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Abstract

We address the questions of identifying pairs of interacting neurons from the observation of their
piking activity. The neuronal network is modeled by a system of interacting point processes with
emory of variable length. The influence of a neuron on another can be either excitatory or inhibitory.
o identify the existence and the nature of an interaction we propose an algorithm based only on the
bservation of joint activity of the two neurons in successive time slots. This reduces the amount
f computation and storage required to run the algorithm, thereby making the algorithm suitable for
he analysis of real neuronal data sets. We obtain computable upper bounds for the probabilities of
alse positive and false negative detection. As a corollary we prove the consistency of the identification
lgorithm.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

We address the question of inferring the interactions in a system of spiking neurons modeled
s follows. The spiking activity of each neuron is modeled as a point process whose intensity
epends on the previous activity of a set of neighbors, henceforth called its presynaptic neurons.
ach neuron i is affected by the spiking activity of its presynaptic neurons taking place after
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the last spiking time of i . This means that a neuron resets its memory after each of its spikes.
This biologically motivated feature implies that this system of interacting point processes has
a memory of variable length. This observation is at the origin of the article by Galves and
Löcherbach (2013) [17], in a discrete time framework. The variable length memory feature
was subsequently modeled in a continuous time framework by De Masi et al. (2015) [12], and
many other articles including [1–3,14,16,24,26], and [28]. For a self-contained presentation of
this class of variable length memory models for system of spiking neurons, both in discrete
and continuous time, we refer the reader to Galves et al. (2021) [18].

The idea of considering discrete time chains on variable length was introduced in the
pioneering article by Rissanen (1983) [27], and then popularized in the statistical community
by Bühlmann and Wyner (1999) [10].

In the present article we introduce a new statistical procedure to infer for each pair of
neurons, whether one is presynaptic to the other.

As far as we know, the problem of inferring the graph of interactions for such a kind
of models has been addressed only in Duarte et al. (2019). Given a sample of the spiking
activity of a large set of neurons, they propose a pruning procedure to retrieve the set of
presynaptic neurons of a fixed neuron i . First the algorithm assumes that all the remaining
neurons are presynaptic to i . Then the nonparametric maximum likelihood estimates of the
spiking probabilities of i are computed, as a function of the spiking activities of the other
neurons after the last spiking time of i . The same procedure is repeated by excluding the
candidate presynaptic neuron j . The criterion to prune or not j from the estimated set of
presynaptic neurons of i is the following. For any fixed observed history of the activities
of the other neurons, the difference between the estimated probabilities, with or without the
information concerning j , is computed. If the maximum of these differences is below a given
threshold, then j is pruned. Otherwise, j is kept in the estimated set of presynaptic neurons
of i . Under suitable assumptions, in [13] the consistency of the procedure has been obtained:
upper bounds are provided for the probabilities of false positive and false negative detection,
that converge to 0 as the length of the sample increases.

Despite the clear mathematical interest of the result obtained in Duarte et al. [13], the
proposed procedure presents drawbacks when used to analyze real neuronal data. First of all,
it requires extremely lengthy data sets in order to observe the possible histories of a big set of
neurons for a sufficiently large number of times. Moreover, the required computations cannot be
localized in the observed set of neurons. In fact, to obtain the required estimates, the histories
of all the neurons have to be taken into account at the same time. Even more questionable is
the assumption that all the neurons of the system can be observed. Actually, the activity of
many inhibitory neurons can hardly be observed directly, by means of the actual spike sorting
procedures.

The algorithm introduced in the present article aims to overcome these drawbacks. To guess
the influence of neuron j on neuron i , only the spiking activities of these two neurons are
considered. The observation time of the system is divided into short time slots. Then the
following two probabilities are compared: (a) the probability of a spike of neuron i , following
another spike of i , observed in the previous time slot; (b) the probability of a spike of i ,
following a spike of j and one of i , observed in the two previous time slots (first i and then j).

or sufficiently small time slots, the difference between the latter and the former probabilities
eveals the eventual presence of j in the set of presynaptic neurons of i . Under suitable

assumptions, in the limit as the length of the time slots decreases to 0, if j has an excitatory,

respectively inhibitory, effect on i , then this difference becomes positive, respectively negative.
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If j is not in the set of presynaptic neurons of i , then the limit of this difference is 0. These
symptotic results provide the basis for the statistical algorithm considered in the present article.

To recover the limiting behavior described above from the observation of a large but finite
ample, the length of the time slot must be sufficiently small. On the other hand, we need to
bserve a sufficiently large number of times the event that two spikes of i , with a spike of j in
etween, occur in three consecutive time slots. Therefore the length of the time slot cannot be
oo small. This fact is reminiscent of the familiar bias–variance tradeoff. As a matter of fact,
n our proof we estimate the maximal length of the time slots for which our consistency proof
orks.
The rationale behind the algorithm considered here is simple to explain. The algorithm

onsiders the spiking activity of neurons i and j , in three successive time slots, starting with
spike of i , in order to take advantage of the reset feature of the neuronal activity. Indeed,

fter each spike, a neuron resets its memory by forgetting the previous history of the system.
herefore, if we know that there was a spike of i in the first time slot, the reset property helps
etecting if a spike of neuron j , occurring in the second time slot, influences or not the activity
f i in the third time slot.

The idea of modeling system of spiking neurons as interacting point processes was pioneered
y Brillinger and coauthors. See, for instance, [6,9], and [7]. As a matter of fact our procedure
s reminiscent of the first and second order conditional rate functions introduced in [8].

In neuroscience the problem of inference of the graph of interactions has a specific feature
hich makes the statistical problem particularly hard. This feature is the impossibility of
bserving the totality of the system. As a matter of fact experimental procedure can only record
n extremely tiny portion of the global neural activity. The treatment of multi unitary neural
ata sets thus requires algorithms which are suited for partially observed systems.

In general, this kind of statistical difficulty appears in the analysis of many big systems
ith interactions in time and space. The problem of identifying interactions in a multivariate
rocess has a long history, starting at least with Granger (1969) [20]. An account of the
eneral theory of graphical models can be found in Lauritzen (1996) [25]. Problems of graph
dentification have been the main source of motivation for the design of the so called reversible
ump algorithms (see Green (1995) [21]).

Since then, the problem of statistical selection of graphical models has been discussed in
everal articles. Some of them consider the case in which the samples are i.i.d. @realizations
f the same law, see for instance Csiszár and Talata (2006) [11], Bresler at al. (2013) [5],
alves et al. (2015) [19], Hamilton et al. (2017) [23]. Others address such a problem when

he sample is constituted by a single observation of the time evolution of a stochastic system
ike in Brillinger and coauthors seminal articles. For instance, the problem of identifying pairs
f interacting components in a different class of multivariate point processes, namely Hawkes
rocesses, was addressed by Eichler, Dahlhaus, Dueck (2017) [15].

In this framework, we thank an anonymous referee for attracting our attention to the article
y Bresler et al. (2018) [4] which is devoted to the estimation of the interacting pairs of the
sing Glauber dynamics. As a matter of fact the algorithm considered in the above article is also
eminiscent of Brillinger et al. (1976) approach. Nevertheless there are substantial differences
etween their and our article. The dynamics they consider is reversible, which is not our case.
oreover Bresler et al. (2018) observation model is statistically artificial since they consider

hat all the events of the underlying Poisson point process are observed even when they do not
ead to a modification of the system.
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The structure of the paper is the following. In Section 2 the model is introduced and the
wo main results, Theorems 1 and 2 are stated, whose proofs are given in Sections 3 and 4,
espectively.

. Definitions and main result

We start by introducing the multivariate point process modeling the system of spiking
eurons considered here. The main ingredients used to define the process are the following:

• a finite set I , henceforth called the set of neurons;
• a matrix (w j→i ∈ R : ( j, i) ∈ I 2), henceforth called the matrix of synaptic weights;
• a family of simple point processes {

(
T i

n

)
n≥1 : i ∈ I }, with 0 < T i

1 < T i
2 < · · · , denoting

the successive spiking times of neuron i ;
• a family of non-decreasing functions φi : R → [0, +∞[, henceforth called spiking rate

functions.

If w j→i > 0 (respectively w j→ j < 0), we say that the neuron j has an excitatory
respectively inhibitory) effect on neuron i . In case w j→i = 0, we say that neuron j does
ot affect neuron i . We assume that there is no self-interaction and therefore w j→ j = 0, for
ll j . The reason for this terminology will be readily clarified (see (1) and (2)).

The set V i
= { j : w j→i ̸= 0}, is called the set of presynaptic neurons of i . Obviously

V i
= V i

+
∪ V i

−
,

here V i
+

and V i
−

are the sets of excitatory and inhibitory ones,

V i
+

=
{

j : w j→i > 0
}
, V i

−
=
{

j : w j→i < 0
}
,

espectively.
We suppose that a bound d for the maximal cardinality of the sets of presynaptic neurons

s known

max{|V i
| : i ∈ I } ≤ d .

