k be such that
T (un,
/ plilwn) e N,
Q k

Therefore, thanks to (6.9), and if F is a measurable subset of 2 with |E| < k™" ¢, we
have

Ty (un
Ju=[ [ wsrimee [ v, wen.
E Enf{un<k} En{un>k} Q k

From the previous inequality, it follows that the sequence {u]} is uniformly equi-
integrable; since it is almost everywhere convergent to u”, by Vitali theorem we have
that

u! strongly converges to u” in L'(Q).
Since ¢, < u,, we have that u’ dominates the sequences ¢, u, " ! and ¢, u" !,
which are thus strongly convergent in L' (£2) to their respective limits by the generalized
Lebesgue theorem. These convergences, together with the weak convergence of u,, to u
in Wol’q(Q), for every ¢ < ri—’”l, and of ¢, to ¢ in the same spaces, allow to pass to the
limit in the distributional formulation of the two equations of (1.1):

/M(:c)Vun~Vw+r/g0nu;1w:/an+/902w7 Vw € Cy(Q),
Q Q Q Q
and
/M(x)Vgan-Vw—H“/ungog_lw:/u;w, Vw € Cy(9),
Q Q Q
to have that
/M(m)VwVw—l—r/gouT_lw:/fw+/90Tw7 Yw € Cy(9),
Q Q Q Q

and

/M(a:)Vgo-Vw—l—r/ugoT_lu}:/urw, Yuw € C5(9),
0 0 0
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as desired. O

7. MEASURE DATA

In this section we briefly deal with existence and nonexistence of solutions for system
(1.1) if the datum f is a bounded positive Radon measure, instead of a function in
LY(Q).

We begin with the existence result, which holds if r is “small”.

THEOREM 7.1. Let 1 < r < %, and let 1 > 0 be a bounded Radon measure on

Q). Then there exist distributional solutions u and ¢ of (1.1) with datum f =

Furthermore, u and ¢ belong to Wol’q(Q), for every q < %

Proof. As for the case of L'() data, we reason by approximation; let { f,,} be a sequence
of positive L>®(Q2) functions which converges to p in the weakx topology of measures,
and let u, and ¢, be the solutions of (1.1) with data f,. Then, as in the proof of
Theorem 1.1 in the case m = 1, we have that

q q <
[l 190210 < C Ml < €

L' —
since the sequence {f,} is bounded in L'(Q2). Therefore, up to subsequences, u,, and
¢, converge to some functions u and ¢ weakly in W,(Q2), for every ¢ < 2, and,
thanks to Rellich theorem, strongly in L*(2) for every s < <. In particular, u, and
oy, strongly converge to w and ¢ in L"(2), so that u”, ¢", o, u"~! and u, "~ strongly
converge in L'(Q) to their respective limits.

These convergences are enough in order to pass to the limit in the distributional
formulation of the two equations in (1.1) with data f,,, so that u and ¢ are distributional
solutions of (1.1) with datum g, as desired. O

We prove now that if r is “large”, and the datum p is the Dirac delta concentrated
at a point z¢ in €2, then existence of solutions for (1.1) fails.

THEOREM 7.2. Let r > N 5, let 29 in €, and let {f,} be a sequence of positive L>(2)
functions which converges to the Dirac delta concentrated at xg, that is,

lim / fath =1(x0), VY elQ).
n—+o0 Jo

Let u,, and ,, be the solutions of (1 1) with data f,,. Then u, and ¢, weakly converge to
zero in Wy4(Q), for every q < 2, and there is no solution obtained by approximation
of (1.1) if the datum is the Dirac delta concentrated at x.

Proof. Recalling (6.7), we have that {u,} and {,} are bounded in W,(Q), for every

q < %, so that, up to subsequences, they weakly converge to v and ¢ in the same

spaces. We recall that {z(} has zero W, P-capacity for every 1 < p < N (see e.g. [10])
since TT < N by the assumptions on r, {zo} has zero s-capacity,

Therefore (see [10]), for every 6 > 0 there exists a function 5 in C§°(2), such that

(7.1) /wawga, 0<us<1. islen)=1.
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We now choose T (u,,) (1 —1)5) as test function in the first equation of (1.1). We obtain
/ M(x)Vu, - VTi(u,) (1 —5) — / M (z)Vu, - Vips T (uy,)
Q

b [t D) (1= ) = [ T (=) + [ 0 Taln) (= ).

