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Abstract
Radiation effects for the next generation of synchrotron radiation facilities

by Marcel RUIJTER

High energy radiation is an important tool for many fields of research as it allows for the measurement
of smaller structures and atomic interactions.

The current best method of generating coherent and narrow bandwidth synchrotron radiation is
with a free electron laser. It requires very high charge density, to start the amplification process and
concurrently leads to its high level of coherency, and high energies (GeV to obtain keV photons). The
stringent parameters on the electron bunch are met by linear accelerators. These are typically kilometre
long straight structures that operate from tens to 100 Hz repetition rate. A novel design was proposed
by the INFN Milan research group called MariX [1]. Here a LINAC is used in combination with a com-
pression arc. This reduces the size of the facility, because the electron bunch can be accelerated twice by
the same LINAC. As the electrons pass through dipoles in the compression arc the fields emanating from
the particles in the bunch can cause deterioration to it. These fields, consisting out of the relativistic
Coulomb- and radiation field, travel with the speeds of light, and thus originate from a point in the past.
For this reason the behaviour of these retarded fields is investigated from first principles and developed
into a 3D algorithm for calculating the forces within a bunch. An in depth overview is given on how the
constituent fields behave over a large range of electron energies. Proportionality relations are given that
determine which one is dominant.

To reach unprecedented high energy photons is through the scattering of intense lasers with electron
bunches; (inverse) Thomson or Compton scattering. Photon energies of keV can be reached with tens of
MeV electrons, and MeV photons with GeV electrons.

High repetition rate collisions are possible with cavity based laser systems. Currently the power in-
side the cavity is several hundreds of kW with an intensity at the focus up to 1014−15 [W/cm2]. With these
high powers the cavities can become degenerate, i.e. higher order transverse modes are excited, either by
imperfections of the mirrors or deformations caused by heat dissipation. A short study provides insights
to the observability of these modes in the Thomson spectrum.

The general method for Thomson scattering is to have a (quasi) monochromatic laser pulse collide
with an electron bunch with a very small energy spread. The latter usually leads to a reduction of the
number of charges, and therefore the flux of scattered photons. The frequency of the scattered radiation
is linearly dependent on that of the laser’s, and therefore the energy spread of the electrons could be
compensated by including a frequency modulation. The highest intensity lasers obtained are by chirped
pulse amplification and thus readily available. Two schemes have been investigated: longitudinal and
transverse chirp. Both can reach the limit in bandwidth and number of photons scattered of the mono-
energetic and mono-chromatic case.

For ultra shorted pulses the carrier envelope phase becomes an important variable. Thomson scat-
tering can be used to measure For intensities where non-linear effects dominate, because the scattered
radiation contains the information of the laser pulse.. A model of its signature in the Thomson spectrum
has been developed: it shifts the peaks of higher harmonics that overlap. This shift is also correlated to
the emission direction of harmonics. A detailed analysis is given how to measure it experimentally.

https://www.mi.infn.it/it/
https://phd.uniroma1.it/web/FISICA-DEGLI-ACCELERATORI_nD3504_IT.aspx
https://www.phys.uniroma1.it/fisica/
HTTPS:WWW.UNIROMA1.IT
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in the far field: n̂ is parallel to β⃗. Bottom right: The magnitude of the electric field in the
x − z plane with the exact retarded position of the electron. n̂ and β⃗ are no longer parallel,

as this would render n̂ ×
(
(n̂ − β⃗)× dβ

dct

)
zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 The Coulomb and radiation electric fields separately on the sphere δr (ϑ,ϕ) from Figure 3.5.
The colour coding is such that the maximum and minimum of the electric field are equal
for both graphs. The field is The Coulomb field is much smaller than the Radiation field as
in accordance with the far field approximation. Left: Coulomb field. Right: Radiation field. 38

3.7 Retarded time for uniform linear motion. From the retarded position (r⃗s) a spherical wave
is emitted that reaches an observer (r⃗o). The radius of the sphere is the light distance cτ
and is solvable using the geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 Solution fo cτ (in [cm]!) for uniform linear motion with the electron’s energy γ = 103 and
δr = 10−3[m]. Top left: Trajectory (blue) of an electron with observation points on a circle
(δr (α)) around its current position. Four special points are marked. Top right: Retarded
time for the observation points. The scale of the vertical axis is logarithmic for clarity, since
the difference between the forward and backward direction is six orders of magnitude. cτ
is symmetric around the direction of propagation. Bottom left: Same as top right, but
represented in polar coordinates. The symmetry of cτ is even more clear. Bottom right:
The electric field (in V

m and logarithmic scale) of points on the grid centred around the
source particle at the current time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9 Retarded time for a source (r⃗s) travelling along a circular trajectory (counter clockwise)
where the observer r⃗o lies on its trajectory. Left: The distance between r⃗s

′ and r⃗s is a chord
and is given by the integral of the velocity. The path taken is the arclength and has length
βcτ. The chord and the arclength cannot be approximated to be equal to each other, as this
would implicate that the particle travelled in a straight path! Right: There exists an angle
between the r⃗s and r⃗o for which the cτ = 2R: δϑ = π− 2β. This determines whether the
observer is in “front” or “behind” the source. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.10 Spacetime diagrams for the retarded time condition for a source particle travelling on a cir-
cular trajectory and the observer lies ahead on the source’s path (blue). The figures include
the curves for which the source is stationary (red), linearized trajectory (dark orange), the
(angular) distance between the particles for which cτ = 2R (purple) and the dotted lines
indicate cτ for circular (blue) and linear (dark orange) trajectory. The energy of the source,
the distance between the source and observer and the radius of the circle have been cho-
sen for illustrative purposes: R = 5[m], δϑ= 0.1. Left: The Lorentz factor of the electron is
γ= 2. Right: The Lorentz factor of the electron is γ= 3.2. For the circular trajectory there is
a limit on cτ as function of γ, while for a linear trajectory it is unbounded (see section 3.3). 42
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3.11 Solutions for cτ (in [cm]!) for r⃗o being an observer in front and on the orbit of r⃗s (the source)
angularly separated δϑ= 2µrad and R = 5m (δS = 10µm). Note that the configuration has
been used where the orbit (R) remains constant when the energy (γ) is increased, which im-
plies that the magnetic field (B0) also increases. Top left: The curve of cτ(γ) suggests that its
derivative has a bell shaped curve ( similar to the longitudinal trajectory of an electron dur-
ing Thomson scattering being an S-shape, and the velocity following the laser pulse shape,
see Figure 2.7). The fit is given by Eq. 3.11. Top right: The approximated solution from geo-
metric principle; Eq. 3.12. From this analytical expression the value for the asymptote of cτ
can be calculated. Bottom left: The approximated solution using fractional gamma-cones;
Eq. 3.14. Here we can see why the method is iterative: First the fraction f is calculated, then
the new energy γ f is calculated, which is where the 1

f γs
intersects with cτ(γ). Bottom right

The relative error between the numerical and fitted/analytical solution of cτ. It includes
the 1

γ cone as a measure of quality, since the width of the emitted synchrotron radiation
scales with it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.12 Retarded electric field and its decomposition in Coulomb and Radiation parts, for 1D cir-
cular motion as function of γ, where the radius R is kept constant and ro is in front of
rs . Because cτ is much shorter for circular motion than linear motion the Coulomb field
remains dominant for much larger γ. The maximum field strength of the Coulomb field
coincides with the inflection point of cτ(γ) and γC is given by Eq. 3.16. The total electric
field has an asymptotic value for γR (Eq. 3.18, where the Radiation term of the Lienard
Wiechert potentials dominate. Left: for an arclength distance of δS = 10−3 [m]. Right: for
an arclength distance of δS = 10−6 [m]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.13 Retarded time where the source travels in a circular orbit and the observer can be situated
anywhere in 3D space. Left: 3D schematic of the geometry. The “-.” lines are in the plane
of the source’s trajectory and the “··” perpendicular to this plane. The following lines are
given: cτ (red solid line), δ⃗r (green solid line) Right: Top view of the left figure. To solve

for the retarded time the triangle r⃗o,⊥, R,
√

cτ2 −δr 2
∥ needs to be solved using the angular

separation between the source and the observer. . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.14 Behaviour of the retarded time for a particle travelling on a circular trajectory (counter

clock wise) with energy γ = 103 and δr = 0.5[m]. Top left: Retarded time for the obser-
vation points equidistant around the source at the current time. The vertical axis is in log-
arithmic scale for clarity. The retarded time is antisymmetric. Which is most notable for
the observation points perpendicular to the propagation direction (δ̂r · β̂ = 0). Note that
the difference in the retarded time between the forward and backward direction (∼ 1 order
of magnitude) is much smaller as for the uniform linear case (∼ 6 orders of magnitude) for
the same electron energy and observation distance. Top right: Same as top left, but repre-
sented in polar coordinates. The maximum value of cτ is not in the direction of motion, but
off axis. Bottom: The trajectory of the electron, with the observation points. The retarded
positions for the special points are marked with "x" in the same colour. Here we can clearly
see why cτ does not have its maximum in the direction of motion of the source particle. . 48

3.15 Behaviour of the retarded time for a particle travelling on a circular trajectory (counter
clock wise) with energy γ = 103, R = 5[m] and δr = 10−3[m]. Left: Retarded time for the
observation points equidistant around the source at the current time. The vertical axis is
in logarithmic scale for clarity. The retarded time is still antisymmetric, see the points of
δ̂r · β̂ = 0. Note that the maximum of cτ is three orders of magnitude smaller than for the
uniform linear motion (Figure 3.8). Right: Same as left but represented in a polar plot. Here
it’s more clear that the maximum of cτ is in the direction of propagation. . . . . . . . . . . 49
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3.16 Retarded electric field near the source (rs) which travels along a circular path withγ= 4, R =
5 [m] and δr = 2 [m]. Left: Magnitude of the retarded electric field. Middle: Magnitude of
the Coulomb field. Its effect depends on the distance from the source and is more tapered
opposite to the direction of acceleration. Right: Magnitude of the radiation field. There is a
curve where the field tends to zero, enclosing the maximum field strength. See Figure 3.17. 50

3.17 The (retarded) radiation field with the same parameters as in Figure 3.16. Lines for quanti-
ties in Eq. 2.21 are added for an observation point where the radiation field tends to zero.

The reason why the field tends to zero is because n̂ − β⃗ is (almost) parallel to ˙⃗
β. . . . . . . . 50

3.18 Four cases of the retarded electric fields depending on γ, with reference to the dynamics
seen in Figure 3.12. The electron travels counter clockwise. For each row the left panel
shows the total field, the middle the Coulomb and the right the radiation field. For each
case the radius of the circular motion is R = 5[m] and δr = 10−6[m]. I, γ = 40: The con-
stituent fields are roughly equal in the forward direction (near the at the δr (α) line (or-
ange)) . However since the Coulomb’s field strength scales with cτ−2 it is stronger nearer
to the source.. II, γ= 127: The total field is lower than its constituent parts, most evidently

for δ̂r · β̂ =
p

2
2 . III, γ = 195: The energy is given by Eq. 3.18. The radiation field exhibits a

relatively large region where it tends to zero because n̂ − β⃗ is parallel to ˙⃗
β. The distortion

due to the circular motion is quite visible in the total field. IV, γ= 390: The radiation field
is dominant in the forward direction. The total field roughly equals the radiation field. The
latter still contains a region where it tends to zero, but its size is smaller and closer to the
source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.19 Comparison between numerically and analytically calculated retarded time according to
Eq. 3.5 and 3.20 respectively. Top left: Retarded time calculated numerically. Top Right:
Retarded time calculated by solving the fourth order polynomial. Bottom left: Relative
error for the analytical solution. Bottom right: Same as bottom left but with the error
range bound by 10%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.20 Retarded time and the electric field calculated in the xz-plane using the linear- and circular
solution. The distance between the source particle and the observation points δr (α) is 10−8

[m]. Note that the linear solution is the same as calculating the retarded time and electric
field in the instantaneous rest frame of the source particle and is clearly a bad approach.
Top left: Comparison of the retarded time as function of the observer position δr (α). Even
for such small distances between r⃗s and r⃗o , notably the start of the x-ray regime, the linear
solution still overestimates the retarded time in the forward direction (δ̂r · β⃗s = 1) . Top
Right: Same as left but in polar coordinates. Bottom left: The electric field in the xz-plane
when the retarded time is calculated using the linear solution. Bottom right: The elec-
tric field in the xz-plane when the retarded time is correctly calculated using the circular
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.21 Comparison between the Coulomb and Radiation part of the electric field. The radius from
the source is δr = 10−8[m]. The dependency of which field is dominant depends on the
scale where one looks at: the closer to the source the Coulomb force will always dominate. 56

3.22 Retarded time where the source travels in a circular orbit and the observer can be situated
anywhere in 3D space. Left: 3D schematic of the geometry. The “-.” lines are in the plane
of the circular orbit and the “··” perpendicular to this plane. The following lines are given:
cτ (red solid line), δ⃗r (green solid line) Right: Top view of the left figure. To solve for the

retarded time the triangle r⃗o , R,
√

cτ− (δr∥+β∥cτ)2 needs to be solved using the angular
separation between the source and the observer. . . . . . . . . . . . . . . . . . . . . . . . . . 57
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3.23 Trajectories of particles in a bunch inside a dipole magnet with R = 500[m], γ = 100 and
ϵN

x = ϵN
y = 10−6[m]. The bunch dimensions given in the lab frame coordinates at case II

are σz = σy = 5 [µm] and σx = 400 [µm]. For the positions marked by the cases (I, II, III)
the retarded time and field will be calculated. Left: 3D view. Right: Projection onto x − y
plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.24 Results for case II in Figure 3.23, assuming that the fields have had time to reach the parti-
cles. The particle ID’s ordered in the longitudinal direction. Note that exactly on the diago-
nal of the figures the retarded time and field are zero, because the source and the observer
are the same particle, and is not visible due to the number of particles. Top left: Analytical
solution using the fourth order polynomial (Eq. 3.22). Top middle: Numerically obtained
retarded time (3.21) Top left: Relative error in the retarded time, colour coding restricted to
20%. Bottom left: Magnitude of the electric field calculated with the numerical result of cτ
for each pair of particles. Under the diagonal only the Coulomb field contributes. Bottom
middle: Magnitude of the electric field calculated with the analytical result of cτ for each
pair of particles. Bottom right: Relative error of the electric field with the colour coding
restricted to ±20%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.25 Magnitude of the electric field, using the numerical value of cτ, on macroparticles for the
three cases given in Figure 3.23, assuming that the fields have had time to reach the par-
ticles. Each row contains three panels with the projections of the bunch in a plane. Note
the axis are in lab frame coordinates. The blue line is the reference trajectory, the red line
indicates the rms bunch size and the black arrow the direction of the bunch. Top row: Case
I where the bunch is moving towards the focus. The particles are convergin towards the fo-
cus. Middle row: Case II where the bunch is at the focus. Bottom row: Case III where the
bunch is moving away from the focus. Because the particles are travelling away from each
other cτ is larger and therefore the field strength lower. . . . . . . . . . . . . . . . . . . . . . 60

4.1 First three orders of Hermite-Gaussian pulse shapes in focus and the x-plane. The main
take away is that for even harmonics there is a maximum at the centre of the pulse, while
for odd harmonics the amplitude at the centre is zero. . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Comparison of the motion and the spectrum between H0,0 and H1,0. The particles are de-
scribed by a line distribution: σx = 2W0,x andσy =σz = 0. Top left: Velocity of two particles
traversing H0,0. Since the field is symmetric the sum of the velocities is twice is large. Top
right: Because all particles are in the same phase their contributions to the spectrum sum
coherently. Bottom left: Velocity of two particles (equidistant from x=0) traversing H1,0.
The field is antisymmetric leading to a phase difference of π between the two particles.
Summation of the velocities thus leads to zero. Bottom right: The spectrum is zero when
it is calculated according to Eq. 2.24, since particles x < 0 emit with a phase shift of π com-
pared to x > 0. Calculating the spectrum incoherently does not take this effect into account. 65

4.3 Examples of degenerate fields consisting out of the sum of the fundamental and a higher
order mode. Within the spot size of the fundamental the field is positive, meaning that
there are no phase dependencies in the summation in the spectrum. Left: H0,0 combined
with H11,0 Middle: H0,0 combined with H20,0 Right: H0,0 combined with H21,0 . . . . . . . 66

4.4 Results of simulations for a degenerate cavity. Three different combinations have been
tried which have been observed experimentally. The energy of the particle, the length of the
laser pulse and the intensity have been varied. In each case the spectrum of the combined
modes is 20% lower than the fundamental one, and they are indistinguishable from one
another. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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4.5 Numerical results of Thomson spectra for various laser pulse lengths and an ideal electron
bunch (no energy spread, no divergence) and a long laser pulse colliding with an elec-
tron bunch with a 5% energy spread. The spectrum becomes more narrow as the pulse
length increases, i.e. the Fourier limited bandwidth. To use a chirped laser pulse for the
compensation of the energy spread of an electron bunch you want the following condition
σωl
ωl ,0

≪ 2
σγ
γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Schematic of energy spread compensation by using a chirped laser pulse. Each electron
interacts with a portion of the laser pulse that has a frequency matched to its energy such
that the frequency of the emitted radiation is constant. Left: The chirp is along the prop-
agation direction of the laser pulse (Longitudinal chirp). In order for a single electron to
experience its matched laser frequency the collision requires a collision angle. The trans-
verse momentum of the laser pulse can be negated by using two of them as indicated in the
figure. During the interaction, i.e. where the pulses combine, the plane wave approxima-
tion can be used where the pulse travels in +ẑ. Right: The chirp is perpendicular to both
the propagation- and polarization direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Schematic overview of the dynamics of a single electron colliding with a laser pulse with a
longitudinal chirp (see left panel of Figure 4.6). Left: An electron, without transverse mo-
mentum, enters the interaction region (L I ). At this instance the region is filled with a single
frequency wave matched to the electron’s energy. Because the wave and electron counter

propagate, the length of the laser pulse containing ω needs to be 1+β
β L I . Middle: When an

electron has transverse momentum the time it takes to traverse the interaction region is
longer. Thereby the electron can see wavelengths that are not matched to its energy. Right:
Phase (Eq. 4.9) and frequency (Eq. 4.6) of the laser pulse as function of the electron’s en-
ergy. Note that the pulse and electrons counter propagate and thus an electron left of the
figure will encounter the frequency on the right of the figure. . . . . . . . . . . . . . . . . . . 70

4.8 Realization of the interaction region for a longitudinal chirp η(γ(z)). Left: Constraint on
the angle of incidence for a given interaction length (L I ) and width of the laser pulse W0.
Reducing the angle of incidence, for a fixed interaction length, also reduces the spot size.
Right: Top view of the geometry of the two laser pulses. Here L I = 106.6 ·10−4 [cm] (Nc =
100), W0 = 20 ·10−4 [cm] and α= 52.75deg. Note that the length of the laser pulse is longer
than L I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Simulation results for on-axis Thomson scattering for longitudinal chirp. Left: On-axis
spectra for the following cases: a quasi-monochromatic pulse - ideal electron bunch (or-
ange), a quasi-monochromatic pulse - chirped electron bunch (blue), a chirped pulse -
chirped electron bunch with varying ratios of interaction- and bunch length. Right: Band-
width of the on-axis spectrum as function of the ratio between the bunch length & interac-
tion region. When the bunch is shorter than the L I the spectrum is broader than when the
same electron bunch collides with a monochromatic laser pulse collides, see blue in the
left panel. This is because an electron experiences a large range of laser frequencies. . . . . 72

4.10 Simulation results of Thomson scattering, where the energy correlation of the electron
bunch is compensated by a chirped laser pulse along the propagation direction. Left: Parti-
cle Distribution. Middle: Longitudinal position and momentum correlation. Right: Energy
collected within an azimuthal angle of 1

6γ . The photon numbers for 103 particles and band-

width are: no energy spread (orange) Nph = 9.4, σωω = 1.61 ·10−2, no chirp (red) Nph = 9.0,
σω
ω = 3.53 ·10−2), matched chirp and Lr at = 5 (green) Nph = 9.6, σωω = 1.78 ·10−2), matched

chirp (blue) and Lr at = 15 Nph = 9.6, σωω = 1.65 ·10−2). . . . . . . . . . . . . . . . . . . . . . . 73
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4.11 Simulation results of Thomson scattering, where the energy correlation of the electron
bunch is compensated by a chirped laser pulse along the propagation direction. Left:
Particle Distribution. Middle: Transverse position - Longitudinal momentum correlation.
Right: Energy collected within an azimuthal angle of 1

6γ . The photon numbers for 103

particles and bandwidth are: no energy spread (orange) Nph = 9.4, σω
ω = 1.61 · 10−2; no

chirp (purple) Nph = 9.7, σω
ω = 3.45 ·10−2); matched chirp (green) and Lr at = 5 Nph = 9.2,