For any neuron i , we define the spike counting measure N i as follows. For any subset
A ⊂ R+,

N i (A) =

∑
n≥1

1
{T i

n ∈A}
.

or any positive real number t , when the event {T i
1 ≤ t} is realized, we define L i (t) as the last

piking time of neuron i occurring before time t

L i (t) = sup{T i
n : n ≥ 1, T i

n ≤ t} .

his definition allows to introduce the membrane potential U i (t) of neuron i at time t as follows

U i (t) =

⎧⎨⎩U i (0) +
∑

j∈V i w j→i N j (0, t], if 0 ≤ t < T i
1 ,∑

j∈V i w j→i N j (L i (t), t], if T i
1 ≤ t,

(1)

i
here U (0) denotes the initial value of the membrane potential.
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We will denote by U (t) the vector of the membrane potentials of all the neurons at time t

U (t) =
(
U i (t) : i ∈ I

)
.

In what follows, the initial value U (0) of the vector of membrane potentials is chosen in an
arbitrary way. We are not assuming the stationarity of the processes.

Finally, for any positive real number t , we define Ft as the σ−algebra generated by the
family of spike counting measures

(
N i (A) : i ∈ I, A ⊂ [0, t]

)
, together with the initial vector

f membrane potentials U (0) =
(
U i (0) : i ∈ I

)
.

With this notation, we can now formally relate the elements of the model in the following
way. For any neuron i and any pair of positive real number t < t ′, we require the spike counting

easures N i (t, t ′], i ∈ I , to satisfy the equation

E
(
N i (t, t ′] |Ft

)
= E

(∫ t ′

t
φi (U i (r−))dr |Ft

)
. (2)

nformally this condition can be stated as

P
(
N i (t, t + dt] = 1 |Ft

)
= φi (U i (t−))dt + o(dt).

ssumption 1. The spiking rate functions φi : R → (0, +∞) are

1. nondecreasing,
2. bounded away from 0, with

min
i∈I

inf
u∈R

φi (u) ≥ α > 0 ,

3. bounded from above, with

max
i∈I

sup
u∈R

φi (u) ≤ β < +∞ ,

4. and satisfy

min
i∈I

{|φi (w j→i ) − φi (0)| : j ∈ V i
} ≥ δ > 0,

or some known positive constants α, β, δ.

Observe that α, β and δ are such that α + δ ≤ β. In the sequel we shall use the shorthand
otation

s =
α

β
and τ =

δ

β
∈ (0, 1), (3)

ith the constraint s + τ ≤ 1.

Before defining the estimation algorithm, we need to introduce the following events,
epending on a parameter ∆ > 0 to be chosen in a suitable way. Given two neurons i ∈ I and

j ∈ I , with i ̸= j , we denote

Ai (∆) = {N i (0,∆] > 0}, (4)

Bi (∆) = Ai (∆) ∩ {N i (∆, 2∆] > 0}, (5)
228
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C j→i (∆) = Ai (∆) ∩ {N j (∆, 2∆] > 0}, (6)

D j→i (∆) = C j→i (∆) ∩ {N i (2∆, 3∆] > 0}. (7)

In the following, we are going to use the notation Pu(·) instead of P(· | U (0) = u).

Theorem 1. Suppose that the family of spiking rate functions {φi : i ∈ I } satisfy Assumption 1.
et ∆0 =

s2

5dβ
. For any ∆ ≤ ∆0 any fixed pair of neurons i and j with i ̸= j , and any pair of

ectors of membrane potentials u and u′, the following inequalities hold.
If j /∈ V i , then

− ζ1(∆) <
Pu(D j→i (∆))
Pu(C j→i (∆))

−
Pu′ (Bi (∆))
Pu′ (Ai (∆))

< ζ2(∆). (8)

If j ∈ V i
−

, then

Pu(D j→i (∆))
Pu(C j→i (∆))

−
Pu′ (Bi (∆))
Pu′ (Ai (∆))

≤ −ζ−(∆). (9)

If j ∈ V i
+

, then

ζ+(∆) ≤
Pu(D j→i (∆))
Pu(C j→i (∆))

−
Pu′ (Bi (∆))
Pu′ (Ai (∆))

, (10)

here

ζ1(∆) =
9
s2 d(β∆)2, ζ2(∆) =

5 + 3s2

s3 d(β∆)2, (11)

ζ−(∆) = −ζ1(∆) +

(
1 +

5dβ∆

s3

)
τβ∆, (12)

ζ+(∆) = −ζ2(∆) +

(
1 −

5dβ∆

s2

)
τβ∆. (13)

Since the quantities

Pu(D j→i (∆))
Pu(C j→i (∆))

−
Pu′ (Bi (∆))
Pu′ (Ai (∆))

will be estimated from data, convenient error terms are added to ζ1(∆) and ζ2(∆), whereas
hey are subtracted to ζ+(∆) and ζ−(∆), defining

ξ1(∆) = ζ1(∆) +
τ

10
β∆

(
2 −

dβ∆

s2

)
, (14)

ξ2(∆) = ζ2(∆) +
τ

10
β∆

(
2 +

5 − 3s2

s3 dβ∆

)
, (15)

ξ−(∆) = ζ−(∆) −
τ

10
β∆

(
2 − τ +

5(1 − τ ) − 3s2

s3 dβ∆

)
, (16)

ξ+(∆) = ζ+(∆) −
τ

10
β∆

(
2 + τ −

1 + 5τ

s2 dβ∆

)
. (17)

t is easily seen that all the quantities in brackets are positive for ∆ ∈ (0,∆0]; indeed the reader
an easily verify that they are bounded from below by 1.
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Proposition 1. Let ∆∗
=

s3τ
34dβ

. For any ∆ ∈ (0,∆∗]

ξ1(∆) ≤ ξ−(∆), ξ2(∆) ≤ ξ+(∆). (18)

Since ∆∗ < ∆0, Proposition 1 and (14)–(17) imply the following inequalities

0 < ζ1(∆) < ξ1(∆) ≤ ξ−(∆) < ζ−(∆), (19)

0 < ζ2(∆) < ξ2(∆) ≤ ξ+(∆) < ζ+(∆). (20)

he usefulness of the above inequalities will became clear in Theorem 2.
The above results suggest the following estimation algorithm, which is based on a partition

f the observation time in slots of fixed length ∆∗.
Given two neurons i ∈ I and j ∈ I , with i ̸= j , we set

Ai
1 = Ai (∆∗), Bi

1 = Bi (∆∗), C j→i
1 = C j→i (∆∗), D j→i

1 = D j→i (∆∗),

nd likewise, for any positive integer k > 1, we define the events

Ai
k = {N i ((2k − 2)∆∗, (2k − 1)∆∗] > 0},

Bi
k = Ai

k ∩ {N i ((2k − 1)∆∗, 2k∆∗] > 0},

C j→i
k = {N i ((3k − 3)∆∗, (3k − 2)∆∗] > 0, N j ((3k − 2)∆∗, (3k − 1)∆∗] > 0},

D j→i
k = C j→i

k ∩ {Ni ((3k − 1)∆∗, 3k∆∗] > 0}.

For any integer n ≥ 1, we define

S Ai
(n) =

n∑
k=1

1Ai
k
, SBi

(n) =

n∑
k=1

1Bi
k
,

SC j→i
(n) =

n∑
k=1

1C j→i
k

, SD j→i
(n) =

n∑
k=1

1D j→i
k

,

nd, for any integer m ≥ 1, we define

K i
m = inf{n ≥ 1 : S Ai

(n) = m},

H j→i
m = inf{n ≥ 1 : SC j→i

(n) = m}.

Next define

tn =
⌈
α∆∗n

⌉
, mn =

⌈
19
20

α2(∆∗)2(1 −
τ

10

√
α∆∗)n

⌉
. (21)

Once these parameters are set, we can define the empirical ratios

Ri (n) =
SBi

(K i
mn

∧ tn)

S Ai (K i
mn

∧ tn)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
SBi

(K i
mn

)
mn

, if K i
mn

≤ tn

SBi
(tn)

i , if K i
mn

> tn,

(22)
S A (tn)
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G j→i (n) =
SD j→i

(H j→i
mn ∧ n)

SC j→i (H j→i
mn ∧ n)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
SD j→i

(H j→i
mn )

mn
, if H j→i

mn ≤ n

SD j→i
(n)

SC j→i (n)
, if H j→i

mn > n.

(23)

For any pair of neurons i ̸= j , the statistics Ri (n) and G j→i (n) will be used to identify
hether j is presynaptic to i or not. They are ratio estimators that are stopped once their
enominator reaches the level mn , but differently from G j→i (n), which is allowed to reach
his level up to the time 3∆∗n, the estimator Ri (n) is stopped at most after the time 2∆∗tn
s expired. The latter time is much smaller than the former, since a rough upper bound for
∆∗ is 1

34d . Therefore a much smaller interval of time is sufficient for Ri (n) to reach the same
ccuracy as G j→i (n).