Recalling that ¢,, < u,, we have that

[T 0= < [ o Tutun) (1= ),

so that we have, also using (1.2) and that u,, and ¢,, are positive,

o / VT () (L — ) + (1) / ot T (1) (1 — 05)

(7.2)
< [ h@=u)+ [ M@0, VusTiw,).
Q Q
We now recall that T3 (u,) is bounded in Wy*(Q) (see (6.6)). Therefore, up to subse-
quences, it weakly converges in W,*(€2) to Ty(u). Passing to the limit in (7.2) as n
tends to infinity, and dropping a positive term, we therefore obtain

/|v:r1 2(1 — ) < (1 — vs(x0)) /M VW - Vs T (1)

Recalling that 15(x¢) = 1, we thus have that

/|VT1 2(1 — ) < /M )W - Vs Ty (u) .

Now we let 0 tend to zero. Since |Vu| belongs to L(f2) for every ¢ < and |Vibs|

sy
tends to zero in L*(2) for some s > 25 = (Ti—rl)/, we have that

lim [ M(z)Vu-VisTi(u) =0,

6—0t Q

which implies that
oga/ VT (@) < lim a/ VT (u)[2(1 — ) < 0
Q o—0+ Q

Thus 7' (u) = 0, which implies that w = 0. We have therefore proved that u, tends to
zero. Since 0 < ¢, < u,, we have that ¢, tends to zero too. Clearly, the functions
u =0 and ¢ = 0 solve problem (1.1) with datum f = 0, and do not solve problem (1.1)
with datum the Dirac delta concentrated at xy: such a problem does not therefore have
a solution obtained by approximation. Il

REMARK 7.3. As a consequence of the fact that u, and ¢, converge to zero, one also
has

lim [ [ro,up™ —oplv =(z0), Vo€ CF(Q).

n——+oo Q

In other words, the Dirac delta disappears as n tends to infinity, since it is “hidden” in
the lower order terms.
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8. SADDLE POINTS OF J

If f belongs to Lm(Q), with m > N+2, then there exist solutions u and ¢ of (1.1),

with both u and ¢ in W,*(Q2) N L"™(Q). We are going to show that, in this case, (u, )
is a saddle point of the functional J defined in the introduction, in the sense that

J(u, ) < J(u,0) < J(v,0)
for every v and ¢ in W, () such that

(8.1) /gp]v!r and /u]w|’" are finite.
0 Q

Note that since u”, ¢", @ u"~' and u "~ belong to L™(£2), the assumption m
implies that

/ u" 1, / ou"tw, / w "t and / ©" v are finite for every v, ¥ in W&’Z(Q),
Q Q Q Q

so that both J(u,v) and J(v,¢) are well defined if (8.1) holds.
Recall that u is a solution of

—div(M (2)Vu) +rou ' = f+¢".
Choosing u — v as test function, with v in W, () such that (8.1) holds, we have that

(8.2) /QM(x)Vu-V(u—v)—i-r/ngurl(u—v):/gf(u—v)jL/ngr(u—v).

We observe now that we have, since M is uniformly elliptic,

2N
> N+2

/M )WVu-V(u—v)= /M )WV - Vu——/M )Vu - Vu
(8.3) /M V(u—0)- V(u—0v)
1
2—/M(x)Vu-Vu——/M(x)Vv-VU.
2 Ja 2 Ja
On the other hand, since ¢ — [¢|" is convex, and u > 0, we have

" > |ul" + 7 |u)"Pu(v—u) =u" +rut (v —u),

which is equivalent to
ru"t (u—v) >u" — ||

Therefore, since ¢ is positive, we have

(8.4) /gpu (1 — ) /gpu—/aph)

with the last integral being finite thanks to (8.1). Recalling (8.2), we thus have from
(8.3) and (8.4) that

1
—/M(x)Vu-Vu—f—/gou’"—/u(pT—/fu
2 Ja Q Q Q
1
g—/M(x)Vv-Vv—l—/goh)]’”—/vgo’”—/fv,
2 Ja 0 Q Q
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for every v in W,*(Q) such that (8.1) holds. Thus, J(u,¢) < J(v, ) for every v in
Wy ?(Q) such that (8.1) holds. A similar technique yields that J(u, ) < J(u, ) for
every ¢ in W,*(€) such that (8.1) holds, as desired.
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