σω
ω = 1.83·10−2); matched chirp (blue) and Lr at = 15 Nph = 9.2, σωω = 1.83·10−2); unmatched

chirp and Lr at = 15 Nph = 9.2,σωω = 2.16 ·10−2). . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.12 Simulation results of Thomson scattering, where the energy correlation of the electron

bunch is compensated by a chirped laser pulse along the propagation direction. Left:
Particle Distribution. Middle: Transverse position - Longitudinal momentum correlation.
Right: Energy collected within an azimuthal angle of 1

6γ . The number of photons per 103

particles and bandwidth are: no energy spread (blue) Nph = 17.2, ,σωω = 1.62·10−2 ; no chirp
(orange) Nph = 16.3, ,σωω = 2.42 ·10−2; matched chirp (green) Nph = 16.8, ,σωω = 1.55 ·10−2 . 75

4.13 Simulation results of Thomson scattering, where the energy correlation of the electron
bunch is compensated by a chirped laser pulse along the propagation direction. Left:
Particle Distribution. Middle: Transverse position - Longitudinal momentum correlation.
Right: Energy collected within an azimuthal angle of 1

6γ . The number of photons per 103

particles and bandwidth are: no energy spread (blue) Nph = 17.1, ,σωω = 1.57·10−2 ; no chirp
(orange) Nph = 16.7, ,σωω = 2.45 ·10−2; matched chirp (green) Nph = 16.7, ,σωω = 1.70 ·10−2;
unmatched chirp (red) Nph = 17.3, ,σωω = 1.83 ·10−2. . . . . . . . . . . . . . . . . . . . . . . . 75

4.14 Comparison of on-axis Thomson spectra for different pulse shapes. The laser pulse is lin-
early polarized and the following parameters have been used to calculate the energy: cen-
tral wavelength λl = 1.066µm and W0 = 20µm. Top left: Spectra in the Linear Thomson
regime. The shape of the spectra is the same as the Fourier transform of the laser pulse
profile, centred around the Thomson frequency. Top right: The peak of the fundamental
starts to shift due to the ponderomotive force. The peak for each pulse shape is slightly
different. Bottom left: Spectra in the non-linear Thomson regime. We see great differences
in the fundamental harmonics: the broader wings the laser pulse has the more energy is
radiated in the linear Thomson regime. The harmonics are approximately the same, as
they reflect the pulse shapes near the centre of the pulse (see Figure 2.4). Bottom right:
In the highly non-linear regime there are two regions where the pulse shape effect remains
clear: between the first and the third harmonic and near ν= 1. The higher harmonics over-
lap, leading to chaotic behaviour and upon averaging will lead to the same contribution
independent of the pulse shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.15 Comparison of on-axis Thomson spectra for different pulse shapes for a laser pulse with
a0 = 5. The laser pulse is linearly polarized and the following parameters have been used
to calculate the energy: central wavelength λl = 1.066µm and W0 = 20µm. Pulses that

have only one maximum emit most of the radiation between
(
1+ a2

0
2

)−1
≤ ν ≤ 1 due to the

wings of the pulse. The tops of the rectangular pulse follow the modified Bessel function
of the second kind (purple) similarly as of a charged particle in instantaneous circular mo-
tion [34]. For this pulse shape most of the energy is emitted in the higher harmonics (here
around the 20th harmonic). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
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4.16 Comparison of single electron spectra for different initial transverse positions traversing a
laser pulse with a Gaussian transverse- and sech longitundial profile. Each electron expe-
riences a different amplitude of the laser pulse and therefore the Doppler shift is different.
The difference of the peak of the fundamental is given by Eq. 4.30. Left: Spectrum for a
single electron traversing the laser pulse at different transverse positions. The dotted lines
indicate the peak of the fundamental. Right: Contour plot of the difference in the peak of
the fundamental harmonic as function of the laser intensity and transverse position of the
electron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.17 Electron trajectory in the non-linear regime (a0 > 1) for different CEP phases (η0) for a PW
laser pulse polarized in +x̂. The maxima in the transverse position coincide with the max-
imum acceleration (as with a harmonic oscillator). An electron will experience maximum
acceleration at the centre of the laser pulse for η0 = π

2 . Note that a phase of η0 = π is the
same as the polarization in −x̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.18 Contour plot of on-axis radiation as function of the normalized frequency ν and the CEP
phase η0 for a single electron colliding head-on with a linearly polarized PW laser pulse
with an amplitude of a0 = 2. Top: Complete range of the contour plot. Bottom left: Cut-
out around the 3rd harmonic including the behaviour of the peak according to Eq. 4.34 in
black. Bottom right: Cut-out around the 5th harmonic including the behaviour of the peak
according to Eq. 4.34 in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.19 Contour plot of on-axis radiation as function of the normalized frequency ν and the CEP
phase η0 for a single electron colliding head-on with a linearly polarized PW laser pulse
with an amplitude of a0 = 3. For this and higher intensities many harmonic orders over-
lap and more of the emitted energy is found in higher harmonics. The CEP dependence
is stronger for the higher harmonics, and clearly show a shift of the peak intensity as de-
scribed by Eq. 4.34. Top: Complete range of the contour plot. Bottom left: Cut-out at the
5th harmonic. Bottom right: Cut-out near the 14th harmonic. Due to the interference be-
tween harmonic orders we find that for η0 = 0 even harmonics are emitted. For this case
the electron has zero acceleration at the peak of the laser pulse. For η0 = π

2 the electron
experiences maximum acceleration at the peak of the laser pulse. . . . . . . . . . . . . . . . 84

4.20 Contour plot of on-axis radiation as function of the normalized frequency ν and the CEP
phase η0 for a single electron colliding head-on with a linearly polarized PW laser pulse
with an amplitude of a0 = 5. For this and higher intensities many harmonic orders overlap
and more of the emitted energy is found in higher harmonics. For such many overlapping
harmonics the pattern of the CEP dependence is visible, though many harmonic peaks
are shifted and crossing each other. Eq. 4.34 is no longer a good approximation for the
shifting maximum. Top: Complete range of the contour plot. Bottom left: Cut-out at the
11th harmonic. This harmonic is emitted close to ν= 1 and contains substantial energy of
the fundamental harmonic emitted in the wings of the laser pulse (see Figure 2.7). Bottom
right: Cut-out near the 21st harmonic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.21 Contour plot of emitted radiation as function of the normalized frequency ν and the az-
imuthal angle ϑ (where ϑ=π is the backscattered direction) for a single electron with γ= 2
colliding head-on with a linearly polarized PW laser pulse with an amplitude of a0 = 2 and
length Nc = 5. The azimuthal angle ranges fromπ(1− 3

4γ ) ≤ϑ≤π(1+ 3
4γ ). The top plots don’t

change in shape when γ increases, except for the values of the vertical axis. In contrary the
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Chapter 1

Introduction

1.1 Accelerators as Radiation Sources

One of the applications or objectives of an accelerator structure is to produce radiation, which is the key
to probe, control or explore physical processes. To give a broad overview of the photon energies required
for some research topics:

• Photon energy < eV: wavelength ∼ 10 µm-200µm : frequency < 1014 Hz (THz)
This radiation is of particular interest for material properties and monitoring of manufacturing [2,
3], and manipulating chemical and biological processes [4, 5].

• Photon energy ∼ keV : wavelength ∼ nm : frequency > 1017 Hz
finds its purpose in medical and biology applications such as cancer treatment and invivo imag-
ing [6, 7], nuclear & atomic research such as resonance fluorescence [8, 9] resolving microscopic
structure and dynamics (e.g. electron re-collision [10]).

• Photon energy ∼ MeV : wavelength ∼ pm : frequency 1020 Hz
Laboratory astrophysics research [11] and quantum physical effects such as vacuum birefringences
[12] and hadron dynamics [11].

The radiation is emitted by relativistic electrons following curved trajectories, and is called Syn-
chrotron radiation. The main advantage of such sources is that the radiation can be controlled by the
parameters of the charges and the external field (that are the cause for the curved trajectories). An im-
portant parameter is the number of charges (Ne ), or charge density, because the amount of radiation
emitted scales with Ne for incoherent- and N 2

e for coherent radiation. To reach the coherent limit the
electron bunch needs to be extremely small, smaller than the wavelength it emits, over the time of emis-
sion; the volume of the bunch and its divergence needs to be small. This, in a sense, means that the
bunch can be approximated more as a point source, which is a coherent source. In the accelerator com-
munity the quality term for the point-source-likeness and number of charges is called the brightness of a
bunch. Complementary the term brilliance is used for the radiation, which also includes the bandwidth
of the emitted radiation. The latter is included because for high energy photons it is especially hard to
manipulate them, if possible at all. Besides additional costs, increase of the facility it will inevitably lead
to losses. It is therefore better to have a narrow bandwidth source from the start. Thus lets look at the
various types of generation techniques, and the energy requirement on the electrons.

1.2 Types of Synchrotron Radiation

Synchrotron radiation is emitted by a charged particle when it experiences a force perpendicular to its
propagation direction. The process is thus described fully by classical electrodynamics. The term refers
to the synchrotron accelerator, more on that in the Section 1.3, but due to the general description of the
process it even includes astronomical objects: Also an accretion disc emits synchrotron radiation! More
down to earth, in the next sections a brief overview of the theoretical history is given and whereafter the
main methods to produce synchrotron radiation are discussed.
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A Brief Historical Account on the Theoretical Development

Theoretical works on radiation emitted by a (classical) charge can be traced back as far as 1897 (Larmor)
for the low energetic case, 1898 (Lienard) and 1900 (Wiechert) for the relativistic case. This should come
as a bit of a surprise, since special relativity had yet to be developed. For instance the Lorentz factor was
derived in 1905. The reason why the theory of emission could have been precede is that the speed of
light c is a Lorentz invariant! The works of Lienard was extended by Schott 1907 [13], providing angular
energy distributions for relativistic electrons following a circular path [14, 15].

The first synchrotron facilities built had their primary focus on high energy physics, and somewhat
surprisingly the notion of the emission of radiation was essentially unknown in this community [16].
With the advances of the accelerator community the radiative energy losses got renewed attention by
Pomeranchuk (1939), Pomeranchuk & Artsimovich(1945) [17, 16].

Blewett proposed to test the predictions of Pomeranchuck, and experimentally confirmed the or-
bital deviations [18]. Radiation itself, however, was not measured by Blewett, as the expected radiation
wavelength by Blewett was in the radio frequency range, but was emitted in the near-infrared range.
Experimental evidence of emission of radiation happened by accident in 1947 by a technician (Floyd
Haber) looking into the (open) beamline with a mirror of the General Electric Laboratory, Schenectady,
New York Synchrotron expecting to see sparks from electrons [14]. And hence the term “synchrotron
radiation” was coined. Although Blewett had access to the work of Schwinger, it was not published until
1949 [19], in which the previous theoretical works were refined further and worked out in great detail.

To increase the brilliance of the synchrotron facilities devices were developed that would be placed
in the straight sections of the synchrotron: undulators & wigglers. These are arrays of alternating dipole
magnets and causes the bunch to oscillate in them. They were first proposed by in 1947 by Ginzburg and
demonstrated in 1953 by Motz [20]. The emitted radiation and the electron bunch co-propagate and
can affect each other. This was realised by Madey and presented the amplification process in 1971 [21]
and goes by the name of the free electron laser. It requires a large electron density while it traverses the
undulator: high brightness bunches.

From the late 90’s a new theoretical, and numerical, endeavour started: the influence of the fields
from the charges on the bunch itself. The reason for this is because increasing the brightness is easiest
by compression of the bunch. The size of the bunch is now comparable to a range of the frequencies it
emits as synchrotron radiation in the beamline. A 1D model, or longitudinal wakefield, has been pre-
sented by Derbenev [22] and Saldin [23].

Another branch of radiation emission was studied coincidentally in the early 20th century. Thomson de-
veloped the theory of free electrons scattering radiation in 1906 [24]. This process can be understood by
imagining the electric field causing the electron to oscillate leading to dipole radiation. A relativistic and
non-linear formulation was provided as early as 1949 by Sengupta, 1963 Vachaspati and 1970 Sarachik
and Schappert [25].

Compton put forth his theory of scattering for low energy particles with photons in 1923 supported
by his experiments and further cementing the field of quantum mechanics. The theoretical works were
refined to include relativistic energies by Dirac in 1926 and Gordon in 1927, and after by Klein-Nishina
in 1929 by including negative energy states [26]. Some decades later the non-linear quantum processes
were published by Nikishov & Ritus [27]. These two scattering theories are the two limits of the same
phenomenon; classical and quantum in nature.

The early analytical solutions of the scattering processes consisted out of plane wave dynamics, see
for example [28]. In the 90’s solutions started to appear for Thomson scattering where the laser pulses is
described by both a temporal and a transverse profile [29].
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1.2.1 General Scaling of Emission of Radiation

The radiation sources can be dived into groups depending on the characteristics of the electron motion;
Dipole, undulator, electron-photon scattering. The most general way to describe the power emitted by a
particle is through the relativistic Larmor formula

Power =−2

3

e2

m2c

dPµ

d s

dPµ
d s

(1.1)

where e is the electic charge, m is the electron mass, c is the speed of light, γ = 1p
1−β2

= Energy

mc2 is the

Lorentz factor and Pµ = mcγ

(
1
β⃗

)
is the relativistic momentum of the electron and dPµ

d s is its acceleration

with d s = dct
γ the spacetime infinitesimal. The acceleration occurs from an external field and its magni-

tude depends on the incidence angle of the electron. If one averages over an arbitrary incidence angle
the average power is given by [30]

〈Power〉 = 4
3σT hβ

2γ2cU f (1.2)

〈ω〉∝ γ2ωU f (1.3)

where σT h = 8π
3 r 2

e is the Thomson cross-section with re = e2

mc2 being the classical electron radius, U f is
the energy density of the field the electron traverses and ωU f is the frequency with which the particle
gyrates inside the field. Due to the relativistic nature of the electron the radiation is emitted in a narrow
cone (∼ 1

γ ) in the direction of propagation, as is depicted in Fig 1.1. For repeating curved trajectories the
emission cones can align, depending on the angular deflection.

The electromagnetic fields, for synchrotron radiation, are usually perpendicular to the propagation
direction of the electron. In theoretical works it is quite common to change frame of reference, to one
where the mathematical complexities are reduced. By performing a Lorentz transformation the electric
and magnetic fields change in magnitude and exchange. However the field can be normalized by using
the vector potential and the dynamics can be described using

a0 = e A0

mc2 = eE0

mcωU f

= eB0

mcωU f

(1.4)

and is related to the energy density of the field (U f ∝ (ωU f a0)2). It also describes when higher harmonics
by an electron are emitted. For this we need the quantum picture of this parameter: a0 represents the
energy gain of an electron within one Compton wavelength per photon [27, 31, 32]. If a0 ≥ 1 then more
than one photon is absorbed by the electron and emitted as one, thus giving the higher harmonics.
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Figure 1.1: Schematic illustration of synchrotron radiation. Due to the relativistic velocity of the
electron the radiated power distribution is confined into a narrow cone.
Left: Normalized power distribution for dipole oscillations γ= 1 and instantaneous circular motion
γ> 1. The power emitted is confined to a 1

γ cone.
Middle: Power distribution for a particle travelling along a circular path like in a dipole.
Right: An electron follows an oscillating path like in an undulator or when colliding with a laser pulse.
At each peak the motion can be approximated as an instantaneous circular motion, and the power
distribution of emitted radiation overlap. The colours are only for differentiation purposes.

1.2.1.1 Synchrotron - Dipole magnet

An electron passing through a dipole magnet will follow a curved path with a radius proportional to
γ

B0
. An observer far from this trajectory will see a single short flash from the electron (per round trip).

From Fourier analysis one can anticipate that the shortness of the flash leads to a broad spectrum. This
can also be understood the normalized vector potential. Although the dipole is a constant field one
can use the electron’s revolution frequency to determine a0,Di pol e = γ. This means that the spectrum
contains harmonics independent of the energy of the electron (since γ≥ 1). 1 As given in [34] the average
frequency emitted is given by

〈ω〉 = 4

5
p

3
γ2c

eB0

mc2 (1.5)

The critical harmonic number is given by 3
2γ

3. For a dipole with B0 = 1[Tesla] the electron energy re-
quired for the average frequency emitted are:

• eV (THz) : 10 µm: γ∼ 30 , R ∼ 10−2[m]

• keV: 1 nm: γ> 103, R = 2[m]

• MeV: 1 pm: γ> 105, R = 60[m]

1.2.1.2 Undulator - FEL

An undulator consists out of a series of dipole magnets with alternating polarity. An electron traversing
it will oscillate and consequently emit radiation with a wavelength according to

λ∝
(1+a2

0,u)

(1+β)γ2 λundulator (1.6)

where λu is the length of two magnets of opposing polarity. The normalized field constant for an undu-
lator (in literature often denoted as the undulator parameter "K ") is given by

a0,u = eBu

mc

λu

2π
(1.7)

1There exists the quantum description of the radiation emitted: virtual photons that surround the electron are scattered into
existence [33].
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Undulators have typically a wavelength of λu ≥ 2 [cm] and a0,u ∼ 1 (Bu ∼ 1 [Tesla]). For these parameters
the energy requirements are

• eV (THz) : 10 µm: γ∼ 50

• keV: 1 nm: γ> 103

• MeV: 1 pm: γ> 105

When the field strength a0,u ≥ 1 also higher harmonics are emitted. At the start of the undulator the elec-
trons emit incoherently (proportional to Ne ). Because the electrons and the radiation propagate in the
same direction, they can interact with one another. The density distribution of the electrons get modu-
lated proportional to the wavelength of the radiation, and in return the electrons emit more coherently.
This is the basic principle of a free electron laser. The strength of the coupling between the field and the
electrons scales with the Pierce2 parameter (often called the FEL parameter)

ρ = 1

γ

(
a0,u

4

ωp

ωu

)
(1.8)

where ωp =
(

4πre c2ne
γ

)1/2
is the plasma frequency and ωu = c 2π

λu
. To start this amplification process re-

quires a large enough electron density, contained over the length of the undulator. In other words to
operate an FEL requires a high brightness electron bunch. The propagation length at which the field
starts its exponential growth is given by [36]

Lg = λu

2π
p

3ρ
(1.9)

The amplification process does not continue indefinitely, at some point a steady state is reached where
the modulation of the electrons and the amplitude of the field oscillate. This saturation length is approx-
imately ∼ 20Lg where the power is

P =
p

2ρP0 (1.10)

where P0 is the power of the spontaneous emission. From here we see that the power at saturation scales
with N 4/3

e as has been observed experimentally [37].

1.2.1.3 Electron-Photon Scattering

Another way to produce high energy radiation is through the collision of low energy photons with high
energy electrons, whereby the energy of the electron is transferred to the photon. Although this process
is quantum in nature the process can also be described using classical electrodynamics when ≤ 1 [eV]
photons ( infrared lasers) collide with electrons up to the GeV range, in which case it is called Thomson
scattering. In the linear regime the electron oscillates due to the electric field of the laser pulse, and the
emitted radiation for a head-on collision is given by

λscat ter ∝ λl

(1+β)2γ2 (1.11)

Through the small wavelength of high power lasers ( around 1 [µm]) the energy of the electrons need to
be much smaller to reach keV energies as compared to undulator radiation. For a laser with a 1 [µm]
wavelength require the following electron energies

• keV: 1 nm: γ∼ 50

• MeV: 1 pm: γ> 103

2It was derived in 1950 by Pierce [35] in his detailed study on coupling between fields and currents.



6 Chapter 1. Introduction

Unfortunately, the reduction is energy as compared to an undulator also directly leads to lower emitted
power, as it scales with γ2. The first experimental demonstration of Thomson scattering with relativistic
electrons was performed in the 1960s [38, 39]. The energy of the lasers in these demonstrations were
10’s of Joules and a temporal length of ∼ milliseconds. This combination leads to a very low energy
density; U ∼ 10−5 [J/cm3] (a0,l ∼ 10−7). The increase of the energy density of lasers mainly comes by
shortening the pulse length. For example the first MeV photon beam was produced at Adone Frascati
[40] with a laser of 3 ·10−7 Joules, and a temporal length of 1 ns, reaching the same energy density as the
aforementioned one.

Currently there are two main methods to produce laser pulses with energy densities for the use of
Thomson/Compton scattering: Cavity based or chirped pulse amplification. The former reaches up to
a0 ∼ 10−3 and provides collision rates of MHz. Chirped pulse amplification are phenomenal in their
energy density a0 ≥ 1, by compressing the pulse down into the subpico second range. They however
come at the cost of repetition rates on the order of 1-10 Hz.