Finally we define the estimated sets V̂ i
+

(n), V̂ i
−

(n), and V̂ i (n), as follows

V̂ i
−

(n) = { j ∈ I \ {i} : G j→i (n) − Ri (n) ≤ −ξ1(∆∗)} (24)

V̂ i
+

(n) = { j ∈ I \ {i} : G j→i (n) − Ri (n) ≥ ξ2(∆∗)} , (25)

V̂ i (n) = V̂ i
+

(n) ∪ V̂ i
−

(n) . (26)

We can now state our main theorem, in which P stands for a probability measure on the
piking processes with an arbitrary law of the initial vector of the membrane potentials.

heorem 2. For any observation time T > 0,define n(T ) := ⌊
T

3∆∗ ⌋, where ∆∗
=

s3τ
34dβ

.

Let Ri (n), G j→i (n), V̂ i
−(n), V̂ i

+(n), and V̂ i (n) be defined as in (22)–(26). Then the following
inequalities hold:

if j /∈ V i , then P
(

j ̸∈ V̂ i(n(T )
))

≥ 1 − 2Ce−ωT ,

if j ∈ V i
−
, then P

(
j ∈ V̂ i

−

(
n(T )

))
≥ 1 − Ce−ωT ,

if j ∈ V i
+
, then P

(
ˆj ∈ V i

+

(
n(T )

))
≥ 1 − Ce−ωT ,

where

ω = ϑ0
τ 4s9β

d2 , C = 4eω s3τ
10dβ ,

ϑ0 being a computable universal constant.

3. Proofs of Theorem 1 and Proposition 1

The proof of Theorem 1 is based on a particular construction of the counting measures N i ,
and the membrane potential processes U i , i ∈ I , in such a way that (1) and (2) hold.

We consider a Poisson measure on [0, ∞) × [0, β] × I ,

N (dt, dx, dz) =

∑
δ(Tk ,Xk ,Zk )(dt, dx, dz),
k≥1
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with intensity measure

µN (dt × dx × {i}) = dt × dx, i ∈ I .

Without loss of generality we assume that 0 < T1 < T2 < · · · . Observe that the marks Xk ,
≥ 1, are independent and uniform in [0, β]. The Tk’s are candidates to be spiking times for

neurons: T1 is accepted as a spike for neuron j if and only if

Z1 = j, X1 ≤ φ j (U j (0)).

If this is the case then T j
1 = T1, and the potential vector is updated in the interval [T1, T2)

ccording to

U j (t) = 0, U i (t) = U i (0) + w j→i , i ̸= j;

therwise U (t) = U (0), and the construction proceeds with the next candidate time.
Recursively in k the candidate time Tk is accepted as a spike for neuron Zk if and only if

Xk ≤ φZk (U Zk (Tk−)),

f this is the case the potential vector is updated in the interval [Tk, Tk+1) according to

U Zk (t) = 0, U i (t) = U i (Tk−) + wZk→i , i ̸= Zk;

therwise U (t) = U (Tk−), and the construction proceeds with the next candidate time.
Next, for each neuron i ∈ I , and x ∈ (0, β], define the Poisson measures N i,x (t, t ′] :=

((t, t ′] × [0, x] × {i}), with intensity measure x dt , on (0, ∞).
From now on we set

N
i
= N i,β, N i

= N i,α

so that for any i ∈ I

N i (t, t ′] ≤ N i (t, t ′] ≤ N
i
(t, t ′], 0 ≤ t < t ′.

t is also convenient to use the notation

NW (t, t ′] =

∑
j∈W

N j (t, t ′], 0 ≤ t < t ′, W ⊂ I,

nd the same notation for the measures N j , and N
j
.

For each pair of neurons i ̸= j , and for each positive real number ∆ we now define the
vents

Ãi (∆) = Ai (∆) ∩

{
NV i

(0, 2∆] = 0
}

,

B̃i (∆) = Bi (∆) ∩

{
NV i

(0, 2∆] = 0
}

,

C̃ j→i (∆) = C j→i (∆) ∩

{
NV i

(0,∆] = NV i
\{ j}(∆, 2∆] = NV i

(2∆, 3∆] = 0
}

,

D̃ j→i (∆) = D j→i (∆) ∩

{
NV i

(0,∆] = NV i
\{ j}(∆, 2∆] = NV i

(2∆, 3∆] = 0
}

,

where Ai (∆), Bi (∆), C j→i (∆), and D j→i (∆) have been defined in (4)–(7).
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Lemma 1. Irrespectively of the vector u of membrane potentials, for any ∆ > 0, the following
nequalities hold.

Pu(B̃i (∆))

Pu( Ãi (∆))

(
1 −

1 − e−2dβ∆

s

)
≤

Pu(Bi (∆))
Pu(Ai (∆))

≤

(
1 +

e2dβ∆
− 1

s2

)
Pu(B̃i (∆))

Pu( Ãi (∆))
(27)

Pu(D̃ j→i (∆))

Pu(C̃ j→i (∆))

(
1 −

1 − e−3dβ∆

s2

)
≤

Pu(D j→i (∆))
Pu(C j→i (∆))

≤

(
1 +

e3dβ∆
− 1

s3

)
Pu(D̃ j→i (∆))

Pu(C̃ j→i (∆))
(28)

Proof. First observe that for any triple of events E , F and G such that E ⊂ F the following
inequalities hold

P(E ∩ G)
P(F ∩ G)

(
1 −

P(F \ G)
P(F)

)
≤

P(E)
P(F)

≤

(
1 +

P(E \ G)
P(E ∩ G)

)
P(E ∩ G)
P(F ∩ G)

.

Choosing

E = Bi (∆), F = Ai (∆), G = {NV i
(0, 2∆] = 0}

first, and then

E = D j→i (∆), F = C j→i (∆),

G = {NV i
(0,∆] = NV i

\{ j}(∆, 2∆] = NV i
(2∆, 3∆] = 0},

the inequalities (27) and (28) are consequences of the bounds

Pu(Ai (∆) \ Ãi (∆))
Pu(Ai (∆))

≤
(1 − e−2dβ∆)(1 − e−β∆)

1 − e−α∆
≤

β

α
(1 − e−2dβ∆),

nd

Pu(Bi (∆) \ B̃i (∆))

Pu(B̃i (∆))
≤ e2dβ∆

(
1 − e−β∆

1 − e−α∆

)2

(1 − e−2dβ∆) ≤

(
β

α

)2

(e2dβ∆
− 1).

he former is due to

Ai (∆) \ Ãi (∆) ⊂ {N
i
(0,∆] > 0, N

V i
(0, 2∆] > 0}, {N i (0,∆] > 0} ⊂ Ai (∆),

nd the majorization

1 − e−βx

1 − e−αx
≤

β

α
=

1
s

, x ≥ 0,

hich holds since β ≥ α, in view of the fact that the function x ↦→
ex

−1
x is increasing in R.

The latter is due to

Bi (∆) \ B̃i (∆) ⊂ {N
i
(0,∆] > 0, N

i
(∆, 2∆] > 0, N

V i
(0, 2∆] > 0}

nd

{N
V i

(0, 2∆] = 0, N i (0,∆] > 0, N i (∆, 2∆] > 0} ⊂ B̃i (∆).
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With similar arguments one proves that

Pu(C j→i (∆) \ C̃ j→i (∆))
Pu(C j→i (∆))

≤
(1 − e−β∆)2(1 − e−3dβ∆)

(1 − e−α∆)2 ≤

(
β

α

)2

(1 − e−3dβ∆)

Pu(D j→i (∆) \ D̃ j→i (∆))

Pu(D̃ j→i (∆))
≤ e3dβ∆

(
1 − e−β∆

1 − e−α∆

)3

(1 − e−3dβ∆)

≤

(
β

α

)3

(e3dβ∆
− 1).

Lemma 2. Irrespectively of the vector u of membrane potentials, for any ∆ > 0, one has(
1 − e−φi (0)∆)e−d(β−α)∆

≤
Pu
(
B̃i (∆)

)
Pu
(

Ãi (∆)
) ≤

(
1 − e−φi (0)∆)ed(β−α)∆. (29)

oreover, provided j /∈ V i

(
1 − e−φi (0)∆) e−d(β−α)∆

≤
Pu
(
D̃ j→i (∆)

)
Pu
(
C̃ j→i (∆)

) ≤
(
1 − e−φi (0)∆) ed(β−α)∆, (30)

hereas if j ∈ V i
+

Pu
(
D̃ j→i (∆)

)
Pu
(
C̃ j→i (∆)

) ≥ (1 − e−(φi (0)+δ)∆)e−d(β−α)∆, (31)

and if j ∈ V i
−

Pu
(
D̃ j→i (∆)

)
Pu
(
C̃ j→i (∆)

) ≤ (1 − e−(φi (0)−δ)∆)ed(β−α)∆. (32)

roof. It is convenient to split the events Ãi (∆) and C̃ j→i (∆) in the following way: Ãi (∆) =

Ai
−

∩ Ai
+

and C̃ j→i (∆) = C j i
− ∩ C i

+
, where

Ai
−

= {N i (0,∆] > 0, NV i
(0,∆] = 0}, Ai

+
= {NV i

(∆, 2∆] = 0},

C j i
− = {N i (0,∆] > 0, N j (∆, 2∆] > 0, NV i

(0,∆] = NV i
\{ j}(∆, 2∆] = 0},

C i
+

= {NV i
(2∆, 3∆] = 0}.

Since for any triple of events E , F+, F−, such that E ⊂ F = F+ ∩ F−

P (E)

P (F)
= P (E |F) = P (E |F− ∩ F+) =

P (E ∩ F+|F−)

P (F+|F−)
,

e get

Pu
(
B̃i (∆)

)
Pu
(

Ãi (∆)
) =

Pu
(
B̃i (∆) ∩ Ai

+
|Ai

−

)
Pu
(

Ai
+|Ai

−

) ,

Pu
(
D̃ j→i (∆)

)
Pu
(
C̃ j→i (∆)

) =
Pu
(
D̃ j→i (∆) ∩ C i

+
|C j i

−

)
Pu
(
C i

+|C j i
−

) .
ext we proceed to bound the right hand side in the previous formulas.
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By writing Pk∆
v (·) = P(·|U (k∆) = v) for k = 1, 2, then by the Markov property we have

inf
v:vi =0

P∆
v

(
N i (∆, 2∆] > 0, Ai

+

)
sup

v:vi =0
P∆

v

(
Ai

+

) ≤
Pu
(
B̃i (∆) ∩ Ai

+
|Ai

−

)
Pu
(

Ai
+|Ai

−

)
≤

sup
v:vi =0

P∆
v

(
N i (∆, 2∆] > 0, A+

i

)
inf

v:vi =0
P∆

v

(
A+

i

) (33)

since Ai
−

implies U i (∆) = 0. Likewise

inf
v:vi ∈Ii j

P2∆
v

(
N i (2∆, 3∆] > 0, C i

+

)
sup

v:vi ∈Ii j

P2∆
v

(
C i

+

) ≤
Pu
(
D̃ j→i (∆) ∩ C i

+
|C j i

−

)
Pu
(
C i

+|C j i
−

)

≤

sup
v:vi ∈Ii j

P2∆
v

(
N i (2∆, 3∆] > 0, C i

+

)
inf

v:vi ∈Ii j

P2∆
v

(
C i

+

) (34)

here Ii j = {0} if j /∈ Vi , Ii j = [w j→i , +∞) if j ∈ V+

i and Ii j = (−∞, w j→i ] if
j ∈ V−

i . Indeed C j i
− implies: U i (∆) = 0 in first case, U i (∆) ≥ w j→i in the second case,

nd U i (∆) ≤ w j→i in the third case.
Since, when j /∈ V i , conditionally to U i (∆) = 0

{N i,φi (0)(∆, 2∆] > 0, N
V i

(∆, 2∆]} ⊂ {N i (∆, 2∆] > 0, Ai
+
} (35)

e have, for any v with vi = 0,

P∆
v

(
N i (∆, 2∆] > 0, Ai

+

)
≥ P

(
N i,φi (0)(∆, 2∆] > 0, N

V i
(∆, 2∆] = 0

)
= (1 − e−φi (0)∆)P

(
N

V i
(∆, 2∆] = 0

)
(36)

n the other hand P∆
v

(
Ai

+

)
≤ P

(
NV i

(∆, 2∆] = 0
)
, from which, by taking (33) into account,

ogether with the obvious inequality

P
(
N

V i
(∆, 2∆] = 0

)
P
(
NV i (∆, 2∆] = 0

) = e−(β−α)|V i
|∆

≥ e−(β−α)d∆, (37)

the leftmost inequality in (29) is obtained. The same argument can be used to prove that, when
j /∈ V i

P2∆
v

(
N i (2∆, 3∆] > 0, C i

+

)
≥ (1 − e−φi (0)∆)P

(
N

V i
(2∆, 3∆] = 0

)
nd together with P2∆

v (C i
+

) ≤ P
(
NV i

(2∆, 3∆] = 0
)
, the leftmost inequality in (30) is

established.
On the other side, always conditionally to U i (∆) = 0, from the inclusions

{N i (∆, 2∆] > 0, Ai
+
} ⊂ {N i,φi (0)(∆, 2∆] > 0, NV i

(∆, 2∆] = 0},

{N
V i

(∆, 2∆] > 0} ⊂ Ai
+

(38)
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and the rightmost inequality in (33), one obtains

Pu
(
B̃i (∆)

)
Pu
(

Ãi (∆)
) ≤ P(N i,φi (0)(∆, 2∆) > 0)

P(NV i
(∆, 2∆] = 0)

P(N
V i

(∆, 2∆] = 0)
hich, thanks to (37), implies the rightmost inequality in (29).
Again, the same argument can be used to prove that

Pu
(
D̃ j→i (∆)

)
Pu
(
C̃ j→i (∆)

) ≤ P(N i,φi (0)(2∆, 3∆) > 0)
P(NV i

(2∆, 3∆) = 0)

P(N
V i

(2∆, 3∆] = 0)
which immediately implies the rightmost inequality in (30).

For the proof of (31) observe that by the Markov property C j i
− implies U i (2∆) ≥ w j→i > 0,

hence for any v with vi ≥ w j→i

P2∆
v

(
N i (2∆, 3∆] > 0, C i

+

)
≥ (1 − e−(φi (0)+δ)∆)P(N

V i
(2∆, 3∆] = 0).

Indeed, conditionally to U (2∆) = v,

φi (U i (2∆)) ≥ φi (w j→i ) ≥ φi (0) + δ,

and therefore

{N i (2∆, 3∆] > 0, NV i
(2∆, 3∆] = 0}

⊃ {N i,φi (0)+δ(2∆, 3∆] > 0, N
V i

(2∆, 3∆] = 0}.

With the upper bound

P2∆
v (C i

+
) ≤ P(NV i

(2∆, 3∆] = 0)

he proof of (31) is finished.
For proving (32), observe that by the Markov property this time C j i

− implies U i (2∆) ≤

w j→i < 0, hence by using the rightmost inequality of (34)

Pu
(
D̃ j→i (∆)

)
Pu
(
C̃ j→i (∆)

) ≤ P(N i,φi (0)−δ(2∆, 3∆] > 0)
P(NV i

(2∆, 3∆] = 0)

P(N
V i

(2∆, 3∆] = 0)
.

ndeed, conditionally to U (2∆) = v, with vi
≤ w j→i < 0

φi (U i (2∆)) ≤ φi (w j→i ) ≤ φi (0) − δ,

nd therefore

{N i (2∆, 3∆] > 0, C i
+
} ⊂ {N i,φi (0)−δ(2∆, 3∆] > 0, NV i

(2∆, 3∆] = 0},

ith the lower bound

P2∆
v (C i

+
) ≥ P(N

V i
(2∆, 3∆] = 0)

he proof of (32) is finished.

Collecting together the results of the previous two lemmas we arrive to the following

emma 3. Irrespectively of the vector u of membrane potentials, for 0 < ∆ < ∆0 =
s2

5dβ
, it

olds (
1 −

3dβ∆
)

φi (0)∆ ≤
Pu(Bi (∆))

i
≤

(
1 +

4dβ∆
2

)
φi (0)∆. (39)
s Pu(A (∆)) s
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Furthermore, for j /∈ V i , it holds(
1 −

5dβ∆

s2

)
φi (0)∆ ≤

Pu(D j→i (∆))
Pu(C j→i (∆))

≤

(
1 +

5dβ∆

s3

)
φi (0)∆, (40)

hereas, for j ∈ V i
+

, it holds(
1 −

5dβ∆

s2

)
(φi (0) + δ)∆ ≤

Pu(D j→i (∆))
Pu(C j→i (∆))

, (41)

nd finally, for j ∈ V i
−

, it holds

Pu(D j→i (∆))
Pu(C j→i (∆))

≤

(
1 +

5dβ∆

s3

)
(φi (0) − δ)∆ . (42)

Proof. As far as the lower bounds are concerned, observe that(
1 −

1 − e−2dβ∆

s

)
e−d(β−α)∆

≥

(
1 −

2dβ

s
∆

)
(1 − dβ(1 − s)∆)

≥ 1 − dβ

(
2
s

+ 1 − s
)
∆ ≥ 1 −

9dβ

4s
∆ > 0,

nd (
1 −

1 − e−3dβ∆

s2

)
e−d(β−α)∆

≥

(
1 −

3dβ

s2 ∆

)
(1 − d(β − α)∆)

≥ 1 − dβ

(
3
s2 + 1 − s

)
∆ ≥ 1 −

85dβ

27s2 ∆ > 0,

here these inequalities are guaranteed since ∆0 < 27s2

85dβ
.