1.3 Relativistic Electron Sources for the Production of Radiation

As we just saw, the energy of electrons needs to be highly relativistic for the production of radiation.
There are currently two main methods to obtain high brightness beams: linear radio frequency - and
plasma wakefield accelerators.

Linear Accelerator

There are two limiting factors for a LINAC: 1) the maximum strength of the electric field in a cavity is
limited to roughly 100 MV/m, after which the material of the cavity breaks (break down limit) and conse-
quently 2) the physical size required to achieve certain electron energies. The long length requires many
additional components to retain the quality of the bunch. For example the European XFEL in Hamburg
Germany is 3.4 km long to reach electron energies ∼ 17 GeV, or SLAC in Stanford USA is 3km long to
reach electron energies up to 14GeV.

Charge Energy Bunch Length Emittance Repetition Rate
[nC] [MeV] [µm] [mm mrad] [Hz]

DESY E-XFEL [41] 1 8.5-17.5 ·103 24 1.4 10
SLAC LCSL I [42] 0.02-0.25 2.4-15.4 ·103 2-50 0.13-0.5 120
SwissFEL [43] 0.01-0.2 2.1-5.8 ·103 0.75-6 0.18-0.43 100
SACLA [44] 0.2-0.3 4-8 ·103 6 1 60

Table 1.1: Examples of electron bunch parameters used for FEL radiation in existing (linear) accelerator
structures.

The next generation of these structures aim to reduce the costs by using super conducting RF cav-
ities [45]. These allow for a much larger repetition rate of charges, which also leads to more photons
produced, and higher field gradients. Another way to reduce the economical and physical footprint is to
design the structure in a double-pass configuration: merging a linear- and circular accelerator together
such that a bunch traverses the RF cavity twice. The second time the bunch can either be further accel-
erated, effectively doubling the length of the accelerator, or decelerate and the energy is returned to the
cavity (Energy Recovery Linac) [46].

The stability of parameters, high current and brightness justifies the cost of such structures.

1.3.1 MariX

The INFN Milano research group has designed a facility called Marix [1]. The reduction in size of the
facility (< 500 [m]) is realized by a two pass LINAC in combination with an arc. The arc consists out of
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Chasman-Green lattices (or double bend achromats) [47]. Here the bunch is compressed by a factor of
18 before it reaches the LINAC again to get accelerated a second time and produce radiation through
the FEL process. The envisioned repetition rate for the FEL is 1−2 MHz, much higher than the current
facilities. In the arc the electrons emit synchrotron radiation and, because of the small size of the bunch,
a range of the spectrum is emitted coherently. This can deteriorate the quality of the bunch; forming
microstructures, increase its volume and increase the energy spread. In the figure below one section of
the arc is shown. The focal position in the x plane lies inside the two dipoles. For the first one its close to
the entrance, and for the second close to the exit. The 1D solution of the self-fields [22, 23] does not take
into account the effect of the focal points. Clearly a higher dimensional analysis of the self-fields would
be beneficial.

Figure 1.2:
Left: The transport of the electron bunch through one of the double bend achromats, from left to right.
The matrix calculation by Elegant [48] performed by M. Rossetti Conti [49]. At the start of my PhD I tried
to use GPT [50] to reproduce the as it give a more accurate description of the path of the bunch. What it
does show is where that the bunch is focussed (in x) inside both bending magnets.
Right: Exaggerated schematic of how the focussing in the dipole could require a 2D model of the fields.

Plasma Wakefield Accelerators

Plasma wakefield accelerators (PWA) were first proposed in 1979 [51] and the first demonstration of the
plasma wake was given in 1985 [52]. The physical principle of the accelerating gradient is as follows: A
driver expels the electrons in the plasma, while the heavy positive ions remain quasi static. This creates
a very large electric field on the order of 1−100 GV/m [53, 54, 55]. The driver can be a high intensity laser
pulse (Laser Plasma Acceleration LPA) (a0 > 1 - I>1018 W/cm2) or another charged bunch ( Beam driven
Plasma Acceleration BPA). There are two ways to produce high energy electron bunches: self-injection
where the electrons from the plasma are trapped into a bunch or external injection (i.e. a pre-existing
electron bunch which is called a witness).

The attraction of PWA schemes is that the acceleration stage is very short, on the order of cm, and
high energy electrons with minimal divergence are generated. The acceleration gradient is not constant,
which leads to a relative large energy spread; on the percent to tens of percent level [56, 57, 58, 59]. The
current mayor downsides for LPA are the low repetition rate, on the order of Hz, and low energy efficiency
of lasers [60]. BPA operate on similar repetition rates (on the macro bunch scale) [61, 55] and require a
high energy driver, which is produced in traditional accelerating structures.
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Charge Energy Bunch Length Divergence / Emittance Repetition Rate
[nC] [MeV] [µm] [µrad] / [mm mrad] [Hz]

FACET [62] 40 ·10−3 47 ·103 20 75 [µrad]
SPARC LAB [63] 20 ·10−3 93 12 0.9 [mm mrad] 1
[64] 50 ·10−3 2 ·103 15 - 0.1
Bella [65] 5−60 ·10−3 6−7.8 ·103 1

Table 1.2: Examples of electron bunch parameters from plasma wakefield accelerators. The following
articles give a good overview of other facilities [66] and the direction of research [67].

PWA is still a young research area and many different methods are investigated to improve the quality
of the bunch: plasma density modulation [68], energy spread reduction [69], low intensity Multi-pulse
LPA [60, 70], circumventing the dephasing by [68, 71], hybrid LPA & BPA [72] etc.

1.4 Motivation

Two fields within the production of synchrotron radiation have been researched: the effect of retarded
potentials on a bunch within a bending magnet and Thomson scattering.

Compression of the electron bunch is a key point to improve the efficiency of radiation emission
for an FEL. This is achieved in structures consisting of several dipole magnets, like chicanes or double
bend achromats, by utilizing the path difference due to the chromaticity of an electron bunch. For ex-
ample in the proposed facilities like in MariX the bunch is compressed by a factor of 18, from σz = 365
[µm] down to σz = 20.6 [µm] , through a sequence of double bend achromats [49, 1]. As the size of the
bunch decreases more of the dipole induced synchrotron radiation is emitted coherently and could lead
to detrimental effects [73]. The difficulty to calculate the forces on an electron (or macro-particle) is due
to the finite speed of the electromagnetic field and the curved trajectory. The former means that the
field acting on an electron originates from a source at a different point in space and time, and therefore
the history of the source needs to be stored in numerical simulations. The latter makes a Lorentz trans-
formation to the instantaneous rest frame of the source electron non-viable; it is not an inertial frame.
The behaviour of the space-time separation between the source and target have been investigated and
analytical solutions developed.

For Compton/Thomson scattering sources it is important to know what the properties are of the
laser pulse (e.g. intensity, profile, polarization and carrier envelope phase), since these characteristics
are transferred onto the scattered radiation [74, 75] and can influence experimental outcomes [10].

The laser pulse properties depend on its generation and design. To keep things general, a laser pulse
can be grouped in two categories: cavity based and chirped pulse amplification (CPA).

Cavities, such as the Fabry-Perot, are used to obtain a monochromatic medium-high intensity laser
pulse (a0 ∼ 10−2;I ∼ 1014 [W/cm2]). The recirculation of the pulse allows for a high repetition rate of
collisions, increasing the yield of emitted radiation. The tremendous amount of power stored can excite
higher transverse harmonics through imperfections of the mirrors or deformations caused by heat dis-
sipation. This is detrimental on the stored laser energy, as these modes leak out of the cavity. The effect
of such mixed modes from the perspective of the emitted radiation is investigated.

Lasers based on CPA are characterised by very short pulse durations (∼ femto-second), and therefore
to very high intensities (a0 ∼ 1−10;I ∼ 1018 −1022 [W/cm2]). For such short pulses the carrier envelope
phase becomes an important parameter; does the peak of the envelope match the wave? This depen-
dency has been analytically solved and methods provided on how it can be measured ensuring the right
characteristics in further experiments.

The broad bandwidth of a CPA laser, before compression, has another interesting application: com-
pensating an electron bunch’s energy distribution. Especially LPA electron bunches have an energy
spread in the direction of propagation on the order of few to tens of percent. It can also be interesting for
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RF based accelerators, because more charge can be accelerated by allowing for a larger energy spread.
By matching the energy spread of the electrons with the chirped pulse the bandwidth of the monochro-
matic case can be retrieved. This could be interesting for increasing the photon yield by increasing the
charge of a bunch by allowing a large energy spread.

1.5 Dissertation Overview

Chapter 2 provides the theoretic background that is collected from textbooks and publications. The
modelling of a laser pulse (Section 2.5) is given extra attention as to understand the choices made in the
research part. In Chapter 3 we find the research conducted on the interaction between electrons within
a bunch, with emphasise on acceleration, from first principles. How charges affect each other becomes
more important for beam transport lines where a bunch is compressed. Derivations of the analytical
solutions are found in Appendix B. In Chapter 4 contains the research on several topics regarding Thom-
son scattering. Experimentally determining the laser pulse properties such as its profile and its relative
phase. And finally conclusions are given in Chapter 5.
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Chapter 2

Theoretical Background

2.1 Choice of Units & Conventions

We already encountered a mix of units in the introduction. This is because the choice of units and nota-
tion can make the dynamics of a system more understandable. As the principles of accelerator physics
are rooted in classical electrodynamics and special relativity the most fitting notation is to use space-
time coordinates (ct, x, y, z) and the cgs (or more precisely the Gaussian) unit system [34, 76, 77, 78],
especially when only microscopic particle dynamics in free space are be discussed .

Most of us are very familiar with the SI (also known as MKS) unit system as these are the units of all
modern engineering. In the SI unit system unit charge is its own base unit. To obtain the right dimension
of force due to an electric and/or magnetic field a proportionality constant is required: the permittivity
and permeability of free space (In literature denoted as ϵ0 and µ0 respectively).

Historically they had great importance, because the reciprocal product of these two quantities gives
the theoretical value of the speed of light in vacuum. Since light is an electromagnetic wave and empty
space (in the classical framework) is just...empty, and it would be much neater to have these two fields
equal each other dimensionally and the proportionality constant be dimensionless. This is in fact what is
done in the cgs system: all units are expressed in terms of length (cm), mass (g) and time(s). For example,
the unit of charge is given its value and unit through the Coulomb force as g1/2 cm3/2 s−1. A good read on
on this topic is an article by H.G.B. Casimir [79]. The Lorentz force then clearly relates that the magnetic
field becomes increasingly important for particle-light interactions when the particles move close to the
speed of light

F = q(E +β×B) (2.1)

since β= v
c → 1. A notation frequently seen in literature is to separate ∂0 = ∂ct into 1

c
d

d t . Throughout this
thesis, wherever the combination ct appears it should be read as an inseparable quantity.

2.2 Special Relativity

The convention for the space-time metric used here is

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.2)

through which the spacetime interval is given by

d s2 = d X µd Xµ = dct 2 −dr⃗ 2 = dct 2

γ2 (2.3)

where γ= 1p
1−β2

is the Lorentz factor.
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Xµ = gµνX ν (2.4)

Thus if X µ = (ct , r⃗ ) then Xµ = (ct ,−r⃗ ).
The Lorentz transformation in the z-direction is given by

X ′µ =


γ 0 0 −γβ
0 1 0 0
0 0 1 0

−γβ 0 0 γ

 X µ (2.5)

The four-velocity is given by

Uµ ≡ d X µ

d s
= γ

(
1
β⃗

)
(2.6)

This choice of the four-velocity results in its magnitude to be UµUµ = 1. This relation is a powerful tool
to find solutions to the motion of a particle, as we will see in section 2.6 and for various solutions in
Appendix A.
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Figure 2.1: Illustrations of space-time diagrams for a particle moving in uniform linear motion.
Top left: Space-time diagram in the labframe. The particle’s trajectory in such a diagram is called its
world-line (red) and it has always a smaller than 45 degree angle with the time axis as it travels with a
speed β< 1.
Top right: Space-time diagram in the particle’s rest frame. Through the Lorentz transformation the
time- and space axis of the lab are rotated.
Bottom left: 3D (x, z, ct ) representation of the space-time diagram of the labframe.
Bottom right: Top view of the lab frame including the light cone originating from r⃗ (ct = 0).

2.3 Forces & Emittance

The goal of an accelerator structure is to obtain an electron bunch with specific parameters at an interac-
tion point. During the transport from the source the electron bunch is manipulated with electromagnetic
fields. This section provides the dynamics of charged particles in these (external) fields.

2.3.1 Force Equations

Lorentz Force

The acceleration of a charged particle is given by

dUµ

d s
= q

mc2 FµνUν (2.7)
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The electromagnetic field tensor is given by

Fµν =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

= ∂µAν−∂νAµ (2.8)

where E are the electric and B the magnetic components of the field, which can also be expressed as the
partial derivatives of the four-vector potential Aµ. In theoretical publications the predominant choice
for the fields is Aµ. This can be explained from Lagrangian/Hamiltonian formulation as the canonical
momentum of a charge is given by P − A( see for example in [34]). Another explanation is found through
Maxwell’s equations; the wave equation for Aµ is equal to the (four) charge density. Moreover, by using
the vector potential the equations of motion for the most well understood interactions have quite elegant
solutions, see Appendix A.

Landau Lifshitz

The Lorentz force is not self-consistent as it does not take into account the radiation energy lost by an
accelerated particle. This loss of energy can be viewed analogously to a frictions force. This friction force
was derived by Lorentz (non-relativistic) and by Abraham (relativistic) and was renormalized by Dirac
and hence is called the Lorentz-Abraham-Dirac equation. It is given by

dUµ

d s
= q

mc2 FµνUν+ 2q2

3mc2 Fµ

L AD (2.9)

Fµ

L AD =
(

d 2Uµ

d s2 −UµUν d 2Uν

d s2

)
(2.10)

The mayor problem with this equation is the so called runaway solutions: a single electron in the absence
of external fields can self-accelerate (see for example [80] in references therein). This problem can be
eliminated by perturbing the Lorentz force: take the derivative of Eq.2.7 with respect to s and substitutes
it into Eq. 2.10. The result is the Landau-Lifshitz equation of motion [81].

dUµ

d s
= q

mc2 FµνUν+ 2q2

3mc2

(
q

mc2 ∂γFµνUνUγ+
( q

mc2

)2 (
FµνFνβUβ−FνβFβαUαUνUµ

))
(2.11)

Solutions to this equation are sporadic; an electron in a constant magnetic field [82] and in a plane wave
laser pules [83, 84, 85].

2.3.2 Emittance

The emittance is a quality factor that describes an electron bunch. There are, as is quite usual in physics,
multiple definitions of the emittance: geometric, rms and normalized. The derivation of the emittance
originates from the stability analysis of betatron motion, i.e. the oscillating trajectory due to focussing
and defocussing quadrupoles, in synchrotrons [86, 87]. For this system the energy spread is negligible,
the particles are non-accelerating and different coordinate pairs ( e.g. x & y or y & x ′ = d x

d z ) are uncou-
pled. In this case the 2D configuration space occupied by a bunch can be represented by an ellipse and
the area of it is proportional to the emittance. Hence it now carries the preposition “geometric” [47].

A more rigorous approach is to start in the 6D phase space [88, 89]. The bunch can be expressed with
a distribution function as it obeys the macroscopic limit, i.e. a bunch occupies a small volume (in real
space) and contains a large number of particles. The distribution function is then normalized as

Ne =
∫

d 3x
∫

d 3p f (x , p ; t ) (2.12)
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Where p = mcγβ⃗. If only conservative forces, i.e. forces without a momentum dependence1 , act on
the bunch then Liouville’s theorem applies whereby the volume in phase space is a conserved quan-
tity. Therefore one can map the (macro) particles linearly from one point to another in phase space:
f (x(t ), p(t ); t ) to f (x(t ′), p(t ′); t ′). The (normalized) emittance now can be represented as the determi-
nant of the covariance matrix of the three coordinate pairs:

ϵ2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

〈xx〉 〈xpx〉 〈x y〉 〈xpy 〉 〈xz〉 〈xpz〉
〈px x〉 〈px px〉 〈px y〉 〈px py 〉 〈px z〉 〈px pz〉
〈y x〉 〈y px〉 〈y y〉 〈y py 〉 〈y z〉 〈y pz〉
〈py x〉 〈py px〉 〈py y〉 〈py py 〉 〈py z〉 〈py pz〉
〈zx〉 〈zpx〉 〈z y〉 〈zpy 〉 〈zz〉 〈zpz〉
〈pz x〉 〈pz px〉 〈pz y〉 〈pz py 〉 〈pz z〉 〈pz pz〉

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.13)

where the variances are given by

〈wn〉 =
∫

d 3x
∫

d 3p wn f∫
d 3x

∫
d 3p f

(2.14)

If the projections of the phase space are uncorrelated, e.g. 〈xpy 〉 = 0 , then for each projection an emit-
tance can be calculated which remains constant. For the x-direction the emittance is then given by

ϵ2
x =

∣∣∣∣ 〈xx〉 〈xpx〉
〈px x〉 〈px px〉

∣∣∣∣ (2.15)

The three quantities that can change are x, γ and β and thus the factors mc in p can be factored out
obtaining the normalized emittance (ϵN ). The relation between the normalized and geometric emittance
is given by

ϵN
x = 〈γβ〉ϵG

x (2.16)

Here we see that if the energy of the bunch increases the geometric emittance decreases and is referred
to as adiabatic damping [47]. Note that Eq. 2.16 is valid only when the energy spread is small. The
brightness is then defined as [89]

Brightness ∝
N

V6D
= N

ϵN
xϵN

yϵN
z
∝ I

ϵN
xϵN

y
(2.17)

In short, to have high brightness means that a bunch approximates a single particle better. There is of
course a limit to the single particle’s emittance, which is given by the Heisenberg uncertainty principle
and equates [90]

ϵN
x,QM =

√〈xx〉〈px px〉
mc

≤ ħ
2mc

= 1.910−13[m] (2.18)

This limit, however, is far smaller than the practical accuracy required to represent a bunch and therefore
the classical approach is justified. In fact, the current limit of emittance is limited by the intrinsic value
of a photocathode [91].

2.4 Lienard Wiechert Potentials

There are two ways to view the causality relation which can be explained by taking two charges in space
at the current time r1(ct ) and r2(ct ):

1) looking into the history of r1 to find its time & position r1(ctr et ) from which the field travelled to
r2(ct ). The time ctr et is the retarded time.

1For a time independent magnetic field the force on a particle does depend on its momentum, however it is still a con-

servative force since ∇×F ∝ ∇× (
β× B⃗

) ∝ dB⃗
dct = 0. Which is good since transport lines of accelerators consist out of time

independent magnets.
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2) looking into the future of r1 to find its time & position r1(ctad v ) to where the field travels from
r2(ct ) The time ctad v is the advanced time.
Though both views are equally valid, from a numerical point of view the retarded time is preferential
because the trajectory is known up to the current time and we are left with calculating the forces on the
observer.

Figure 2.2: Schematics of retarded time. r⃗ (cti ) and β̂(cti ) represents the position and velocity
respectively of the particle at the retarded time.

The retarded fields can be derived from the wave equation of Aµ and involves the use of Green’s
functions [34]. The solution is given by

Aµ

LW = e

γcτ(1− n̂ · β⃗)
Uµ

∣∣∣∣
ctr et

, (2.19)

where cτ is the distance the field has travelled and n̂ is the unit vector of cτ, and the quantities on the
right hand side are to be taken at the retarded time. The common way in literature to represent the
retarded time is (e.g. [34])

ctr et = ct − |⃗ro(ct )− r⃗s(ctr et )| . (2.20)

The electric field is then found by taking the derivative with the space-time coordinate of Eq. 2.19 and
results in

E⃗(ct , r⃗o) = e

 n̂ − β⃗s

γ2cτ2
(
1− n̂ · β⃗s)

)3 +
n̂ ×

((
n̂ − β⃗s

)
× ˙⃗
β
)

cτ
(
1− n̂ · β⃗s)

)3


ctr et

, (2.21)

They are the Coulomb and the radiation field of the field. The magnetic field can be derived in a similar
way giving B⃗ = n̂ × E⃗ .