Next observe that

1 − e−x
≥ x (1 − x/2) > 0, x ∈ (0, 2), (43)

o that, for ϵ ∈ {0, 1}

1 − e−(φi (0)+ϵδ)∆
≥ (φi (0) + ϵδ)∆

(
1 − (φi (0) + ϵδ)

∆

2

)
≥ (φi (0) + ϵδ)∆

(
1 − β

∆

2

)
> 0

which are guaranteed since ∆0 < 2
β

and φi (0) + δ ≤ β. As a consequence, given that

3dβ

s
≥

9dβ

4s
+

β

2
,

5dβ

s2 ≥
85dβ

27s2 +
β

2
,

rom the l.h.s.’s of (27) and (29) we have

Pu(Bi (∆))
Pu(Ai (∆))

≥

(
1 −

1 − e−2dβ∆

s

)
e−d(β−α)∆ (1 − e−φi (0)∆)

≥

(
1 −

9dβ

4s
∆

)(
1 −

β∆

2

)
φi (0)∆ ≥

(
1 −

3dβ∆

s

)
φi (0)∆ > 0,
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and, from the l.h.s.’s of (28) and (30), and from (31) we have

Pu(D j→i (∆))
Pu(C j→i (∆))

≥

(
1 −

1 − e−3dβ∆

s2

)
e−d(β−α)∆ (1 − e−(φi (0)+ϵδ)∆)

≥

(
1 −

85dβ

27s2 ∆

)(
1 −

β

2
∆

)
(φi (0) + ϵδ)∆

≥

(
1 −

5dβ∆

s2

)
(φi (0) + ϵδ)∆ > 0,

here ϵ = 0 if j /∈ V i , and ϵ = 1 if j ∈ V i
+

, for ∆ < ∆0 =
s2

5dβ
.

From the r.h.s.’s of (27) and (29), using the bound 1 − e−x
≤ x one gets

Pu(Bi (∆))
Pu(Ai (∆))

≤ edβ(1−s)∆(1 +
e2dβ∆

− 1
s2

)
φi (0)∆

=
edβ(3−s)∆

− (1 − s2)edβ(1−s)∆

s2 φi (0)∆, (44)

nd from the r.h.s.’s of (28) and (30), and from (32) one gets

Pu(D j→i (∆))
Pu(C j→i (∆))

≤ edβ(1−s)∆(1 +
e3dβ∆

− 1
s3 )(φi (0) − ϵδ)∆

=
edβ(4−s)∆

− (1 − s3)edβ(1−s)∆

s3 (φi (0) − ϵδ)∆, (45)

here ϵ = 0 if j /∈ V i , and ϵ = 1 if j ∈ V i
−

.
Notice that all the exponential rates appearing in (44) and (45) are bounded from above,

niformly in 0 < s < 1, by

dβ(3 − s)∆0 =
s2(3 − s)

5
≤

2
5
, dβ(4 − s)∆0 =

s2(4 − s)
5

≤
3
5
.

he function x →
ex

−1
x being increasing, it holds that, for any fixed ζ > 0,

ex
≤ 1 +

eζ
− 1
ζ

x, 0 < x ≤ ζ .

Therefore, by taking into account that both 5
2 (e2/5

− 1) and 5
3 (e3/5

− 1) do not exceed 3/2, the
fraction appearing in the expression (44) is bounded from above by

1 +
3
2 dβ(3 − s)∆

s2 −
(1 − s2)(1 + dβ(1 − s)∆)

s2

= 1 +
dβ∆

s2

{
3
2

(3 − s) − (1 − s)(1 − s2)
}

≤ 1 + 4
dβ∆

s2 ,

nd the expression (45) is bounded from above by

1 +
3
2 dβ(4 − s)∆

s3 −
(1 − s3)(1 + dβ(1 − s)∆)

s3

= 1 +
dβ∆

s3

{
3
2

(4 − s) − (1 − s)(1 − s3)
}

≤ 1 + 5
dβ∆

s3 ,

or any s ∈ (0, 1).

At this point the proof of Theorem 1 is readily completed.
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Proof of Theorem 1. Thanks to Lemma 3 the thresholds ζ1(∆) and ζ2(∆) defined in (11) are
btained by taking the difference between the upper bound in (39) and the lower bound in (40),
nd the difference between the upper bound in (40) and the lower bound in (39), respectively,
nd finally replacing φi (0) with its upper bound β. The thresholds ζ−(∆) and ζ+(∆) defined
n (12) and (13) are similarly obtained by using the bounds in (39), (41), and (42).

emark 1. Since the differences
Pu(D j→i (∆))
Pu(C j→i (∆))

−
Pu′ (Bi (∆))
Pu′ (Ai (∆))

have to be estimated from data, the upper bounds and the lower bounds established in Lemma 3
have to be multiplied, say by 1 +

τ
10 and by 1 −

τ
10 , respectively. The resulting “statistical”

hresholds ξ1(∆), ξ2(∆), ξ−(∆), and ξ+(∆) defined in (14)–(17) are then obtained with the
same procedure used to derive the “probabilistic” thresholds ζ1(∆), ζ2(∆), ζ−(∆), and ζ+(∆).

roof of Proposition 1. To begin with, observe that

ξ+(∆) = −ξ1(∆) + τλ1(∆), ξ−(∆) = −ξ2(∆) + τλ2(∆) (46)

here

λ1(∆) = β∆ (1 −
5dβ∆

s2 )(1 −
τ

10
), λ2(∆) = β∆ (1 +

5dβ∆

s3 )(1 +
τ

10
). (47)

ith these positions the inequalities in (18) become

ξ1(∆) ≤ −ξ2(∆) + τλ2(∆), ξ2(∆) ≤ −ξ1(∆) + τλ1(∆),

or equivalently

ξ1(∆) + ξ2(∆) ≤ τ min (λ1(∆), λ2(∆)) = τ λ1(∆).

The last inequality can be explicitly rewritten as

(10 + τ )
(
2 + (4s + 5)

dβ∆

s3

)
≤ (10 − τ )

{(
2 − (3s + 5)

dβ∆

s2 ) + τ (1 − 5
5dβ∆

s2

)}
,

hich is satisfied for

0 < ∆ ≤
s3τ (6 − τ )

dβ{(4s + 5)(10 + τ ) + s(10 − τ )(3s + 5(1 + τ ))}
.

n order to prove that the right hand side is bounded from below by ∆∗, notice that the
umerator is bounded from below by 5s3τ , whereas 170 is the maximum value of the
xpression within brackets at the denominator for s, τ ∈ [0, 1], with s + τ ≤ 1, attained at
= 1, τ = 0.

4. Proof of Theorem 2

In the proof of Theorem 2, we will use the following two inequalities.

roposition 2. Let X be a random variable with binomial distribution, with parameters n
nd p, and let 0 < γ < 1. Then

P(X ≤ np(1 − γ )) ≤ e−npγ 2/2

−npγ 2/3
P(X ≥ np(1 + γ )) ≤ e
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For the proof of Proposition 2 we refer the reader to [22].

orollary 1. Let Y1, . . . , Yn be Bernoulli random variables with the property

P(Yk+1 = 1|Y1, . . . , Yk) ≥ c, k = 0, . . . , n − 1, (48)

or some constant c > 0. Then for any 0 < γ < 1

P(Y1 + · · · + Yn ≤ nc(1 − γ )) ≤ e−ncγ 2/2. (49)

When Y1, . . . , Yn have the property

P(Yk+1 = 1|Y1, . . . , Yk) ≤ C, k = 0, . . . , n − 1, (50)

or some constant C < 1, then for any 0 < γ < 1

P(Y1 + · · · + Yn ≥ nC(1 + γ )) ≤ e−nCγ 2/3. (51)

roof. Let us denote

pk+1(y1, . . . , yk) = P(Yk+1 = 1|Y1 = y1, . . . , Yk = yk), k = 0, . . . , n − 1,

here yi ∈ {0, 1}, i = 1, . . . , k.
With U1, . . . , Un independent and uniformly distributed in (0, 1), the random variables Y ′

k ,
= 1, . . . , n, are constructed recursively as⎧⎨⎩Y ′

k+1 = 1[0,pk+1(Y ′
1,...,Y ′

k )](Uk+1), k = 1, . . . , n − 1,

Y ′

1 = 1[0,p1](U1),

o that (Y ′

1, . . . , Y ′
n) and (Y1, . . . , Yn) share the same distribution. Moreover (48) implies Y ′

k ≥

[0,c](Uk), whereas (50) implies Y ′

k ≤ 1[0,C](Uk), for k = 1, . . . , n. The proof is completed
y observing the random variables 1[0,v](Uk), k = 1, . . . , n are Bernoulli i.i.d., for any fixed
∈ (0, 1), and the application of Proposition 2: in the former case the law of Y1 + · · · + Yn

tochastically dominates the binomial distribution with parameters n and c, and in the latter is
tochastically dominated by the binomial distribution with parameters n and C .