2.4.1 Radiation

To obtain the radiation emitted only the accelerative part of Eq. 2.21 needs to be taken into account. We
want to know what the energy and frequency content is in a certain direction. For this we take the far
field approximation; the unit vector n̂ does not change during the electron’s acceleration and encloses a
sphere around a chosen origin. Then the radiated energy per unit frequency and sterradian is given by
[34]

d 2I

dωdΩ
= e2

4π2c

∣∣∣∣∣∣∣
∫ ∞

−∞
dct

n̂ ×
((

n̂ − β⃗
)
× ˙⃗
β
)

(
1− n̂ · β⃗

)2 exp
[

i
ω

c
(ct − n̂ · r⃗ )

]∣∣∣∣∣∣∣
2

(2.22)
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Which can be integrated by parts and gives (probably the better known) relation

d 2I

dωdΩ
= e2

4π2c

∣∣∣∣ωc
∫ ∞

−∞
dctn̂ × n̂ × β⃗exp

[
i
ω

c
(ct − n̂ · r⃗ )

]∣∣∣∣2

(2.23)

2.4.1.1 Many particles & Coherency

Eq. 2.23 is valid for a single electron. To obtain the radiation from many particles is simply the summa-
tion of the retarded fields of each particle:

d 2I

dωdΩ
= e2

4π2c

∣∣∣∣∣Ne∑
m

ω

c

∫ ∞

−∞
dctn̂ × n̂ × β⃗m exp

[
i
ω

c
(ct − n̂ · r⃗m)

]∣∣∣∣∣
2

(2.24)

For Ne electrons following the same trajectory the product n̂ · r⃗m only differs in a phase depending
on the initial position [92, 93]. Now, because of the absolute square the sum of exponents can be read as
a matrix as shown below

∣∣∣∣∣Ne∑
m

exp i
ω

c
n̂ · r⃗m(0)

∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣∣∣
1 exp[i ωc δ1,2] . . . exp[i ωc δ1,Ne ]

exp[−i ωc δ1,2] 1
...

. . .

exp[i ωc δ1,Ne ] 1

∣∣∣∣∣∣∣∣∣∣
(2.25)

where for the answer to Eq. 2.24 all elements of the matrix are summed together. The diagonal terms
represent the so called incoherent radiation; each particle radiates independently. If the particles are
randomly distributed, with the wavelength being smaller than the size of the bunch, the sum of the other
entries of the matrix average to zero. When the bunch size is decreased to half the emitted wavelength
the bunch starts to emit coherently [93]. For a single wavelength this is shown in Figure 2.3. The smaller
the size of the bunch, as compared to the emitted wavelength, the more they can be represented as a
single particle with charge eNe [23]. A note must be added that here, from the field point of view, we
have described constructive interference. In fact the distribution of particles can also be chosen such
that the fields interfere destructively in the direction of an observer.

Figure 2.3: Energy observed by in a single angle in the far field from Ne radiating particles. The particle
density is given by a 1D Gaussian profile along its propagation direction, with Ne = 106 particles
randomly sampled. The coherency matrix (Eq, 2.25) is calculated for a single frequency 20 times per σz .
The average of these tends to the incoherent limit when the wavelength is short compared to the bunch
length. It has a large spread (rms in light blue lines), because of the random sampling. When the length
is comparable to half the emitted wavelength the radiation starts to be coherent.
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In the incoherent limit it therefore suffices to calculate the spectrum with

d 2I

dωdΩ
= e2

4π2c

Ne∑
m

∣∣∣∣ωc
∫ ∞

−∞
dct n̂ × n̂ × β⃗m exp

[
i
ω

c
(ct − n̂ · r⃗m)

]∣∣∣∣2

(2.26)

2.5 Laser Pulse

The following sections are written to form a consistent overview of laser pulse shapes that obey the
Maxwell’s equations together with the pulse properties such as the energy-field amplitude relations,
wavelength scale pulse lengths and frequency modulation (chirp). This is important to correctly model
interactions between fields and particles, especially when a Maxwell solver is used for the evolution of
the field, because of the numerical dispersion caused by the discretization of spacetime [94]. For the
comparison of different laser profiles it is important that the intensity (a0) and energy are approximately
equal, since a0 determines the electron dynamics (see Section 2.6.2 or A.5) and the energy correlates the
total number of photons emitted. For a field propagating in vacuum the wave equation is given by

□A⃗ = ∂α∂α A⃗ = (
∂2

ct −∇2) A⃗ = 0, (2.27)

together with the Lorenz gauge
∂αAα = ∂ctφ−∇· A⃗ = 0. (2.28)

To convert the vector potential to the electric and magnetic fields the following Maxwell equations are
used

E⃗ = −∇φ−∂ct A⃗, (2.29)

B⃗ = ∇× A⃗. (2.30)

The amplitude relations between the vector potential and the electric/magnetic field is

E0 = B0 = A0k (2.31)

2.5.1 1+1D

Here we take the convention that a wave is travelling in +ẑ, and therefore Aµ = Aµ(ct , z). Substitution
in Eq. 2.28 tells us that the only solution is a plane wave with either linear (A1 ̸= 0) or circular (A1 ̸= 0
and A2 ̸= 0) polarization. Using the spatial and temporal Fourier Transform of our vector potential and
substitution gives us the vacuum dispersion

(
ω
c

)2 = k2. The consequence is that for one a plane wave
can be described by a scalar field and, moreover, any temporal profile is allowed for a plane wave of
the form A (k(ct − z)) = A(ζ). Moreover, a pulse that has a changing phase of the form η(ζ), i.e. chirp,
also obeys the Maxwell equations. For several pulse shapes, the temporal profile is shown in Figure 2.4.
Throughout this thesis the convention is used that the FWHM of the pulse is equal to a integer value of
the wavelength (FW H M =λl Nc ).
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Figure 2.4: Temporal profiles for a 1+1D laser pulse. The wave equation puts no constraint on the shape
of a plane wave travelling in vacuum.

2.5.2 3+1D

The solution for Aµ for a 3+1D pulse, i.e. spatial and temporal profiles, we look for solutions for which
a volume of electromagnetic energy changes during its propagation, where the volume remains close to
the propagation axis: paraxial approximation.

For the derivation of Aµ I recommend the works of K. T. McDonald [95] that have been a great source.
Here we start with a scalar field of the form A = A0Ψ(⃗r )E (ζ)e iζ to be read as spatial- and temporal profile
and the phase. Substitution in to Eq. 2.27 leads to

Ψ(∂2
ct −∂2

z )E e iζ+E e iζ(−∇2Ψ)+2∂zΨ∂zE e iζ = 0 (2.32)

The first part of the equation is recognized as the plane wave (1+1D) solution and therefore equals zero.

The last term can be rewritten to ∂zΨ
(
1− i

∂ζE

E

)
, where the slowly varying amplitude (SVA) approximation

can be used. In [95] it is noted that for pulse shapes like the Gaussian profile (
∂ζE

E = ζ

σ2
ζ

) this condition

is not met. However, when looking more closely there is a distinction to be made between “short” ,
that is the length of the pulse is comparable to its wavelength, and “long” pulses. For example, when
taking the limit of the duration to infinite the wave equation does permit such a pulse shape. In Figure
2.5 the ratio for various pulse lengths are given for three pulse shapes often used in literature. We see
that the Gaussian profile can be used when the FWHM pulse length is equal or longer than 50 times its
wavelength.
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Figure 2.5: To obey the wave equation the condition ∂zE
E ≪ 1 needs to be fulfilled.

A solution of Ψ can be derived from Eq. 2.32, under the slowly varying envelope approximation for
E . One of which is the Gaussian beam [96, 97], given by

Ψ= q0

q(z)
exp

[
−i k

x2 + y2

2q(z)

]
, (2.33)

where q0 = kW 2
0

2 is the Rayleigh length and q(z) = z + i q0. To find the full solution for Aµ we use Eq.
2.28 to find all its components. The component A3 = 0, since the pulse travels in +ẑ. Thus to obey the
Lorentz gauge the electric potential (φ) cannot be zero. A solution can be found by making the ansatz
φ= A0 f (⃗r )E (ζ)e iζ. Giving us, within the SVA approximation, the relation

i kφ=−∂x Ax −∂y Ay (2.34)

φ=−A0k
i

k2

(
∂xΨ+ i∂yΨ

)
E e iζ. (2.35)

Here we used the amplitude of the electric field in anticipation. To conclude the (four) vector potential
for a linearly polarized laser pulse is given by

Aµ = A0Ψ(⃗r )E (ζ)e iζ


x

q(z)

1
0
0

 (2.36)

and for a circularly polarized by

Aµ = A0Ψ(⃗r )E (ζ)e iζ


x

q(z) − i y
q(z)

1
i
0

 (2.37)
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Many also use the electric and magnetic field to describe the laser pulse, therefore here the approxima-
tions for them are given too. To start with the electric field for a linearly polarized laser pulse we find

E⃗ = −∇φ−∂ct A⃗ (2.38)

= A0k

 i
k2 ∂x∂xΨ
i

k2 ∂y∂xΨ
i

k2 ∂z∂xΨ

E e iζ+ i k A0ΨE e iζ

0
0
1

 (2.39)

≈ A0kΨE i e iζ

 −1
0
x

q(z)

 (2.40)

and for the magnetic field

B⃗ = ∇× A⃗ (2.41)

= A0k

 0
∂zΨ

k +Ψ
∂yΨ

E e iζ (2.42)

≈ A0kΨE i e iζ

 0
−1
−y

q(z)

 (2.43)

2.5.3 Relating a0, Nc & Energy

To calculate the energy of an electromagnetic wave one needs to start with the Poynting vector: the
energy flux, i.e. the energy transfer per unit area and per unit of time out of a volume (V ), and is given by

S⃗ = c

4π
E⃗ × B⃗ (2.44)

The units of the Poynting vector are
[ erg

s cm2

]
(or

[ W
cm2

]
in SI units). Substitution of Eq. 2.40 and 2.43, after

taking the real part, gives us

S⃗ = c

4π
(A0kΨE )2 sin2(ζ)


x

q(z)
y

q(z)

1

 (2.45)

Appreciate that S⃗ shows the divergence of the Gaussian beam.
In the absence of charges the energy within V is related to the Poynting vector as

∂

∂t
Energy =−

∫
V

dV ∇· S⃗ =−
∫

A
d⃗ A S⃗ (2.46)

Here A is the area, no to confuse it with the vector potential!
To calculate the energy of the pulse we place a screen (A) in the focus (z = 0), where the volume

encompasses the negative part of ẑ. The energy of the laser pulse is then simply the energy leaving this
volume (since the pulse travels in +ẑ).

Energylaser =
∫ ∞

−∞
d t

∫ ∞

−∞
d x

∫ ∞

−∞
d y

c

4π
(A0kΨE )2 sin2(ζ)|z=0 (2.47)

Often in literature ([97]) it is said that the time average of the equation above needs to be taken, as tern(
from the square of the sine,

∫
dζE 2(ζ)cos(2ζ)

)
is not measurable. This is only the case for infinite waves

(E = 1) as for laser pulses with finite length this part of the integral equals zero. Note that for a circularly
polarized laser pulse contains twice the energy of a linearly polarized one ( as there is no sine squared
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term in the equation above). This can be understood from the fact the a circularly polarized laser pulse
consists out of two orthogonal linearly polarized components. and we arrive at

Energylaser = c
4π (A0k)2

∫ ∞
−∞ d x

∫ ∞
−∞ d yΨ2|z=0

∫ ∞
−∞ dζE 2

2k |z=0 (2.48)

Energylaser = c
4π (A0k)2 πW 2

0
2

σζ
ck

fE

2 (2.49)

where fE is the form factor of the laser pulse. The
σζ
ck has the unit of time and can be replaced by the

FWHM σt . Thus the energy-a0 relation becomes

a0,linear = q
mc2

√
c

4π
λ

2π

√
2Energylaser
πW 2

0
2 σt fE

(2.50)

a0,circular = q
mc2

√
c

4π
λ

2π

√
Energylaser
πW 2

0
2 σt fE

(2.51)

By having chosen the pulse length in FWHM the difference in a0 given a pulse energy and length are
negligible, see Table 2.1. This is crucial for the comparison of pulse shape effects in Thomson scattering
and will be further discussed in Section 4.5. Finally we can also define a0 through the peak intensity

a0,linear = q
mc2

√
c

4π
λ

2π

√
2Ipeak (2.52)

= 0.85λ[µm]

√
Ipeak[ W

cm2 ]

1018

a0,circular = q
mc2

√
c

4π
λ

2π

√
Ipeak (2.53)

= 0.60λ[µm]

√
Ipeak[ W

cm2 ]

1018

(2.54)

Energy = 10−3 [Joule], σt ,FW H M = 17.8 [fs], W0 = 30 [µm]
a0

Linear Circular
rect 7.63 ·10−2 5.40 ·10−2

sin2 7.03 ·10−2 4.97 ·10−2

Gauss 7.02 ·10−2 4.96 ·10−2

sech 6.99 ·10−2 4.94 ·10−2

Table 2.1: Values of a0 for a given energy and pulse length for the profiles discussed in Section 2.5.2.

2.6 Radiation from Scattering

In this thesis the scattering process is treated classically. To understand the limits of this description we
will first look at the different models, starting with the more general quantum description. After having
established the model, the analytical solutions of Thomson scattering are given.

2.6.1 Energy Regimes & Models

There are two ways to describe the collision between a laser pulse and an electron bunch:

1. Collision between photons and electrons as if they are billiard balls. This is the quantum picture
and here the energy and momentum are conserved.
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2. The electron rides an electromagnetic wave and emits continuously. This is the classical picture.

To start off with the quantum picture: the energy-momentum balance is given by

mcUµ+ħK µ = mcU ′µ+ħK ′µ (2.55)

The frequency of the scattered photon, for a head on collision, is given by

ω′ = ωl (1+β)

1−βcos(ϑ)+ ħωl

γmc2 (1+cos(ϑ))
(2.56)

where ϑ is the azimuthal angle. The ratio energy of the laser and electron, i.e. ħωl

γmc2 , in the rest frame of
the electron is called the recoil parameter and is given by

χ= 2
ħγ(1+β)ωl

mc2 ≈ 4
ħγωl

mc2 (2.57)

This parameter determines if the scattering needs to be treated quantum mechanically: if the energy of
the photon in the rest frame is comparable to the rest mass of the electron then the energy exchange is
substantial. For an optical-infra red laser the photons have an energy ∼ 1 eV, meaning that the recoil is
negligible for electrons up to GeV energies.

Thus far only a single photon-electron scattering has been described. As aforementioned, when
a0 ∼ 1 an electron can scatter with several photons and converting it to a single emitted one: higher
harmonics. The recoil then needs a correction with the harmonic number χn = nχ. In [98, 99] is shown
that for γ≤ 100 the harmonics the recoil due to multi photon scattering does not influence the spectrum
significantly and the spacing of the harmonics remain equidistant.

A further distinction must be made in the classical regime, namely for long pulses as the energy
loss of the electron during the entire interaction needs to be into account. For this one can use the
Landau-lifshitz equation (Eq. 2.11). Analytical solutions to the motion [84, 83, 85] have given this criteria:
2γωl

c
2re

3 a2
0Nc ≪ 1.

Figure 2.6 shows the scaling laws as function of a0 andγ for two laser pulses with different wavelength
and temporal length. Note that the lines indicate where the relevant parameter has reached a value of
0.01, but clearly it is not a hard border. For example in [100] it was shown that for the ELI facility [101]
χ≈ 0.02 already requires the quantum model.
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Figure 2.6: Schematic overview of the different models to describe the scattering between electrons and
a laser pulse. The lines indicate where the relevant parameter has a value of 0.01, and are not hard
boundaries. The Linear, Non-linear Thomson and Radiation Reaction [84, 83, 85] regimes are classical,
where the electron emits continuously according to Maxwell’s equations. The Compton regimes [27] are
quantum mechanical in nature, where for the Non-perturbative regime additional corrections are
necessary [27, 102]. The figures include facilities and have been added to the nearest wavelength.
Left: Regimes are calculated with λl = 1.066µm, σt = 7ps. HZDR [103], LOP [104], BATF [105], LBNL
[106], SPARC [107], THomX [108], ELL [109], MUCLS [7].
Right: For λl = 250nm, σt = 10ps. ELSA [110], ELI [100].

To summarize, the classical model can be used for short infra-red laser pulses up to moderate levels of
a0 and electron energies up to GeV. This model teaches us some very interesting dynamics as we will see
in the following sections, and can be found in many publications for example [111, 29, 112, 113, 114, 99]
and tools with which we can alter the behaviour of the spectrum.

2.6.2 Analytical Solutions of Thomson Scattering

The motion and trajectory of an electron interacting with a laser pulse is analytically solvable in the plane
wave approximation, i.e. Ψ(⃗r ) = 1 or transverse ponderomotive forces are negligible. The derivation of
the velocity can be found in Appendix A.5 (see also [112] and references therein) and is given by

Uµ =


γ+ (a)2

2 (1−β)γ
a1

a2

−γβ+ (a)2

2 (1−β)γ

 , (2.58)

where (a)2 = −aµaµ is the magnitude of the vector potential. This equation is valid for any frame of
reference, since ζ is a Lorentz invariant. Only when obtaining the trajectory it is important to remember
that the integration constant kγ(1+β) is a frame dependent quantity.

The spectral equation Eq. 2.23 can be rewritten in terms of ζ (the (monochromatic) laser phase),
since the motion is fully described by it. Moreover, the terms in the exponential can be rewritten as an

integral of the four-velocities with respect to ζ: ct − n̂ · r⃗ = ∫ s
−∞ d s′U 0 − n̂ ·U⃗ = ∫ ζ

−∞ dζ′U 0−n̂·U⃗
kγ(1+β) . Thus the

double differential in terms of the laser phase is given by

d 2I

dωdΩ
= e2

4π2c

∣∣∣∣νγ(1+β)
∫ ∞

−∞
dζn̂ × n̂ ×U⃗ exp

[
iνγ(1+β)

∫ ζ

−∞
dζ′U 0 − n̂ ·U⃗

]∣∣∣∣2

, (2.59)

where ν= ω
ωl ,0

1
γ2(1+β)2 .

Several authors published the full solutions to the previous equation [29, 85], but here we will focus
only on the backscattered radiation (ϑ = π) for a linearly polarized laser pulse as this gives us enough
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insight to the physics behind the dynamics of the scattering process. In Appendix C a more detailed
derivation can be found and includes also the circularly polarized laser pulse. For the back-scattered
radiation the integral of Eq. 2.59 is∫

dζU 1 exp
[

iνγ(1+β)
∫ ζ
−∞ dζ′U 0 +U 3

]
= ∫

dζa0E (ζ)exp[iη(ζ)]exp
[

iν
∫ ζ
−∞ dζ′1+ (a)2

]
(2.60)

The slowly varying amplitude approximation and Jacobi-Anger expansion are used to extract the oscil-
lating part of (a)2 out of the exponent. This expansion moves the stationary phase points from the imag-
inary axis to the real one [31, 32], and more over already tells us the existence of (spherical) harmonics in
the spectrum. Combining the remaining exponents results in

exp[iη(ζ)(2m +1)+ iν
∫ ζ
−∞ dζ′1+ a2

0E 2(ζ′)
2 ]

= exp[i
∫ ζ
−∞ dζ′ ∂η(ζ′)

∂ζ′ (2m +1)+ν(1+ a2
0E 2(ζ′)

2 )] (2.61)

Now the stationary phase approximation can be used and we find that the frequencies emitted are given
by

ν= ∂η(ζ′)
∂ζ′

(2m +1)

1+ a2
0E 2(ζ′)

2

(2.62)

Figure 2.7 shows the dynamics of the of the emission of the radiation during the interaction process for
both polarization states of a laser pulse without chirp (η= ζ). The electron experiences the ponderomo-
tive force in the longitudinal direction, decreasing its velocity, and consequently the emitted frequency
reduces in magnitude; which is the non-linear broadening effect. Moreover, each frequency is emitted
twice during the interaction, leading to subsidiary peaks due to interference in the spectrum as shown
in Figure 2.8 [115].
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Figure 2.7: Dynamics of Thomson scattering for a head-on collision between an electron and a
quasi-monochromatic plane wave laser pulse (η= ζ). The graphs show the velocity (U 3), drift velocity
(〈U 3〉) of the particle and the frequency emitted during the interaction (ν). The drift velocity causes a
Doppler shift in the spectrum, and since it depends on (a)2 it is called the non-linear broadening of the
spectrum. The spectrum can be understood as the interference between a frequency emitted at two
different points in space-time.
Left: Linearly polarized laser pulse. The electron not only oscillates in the transverse direction but also
in the direction of propagation at twice the laser frequency. This causes the emission of higher
harmonics.
Right: Circularly polarized laser pulse. On-axis there are no emission of harmonics.



2.6. Radiation from Scattering 27

Figure 2.8: On-axis (Thomson) spectrum for a single electron colliding head-on with a laser pulse with
a0 = 1. The frequency for which the intensity of a harmonic is maximal can be approximated with the
minimum of the frequency curve (Eq. 2.62).
Top left: Spectrum for a linearly polarized laser pulse including the frequency relation.
Bottom left: Spectrum for a linearly polarized laser pulse and the analytical solution of Eq. C.13
integrated numerically for each harmonic.
Top right: Spectrum for a circularly polarized laser pulse including the frequency relation.
Bottom right: Spectrum for a circularly polarized laser pulse.

Although the on-axis radiation gives the most simple analytical solutions it must be noted that here there
is actually no radiation emitted. As the solid angle dΩ = dϕsin(ϑ)dϑ the sine term forces the double
differential to zero.