We can now prove Theorem 2 through a series of lemmas. For the first one we recall the
efinitions (21)

tn =
⌈
α∆∗n

⌉
, mn =

⌈
19
20

n α2∆∗2(1 −
τ

10

√
α∆∗)

⌉
.

emma 4. For i, j ∈ I , and any integer n ≥ 1 the following inequalities hold

P
(
S Ai (tn) < mn

)
≤ ρ(n), (52)

P
(

SC j→i
(n) < mn

)
≤ ρ(n), (53)

here

ρ(n) = e
−

19
4×103 α3∆∗3τ2n

. (54)

roof. Since for any interval I , N i (I ) ≥ N i (I ), we have the following lower bounds

S Ai (tn) ≥

tn∑
1

{N i ((2k−2)∆,(2k−1)∆]>0}
= S Ai (tn),
k=1
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w
p

r
t

a

L

T

w

SC j→i
(n) ≥

ℓ∑
k=1

1
{N i ((3k−3)∆,(3k−2)∆]>0}

1
{N j ((3k−2)∆,(3k−1)∆]>0}

= SC j→i
(n),

here the two variables at the r.h.s. are binomial with tn trials and n trials, respectively, and
robabilities of success bounded from below as follows

1 − e−α∆∗

≥

(
1 −

α∆∗

2

)
α∆∗

=

(
1 −

s4τ

68d

)
α∆∗

≥
67
68

α∆∗ >
19
20

α∆∗, (55)

(1 − e−α∆∗

)2
≥

(
67
68

)2

α2∆∗2 >
19
20

α2∆∗2, (56)

espectively, by using (43). The bounds (52) and (53) are then obtained by applying Proposi-
ion 2. Indeed

P
(
S Ai (tn) < mn

)
≤ P

(
S Ai (tn) ≤

19
20

α2∆∗2(1 −
τ

10

√
α∆∗) · n

)
≤P

(
S Ai (tn) ≤

19
20

α∆∗(1 −
τ

10

√
α∆∗) · tn

)
≤P

(
S Ai (tn) ≤

19
20

α∆∗(1 −
τ

10

√
α∆∗) · tn

)
≤e

−
19

4×103 α2∆∗2τ2tn
≤ e

−
19

4×103 α3∆∗3τ2n
,

nd

P
(

SC j→i
(n) < mn

)
≤ P

(
SC j→i

(n) ≤
19
20

α2∆∗2(1 −
τ

10

√
α∆∗) · n

)
≤P

(
SC j→i

(n) ≤
19
20

α2∆∗2(1 −
τ

10

√
α∆∗) · n

)
≤ e

−
19

4×103 α3∆∗3τ2n
.

emma 5. For any positive integer n define

σ (n) = e
−

192

116×103 α3∆∗3τ2n
. (57)

hen

P
(

SBi
(K i

mn
) ≤ mnφi (0)∆∗

(
1 −

3dβ∆∗

s

)(
1 −

τ

10

))
≤ σ (n), (58)

P
(

SBi
(K i

mn
) ≥ mnφi (0)∆∗

(
1 +

4dβ∆∗

s2

)(
1 +

τ

10

))
≤ σ (n); (59)

moreover, if j /∈ V i

P
(

SD j→i
(H j→i

mn
) ≤ mnφi (0)∆∗

(
1 −

5dβ∆∗

s2

)(
1 −

τ

10

))
≤ σ (n), (60)

P
(

SD j→i
(H j→i

mn
) ≥ mnφi (0)∆∗

(
1 +

5dβ∆∗

s3

)(
1 +

τ

10

))
≤ σ (n); (61)

hereas if j ∈ V−

i

P
(

SD j→i
(H j→i

mn
) ≥ mn(φi (0) − δ)∆∗

(
1 +

5dβ∆∗

3

)(
1 +

τ ))
≤ σ (n); (62)
s 10
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P

r

N

a

i

and if j ∈ V+

i

P
(

SD j→i
(H j→i

mn
) ≤ mn(φi (0) + δ)∆∗

(
1 −

5dβ∆∗

s2

)(
1 −

τ

10

))
≤ σ (n). (63)

roof. The estimates are obtained by means of Corollary 1 with the choices

Y ′

h = 1Bi
K i

h

, h = 1, 2, . . . , mn, Y ′′

k = 1D j→i

H j→i
k

, k = 1, 2, . . . , mn,

espectively. Indeed, observe that

SBi
(K i

mn
) =

mn∑
h=1

Y ′

h, and SD j→i
(H j→i

mn
) =

mn∑
k=1

Y ′′

k .

For any non negative integer h and for any value of j1, . . . , jh ∈ {0, 1}

P(Y ′

h+1 = 1|Y ′

1 = j1, . . . , Y ′

h = jh)

=

∞∑
ℓ=h+1

P(K i
h+1 = ℓ|Y ′

1 = j1, . . . , Y ′

h = jh)P(Bi
ℓ|Y

′

1 = j1, . . . , Y ′

h = jh, K i
h+1 = ℓ).

otice that

{K i
h+1 = ℓ} = {K i

h ≤ ℓ − 1, K i
h+1 > ℓ − 1, Ai

ℓ}

nd that the event

F = {Y ′

1 = j1, . . . , Y ′

h = jh, K i
h ≤ ℓ − 1, K i

h+1 > ℓ − 1}

s F2(ℓ−1)∆∗ -measurable, so that we get

P(Bi
ℓ|Y

′

1 = j1, . . . , Y ′

h = jh, K i
h+1 = ℓ) = P(Bi

ℓ|F ∩ Ai
ℓ)

=
E
[
P(Bi

ℓ|F2(ℓ−1)∆∗ )1F
]

E
[
P(Ai

ℓ|F2(ℓ−1)∆∗ )1F
] .

Using again the notation Pk∆∗

v (·) = P(·|U (k∆∗) = v), for k ≥ 1, we have

P(Bi
ℓ|F2(ℓ−1)∆∗ ) = P2(ℓ−1)∆∗

U (2(ℓ−1)∆∗)(Bi
ℓ) = PU (2(ℓ−1)∆∗)(Bi

1),

P(Ai
ℓ|F2(ℓ−1)∆∗ ) = P2(ℓ−1)∆∗

U (2(ℓ−1)∆∗)(Ai
ℓ) = PU (2(ℓ−1)∆∗)(Ai

1).

As a consequence the bounds in Lemma 3 can be applied, from which, for 0 ≤ h ≤ mn −1,(
1 −

3dβ∆∗

s

)
φi (0)∆∗

≤ P(Y ′

h+1 = 1|Y ′

1 = j1, . . . , Y ′

h = jh)

≤

(
1 +

4dβ∆∗

s2

)
φi (0)∆∗, (64)

and when j /∈ V i(
1 −

5dβ∆∗

s

)
φi (0)∆∗

≤ P(Y ′′

h+1 = 1|Y ′′

1 = j1, . . . , Y ′′

h = jh)

≤

(
1 +

5dβ∆∗

s2

)
φi (0)∆∗, (65)
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a

a

T

a

S
o

whereas when j ∈ V i
+(

1 −
5dβ∆∗

s

)
(φi (0) + δ)∆∗

≤ P(Y ′′

h+1 = 1|Y ′′

1 = j1, . . . , Y ′′

h = jh) (66)

nd finally, when j ∈ V i
−

P(Y ′′

h+1 = 1|Y ′′

1 = j1, . . . , Y ′′

h = jh) ≤

(
1 +

5dβ∆∗

s2

)
(φi (0) − δ)∆∗. (67)

Now one applies Corollary 1 to all these bounds, with mn in place of n, and γ =
τ
10 .

Beginning with the leftmost inequality in (64), with c = (1 − 3dβ∆∗/s)φi (0)∆∗ in (49), we
obtain

P
(

SBi
(K i

mn
) ≤ mnφi (0)∆∗

(
1 −

3dβ∆∗

s

)(
1 −

τ

10

))
≤ e−

1
2 mnφi (0)∆∗(1−

3dβ∆∗

s )( τ
10 )2

e−
1
2 mnα∆∗(1−

3dβ∆∗

s )( τ
10 )2

≤ e−nα3∆∗3(1−
τ
10

√
α∆∗)( τ

10 )2 19×31
40×34 ≤ e

−nα3∆∗3τ2 3×192
×31

4×34×58×103 = σ (n)
31
34 ×

3
2 .

In the first inequality at the last line, after replacing mn with the argument of the integer part,
we have taken into account that

dβ∆∗

s
=

s2τ

34
≤

1
34

⇒ 1 −
3dβ∆∗

s
≥

31
34

,

nd in the second inequality that

α∆∗
=

s4τ

34d
≤

1
34

⇒ 1 −
τ

10

√
α∆∗ ≥ 1 −

1

10
√

34
>

57
58

=
3 × 19

58
.

For the rightmost inequality in (64) choose C = (1 + 4dβ∆∗/s2)φi (0)∆∗ in (51) obtaining

P
(

SBi
(K i

mn
) ≥ mnφi (0)∆∗

(
1 +

4dβ∆∗

s2

)(
1 +

τ

10

))
(68)

≤ e−
1
3 mnφi (0)∆∗(1+

4dβ∆∗

s2 )( τ
10 )2

≤ e−
1
3 mnα∆∗(1+

4dβ∆∗

s2 )( τ
10 )2

≤ e−nα3∆∗3(1−
τ
10

√
α∆∗)( τ

10 )2 19
60 ≤ e

−nα3∆∗3τ2 192

116×103 = σ (n).

aking into account that 31
34 ×

3
2 > 1, the estimates (58) and (59) are obtained.