The angular distribution can be obtained by a small angle approximation, since most of the radiation
will be emitted close to the propagation direction of the electron. Similar steps must be taken for Eq. 2.60
but with U 0 −cos(ϑ)U 3 substituted. This leads to

ν1 = 1

1+γ2(π−ϑ)2 +〈(a)2〉 (2.63)

Here we see that the Lorentz factor of the electron gives rise to a Doppler shift. In fact if one makes a
Lorentz transformation, for a Linear Thomson system, to the initial rest frame the electron one finds the
frequency is the same in all directions.
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Figure 2.9: d 2 I
dωdΩ as function of frequency and (azimuthal) observation angle for electron energy γ= 10

and a linearly polarized laser pulse with a sech longitudinal profile with length Nc = 10. The black
dotted line is given by Eq. 2.63. Note that dΩ= dϕsin(ϑ)dϑ, meaning there is no energy radiated in the
backscattered direction when the sine would be included.
Left: For a0 = 0.1.
Right: For a0 = 1. The subsequent black dotted lines are obtained by multiplying Eq. 2.63 by the
harmonic number.

These radiation patterns have been experimentally demonstrated in [116, 117, 118].

2.6.3 Particle distribution & Bandwidth

The bandwidth of Linear Thomson scattering is given by [119]

σω

ω
≊

√(
Θ+ σϵN

σWe

)2

+
(
2
σγ

γ

)2

+
(
σωl

ωl

)2

(2.64)

whereΘ is related to aperture through which the radiation is collected and is given byΘ= 1p
12

(γϑmax )2

1+(γϑmax )2/2
.

Figure 2.10 shows the radiation collected for various acceptance angles for a single electron. For ϑ≤ 1
6γ

the shape is of the spectral distribution is shaped like the (relativistic Doppler-shifted) Fourier trans-
form of the laser pulse. For smaller angles the bandwidth does not reduce significantly, but the energy
collected does.
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Figure 2.10: Radiation from Linear Thomson scattering of a single electron collected within different
solid angles. The laser has a length of Nc = 30 and a longitudinal profile given by and γ= 103.
Left: Energy spectra.
Right: Bandwidth of the spectra of the left panel with the analytical approximation of Eq. 2.64 and the
Fourier limited bandwidth of the laser pulse. The colours the bandwidths correspond to the ones in the
left panel.

For an electron bunch that has non-zero emittance the bandwidth of the emitted radiation

Figure 2.11: d 2 I
dΩdω within an acceptance angle of 1

6γ for an electron bunch with

Left: Emittance ϵN
x = 10−6.

Right: Emittance ϵN
x = 10−6 and energy spread

σγ
γ = 0.016.

To reduce the bandwidth of Thomson (or Compton) scattering after the event would require special
optics suitable for the produced wavelengths. This is not ideal, since optics induce losses if these already
exist for the radiation [120].

2.6.4 Non-linear Broadening Compensation

The non-linear broadening makes a scattering source less appealing. How could one remove this non-
linearity? Well the answer was hinted in Eq. 2.62: use a chirped laser pulse [121, 122, 123, 115, 124]. To
have the emitted frequency constant one requires a chirp such that the (longitudinal) ponderomotive



30 Chapter 2. Theoretical Background

force is compensated. The frequency modulation required is

η(ζ) =
∫ ζ

−∞
dζ′ 1+〈a(ζ′)〉2 (2.65)

Figure 2.12: Spectra of Non-linear Thomson scattering for a0 = 1. The linear Thomson spectrum can be
recovered by introducing a chirp that compensates the non-linear broadening.
Left: Circularly polarised laser pulse. Here 〈a〉2 = a2

0E 2(ζ)
Right: Linearly polarised laser pulse. Here 〈a〉2 = a2

0E 2(ζ)/2

Such a frequency modulation exceeds known bandwidths of lasers: for a0 = 1 the bandwidth of the
laser needs to range from 200[nm] ≤λ≤ 1 [µm].
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Chapter 3

Electron transport with Lienard Wiechert
Potentials

In this chapter the dynamics of the fields of the charges within a bunch (with relativistic energies) are
investigated. These fields have gained traction in the past decades because the energies of the particles
have increased and the curvature of their motion decreased, whereby the synchrotron radiation can
become substantial to have negative effects on the properties of the bunch.

Analytical analysis of the retarded fields has a long history [19, 92]. For uniform linear motion the
expressions for the retarded time and fields were given by Feynman [125]. For curved paths no exact
solutions exist, and approximations are few. There exists a 1D model for coherent synchrotron radiation
[22, 23]. The applicability of these 1D models are given by the two criteria

R

γ3 ≪σz (3.1)

σr

σz
≪

(
R

σz

) 1
3

(3.2)

In [73] it is noted that due to the reduction of the retarded time, due to a circular path, can lead to the
Coulomb force being non-negligible. Recently several 2D methods have been published that supported
this notion [126, 127, 128]. Not long ago even a 3D model has been published and comparing the method
to obtain the retarded time one will see great similarities between here and [127, 129], but the method-
ology what to do with them is different.

Numerical solutions [73] can be regarded in three groups: general purpose particle trackers, dedi-
cated retarded field codes and Particle-In-Cell codes. General purpose codes, such as Astra [130], Elegant
[48] and GPT [50], have either a formula based algorithm (Like Saldin’s [23]) or use a Lorentz Transform
to the instantaneous rest frame of the bunch/source particle at the current time to obtain the self fields.
A Lorentz transform is of course fully allowed when there is no acceleration involved. The problem man-
ifests itself when the source is under acceleration, which will be further explained in Section 3.1.1.

Dedicated codes like TrafiC [131], Tredi [132], a Vlasov–Maxwell based algorithm [73] or Retar [133].
These work by finding the retarded position of the source in the history of its trajectory. This is compu-
tationally heavy as they scale with O (N 2

e ).
Particle-In-Cell codes discretize space (cells) and compute the electromagnetic fields inside a cell

using Maxwell’s equations. A well known problem is numerical dispersion, because high frequencies
cannot propagate with the speed of light in the discretized space [134, 94]. The major challenge for these
codes are therefore the different scales involved between the particle motion, the driving field and the
wavelengths of emitted radiation. To compute the propagation of the fields correctly requires a very fine
mesh, but this of course increases the computation time.

In this regard it is beneficial to have rigorous 3D analytical solutions for the retarded time, by which
the fields can be calculated consequently. First the retarded time is explained in depth and the challenges
to compute the fields are explained. Then analytical solutions are given for the retarded time for uniform



32 Chapter 3. Electron transport with Lienard Wiechert Potentials

linear motion followed by analytical approximations for circular motion. Finally the obtained results are
used to give estimates on self field effects for practical situations.

3.1 Retarded time - Notation clarification

As mentioned in Chapter 2, section 2.4, the common way in literature to represent the retarded time is
(e.g. [34])

ctr et = ct − |⃗ro(ct )− r⃗s(ctr et )| . (3.3)

Though, a more appealing way to describe it is through the distance the field has travelled, from both the
perspective of SR and geometrically. This approach is more in line with the Huygens principle, where the
particle emits a spherical wave at each point in time, see Fig 3.3. The four vector for this distance is given
by

Xc
µ = Xo

µ−Xs′
µ =

(
ct − ctr et

r⃗o(ct )− r⃗s(ctr et )

)
= cτ

(
1
n̂

)
, (3.4)

and its (Lorentz invariant) magnitude

Xc
µXc µ = cτ2 − (⃗ro(ct )− r⃗s(ct − cτ))2 = 0. (3.5)

We want to find an analytical solution for the light distance when we are given the information of the

source at the current time and a point of observation: cτ
(
r ′

s ; r⃗o , r⃗s , β⃗s , E⃗ , B⃗
)
.

3.1.1 Retarded time & Frames of Reference

Many numerics [130, 48, 50] use the instantaneous rest frame, either for each pair of particles or the
frame of the bunch, as a way to calculate the interactions between particles. Even if we only consider the
case where the forces through the retarded fields are of perturbative nature, this method of calculating
the forces can only be applied for inertial frames. This we can see in Figure 3.1: in orange is the retarded
position and in green the current position of the source and an observer in purple. For inertial frames it
does not matter whether the retarded position is calculated from the retarded or current position of the
source as the observer always intersects with the light cone of the retarded particle.

For a particle under acceleration, however, causality breaks under such Lorentz transformations, see
bottom right panel of Figure 3.2. The observer intersects the light cone of the source if, and only if,
the Lorentz transformation is performed for the retarded position of the source (Bottom left of Figure
3.2). One could argue that for small distances between the observer (purple) and the source (green) the
discrepancy of causality diminishes. This, however, requires knowledge of the cτ a priori, because the
relevant approximation should be that the distance between the source’s current and retarded position
is sufficiently small.



3.1. Retarded time - Notation clarification 33

Figure 3.1: 2D Space-time diagrams for a source particle with uniform linear motion, where the current
position is green and the retarded position is orange, and an observer in purple. The left and right
frames are connected by a Lorentz transformation.
Top left: In the lab frame the observer lies on the light cone of the source particle at the retarded time.
The source particle at the current time is spatially separated from the observer.
Top Right: In the rest frame of the source the observer (still) lies on the light cone of the source particle
at the retarded time.
Bottom left: The source particle at the current time (now in the origin) has its own light cone and the
light cone of the retarded position is dotted. The observer lies on the light cone of the retarded source.
Bottom right The observer lies on the past light cone of the source particle at the current time. This
means that the effect of the source particle on the observer can be calculated using ctad v .
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Figure 3.2: 2D Space-time diagrams for a source particle under acceleration, where the current position
is green and the retarded position is orange, and an observer in purple. The left and right frames are
connected by a Lorentz transformation.
Top left: In the lab frame the observer lies on the light cone of the source particle at the retarded time.
The source particle at the current time is spatially separated from the observer.
Top Right: In the rest frame of the source the observer (still) lies on the light cone of the source particle
at the retarded time.
Bottom left: The source particle at the current time (now in the origin) has its own light cone and the
light cone of the retarded position is dotted. The observer lies on the light cone of the retarded source.
Bottom right The observer does not lie on the light cone of the retarded- nor on the future source
position: causality is broken. The forces on an observer cannot be calculated in the (instantaneous) rest
frame of the source at the current time.

3.1.2 Huygens style - Forward in Time Calculation

One way to calculate the retarded fields would be to approach it in the style of the Huygens principle:
at each point in time the source emits a spherical wave and its radius increases along with time. The
properties of the electron for each spherical wave are known and one is left to reiterate the value of the
electric field. The electric field lines can be retrieved by adding labels to each point on each spherical
wave and connect the same labels from the consecutive waves. This was already developed in [135] and
gave the tangential field lines. Here the field is calculated according to Eq. 2.21. This approach can be
used for any type of motion. A few examples can be seen in Figure 3.3.

In the Figures the simulation time is the same for all four cases, and therefore the radius of the first
wave is the same. To know the field beyond this first wave requires times before the simulation started.
In fact this is an initial condition problem. The Doppler effect is clearly visible: the density of the waves
are highest in the direction of the motion of the source.
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Figure 3.3: Representations of the forward in time calculation for various motions of a charged particle.
At each point in time the particle emits a spherical wave, with the origin at the particle’s position. The
radius of the wave is the time difference between emission and the current time. All the properties to
calculate the Lienard-Wiechert potentials are known, since the wave is calculated from a retarded
position. A couple of notable facts: 1) None of the waves intersect, as this would break the speed of
light. 2) The wave with largest radius comes from the start of the simulation. Points outside this sphere
are affected from the source at earlier times. 3) The density of waves are highest in the direction of
motion: Doppler shift.
Top left: Linear motion. Within transport lines it represents the drift spaces between
Top right: Linear acceleration.
Bottom left: Circular motion, like that of an electron in a dipole magnet.
Bottom right: Oscillating motion including a longitudinal momentum as is the case of an undulator
and Thomson scattering.

For didactic purposes or low electron energies this method is quite fast as it does not require many
waves. However, it is rather slow when the field is calculated for the use of a particle tracker; it requires
small time steps to reduce the gaps between the waves, smaller than ∼ 1

γ , in the vicinity of the source
particle. Moreover the the field is calculated for the entire trajectory, which means that a lot of calculation
power goes to points far away of the source particle. Finally, it is hard so sum the fields from different
particles together.
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Figure 3.4: Retarded electric fields calculated in the Huygens style for different trajectories (dark blue).
The outer yellow circle indicates how far the field has travelled from the starting position of the particle.
Top left: Linear motion. Within transport lines it represents the drift spaces in beamlines.
Topright: Thomson scattering with an electron initially at rest (γ= 1) with a linearly polarized laser
pulse with a0 = 2 and Nc = 5.
Bottom left: The Coulomb field for linear motion followed by a circular motion. Representing a drift
and a dipole with a hard edge. Here γ= 2 and the radius of the circular motion is R = 5 [cm]. The inner
yellow dotted circle indicates the how far the field travelled from when the electron starts its circular
motion.
Bottom right: Same motioin as left, but the total retarded electric field is given. The acceleration is
instantaneous due to the hard edge approach of the dipole and hence gives a jump in the electric field.

3.2 Far Field vs Near Field

When discussing the pattern of synchrotron radiation most will think about the 1
γ cone as depicted in

Figure 1.1. This is the far field which is true for a short time of acceleration, in which the source is visible
to the observer, and that the observer is sufficiently far enough away. This means that β⃗, n̂ and cτ change
negligibly over the time the electron is visible to the observer. This image distorts what is happening in
the near field.
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Figure 3.5: Retarded time and electric field calculated numerically in a far field configuration: the
source travels on a circular trajectory and the observation points δ⃗r (α) and δ⃗r (ϕ,ϑ) encompass the the
motion with ta distance 0.5[cm]. The retarded time is found by using a Newton method and providing
the estimated value as the distance between the source and the observation point. The same
parameters are used as in [133] for comparison: R = 628µm, γ= 4.123 and B⃗ =−105 Gauss. The bottom
panels show the magnitude of electric field on a grid in the x − z plane calculated through Eq. 2.21. The
grid size is 1000x1000 points, but is still insufficient to calculate the electric field properly. A part can be
attributed to the narrowness of the field emitted in combination with the Cartesian coordinate system
and the spherical wave emitted. To be compared to Shintake 2002 Fig. 4 [135] and Jackson 3rd edition
Fig 14.7 [34].
Top left: Overview of the trajectory (blue), the observation points δ⃗r (α) and δ⃗r (ϕ,ϑ).
Top right: The retarded time for the observation points δ⃗r (α). cτ can be approximated by |δr |, since the
observation points encompass the trajectory and therefore the distance light needs to travel is roughly
the observation distance.
Bottom left: The magnitude of the electric field in the x − z plane including the dP

dΩ as one would

calculate in the far field: n̂ is parallel to β⃗.
Bottom right: The magnitude of the electric field in the x − z plane with the exact retarded position of

the electron. n̂ and β⃗ are no longer parallel, as this would render n̂ ×
(
(n̂ − β⃗)× dβ

dct

)
zero.
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Figure 3.6: The Coulomb and radiation electric fields separately on the sphere δr (ϑ,ϕ) from Figure 3.5.
The colour coding is such that the maximum and minimum of the electric field are equal for both
graphs. The field is The Coulomb field is much smaller than the Radiation field as in accordance with
the far field approximation.
Left: Coulomb field.
Right: Radiation field.

3.3 Uniform Linear motion - cτ
(
r ′

s ; r⃗o, r⃗s , β⃗s

)
For this case cτ can be found readily by performing a Lorentz transformation to the instantaneous rest
frame of the source particle, where cτ′ = |r⃗s− r⃗o

′|, and have the final answer by taking the inverse Lorentz
transform. Nevertheless, solving a simple case can give clarity on methods for more complicated cases.
Figure 3.7 depicts the space-time diagram of the “lab frame” . For a particle undergoing uniform linear
motion its retarded position can be expressed as

r⃗ ′
s = r⃗s −

∫
cτ

dct β⃗s = r⃗s − β⃗scτ. (3.6)

Figure 3.7: Retarded time for uniform linear motion. From the retarded position (r⃗s) a spherical wave is
emitted that reaches an observer (r⃗o). The radius of the sphere is the light distance cτ and is solvable
using the geometry.
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(
r ′

s ; r⃗o , r⃗s , β⃗s

)
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Substitution in Eq. 3.5 leads to a quadratic equation with solutions

cτ= γ2
s

[
−δ⃗r · β⃗s ±

√(
δ⃗r · β⃗s

)2 +
(
δr

γs

)2
]

(3.7)

The two solutions are the retarded (< 0) - & advanced time (> 0). Before we discard the advanced solu-
tion, we will look at the solutions for observation points on a circle centred around rs . This is shown in
the top left panel of Figure 3.8 for the distance δr (α) = 10−3 [m], γ= 103. Due to the symmetrical nature
of Eq. 3.7 the retarded solution of δr (0) equals that of the advanced solution of δr (π). If one solves the
roots of the polynomial of Eq. 3.5 and 3.6 through the complimentary matrix method [136] one only
needs to solve half the points of δr (α). Furthermore the solutions are rotationally symmetric around the
propagation direction of rs , thus the number of points can be reduced to only one quarter. If we expand
the observation points to a sphere around the source only 1

8 of the points are required by solving Eq. 3.7
with the aforementioned method.

The solution of cτ differ in several orders of magnitude depending on the δ⃗r ·β, the term that tells
whether ro is in front or behind rs , as is shown in Figure 3.8. It must be noted that for linear motion cτ is

not bound when ro is in front of rs , i.e. lim
γs→∞cτ

(
r ′

s ; r⃗o , r⃗s , β⃗s

)
→∞.
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Figure 3.8: Solution fo cτ (in [cm]!) for uniform linear motion with the electron’s energy γ= 103 and
δr = 10−3[m].
Top left: Trajectory (blue) of an electron with observation points on a circle (δr (α)) around its current
position. Four special points are marked.
Top right: Retarded time for the observation points. The scale of the vertical axis is logarithmic for
clarity, since the difference between the forward and backward direction is six orders of magnitude. cτ
is symmetric around the direction of propagation.
Bottom left: Same as top right, but represented in polar coordinates. The symmetry of cτ is even more
clear.
Bottom right: The electric field (in V

m and logarithmic scale) of points on the grid centred around the
source particle at the current time.

3.4 Circular Trajectories - cτ
(
r ′

s ; r⃗o, r⃗s , β⃗s , B⃗
)

In this section the retarded time for three cases is examined:

• 1D
The source does not have a velocity component parallel to the magnetic field (β∥ = 0). The observer
r⃗o lies on the trajectory of the source.
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• Motion 2D
The source does not have a velocity component parallel to the magnetic field (β∥ = 0). The observer
can include vertical displacement.

• Circular motion 3D - Dipole Motion
The source is allowed to have a velocity component parallel to the magnetic field. This is the real
motion of a particle in a dipole or a circular undulator.

The four-velocity and four-position of a particle in a constant magnetic field are given by

Uµ = γ


1

β⊥ cos( eB0

γmc2 (ct + ct0))

βy (0)

−β⊥ sin( eB0

γmc2 (ct + ct0))

 (3.8)

X µ =


ct

R sin( eB0

γmc2 (ct + ct0))

βy (0)ct

R cos( eB0

γmc2 (ct + ct0))

 , (3.9)

3.4.1 Circular Motion 1D

The trajectory of the electron changes according to its energy or the strength of the magnetic field through
the magnetic rigidity. This makes it rather messy to understand the mechanics of the retarded time for
the 1D model, where the observer lies on the path of the source particle. Therefore in this section the
radius of the electron’s trajectory is a constant, implying that if the energy changes the magnetic field
changes with it, which is exactly how a beamlines work in facilities. In this configuration the retarded
time condition is given by

cτ

2R
− sin

(
βcτ

2R
+ δϑ

2

)
= 0 (3.10)

and is illustrated in Figure 3.9. Linearizing this condition results is the same as assuming that the source
particle travels in a straight line, which does not give the correct result see Figure 3.2 and Figure 3.10. An
interesting point is that δ⃗r ·β does no longer indicate whether ro is in front or behind rs for the general
case. This can easily be found by equation cτ = 2R; where the light front has travelled the diameter of
the circular path. The angular distance where ro is in front of rs is then given by δϑ ≤ π−2β. This also
indicates that, unlike the uniform linear motion, cτ has an upper bound.
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Figure 3.9: Retarded time for a source (r⃗s) travelling along a circular trajectory (counter clockwise)
where the observer r⃗o lies on its trajectory.
Left: The distance between r⃗s

′ and r⃗s is a chord and is given by the integral of the velocity. The path
taken is the arclength and has length βcτ. The chord and the arclength cannot be approximated to be
equal to each other, as this would implicate that the particle travelled in a straight path!
Right: There exists an angle between the r⃗s and r⃗o for which the cτ= 2R: δϑ=π−2β. This determines
whether the observer is in “front” or “behind” the source.

Figure 3.10: Spacetime diagrams for the retarded time condition for a source particle travelling on a
circular trajectory and the observer lies ahead on the source’s path (blue). The figures include the
curves for which the source is stationary (red), linearized trajectory (dark orange), the (angular)
distance between the particles for which cτ= 2R (purple) and the dotted lines indicate cτ for circular
(blue) and linear (dark orange) trajectory. The energy of the source, the distance between the source
and observer and the radius of the circle have been chosen for illustrative purposes: R = 5[m], δϑ= 0.1.
Left: The Lorentz factor of the electron is γ= 2.
Right: The Lorentz factor of the electron is γ= 3.2. For the circular trajectory there is a limit on cτ as
function of γ, while for a linear trajectory it is unbounded (see section 3.3).

For the analysis of the electron-electron interaction within a bunch, the maximum scale of interest is
on the order of δr ∼ [mm]. For these distances the relation δr ·β suffices to determine which particle
is in front of the other. When ro is behind the source, Eq. 3.10 can be linearized and cτ ≈ δr

2 is a good
approximation. When ro is in front of rs its a bit more complicated. Using an expansion of Eq. 3.10
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comes with two questions: 1) up to what (polynomial) order do we get a good approximation and 2)
how insightful is the analytical solution. Regarding the first question, we can rely on the solution of Eq.
3.7: cτ requires an even polynomial in order to correctly take the retarded and advanced solution into
account. For the problem at hand this means that the minimal polynomial degree is 4. Although this can
be solved analytically, the solutions can be complex and are lengthy and thus not great for understanding
the dynamics. What we know for sure is that the solutions of cτ must be real.
Three (approximate) solutions have been found for the 1D case when ro is in front of rs :

1. By looking at the behaviour of the retarded time numerically, it was found that the shape resembles
an S-shape (similar to the electron’s longitudinal trajectory in Thomson scattering ). A fit function
has been developed.

cτ(γ) = sin

(
δϑ

2

)
+ 2A

B

[
π

4
+arctan

(
tanh

(
B

2
(ln(γs)−C )

))]
(3.11)

2. Using the law of cosines for the triangle in Figure 3.9 and expanding the cosine up to fourth order.
Assuming that the distance δr ≪ cτ

R the fourth order polynomial can be reduced to a third order
one and using Cardano’s formula we find the solution to the retarded time. The derivation for this
analytical approximation can be found in Appendix B.2.2.

cτ= R

βs
C F

(
p = 3

(
1

γsβs

)2

, q =−3
δ⃗r · β̂s

R

)
(3.12)

3. Adding the line of 1
γ it was found to intersect the retarded time once. Including a factor f into

this fraction shifts the point of intersection. Therefore one can imagine finding a fraction f such
that the ro lies on the cone 1

f γ . The derivation for this analytical approximation can be found in
Appendix B.2.1.

cτ( f ) = 2R

√
1−

(
3δϑ

3 f 2+1

) 2
3
(

3
√

3δϑ
3 f 2+1 − δϑ

2

)
(3.13)

f = C F
(
p =−3γ3

sδϑ, q = 3
)

The three solutions are shown in Figure 3.11 for R = 5m and δS = 10µm. The fitted function (Eq. 3.11)
does not perform well, but in my opinion it does hint at a possible exact solution, but so far lacks the
proper set-up of the problem. Eq. 3.12 has a very simple asymptotic behaviour:

lim
γs→∞cτ(γ) = 2R

3

√
3
δ⃗r · β̂

R
(3.14)

The interesting part about this relation is the connection with the maximum possible value, as shown in
the right panel of Figure 3.9. From this asymptote it is easy to calculate energy related to the inflection
point ( dcτ

dγ = 0). Multiply the result of Eq. 3.14 by one half and substitute it into Eq. 3.10 and solve for β.
This gives

βC = 2

3

√
3 δ⃗r β̂

R

arcsin

1

2

3

√
3
δ⃗r β̂

R

− δϑ

2

 (3.15)

γC = 4

5

1√
1−β2

C

(3.16)

The factor 4
5 has been added empirically, because the results overestimates consistently with ∼ 20% for

δϑ≤ 50 [mrad] (for example this corresponds to δS = 0.25[m] and R = 5[m]).
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The coefficients of the fit (Eq. 3.11) could be found using the other two solutions, but because it
already has a larger error than the other two this was left aside and the approximate coefficients could
increases the error further.
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Figure 3.11: Solutions for cτ (in [cm]!) for r⃗o being an observer in front and on the orbit of r⃗s (the
source) angularly separated δϑ= 2µrad and R = 5m (δS = 10µm). Note that the configuration has been
used where the orbit (R) remains constant when the energy (γ) is increased, which implies that the
magnetic field (B0) also increases.
Top left: The curve of cτ(γ) suggests that its derivative has a bell shaped curve ( similar to the
longitudinal trajectory of an electron during Thomson scattering being an S-shape, and the velocity
following the laser pulse shape, see Figure 2.7). The fit is given by Eq. 3.11.
Top right: The approximated solution from geometric principle; Eq. 3.12. From this analytical
expression the value for the asymptote of cτ can be calculated.
Bottom left: The approximated solution using fractional gamma-cones; Eq. 3.14. Here we can see why
the method is iterative: First the fraction f is calculated, then the new energy γ f is calculated, which is
where the 1

f γs
intersects with cτ(γ).

Bottom right The relative error between the numerical and fitted/analytical solution of cτ. It includes
the 1

γ cone as a measure of quality, since the width of the emitted synchrotron radiation scales with it.
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Using the above solutions the electric field at ro are calculated. The total field and its components,
the Coulomb and Radiation fields, are shown in Figure 3.12.

Most interestingly is that the Coulomb field starts to increase again after a certain energy, unfortu-
nately no relation was found for this local minimum. In my opinion this is the energy for which the
electron should be considered relativistic for circular motion. The local maximum of the Coulomb field
coincides with the inflection point of cτ(γ) and is given by Eq. 3.16. The radiation field sharply decreases
for a certain energy (for a fixed distance between ro and rs). An empirical formula has been derived us-
ing the following logic: If one calculates what the angular distance is for ro to lie on the gamma cone (far

field) of r ′
s one finds the approximation δϑ = 1

γ3 ←→ γ = 3
√

1
δϑ . This deviates from the exact value by a

factor of 1.13..., which is not too far off from π−2β (see Figure 3.10) where β is the velocity related to the
aforementioned energy and angular distance. For completeness

γ= 3
√

1
δϑ (3.17)

γR = (π−2β)γ (3.18)

In the next section we’ll explore more in depth why the radiation field so suddenly reduces in strength,
because I think the explanation is more clear using the orbit plane instead of a single observation point.
The asymptotic value of the electric field is reached for energies larger than given by Eq. 3.18, and is
therefore a good indicator for the radiation dominant regime.

Figure 3.12: Retarded electric field and its decomposition in Coulomb and Radiation parts, for 1D
circular motion as function of γ, where the radius R is kept constant and ro is in front of rs . Because cτ
is much shorter for circular motion than linear motion the Coulomb field remains dominant for much
larger γ. The maximum field strength of the Coulomb field coincides with the inflection point of cτ(γ)
and γC is given by Eq. 3.16. The total electric field has an asymptotic value for γR (Eq. 3.18, where the
Radiation term of the Lienard Wiechert potentials dominate.
Left: for an arclength distance of δS = 10−3 [m].
Right: for an arclength distance of δS = 10−6 [m].

3.4.2 Circular Motion 2D

In this section the motion of the source remains circular in a plane, like in the previous section, but
the observer can be anywhere in 3D space. The geometrical constraint from the previous section is
not adequate for this, however the angular separation depending on cτ remains attractive. Keeping the
latter spans out a different triangle: from the origin to r⃗o to r⃗ ′

s and back to the origin, see Figure 3.13.



3.4. Circular Trajectories - cτ
(
r ′

s ; r⃗o , r⃗s , β⃗s , B⃗
)

47

To start, the position of r⃗o is projected into the plane of the source, for which the notation ⊥ is used
(i.e. perpendicular to the magnetic field). Under the assumption that the motion of the source can be
described by the Lorentz force, one finds that |⃗r ′

s | = R and the constraint is given by

cτ2 − (⃗
ro,∥+ r⃗o,⊥− r⃗ ′

s,⊥
)2 = 0

cτ2 − r 2
o −R2 +2ro,⊥R cos(α) = 0 (3.19)

where α = βcτ
R +δϑ and δϑ = δ̂r⊥ · β̂s arccos

(⃗
ro,⊥ · r⃗s

)
. The first term in δϑ is to ensure that al pha is

correct depending on whether r0,⊥ is in front or behind rs .

Figure 3.13: Retarded time where the source travels in a circular orbit and the observer can be situated
anywhere in 3D space.
Left: 3D schematic of the geometry. The “-.” lines are in the plane of the source’s trajectory and the “··”
perpendicular to this plane. The following lines are given: cτ (red solid line), δ⃗r (green solid line)

Right: Top view of the left figure. To solve for the retarded time the triangle r⃗o,⊥, R,
√

cτ2 −δr 2
∥ needs to

be solved using the angular separation between the source and the observer.

Before delving further into analytical approximations it is insightful to see how the retarded time
behaves for observers equally spaced around r⃗s , and compare it to the linear case. In Figure 3.14 the
numerical solutions for cτ are shown for R = 5[m], γ = 103 and δr = 0.5 [m] and in Figure 3.15 for δr =
10−3 [m] . For such large distances the antisymmetric behaviour of cτ is very clear. Most notably in the
polar plot: the largest value of cτ is no longer in the direction of propagation but asymptotically reaches

δ̂r ·β̂=
p

2
2 depending on δr . Comparing cτ for the case of uniform linear motion and the circular motion

(Figure 3.8 & 3.15) we see that the maximum of cτ is three orders of magnitude smaller. This is the reason
why the Coulomb term is non-negligible even for relativistic energies.
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Figure 3.14: Behaviour of the retarded time for a particle travelling on a circular trajectory (counter
clock wise) with energy γ= 103 and δr = 0.5[m].
Top left: Retarded time for the observation points equidistant around the source at the current time.
The vertical axis is in logarithmic scale for clarity. The retarded time is antisymmetric. Which is most
notable for the observation points perpendicular to the propagation direction (δ̂r · β̂= 0). Note that the
difference in the retarded time between the forward and backward direction (∼ 1 order of magnitude) is
much smaller as for the uniform linear case (∼ 6 orders of magnitude) for the same electron energy and
observation distance.
Top right: Same as top left, but represented in polar coordinates. The maximum value of cτ is not in the
direction of motion, but off axis.
Bottom: The trajectory of the electron, with the observation points. The retarded positions for the
special points are marked with "x" in the same colour. Here we can clearly see why cτ does not have its
maximum in the direction of motion of the source particle.
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Figure 3.15: Behaviour of the retarded time for a particle travelling on a circular trajectory (counter
clock wise) with energy γ= 103, R = 5[m] and δr = 10−3[m].
Left: Retarded time for the observation points equidistant around the source at the current time. The
vertical axis is in logarithmic scale for clarity. The retarded time is still antisymmetric, see the points of
δ̂r · β̂= 0. Note that the maximum of cτ is three orders of magnitude smaller than for the uniform linear
motion (Figure 3.8).
Right: Same as left but represented in a polar plot. Here it’s more clear that the maximum of cτ is in the
direction of propagation.

By calculating cτ numerically we can also calculate the field on a grid near the source. Here the
assumption is that the particle has travelled long enough on the circular path, meaning that the retarded
fields will have travelled to each grid point. Figure 3.16 shows the magnitude of the electric field and
its two constituents. The parameters are chosen for clarity and are γ = 4, R = 5[m] and δr = 2 [m]. The
radiation field contains a curve that tends to zero and it encompasses the region where the field is at its
maximum. This was noted in the previous section and the reason behind it is illustrated in Figure 3.17.

There exists a retarded time cτ for which the term n̂ − β⃗ is (almost) parallel to ˙⃗
β. Therefore the radiation

field is zero where this occurs, and r⃗o,⊥ lying on the trajectory of rs the energy-distance condition is given
by Eq. 3.18. However interesting it is, this phenomenon can only occur for the radiation field of a single
particle and, moreover, because the Coulomb field is non-zero this is not a measurable quantity. The
importance is that it is not a numerical artefact.
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Figure 3.16: Retarded electric field near the source (rs) which travels along a circular path with γ= 4,
R = 5 [m] and δr = 2 [m].
Left: Magnitude of the retarded electric field.
Middle: Magnitude of the Coulomb field. Its effect depends on the distance from the source and is
more tapered opposite to the direction of acceleration.
Right: Magnitude of the radiation field. There is a curve where the field tends to zero, enclosing the
maximum field strength. See Figure 3.17.

Figure 3.17: The (retarded) radiation field with the same parameters as in Figure 3.16. Lines for
quantities in Eq. 2.21 are added for an observation point where the radiation field tends to zero. The

reason why the field tends to zero is because n̂ − β⃗ is (almost) parallel to ˙⃗
β.

In Figure 3.18 shows the dependency of the fields with respect to γ, regarding following the points from
the right panel of Figure 3.12: the Coulomb and radiation field are equal (I, γ= 40), d 2cτ

dγ = 0 (II, γ= 127),
(Eq. 3.18) γ= (2−βc )γc (III, rounded off to γ= 195) and twice the previous energy (IV, γ= 390).

• case I, γ= 40: in the forward direction both fields are approximately equal, but over the 2D plane

the Coulomb field remains dominant. Near δ̂r · β̂ =
p

2
2 there is indication that the trajectory is

circular, because the contours of the field are different for ro < R and ro > R.

• case II, γ = 127: As indicated in Figure 3.12 the total electric field is lower than its constituents,

most notably near δ̂r · β̂=
p

2
2 . The Coulomb field is still stronger over the plane. The contours are

more distorted and a minimum has formed.

• case III, γ= 195: The total electric field is still affected by the opposite signs of its constituent fields.
The distortion of the Coulomb field is smaller than the grid size. For the radiation field we see a

relatively large region where n̂ − β⃗ is parallel to ˙⃗
β.
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• case IV, γ= 390: The radiation field is dominant and the total field reflects this. The region where
the radiation field tends to zero lies closer to the source and is smaller in width.
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Figure 3.18: Four cases of the retarded electric fields depending on γ, with reference to the dynamics
seen in Figure 3.12. The electron travels counter clockwise. For each row the left panel shows the total
field, the middle the Coulomb and the right the radiation field. For each case the radius of the circular
motion is R = 5[m] and δr = 10−6[m].
I, γ= 40: The constituent fields are roughly equal in the forward direction (near the at the δr (α) line
(orange)) . However since the Coulomb’s field strength scales with cτ−2 it is stronger nearer to the
source..
II, γ= 127: The total field is lower than its constituent parts, most evidently for δ̂r · β̂=

p
2

2 .
III, γ= 195: The energy is given by Eq. 3.18. The radiation field exhibits a relatively large region where it

tends to zero because n̂ − β⃗ is parallel to ˙⃗
β. The distortion due to the circular motion is quite visible in

the total field.
IV, γ= 390: The radiation field is dominant in the forward direction. The total field roughly equals the
radiation field. The latter still contains a region where it tends to zero, but its size is smaller and closer
to the source.
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Now lets focus on the analytical solution of cτ. Like in the previous section the solution of the re-
tarded time can be found by expanding the Eq. 3.19 and solving for the roots the following fourth order
polynomial

2Rro⊥ cos(δϑ)

4!
T 4 + 2Rro⊥ sin(δϑ)

3!
T 3 +

((
R

βs

)2

− 2Rro⊥ cos(δϑ)

2!

)
T 2 +2Rro⊥ sin(δϑ)T −δr 2 = 0, (3.20)

where T = βs

R cτ. Many terms could be factored out in the equation above, but they were kept for com-
pleteness. Rather, lets talk about the possible roots of this polynomial. There is a set of four approximate
expressions possible:

• δ̂r · β̂= 1: the same solution as in the previous section (equations 3.11, 3.12 and 3.14).

• δ̂r · β̂= 0: Eq. 3.20 reduces to a biquadratic

• δ̂r · β̂=−1: Eq. 3.19 can be linearized and cτ≈ δr
2

Figure 3.19 shows the results of cτ when the observer lies in the plane of the source (i.e r⃗o = r⃗o,⊥). The
roots of Eq. 3.20 are a pretty good approximation, although when δϑ tends to zero the error grows. For
these points it would be beneficial to implement the biquadratic solution, where r⃗o is given relative to r⃗s

instead of the origin ( the centre of circular motion).
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Figure 3.19: Comparison between numerically and analytically calculated retarded time according to
Eq. 3.5 and 3.20 respectively.
Top left: Retarded time calculated numerically.
Top Right: Retarded time calculated by solving the fourth order polynomial.
Bottom left: Relative error for the analytical solution.
Bottom right: Same as bottom left but with the error range bound by 10%.

In principle the solution of cτ for a particle travelling along a circle should converge to the linear case
for either very large R

γ or very small δr . The figures below show that this is true, but that even for δr =
10−8[m] the discrepancy in cτ is still some factor but at least on the same order of magnitude. Note that
the distortion, as seen in case III in Figure 3.18, becomes visible once more.
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Figure 3.20: Retarded time and the electric field calculated in the xz-plane using the linear- and
circular solution. The distance between the source particle and the observation points δr (α) is 10−8

[m]. Note that the linear solution is the same as calculating the retarded time and electric field in the
instantaneous rest frame of the source particle and is clearly a bad approach.
Top left: Comparison of the retarded time as function of the observer position δr (α). Even for such
small distances between r⃗s and r⃗o , notably the start of the x-ray regime, the linear solution still
overestimates the retarded time in the forward direction (δ̂r · β⃗s = 1) .
Top Right: Same as left but in polar coordinates.
Bottom left: The electric field in the xz-plane when the retarded time is calculated using the linear
solution.
Bottom right: The electric field in the xz-plane when the retarded time is correctly calculated using the
circular solution.
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Figure 3.21: Comparison between the Coulomb and Radiation part of the electric field. The radius from
the source is δr = 10−8[m]. The dependency of which field is dominant depends on the scale where one
looks at: the closer to the source the Coulomb force will always dominate.

3.4.3 Circular motion 3D - Dipole Motion

The solution of cτ for a particle travelling according to 3.8 can be found in two different ways:

1. Perform a Lorentz Transform (perpendicular to the circular motion!) and use the 2D solution,
while keeping in mind that the simultaneity is lost in this frame, and make a Lorentz Transforma-
tion back

2. Find the geometrical relation in the lab frame

Here the we will continue on the track of having all solutions in the lab frame. The difference between
the previous case is that the source particle has a velocity component parallel to the magnetic field, and
is thus unaffected. Thus we can combine the solutions for uniform linear motion and the 2D circular
motion. The condition for cτ, as shown in Figure 3.22, is given by

cτ2 −
(⃗
ro,∥+ r⃗o,⊥− r⃗ ′

s,⊥− r⃗ ′
s,∥

)2 = 0

cτ2(1−β2
∥)+2δr∥β∥cτ− (

r 2
o,⊥−R2 +2ro,⊥R cos(α)

)= 0 (3.21)

where α = β⊥cτ
R +δϑ and δϑ = δ̂r⊥ · β̂⊥ arccos

(⃗
ro,⊥ · r⃗s,⊥

)
. The two limits are recovered; 1) β⃗⊥ = 0 the

uniform linear motion, 2) β⃗∥ = 0 the circular 2D motion with the observer in 3D space.
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Figure 3.22: Retarded time where the source travels in a circular orbit and the observer can be situated
anywhere in 3D space.
Left: 3D schematic of the geometry. The “-.” lines are in the plane of the circular orbit and the “··”
perpendicular to this plane. The following lines are given: cτ (red solid line), δ⃗r (green solid line)

Right: Top view of the left figure. To solve for the retarded time the triangle r⃗o , R,
√

cτ− (δr∥+β∥cτ)2

needs to be solved using the angular separation between the source and the observer.

Again the solution of the retarded time is then found by taking the series of the cosine and solving for
the roots of the following fourth order polynomial

2Rro⊥ cos(δϑ)
4!

(
β⊥
R

)4
cτ4 + 2Rro⊥ sin(δϑ)

3!

(
β⊥
R

)3
cτ3 +

−2Rro⊥ cos(δϑ)
2!