Analogously, from Corollary 1 with c = (1 − 5dβ∆∗/s)φi (0)∆∗ in (49), for the leftmost
inequality in (65) one obtains

P
(

SD j→i
(H j→i

mn
) ≤ mnφi (0)∆∗

(
1 −

5dβ∆∗

s

)(
1 −

τ

10

))
≤ e

−nα3∆∗3τ2 3×192
×29

4×34×58×103 = σ (n)
29
34 ×

3
2

nd for the rightmost one, with C = (1 + 5dβ∆∗/s)φi (0)∆∗ in (51), one obtains

P
(

SD j→i
(H j→i

mn
) ≥ mnφi (0)∆∗

(
1 +

5dβ∆∗

s2

)(
1 +

τ

10

))
≤ e

−nα3∆∗3τ2 192

116×103 = σ (n).

ince 29
34 ×

3
2 > 1 the estimates (60) and (61) are obtained. The bounds (62) and (63) are

btained in a completely analogous way, taking into account that φ (0) ± δ ≥ α.
i
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e

L
(

m

P
c

S
(

S

L

With the help of the previous results we are in a position to control the behavior of the
stimators Ri (n) and G j→i (n) defined in (22) and (23), respectively.

emma 6. For any positive integer n, the following inequalities hold, with σ (n) defined in
57),

P
(

Ri (n) ≤ φi (0)∆∗

(
1 −

3dβ∆∗

s

)(
1 −

τ

10

))
≤ 2σ (n), (69)

P
(

Ri (n) ≥ φi (0)∆∗

(
1 +

4dβ∆∗

s2

)(
1 +

τ

10

))
≤ 2σ (n); (70)

oreover:
if j /∈ V i

P
(

G j→i (n) ≤ φi (0)∆∗

(
1 −

5dβ∆∗

s2

)(
1 −

τ

10

))
≤ 2σ (n), (71)

P
(

G j→i (n) ≥ φi (0)∆∗

(
1 +

5dβ∆∗

s3

)(
1 +

τ

10

))
≤ 2σ (n); (72)

if j ∈ V i
−

P
(

G j→i (n) ≥ (φi (0) − δ)∆∗

(
1 +

5dβ∆∗

s3

)(
1 +

τ

10

))
≤ 2σ (n); (73)

if j ∈ V i
+

P
(

G j→i (n) ≤ (φi (0) + δ)∆∗

(
1 −

5dβ∆∗

s2

)(
1 −

τ

10

))
≤ 2σ (n). (74)

roof. We are going to prove only (69) in detail, since the other inequalities (70)–(74) need
ompletely similar arguments. So, observe that{

Ri (n) ≤ φi (0)∆∗

(
1 −

3dβ∆∗

s

)(
1 −

τ

10

)}
⊂
{

K i
mn

> tn
}

∪

{
SBi (K i

mn
) ≤ mnφi (0)∆∗

(
1 −

3dβ∆∗

s

)(
1 −

τ

10

)}
⊂
{

S Ai (tn) < mn
}

∪

{
SBi (K i

mn
) ≤ mnφi (0)∆∗

(
1 −

3dβ∆∗

s

)(
1 −

τ

10

)}
.

ince the probabilies of the two events have been bounded from above by ρ(n) and σ (n) in
52) and (58), respectively, then

P
(

Ri (n) ≤ φi (0)∆∗

(
1 −

τ

10

)(
1 −

3dβ∆∗

s

))
≤ ρ(n) + σ (n) .

ince ρ(n) = σ (n)19/29 < σ (n), see (54) and (57), the proof of (69) is concluded.

To conclude the proof of Theorem 2 we need to deduce suitable bounds for the difference
G j→i (n) − Ri (n).

emma 7. For any positive integer n the following inequalities hold:
if j /∈ V i

P
(
G j→i (n) − Ri (n) ≤ −ξ (∆∗)

)
≤ 4σ (n), (75)
1
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f

P
a

F

T

w

A

P
(
G j→i (n) − Ri (n) ≥ ξ2(∆∗)

)
≤ 4σ (n), (76)

rom which

P
(
−ξ1(∆∗) < G j→i (n) − Ri (n) < ξ2(∆∗)

)
≥ 1 − 8σ (n); (77)

if j ∈ V i
−

P
(
G j→i (n) − Ri (n) < −ξ−(∆∗)

)
≥ 1 − 4σ (n ); (78)

if j ∈ V i
+

P
(
G j→i (n) − Ri (n) > ξ+(∆∗)

)
≥ 1 − 4σ (n). (79)

roof. First of all recall that ξ1(∆∗), ξ2(∆∗), ξ−(∆∗), and ξ+(∆∗) are defined in (14)–(17),
nd that (see (46) and (47))

−ξ−(∆∗) = ξ2(∆∗) − τλ2(∆∗) and ξ+(∆∗) = −ξ1(∆∗) + τλ1(∆∗).

urthermore observe that

ξ1(∆∗) = β∆∗

[
τ
5 +

(
9 −

τ
10

) dβ∆∗

s2

]
,

ξ2(∆∗) = β∆∗

{
τ
5 +

[
5 + 3s2

+
τ (5−3s2)

10

] dβ∆∗

s3

}
.

he following argument is based on the inequality

P(X − Y ≥ a − b) ≤ P({X ≥ a} ∪ {Y ≤ b}) ≤ P(X ≥ a) + P(Y ≤ b),

hich holds for any pair of random variables X and Y , and for any a, b ∈ R.
Now let χ = 0 if j /∈ V i and χ = 1 if j ∈ V i

+
, then

P
(
G j→i (n) − Ri (n) ≤ −ξ1(∆∗) + χτλ1(∆∗)

)
≤P
(

G j→i (n) − Ri (n) ≤ −
φi (0)

β
ξ1(∆∗) + χτλ1(∆∗)

)
≤P

(
G j→i (n) ≤ φi (0)∆∗

(
1 −

5dβ∆∗

s2

) (
1 −

τ
10

)
+ χτλ1(∆∗)

)
+P

(
Ri (n) ≥ φi (0)∆∗

(
1 +

4dβ∆∗

s2

) (
1 +

τ
10

))
,

since −
φi (0)

β
ξ1(∆∗) coincides with

φi (0)∆∗

(
1 −

5dβ∆∗

s2

) (
1 −

τ
10

)
− φi (0)∆∗

(
1 +

4dβ∆∗

s2

) (
1 +

τ
10

)
.

s a consequence (75) and (79) are established by using the bounds (71), (70) and (74).
Analogously let χ = 0 if j /∈ V i and χ = 1 if j ∈ V i

−
, then

P
(
G j→i (n) − Ri (n) ≥ ξ2(∆∗) − χτλ2(∆∗)

)
≤P
(

G j→i (n) − Ri (n) ≥
φi (0)

ξ2(∆∗) − χτλ2(∆∗)
)

β
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A
M

P
o
w

w

D

r

A

F
2
1
C

R

≤P
(

G j→i (n) ≥ φi (0)∆∗

(
1 +

5dβ∆∗

s3

) (
1 +

τ
10

)
− χτλ2(∆∗)

)
+P

(
Ri (n) ≤ φi (0)∆∗

(
1 −

3dβ∆∗

s

) (
1 −

τ
10

))
,

since φi (0)
β

ξ2(∆∗) coincides with

φi (0)∆∗

(
1 +

5dβ∆∗

s3

) (
1 +

τ
10

)
− φi (0)∆∗

(
1 −

3dβ∆∗

s

) (
1 −

τ
10

)
.

s a consequence (76) and (78) are established by using the bounds (72), (69) and (73).
oreover (77) is trivially obtained by (75) and (76).

At this point the proof of Theorem 2 is readily completed.

roof of Theorem 2. The proof follows directly from Proposition 1 and (77), (78), and (79),
f Lemma 7. Then, setting n = n(T ) in the expression of σ (n), and substituting α∆∗

=
s4τ
34d ,

e obtain

σ
(
n(T )

)
= e−⌊

T
3∆∗ ⌋s12τ5ϑ0 ≤ eω s3τ

10dβ e−ωT ,

here

ϑ0 =
192

3 × 116 × 342
× 103

, ω = ϑ0
τ 4s9β

d2 .

To conclude the proof of Theorem 2 is enough to recall that C = 4eω s3τ
10dβ .

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal
elationships that could have appeared to influence the work reported in this paper.

cknowledgments

This work is part of USP project Mathematics, computation, language and the brain,
APESP project Research, Innovation and Dissemination Center for Neuromathematics (grant
013/07699-0), Sapienza Project 2016 Processi stocastici teoria e applicazioni RM116155010
3C24, and Sapienza Project 2017 Modelli stocastici nelle scienze e nell’ingegneria RM11715
7D9F7762. AG is partially supported by CNPq fellowship (grant 309501/2011-3.).

eferences
[1] M. André, A result of metastability for an infinite system of spiking neurons, J. Stat. Phys. 177 (5) (2019)

984–1008, http://dx.doi.org/10.1007/s10955-019-02402-4.
[2] M. André, L. Planche, The effect of graph connectivity on metastability in a stochastic system of spiking

neurons, Stochastic Process. Appl. 131 (2021) 292–310, http://dx.doi.org/10.1016/j.spa.2020.09.013.
[3] F. Baccelli, T. Taillefumier, The pair-replica-mean-field limit for intensity-based neural networks, SIAM J.

Appl. Dyn. Syst. 20 (1) (2021) 165–207, http://dx.doi.org/10.1137/20M1331664.
[4] G. Bresler, D. Gamarnik, D. Shah, Learning graphical models from the Glauber dynamics, IEEE Trans.

Inform. Theory 64 (6) (2018) 4072–4080, http://dx.doi.org/10.1109/TIT.2017.2713828.
[5] G. Bresler, E. Mossel, A. Sly, Reconstruction of Markov random fields from samples: some observations and
algorithms, SIAM J. Comput. 42 (2) (2013) 563–578, http://dx.doi.org/10.1137/100796029.

246

http://dx.doi.org/10.1007/s10955-019-02402-4
http://dx.doi.org/10.1016/j.spa.2020.09.013
http://dx.doi.org/10.1137/20M1331664
http://dx.doi.org/10.1109/TIT.2017.2713828
http://dx.doi.org/10.1137/100796029


E. De Santis, A. Galves, G. Nappo et al. Stochastic Processes and their Applications 149 (2022) 224–247
[6] D.R. Brillinger, The identification of point process systems, Ann. Probability 3 (6) (1975) 909–929, http:
//dx.doi.org/10.1214/aop/1176996218.

[7] D.R. Brillinger, Some statistical methods for random process data from seismology and neurophysiology, Ann.
Statist. 16 (1) (1988) 1–54, http://dx.doi.org/10.1214/aos/1176350689.

[8] D.R. Brillinger, H.L. Bryant, J.P. Segundo, Identification of synaptic interactions, Biol. Cybernet. 22 (1976)
213–228.

[9] D.R. Brillinger, K.A. Lindsay, J.R. Rosenberg, Combining frequency and time domain approaches to systems
with multiple spike train input and output, Biol. Cybernet. 100 (6) (2009) 459–474, http://dx.doi.org/10.1007/
s00422-008-0289-y.

[10] P. Bühlmann, A.J. Wyner, Variable length Markov chains, Ann. Statist. 27 (2) (1999) 480–513, http:
//dx.doi.org/10.1214/aos/1018031204.

[11] I. Csiszár, Z. Talata, Consistent estimation of the basic neighborhood of Markov random fields, Ann. Statist.
34 (1) (2006) 123–145, http://dx.doi.org/10.1214/009053605000000912.

[12] A. De Masi, A. Galves, E. Löcherbach, E. Presutti, Hydrodynamic limit for interacting neurons, J. Stat. Phys.
158 (4) (2015) 866–902, http://dx.doi.org/10.1007/s10955-014-1145-1.

[13] A. Duarte, A. Galves, E. Löcherbach, G. Ost, Estimating the interaction graph of stochastic neural dynamics,
Bernoulli 25 (1) (2019) 771–792, http://dx.doi.org/10.3150/17-bej1006.

[14] A. Duarte, G. Ost, A.A. Rodrí guez, Hydrodynamic limit for spatially structured interacting neurons, J. Stat.
Phys. 161 (5) (2015) 1163–1202, http://dx.doi.org/10.1007/s10955-015-1366-y.

[15] M. Eichler, R. Dahlhaus, J. Dueck, Graphical modeling for multivariate hawkes processes with nonparametric
link functions, J. Time Series Anal. 38 (2) (2017) 225–242, http://dx.doi.org/10.1111/jtsa.12213.

[16] N. Fournier, E. Löcherbach, On a toy model of interacting neurons, Ann. Inst. Henri Poincaré Probab. Stat.
52 (4) (2016) 1844–1876, http://dx.doi.org/10.1214/15-AIHP701.

[17] A. Galves, E. Löcherbach, Infinite systems of interacting chains with memory of variable length—a stochastic
model for biological neural nets, J. Stat. Phys. 151 (5) (2013) 896–921, http://dx.doi.org/10.1007/s10955-013-
0733-9.

[18] A. Galves, E. Löcherbach, C. Pouzat, Probabilistic Spiking Neuronal Nets - Neuromathematics for the
Computer Era, Working Paper, 2021, https://hal.archives-ouvertes.fr/hal-03196369.

[19] A. Galves, E. Orlandi, D.Y. Takahashi, Identifying interacting pairs of sites in ising models on a countable
set, Braz. J. Probab. Stat. 29 (2) (2015) 443–459, http://dx.doi.org/10.1214/14-BJPS279.

[20] C.W.J. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica
37 (3) (1969) 424–438, http://dx.doi.org/10.2307/1912791.

[21] P.J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination,
Biometrika 82 (4) (1995) 711–732, http://dx.doi.org/10.1093/biomet/82.4.711.

[22] T. Hagerup, C. Rüb, A guided tour of Chernoff bounds, Inform. Process. Lett. 33 (6) (1990) 305–308,
http://dx.doi.org/10.1016/0020-0190(90)90214-I.

[23] L. Hamilton, F. Koehler, A. Moitra, Information theoretic properties of Markov random fields, and their
algorithmic applications, in: Proceedings of the 31st International Conference on Neural Information Processing
Systems, in: NIPS, vol. 17, Curran Associates Inc., Red Hook, NY, USA, 2017, pp. 2460–2469.

[24] P. Hodara, E. Löcherbach, Hawkes processes with variable length memory and an infinite number of
components, Adv. Appl. Probab. 49 (1) (2017) 84–107, http://dx.doi.org/10.1017/apr.2016.80.

[25] S.L. Lauritzen, Graphical Models, in: Oxford Statistical Science Series, vol. 17, The Clarendon Press, Oxford
University Press, New York, 1996, p. x+298, Oxford Science Publications.

[26] E. Löcherbach, P. Monmarché, Metastability for systems of interacting neurons, Ann. Inst. H. Poincaré Probab.
Statist. 58 (1) (2022) 343–378, http://dx.doi.org/10.1214/21-AIHP1164.

[27] J. Rissanen, A universal data compression system, IEEE Trans. Inform. Theory 29 (5) (1983) 656–664,
http://dx.doi.org/10.1109/TIT.1983.1056741.

[28] L. Yu, T. Taillefumier, Metastable spiking networks in the replica-mean-field limit, 2021, pp. 1–21, arXiv:
2105.01223v2.
247

http://dx.doi.org/10.1214/aop/1176996218
http://dx.doi.org/10.1214/aop/1176996218
http://dx.doi.org/10.1214/aop/1176996218
http://dx.doi.org/10.1214/aos/1176350689
http://refhub.elsevier.com/S0304-4149(22)00080-1/sb8
http://refhub.elsevier.com/S0304-4149(22)00080-1/sb8
http://refhub.elsevier.com/S0304-4149(22)00080-1/sb8
http://dx.doi.org/10.1007/s00422-008-0289-y
http://dx.doi.org/10.1007/s00422-008-0289-y
http://dx.doi.org/10.1007/s00422-008-0289-y
http://dx.doi.org/10.1214/aos/1018031204
http://dx.doi.org/10.1214/aos/1018031204
http://dx.doi.org/10.1214/aos/1018031204
http://dx.doi.org/10.1214/009053605000000912
http://dx.doi.org/10.1007/s10955-014-1145-1
http://dx.doi.org/10.3150/17-bej1006
http://dx.doi.org/10.1007/s10955-015-1366-y
http://dx.doi.org/10.1111/jtsa.12213
http://dx.doi.org/10.1214/15-AIHP701
http://dx.doi.org/10.1007/s10955-013-0733-9
http://dx.doi.org/10.1007/s10955-013-0733-9
http://dx.doi.org/10.1007/s10955-013-0733-9
https://hal.archives-ouvertes.fr/hal-03196369
http://dx.doi.org/10.1214/14-BJPS279
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.1093/biomet/82.4.711
http://dx.doi.org/10.1016/0020-0190(90)90214-I
http://refhub.elsevier.com/S0304-4149(22)00080-1/sb23
http://refhub.elsevier.com/S0304-4149(22)00080-1/sb23
http://refhub.elsevier.com/S0304-4149(22)00080-1/sb23
http://refhub.elsevier.com/S0304-4149(22)00080-1/sb23
http://refhub.elsevier.com/S0304-4149(22)00080-1/sb23
http://dx.doi.org/10.1017/apr.2016.80
http://refhub.elsevier.com/S0304-4149(22)00080-1/sb25
http://refhub.elsevier.com/S0304-4149(22)00080-1/sb25
http://refhub.elsevier.com/S0304-4149(22)00080-1/sb25
http://dx.doi.org/10.1214/21-AIHP1164
http://dx.doi.org/10.1109/TIT.1983.1056741
http://arxiv.org/abs/2105.01223v2
http://arxiv.org/abs/2105.01223v2
http://arxiv.org/abs/2105.01223v2

	Estimating the interaction graph of stochastic neuronal dynamics by observing only pairs of neurons
	Introduction
	Definitions and main result
	Proofs of differenz and Delta-giusto
	Proof of main 
	Declaration of competing interest
	Acknowledgments
	References