(
β⊥
R

)2
cτ2 + (1−β2

∥)cτ2 −2Rro⊥ cos(δϑ)
(
β⊥
R

)
cτ−2r⃗o · β⃗∥cτ−δr 2 = 0 (3.22)

Here it is was found not possible to factor out β⊥
R cτ: it causes the terms with β∥ to be much larger than

the other term, thereby dominating the solution and leading to wrong results.
Visualizing cτ or the retarded fields is rather challenging and one needs to resort to cuts (e.g. x − z

plane). And besides, for a single charge the number of degrees of freedom has now increased dramati-
cally; Therefore the effect will directly be calculated on a bunch. The trajectory is given in Figure 3.23
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Figure 3.23: Trajectories of particles in a bunch inside a dipole magnet with R = 500[m], γ= 100 and
ϵN

x = ϵN
y = 10−6[m]. The bunch dimensions given in the lab frame coordinates at case II are

σz =σy = 5 [µm] and σx = 400 [µm]. For the positions marked by the cases (I, II, III) the retarded time
and field will be calculated.
Left: 3D view.
Right: Projection onto x − y plane.
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Figure 3.24: Results for case II in Figure 3.23, assuming that the fields have had time to reach the
particles. The particle ID’s ordered in the longitudinal direction. Note that exactly on the diagonal of the
figures the retarded time and field are zero, because the source and the observer are the same particle,
and is not visible due to the number of particles.
Top left: Analytical solution using the fourth order polynomial (Eq. 3.22).
Top middle: Numerically obtained retarded time (3.21)
Top left: Relative error in the retarded time, colour coding restricted to 20%.
Bottom left: Magnitude of the electric field calculated with the numerical result of cτ for each pair of
particles. Under the diagonal only the Coulomb field contributes.
Bottom middle: Magnitude of the electric field calculated with the analytical result of cτ for each pair
of particles.
Bottom right: Relative error of the electric field with the colour coding restricted to ±20%.
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Figure 3.25: Magnitude of the electric field, using the numerical value of cτ, on macroparticles for the
three cases given in Figure 3.23, assuming that the fields have had time to reach the particles. Each row
contains three panels with the projections of the bunch in a plane. Note the axis are in lab frame
coordinates. The blue line is the reference trajectory, the red line indicates the rms bunch size and the
black arrow the direction of the bunch.
Top row: Case I where the bunch is moving towards the focus. The particles are convergin towards the
focus.
Middle row: Case II where the bunch is at the focus.
Bottom row: Case III where the bunch is moving away from the focus. Because the particles are
travelling away from each other cτ is larger and therefore the field strength lower.

3.5 Discussion and prospectives

From the previous sections the following results can be used for modelling the interaction of a bunch
inside a dipole

• From γR (Eq. 3.18) we can discern which field will be dominant in the forward direction over a
given distance between particles

• From 1D solution we can estimate which part of the bunch is affected by the trailing part (time
wise)

• From the 2D solution we know that particles for which r⊥ > R are less affected, because it takes
longest for the fields to arrive

• From 3D solution the forces on macro particles can be calculated
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The second point refers to that cτ has to be smaller than the time a particle is inside a dipole, see Figure
3.4.

In Section 3.4.2 it was shown in detail that the Coulomb field is dominant (both longitudinally and
transversely) for energies γ ≤ γC (Eq. 3.16) and that the radiation field is only dominant for γ > γR (Eq.
3.18). In Section 3.4.3 it was shown that the particles for which r < R the retarded fields are strongest.
This is because the cτ is shortest.

The analytics provided here give an extension to the 1D works of Derbenev & Saldin: for energies
where the radiation field is dominant the distance cτ reaches an asymptotic value, given the radius of
curvature and distance between the particles.

The 3D solutions have not been examined thoroughly. For example the retarded time seems to follow
a hyperbolic relation in Figure 3.24. The algorithm needs to be optimized by itself and parallelization of
the calculations need to implemented to decrease the simulation time. The solutions here are given for
a dipole field. With the methodology developed here it should be easy to find solutions for a bending
magnet, i.e. a dipole with a field gradient.
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Chapter 4

Advancements for Thomson Scattering

This chapter is dedicated to results from research conducted on emitted radiation through Thomson
scattering. First the topics on the linear Thomson regimes will be discussed, which are related to the
current synchrotron facilities. Whereafter the studies on the non-linear Thomson regimes.

4.1 Higher Order Transverse Modes

Currently, intensities inside a laser cavity can reach up to an order of Ipeak ∼ 1014 (a0 ∼ 10−2−10−3) [137,
138, 139]. Increasing the intensity further is becoming difficult in two ways: the spot size of the beam
needs to be larger to avoid damage on the mirrors and the thermal dissipation into the mirrors causing
deformations and excitation of higher transverse modes: a degenerate cavity [138, 139, 140, 141].

4.1.1 Cavities & Transverse Modes

One way to obtain a high intensity laser pulse is by stacking pulses inside a cavity: Each round trip of the
in-cavity laser pulse an external one is added. The goal is of course to have the pulses add constructively
and hence theses cavities are also called an optical resonator. A cavity where the laser pulse circulates
using optical components is called a Fabry-Pérot cavity. The previously discussed transverse profile, Eq.
2.33, is not the only solution to the wave equation. Two groups can be distinguished: paraxial waves (the
wavefronts are normal to the propagation) and planar waves. The former consist out of Hermite- and
Laguerre-Gaussian beam solutions, i.e. they are solutions to the scalar wave equation and require the
same steps . The latter leads to non-uniform transverse intensity distributions for which Bessel functions
of the first kind are often given solutions [97]. Here we will focus only on the Hermite-Gaussian beams
for which the transverse profile is given by

Ψ(x, z) =
√

q0

qx (z)

√
1

2nn!
Hn

( p
2x

Wx (z)

)
exp

[
i n arctan

(
z

Im(qx,0)

)]
exp

[
−i

kx2

2qx (z)

]
(4.1)

where Wx (z) =
√

− 2

kIm

(
1

qx (z)

) The frequency of a mode is given by

νC =
(
C + (n +m +1)

∆ζGouy

π

)
νF (4.2)

where νF = c
2Lcavity

and is also the spectral spacing between longitudinal modes. The first couple of higher

modes are given below.
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Figure 4.1: First three orders of Hermite-Gaussian pulse shapes in focus and the x-plane. The main take
away is that for even harmonics there is a maximum at the centre of the pulse, while for odd harmonics
the amplitude at the centre is zero.

In section 2.4.1.1 it was shown that the particles can be summed incoherently. This was under the
assumption that the differences phases between particles is small and thus βi ≈ β. This is true for a
symmetric field like the Gaussian transverse envelope (blue curve in Figure 4.1). For higher order modes
this is no longer the case. Take for example the first Hermite-Gaussian mode (orange curve in Figure
4.1). For particles xi < 0 the field is negative while for xi > 0 it is positive. The on-axis radiation should
destructively interfere as βx<0 +βx>0 =βx<0 −|βx<0 = 0|.
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Figure 4.2: Comparison of the motion and the spectrum between H0,0 and H1,0. The particles are
described by a line distribution: σx = 2W0,x and σy =σz = 0.
Top left: Velocity of two particles traversing H0,0. Since the field is symmetric the sum of the velocities is
twice is large.
Top right: Because all particles are in the same phase their contributions to the spectrum sum
coherently.
Bottom left: Velocity of two particles (equidistant from x=0) traversing H1,0. The field is antisymmetric
leading to a phase difference of π between the two particles. Summation of the velocities thus leads to
zero.
Bottom right: The spectrum is zero when it is calculated according to Eq. 2.24, since particles x < 0
emit with a phase shift of π compared to x > 0. Calculating the spectrum incoherently does not take this
effect into account.

Here the amplitude of a mode is taken as the root of the power associated with it. Below we can see three
examples of degenerate fields. Within the spot size of the fundamental mode the field has the same sign,
meaning the incoherent summation for calculating the spectrum can be used.
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Figure 4.3: Examples of degenerate fields consisting out of the sum of the fundamental and a higher
order mode. Within the spot size of the fundamental the field is positive, meaning that there are no
phase dependencies in the summation in the spectrum.
Left: H0,0 combined with H11,0

Middle: H0,0 combined with H20,0

Right: H0,0 combined with H21,0

4.1.2 Influence of Mode Degeneracy

These modes are generally n,m ≥ 10 and can have up to 20% of the power [139]. When a mode in one
plane is excited it is accompanied by a mode in the other plane which is correlated by m = p

nW0,x .
This degeneracy of the laser pulse has been clearly measured in [138] (their Fig. 4.). For the Thomson
spectrum only a single higher order mode is considered in combination with the fundamental one. The
results of the emitted radiation collected within a 1

6γ cone are given below.

Figure 4.4: Results of simulations for a degenerate cavity. Three different combinations have been tried
which have been observed experimentally. The energy of the particle, the length of the laser pulse and
the intensity have been varied. In each case the spectrum of the combined modes is 20% lower than the
fundamental one, and they are indistinguishable from one another.

Interestingly there is very little difference between the different degenerate modes in the spectrum. The
absolute bandwidth does not change. The energy distribution d I

dΩ have been checked, but also here one
could not tell that a mixed mode laser collided with the electrons, except for the amplitude.

4.2 Discussion

That the results for a degenerate cavity are underwhelming is actually a good sign: for another two orders
of increase in the power inside a cavity does not lead to a deterioration in the bandwidth of the Thomson
spectrum. The radiated energy does decrease with the amount that is in the higher order mode, but the
distribution of the energy remains the same.
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4.3 Compensating Energy Spread of Particles

In general a narrow bandwidth photon source is desired for experiments [10, 11, 142]. To achieve this
with Thomson scattering it requires a priori to operate in the linear regime [143] in combination with a
small aperture (due to the angular dependency of the emitted radiation, see Figure 2.9). The use of quasi-
monochromatic laser pulses puts the remaining constraints (to achieve the narrow bandwidth source)
on the electron bunch parameters: spot size, divergence and energy spread. These constraints are often
met by reducing the bunch charge, in both RF and PWA structures, and consequently the radiated energy
per bunch is reduced.

The obvious question then arises if there is a way to increase the number of particles by easing the
constraints and use the laser pulse to compensate the broadening. From the aforementioned electron
parameters only the energy spread can be eased under the condition that it is spatially correlated. Es-
pecially PWA electron bunches are characterised by such a correlation due to the acceleration gradient:
energy spread in the direction of propagation from few to tens of percent [56, 53, 57, 58, 59]. Also for tra-
ditional radiofrequency structures this effect takes place: the difference in the energy of a bunch depends
on its length and therefore on the phase of the accelerating wave.

If we look back at Eq. 2.62 we see two possible options to compensate a correlated energy spread:

1. use the non-linear broadening to keep γ2

1+(a)2 constant [144].

2. use a chirp on the laser pulse such that γ2ωl remains constant [145]

The first method requires that a0 is substantially different from 0 and thus leads inevitably to non-linear
broadening of the spectrum. In [144] the laser pulse and electron bunch collide under a 90deg angle,
reducing the interaction time/length of an electron in the pulse. In addition the profile of the laser pulse
needs be shaped such that it matches the energy spread distribution. For symmetric pulses as described
in Sec. 2.5.2 this actually puts a limit on the electron energy distribution and furthermore only the section
of the pulse can be used that matches the energy distribution.

The second method has the attractive attribute that it can work in the linear regime as the emitted
wavelength depends linearly on the laser frequency. To find the chirp condition we first generalize Eq.
2.62 for many particles by substituting the bunch energy distribution. Then we find

ω

c
= ωl ,0

c 〈γ〉2(1+β)2 = ∂η(X )
∂ζ

γ(X )2(1+β)2

1+(a)2 (4.3)

∂η(X )

∂ζ
= ωl ,0

c

( 〈γ〉
γ(X )

)2
(1+ (a)2) (4.4)

where X is the spatial coordinate of the (correlated) energy spread of the electrons. From the last equa-
tion we see that, in principle, any energy distribution can be compensated through a specific chirp. Be-
fore solving η and constructing geometries of the interaction, lets first establish the requirements for the
laser pulse’s bandwidth.

In the otherwise ideal conditions the bandwidth of the Thomson spectrum equals the Fourier limited
bandwidth and is inversely proportional to the length of the pulse

σλl
λl

∝ 1
Nc

[146]. The minimum pulse
length for the Fourier limited bandwidth to be smaller than the contribution of the energy spread of
σγ
γ = 0.02 is Nc ≥ 60 ( σt ≥ 200 fs). Figure 4.5 shows the results of several numerical simulations for ideal

electron bunches and one with a large energy spread. The latter results in the same bandwidth as a ideal
electron bunch colliding with a short laser pulse.

To compensate the energy spread of an electron bunch the bandwidth of the laser pulse needs to
equal

σλl
λl

= 2
σγ
〈γ〉 . Thus for an energy spread of

σγ
〈γ〉 = 0.02 (FWHM) requires a bandwidth of

σλl
λl

= 0.04
(FWHM). With the advent of chirped laser amplification these bandwidths are readily available, see Table
4.1. The spectrum of these laser pulses are Gaussian-like in shape, but even broad bandwidths with a
flat top intensity profile have been demonstrated [147, 148]. The uncompressed pulse in CPA schemes
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have an amplitude on the order of a0 ∼ 10−3 −10−1, under the assumption that W0 = 20 [µm]. For the
remainder of this research the amplitude of the laser pulse is chosen to be a0 = 10−2.

CPA lasers before compression
σωl
ωl ,0

Ener g y [Joule] σt (FWHM) a0

[149] 0.02 800 ·10−3 85 ·10−15 0.85
[150] 0.625 0.3 ·10−3 30 ·10−12 10−3

[151] 0.04 700 ·10−6 45 ·10−15 0.03
[152] 0.04 3.5 400 ·10−12 0.03
[58] 0.04 45 2 ·10−9 0.04
[105] 0.03 70 100 ·10−12 0.7

Table 4.1: Selection of published works on chirped pulse amplification. For the calculation of a0 it is
assumed that the laser pulse is focussed down to W0 = 20µm.

Figure 4.5: Numerical results of Thomson spectra for various laser pulse lengths and an ideal electron
bunch (no energy spread, no divergence) and a long laser pulse colliding with an electron bunch with a
5% energy spread. The spectrum becomes more narrow as the pulse length increases, i.e. the Fourier
limited bandwidth. To use a chirped laser pulse for the compensation of the energy spread of an
electron bunch you want the following condition

σωl
ωl ,0

≪ 2
σγ
γ .

Next we can focus on the geometry. The chirped laser pulses presented above have their frequency
correlated to the propagation direction. Simply colliding the chirped pulse and beam head-on will have
the opposite effect: an electron will experience all frequencies and thus broadening the spectrum. In-
stead, one is required to have a collision angle such that an electron only experiences the frequency
matched to its energy. To obtain analytical solutions the interaction region will be modelled as a plane
wave travelling in ẑ. To achieve this physically is by adding a second pulse that cancels the transverse
momentum, see Figure 4.6 left panel. A different geometry can be achieved by first reflecting the chirped
pulse on a grating. This effectively rotates the axis of the frequency content into the transverse direction.
Of course the electron bunch’s energy spread must now also be in the transverse direction. The right
panel of Figure 4.6 depicts this geometry schematically. I would like to attribute original idea of the lon-
gitudinal geometry to Matt Zepf and the transverse geometry to Vittoria Petrillo. Both geometries will
be investigated thoroughly in the next sections. To make the analytics more approachable the effect of a
linear chirp is considered. This is justified because higher order terms have effect over large scales, while
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a single electron should only interact on a small scale.

ωl (X )

c
= A+B X (4.5)

Then factor B can be expressed as the total (laser) bandwidth divided by the characteristic length of the
bunch.

Figure 4.6: Schematic of energy spread compensation by using a chirped laser pulse. Each electron
interacts with a portion of the laser pulse that has a frequency matched to its energy such that the
frequency of the emitted radiation is constant.
Left: The chirp is along the propagation direction of the laser pulse (Longitudinal chirp). In order for a
single electron to experience its matched laser frequency the collision requires a collision angle. The
transverse momentum of the laser pulse can be negated by using two of them as indicated in the figure.
During the interaction, i.e. where the pulses combine, the plane wave approximation can be used
where the pulse travels in +ẑ.
Right: The chirp is perpendicular to both the propagation- and polarization direction.

4.3.1 Longitudinal Frequency Modulation η(γ(z))

First, let’s narrow down what properties the laser pulse can have in this configuration. The chirp of the
laser is along the direction of propagation. From the Lorenz gauge we see that both linear and circular
polarization can be used. However, it cannot compensate the non-linear broadening as it would require
a frequency modulation along the same axis (see Section 2.6.4). Thus we are only interested in the linear
regime for which the (a)2 term in Eq. 4.4 can safely be ignored. The interaction region (L I ) is where the
two chirped laser pulses overlap and act as a plane wave travelling in ẑ. This will lead to interference
patterns, but are for now discarded. What we require is that the frequency remains constant from the
moment an electron enters L I until it exits. This means that a frequency needs to occupy a length within

the pulse of 1+β
β L I as is shown in Figure 4.7. Thus the chirp condition is found to be

∂η

∂ζ
≡ ωl (z)

c
= ωl ,0

c

 〈γ〉
γ

[
1+β
β z

]
2

(4.6)
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where γ
[

1+β
β z

]
is the rescaled electron energy distribution. The difference frequencies experienced by a

single electron traversing the interaction region is

∆ωγ,ϵN = ωl (ct = 0, z =−LI
2 )−ωl (ct1, z = LI

2 )

= B(ct1 +L I ) (4.7)

The time can be approximated, for an electron with a divergence angle (αϵN ), as ct1 ≈ L I
βcos(αϵN ) . Thus we

find
∆ωγ,ϵN

ωl ,0
=∆ωl

1+βcos(αϵN )

βcos(αϵN )

L I

LB
(4.8)

where the approximation of B = ∆ωl
LB

has been used. What can be concluded from the relation above
is that the frequency content seen by an electron is negligible due to divergence. For example the dif-
ference between αϵN = 0deg and αϵN = 10deg is on the order of 10−2. More crucial is the ratio between
the interaction region and the bunch length. This can also be reformulated as the energy gradient of
the electron bunch scaled to the interaction region. How this relation influences the spectrum will be
further explained under the simulation results after concluding the geometry. Using the slowly varying
amplitude approximation for Eq. 4.8 we find the frequency modulation to be

η(ζ) = ωl (ζ)

c
ζ (4.9)

An example of this phase is illustrated in the right panel of Figure 4.7.

Figure 4.7: Schematic overview of the dynamics of a single electron colliding with a laser pulse with a
longitudinal chirp (see left panel of Figure 4.6).
Left: An electron, without transverse momentum, enters the interaction region (L I ). At this instance the
region is filled with a single frequency wave matched to the electron’s energy. Because the wave and

electron counter propagate, the length of the laser pulse containing ω needs to be 1+β
β L I .

Middle: When an electron has transverse momentum the time it takes to traverse the interaction region
is longer. Thereby the electron can see wavelengths that are not matched to its energy.
Right: Phase (Eq. 4.9) and frequency (Eq. 4.6) of the laser pulse as function of the electron’s energy. Note
that the pulse and electrons counter propagate and thus an electron left of the figure will encounter the
frequency on the right of the figure.

So far the interaction region L I has been considered as an abstract entity containing a plane wave
pulse. To obtain a physical system we will use two Gaussian beams crossing each other. Of course the
spot of the laser pulse should be comparable to that of the electron bunch. Thus the two variables L I &
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W0 thus put a constraint on the angle of incidence, given by

α= sin−1

2 3p
2

W0

L I

 (4.10)

Figure 4.8 shows this relation and an example of realised the geometry. This angle of incidence reduces
the frequency conversion of Thomson scattering. For the on-axis radiation the peak frequency is given
by

ω= (1+βcos(α))(1+β)γ2ωl ,0 (4.11)

Finally, the full set of equations to model the laser pulses are given by

ζ= ωl ,0

c (ct − z ′) (4.12)

η= ωl (ζ)
c ζ (4.13)

x ′(α) = z sin(α)+x cos(α) (4.14)

z ′(α) = z cos(α)−x sin(α) (4.15)

Ψ(⃗r ) = G(r (α))+G(r (−α))
2 (4.16)

G(r (α)) = q(0)
q(z ′) exp

[
−i ωl ,0

c
x ′2+y2

2q(z ′)

]
(4.17)

q(z) = q0 + z (4.18)

q0 = i
W 2

0

ωl ,0
c

2 (4.19)

E (KµX µ) = 1 (4.20)

Figure 4.8: Realization of the interaction region for a longitudinal chirp η(γ(z)).
Left: Constraint on the angle of incidence for a given interaction length (L I ) and width of the laser pulse
W0. Reducing the angle of incidence, for a fixed interaction length, also reduces the spot size.
Right: Top view of the geometry of the two laser pulses. Here L I = 106.6 ·10−4 [cm] (Nc = 100),
W0 = 20 ·10−4 [cm] and α= 52.75deg. Note that the length of the laser pulse is longer than L I .

Simulation Results

Figure 4.9 shows the simulation results for on-axis radiation where the energy spread and interaction
length have been kept constant, but the length of the bunch has been varied; thus changing the energy
gradient of the bunch. What we see is that if the bunch is much longer than the interaction region the



72 Chapter 4. Advancements for Thomson Scattering

spectrum reaches the plane wave - ideal electron bunch limit asymptotically. The reason for this is easi-
est understood starting with the case where the bunch is smaller than the interaction region: an electron
in the bunch experiences the full bandwidth of the laser pulse as it traverses the interaction region. This,
combined with the energy spread, results in an even broader and less intense spectrum. This does not
mean that this method is not adequate for the bandwidth compensation, but rather sets a physical limit
to the geometry; connecting the possible interaction length with the energy gradient of the bunch. In
the end it is a design problem where the interaction length is easier to manipulate, thus given an elec-
tron bunch the possible interaction length is L I = 1

5σz . Combining Eq. 2.64 with the above relations the
bandwidth of the Thomson spectrum for the LC case scales as

σω

ω
=

√√√√(
Θ+ σϵ

σWb

)2

+
(
∆ωγ,ϵN

6ωl ,0

)2

+
(
σωl ,0

ωl ,0

)2

, (4.21)

where
σω

γ,ϵN

ωl ,0
= 2

p
2σγ
γ

L I
LB

Figure 4.9: Simulation results for on-axis Thomson scattering for longitudinal chirp.
Left: On-axis spectra for the following cases: a quasi-monochromatic pulse - ideal electron bunch
(orange), a quasi-monochromatic pulse - chirped electron bunch (blue), a chirped pulse - chirped
electron bunch with varying ratios of interaction- and bunch length.
Right: Bandwidth of the on-axis spectrum as function of the ratio between the bunch length &
interaction region. When the bunch is shorter than the L I the spectrum is broader than when the same
electron bunch collides with a monochromatic laser pulse collides, see blue in the left panel. This is
because an electron experiences a large range of laser frequencies.

For the simulations calculating the energy collected on a screen we use electron parameters σx =
σy = 20 [µm], σz = 30 [µm], ϵN

x = ϵN
y = 10−6 [mm mrad], γ= 103, and

σγ
γ = 0.03. An additional case of

an unmatched chirp is provided as well; the bunch’s energy spread is kept the same but the frequency
modulation is calculated to be that of

σγ
γ = 0.05.

First an electron bunch with an idealized energy correlation has been used, see left panel of Figure
4.10. For this the monochromatic Thomson spectrum is retrieved, both in photon numbers and in band-
width. The number of photons emitted is roughly the same for all cases. For a more realistic bunch the
ideal Thomson spectrum is not retrieved because each slice of the electron bunch inside the interaction
region now has a finite energy spread.
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Figure 4.10: Simulation results of Thomson scattering, where the energy correlation of the electron
bunch is compensated by a chirped laser pulse along the propagation direction.
Left: Particle Distribution.
Middle: Longitudinal position and momentum correlation.
Right: Energy collected within an azimuthal angle of 1

6γ . The photon numbers for 103 particles and

bandwidth are: no energy spread (orange) Nph = 9.4, σωω = 1.61 ·10−2, no chirp (red) Nph = 9.0,
σω
ω = 3.53 ·10−2), matched chirp and Lr at = 5 (green) Nph = 9.6, σωω = 1.78 ·10−2), matched chirp (blue)

and Lr at = 15 Nph = 9.6, σωω = 1.65 ·10−2).

Figure 4.11: Simulation results of Thomson scattering, where the energy correlation of the electron
bunch is compensated by a chirped laser pulse along the propagation direction.
Left: Particle Distribution.
Middle: Transverse position - Longitudinal momentum correlation.
Right: Energy collected within an azimuthal angle of 1

6γ . The photon numbers for 103 particles and

bandwidth are: no energy spread (orange) Nph = 9.4, σωω = 1.61 ·10−2; no chirp (purple) Nph = 9.7,
σω
ω = 3.45 ·10−2); matched chirp (green) and Lr at = 5 Nph = 9.2, σωω = 1.83 ·10−2); matched chirp (blue)

and Lr at = 15 Nph = 9.2, σωω = 1.83 ·10−2); unmatched chirp and Lr at = 15 Nph = 9.2,σωω = 2.16 ·10−2).

4.3.2 Transverse Frequency Modulation η(γ(x))

This geometry shares the same idea as the transverse gradient undulator, see [153, 154, 155] and refer-
ences therein. A transverse frequency modulation can be realized only for a linearly polarized laser pulse
and the chirp is orthogonal to the polarization axis. In fact this is what is shown in Figure 4.6. To start of
with the model, we will collide an electron bunch with its correlated energy spread in x̂ head-on with a
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laser pulse with an amplitude a0 ≪ 1. The chirp condition is then simply

∂η

∂ζ
≡ ωl (x)

c
= ωl ,0

c

( 〈γ〉
γ(x)

)2
(4.22)

η= ωl (x)

c
ζ (4.23)

For this geometry no additional requirements are needed. So lets look into what frequencies an electron
experiences due to emittance/divergence of the bunch or a collision angle.

∆ωα,ϵN = ωl (ct = 0, x = x0, z =−Lpul se

2 )−ωl (ct1, x1, z = Lpul se

2 )

= B∆x (4.24)

If we now take that the approximation that tan(α) = ∆x
Lpul se

and B = ∆ωl
Wb

than the we find

∆ωα,ϵN =∆ωl tan(α)
Lpul se

Wb
(4.25)

If the angle is caused only by the divergence/emittance it is safe to say that this quantity is negligible. For
an angle of incidence we will compare the value from the equation above with Eq. 4.8 reaching the PW
limit. Thus, for a 100 fs pulse (FWHM) the maximum incidence angle is 4deg and for a 100 ps pulse the
maximum incidence angle is 0.05deg. These angles are larger than is typical in Thomson experiments,
and therefore off no concern for the remainder of this section. The bandwidth of the emitted radiation
can be approximated as

σω

ω
=

√(
Θ+ σϵ

σWbunch

)2

+
(
∆ωα,ϵN

6ωl ,0

)2

+
(
σωl

ωl ,0

)2

, (4.26)

From a theoretical point of view a frequency modulation to compensate the non-linear broadening
(Section 2.6.4)) is compatible with this geometry, as the two frequency modulations are along different
axis. The chirp condition is now given by

∂η

∂ζ
= ωl ,0

c

( 〈γ〉
γ(x)

)2

(1+ (a)2) (4.27)

How to practically obtained such a frequency modulation is unknown to me, and therefore left out of
this thesis, but simulation results can be found in [145]. Finally, the shape of the laser pulse is given by

Ψ(⃗r ) = q(0)
q(z) exp

[
−i ωl ,0

c
x2+y2

2q(z)

]
, (4.28)

E (ζ) = sech
(
ζ
p

2
Nc

)
(4.29)

Simulation Results

For the simulations calculating the energy collected on a screen we use electron parametersσx =σy = 15

[µm], σz = 30 [µm], ϵN
x = ϵN

y = 10−6 [mm mrad], γ= 103, and
σγ
γ = 0.03. These are typical from plasma

accelerated bunches as provided in Table 1.2. The collected radiation is within an azimutal angle of
1

6γ ≈ 0.17[mrad].
For the electron bunch with an idealized energy correlation the transverse chirp works excellent.

It does not require any modifications and can retrieve the monochromatic photon number and band-
width.
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Figure 4.12: Simulation results of Thomson scattering, where the energy correlation of the electron
bunch is compensated by a chirped laser pulse along the propagation direction.
Left: Particle Distribution.
Middle: Transverse position - Longitudinal momentum correlation.
Right: Energy collected within an azimuthal angle of 1

6γ . The number of photons per 103 particles and

bandwidth are: no energy spread (blue) Nph = 17.2, ,σωω = 1.62 ·10−2 ; no chirp (orange) Nph = 16.3,
,σωω = 2.42 ·10−2; matched chirp (green) Nph = 16.8, ,σωω = 1.55 ·10−2 .

The electron bunch so far has been modelled ideally; there is only a single energy at x. To obtain
the energy spread in the transverse direction, either from a bunch with an uncorrelated - or a correlated
longitudinal energy spread, one could use a (magnetic) dipole. Here we will not go into a specific beam-
line, but use an electron bunch that has similar characteristics as given for the study of the transverse
undulator [155].

For a more realistic electron bunch a finite energy spread encounters a frequency, matched to the
average in that transverse position. This decreases the effectiveness, but still good results are obtained.

Figure 4.13: Simulation results of Thomson scattering, where the energy correlation of the electron
bunch is compensated by a chirped laser pulse along the propagation direction.
Left: Particle Distribution.
Middle: Transverse position - Longitudinal momentum correlation.
Right: Energy collected within an azimuthal angle of 1

6γ . The number of photons per 103 particles and

bandwidth are: no energy spread (blue) Nph = 17.1, ,σωω = 1.57 ·10−2 ; no chirp (orange) Nph = 16.7,
,σωω = 2.45 ·10−2; matched chirp (green) Nph = 16.7, ,σωω = 1.70 ·10−2; unmatched chirp (red) Nph = 17.3,
,σωω = 1.83 ·10−2.
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4.4 Discussion

The longitudinal and transverse energy compensation geometries have each their own merits and com-
plications. Both can retrieve the monochromatic Thomson spectrum for an electron bunch with an ide-
alized energy correlation. For a realistic electron bunch, that includes some uncorrelated energy spread,
efficiency of the compensation scheme is decreased. The transverse geometry gives twice the photon
number compared to the longitudinal one. For a 1nC bunch the order of magnitude of emitted photons
is > 107.

Longitudinal η(γ(z))

The experimental implementation of a longitudinally chirped laser pulse for Thomson scattering is quite
straightforward for an electron bunch obtained by laser plasma wake-field acceleration. The CPA laser
pulse before the compression stage is exactly that what is needed for the scattering event: Joule-class
with a bandwidth compatible to the energy spread of produced electron bunches. This makes the timing
of colliding the electron bunch and laser pulse more synchronous as well.

A collision angle is required in order for an electron to experience a single frequency of the pulse. This
angle depends on the interaction length and therefore the gradient of the energy spread of the electrons.
This angle of incidence results in a lower emitted frequency than of head-on collision and should be kept
in mind in the experimental design.

Here two pulses were used to maintain a clear connection to the abstraction used in the theory. When
a0 ≪ 1 it is safe to use a single laser pulse, as the ponderomotive forces are negligible.

The timing of collision is rather important for this geometry. A time deviation of the arrival of either
the laser pulse or electron bunch, i.e. jitter, results in a shift of the Thomson frequency for a linear energy
correlation, but does not alter the bandwidth significantly. This seems less relevant for a full optical
system where the bunch and Thomson scattering are done with a single CPA laser pulse. When a different
laser pulse is used to obtain an electron bunch, or an RF facility is used, the jitter could be a negligible
effect.

Transverse η(γ(x))

Thomson scattering with a transversely chirped laser pulse is quite robust. The PW bandwidth limit can
be retrieved and, moreover, the photon number as an ideal Thomson scattering event. Also it is not
sensitive to emittance or an angle of incidence between the bunch and the laser pulse.

The required laser pulse can be obtained by using CPA pulse and a dispersive optical component,
e.g. a grating. Implementing this geometry experimentally does require a beamline such that the bunch
has its energy correlation perpendicular to the propagation direction.

Prospects

It would be interesting to combine the two geometries together, whereby the laser is described with a
pulse front tilt (see for example [156, 157]). An electron bunch obtained from plasma wake acceleration
(or RF structure for that matter) can be used directly without the need of additional beamline compo-
nents as with the η(γ(z)) case. Moreover an electron traverses the entire pulse length and can experience
a matched frequency like in the η(γ(x)) case. A front tilted pulse is achieved by using a double set of
gratings, like in the pulse compression of a CPA line. The losses for such a compression are substantial,
e.g. 30% in [152, 105].

A further study needs to be conducted on two aspects that are intertwined: the maximum reachable
bunch charge and quadratic chirp of the laser pulse. Here a 1 [nC] bunch charge was assumed to cal-
culate the total emitted photons. Larger bunch charge can be achieved by increasing its physical size.
This however can lead to non-linear energy correlations [158]. Which brings us to the second part: the
compensation of non-linear energy correlation requires higher order frequency modulation terms. In
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principal such a modulation is compatible with the linear Thomson regime, but could lead to constraints
on the geometry similarly as in the study here provided.

4.5 Laser Profile Dependency in the non-linear Thomson regime

It has been shown that the non-linear broadening of the spectrum has a dependency on the shape of
the laser pulse [84, 31, 100, 122, 114, 123, 159] as was also introduced in section 2.6.2. To summarise for
a plane wave pulse, the longitudinal ponderomotive force is time dependent resulting in a time depen-
dent Dopplershift in the spectrum. Here we will look more closely how the different (longitudinal) pulse
shapes affect the spectrum. By having the laser pulse length defined as its Full Width Half Maximum, a
meaningful comparison can be made between different pulse shapes, as the pulse energy and intensity
are approximately equal, as was discussed in section 2.5.3.

Figure 4.14 shows the on-axis spectra for different intensities. For low intensities (a0 ≪ 1) the spec-
trum equals the Fourier transform of the pulse centred around the Thomson frequency. At a0 > 1 we see
the clearest effect of the laser pulse shape: for pulse shapes that have large wings most of the energy is
emitted closer to the linear Thomson frequency and that non-linear Thomson peak is different from the
flat pulse. To obtain the non-linear peak more accurately, as compared to Eq. 2.62, one should take the
zero convexity approximation (see Appendix C.1) for Eq. 2.59. This analytical solution, which is valid
where the second derivative of the pulse shape is zero, consists out of an Airy function. For pulse shapes
like sin2, sech and the Gaussian the argument of the Airy function are the same; the only contribution
to the spectrum comes from the peak of the pulse, hence we see no difference of the non-linear peak.
From this one would expect that the higher harmonics will be equal for these pulses, but this is not what
happens because harmonics start to overlap. Now the shape of the spectrum is determined by the inter-
ference of the field contributions, similarly as the subsidiary peaks (see section 2.6.2). On the other hand
for a super Gaussian envelope we find several stationary points, hence the peak of a harmonic shifts
closer to that of the rectangular envelope.
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Figure 4.14: Comparison of on-axis Thomson spectra for different pulse shapes. The laser pulse is
linearly polarized and the following parameters have been used to calculate the energy: central
wavelength λl = 1.066µm and W0 = 20µm.
Top left: Spectra in the Linear Thomson regime. The shape of the spectra is the same as the Fourier
transform of the laser pulse profile, centred around the Thomson frequency.
Top right: The peak of the fundamental starts to shift due to the ponderomotive force. The peak for
each pulse shape is slightly different.
Bottom left: Spectra in the non-linear Thomson regime. We see great differences in the fundamental
harmonics: the broader wings the laser pulse has the more energy is radiated in the linear Thomson
regime. The harmonics are approximately the same, as they reflect the pulse shapes near the centre of
the pulse (see Figure 2.4).
Bottom right: In the highly non-linear regime there are two regions where the pulse shape effect
remains clear: between the first and the third harmonic and near ν= 1. The higher harmonics overlap,
leading to chaotic behaviour and upon averaging will lead to the same contribution independent of the
pulse shape.
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Figure 4.15: Comparison of on-axis Thomson spectra for different pulse shapes for a laser pulse with
a0 = 5. The laser pulse is linearly polarized and the following parameters have been used to calculate
the energy: central wavelength λl = 1.066µm and W0 = 20µm. Pulses that have only one maximum emit

most of the radiation between
(
1+ a2

0
2

)−1
≤ ν≤ 1 due to the wings of the pulse. The tops of the

rectangular pulse follow the modified Bessel function of the second kind (purple) similarly as of a
charged particle in instantaneous circular motion [34]. For this pulse shape most of the energy is
emitted in the higher harmonics (here around the 20th harmonic).

The dependency of the spectrum regarding the transverse profile is more difficult, because this shape can
include a non-negligible transverse ponderomotive force. For the discussion at hand this phenomenon
is omitted. Electrons in a bunch will experience different laser field amplitudes due to the transverse
profile (a0Ψ∗ r⃗ ). From Eq. 2.62 the difference of the peak of the fundamental frequency depending on
the transverse profile is given by

∆νE=1,Ψ = ν(
E = 1,Ψ(x, y, z = 0)

)−ν (E = 1,Ψ= 1) =
a2

0
2

1+ a2
0

2

1−Ψ2(x, y)

1+ a2
0

2 Ψ
2(x, y)

(4.30)

for a linearly polarised laser pulse. For a circularly polarised laser pulse the intensity term needs to be

replaced by
a2

0
2 → a2

0. This relation is visualized in Figure 4.16. The interesting note is that this broadening
of the spectrum has it’s largest effect at the start of the non-linearity (a0 ∼ 1). This is because here only
the electrons most closely to the propagation axis of the laser undergo the non-linear motion. When a0

increases the volume where the laser has a non-linear intensity is larger and coincidentally the difference
of the non-linear Dopplershift decreases. It must be noted that for high a0 the Lorentz force is no longer
a good approximation (see Figure 2.6, as for large values of γ the recoil becomes substantial especially for
the the higher harmonics (multi-photon scattering) [98, 99]). Combining the effects of the longitudinal-
and transverse profile one expects that for an electron bunch, with its transverse size comparable to that
of the laser pulse, will emit most of the energy close to ν = 1. To reduce “noise” in the spectrum one
should use an electron bunch several factors smaller than the laser pulse in the case of a Gaussian profile.
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Figure 4.16: Comparison of single electron spectra for different initial transverse positions traversing a
laser pulse with a Gaussian transverse- and sech longitundial profile. Each electron experiences a
different amplitude of the laser pulse and therefore the Doppler shift is different. The difference of the
peak of the fundamental is given by Eq. 4.30.
Left: Spectrum for a single electron traversing the laser pulse at different transverse positions. The
dotted lines indicate the peak of the fundamental.
Right: Contour plot of the difference in the peak of the fundamental harmonic as function of the laser
intensity and transverse position of the electron.

4.6 Carrier Envelope Phase

The shape of exact shape of the laser field becomes important for laser pulses that have a length compa-
rable to its wavelength (σt ,FW H M < 10−14 [s]). For such short pulses the relative phase of the oscillations
with respect to the envelope ( carrier envelope phase: CEP, η0, see Figure 4.17) become important for
interactions such as electron-nuclear dynamics, metrology, Tomography and Higher Harmonic Gener-
ation. For these I refer to the great published works of [142, 10] and references therein. For intensities
up to I ∼ 1014 − 1015

[ W
cm2

]
the CEP can be measured using ionization techniques [160, 161, 162, 163].

For higher intensities this method is no longer viable as the ions will be ionized before the peak intensity
has reached the atoms. Instead, Non-linear Thomson scattering could be utilized as a non-destructive
diagnostic tool to measure η0 of the laser pulse in two ways:

• Shift in angular emission [164]

• The interference pattern within the spectrum [165]

These two complementary effects will be investigated in detail first for a single particle and thereafter
numerical results are given for the interference pattern with realistic experimental parameters.
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Figure 4.17: Electron trajectory in the non-linear regime (a0 > 1) for different CEP phases (η0) for a PW
laser pulse polarized in +x̂. The maxima in the transverse position coincide with the maximum
acceleration (as with a harmonic oscillator). An electron will experience maximum acceleration at the
centre of the laser pulse for η0 = π

2 . Note that a phase of η0 =π is the same as the polarization in −x̂.

4.6.1 Single Particle Dynamics

For a quasi-monochromatic linearly polarized laser pulse, in the plane wave approximation, the double
differential for back scattered radiation can be written as (see Appendix C)

d 2I

dωdΩ
∝

∣∣∣∣∣
∫ ∞

=∞
dζa0E

∞∑
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]
2
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i
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0E 2

2

)]∣∣∣∣∣
2

,

(4.31)

where B = ν
(

a0E
2

)2
and ν = ω

ωl

1
γ2(1+β)2 . We can clearly see that there is a dependence on the CEP phase

(η0), but to appreciate how it influences the spectrum we will first interpret Eq. 4.31 quantitatively.
From the stationary phase approximation we know that the frequencies emitted during the interac-

tion are given by

νH =− H

1+ a2
0E 2(ζ)

2

. (4.32)

The term H = 2m+1 is the harmonic number and tells us that the backscattered radiation contains odd
harmonics. The field dependent term in the denominator is the drift velocity of the electron during the
interaction, that gives rise to a Doppler shift in the spectrum (also called non-linear broadening). For
low laser intensities the harmonics (if present) are spectrally separated from each other. This means that
Eq. 4.31 can be read as the sum of the squares of the harmonics: |∑H fH |2 = | f1|2 +| f3|+ . . . (see Figure
2.8). In this case η0 has no influence on the spectrum, and is in fact a global phase factor.

Increasing the laser intensity broadens the spectral composition of a harmonic: the upper bound
remains the same (νH (ζ = ±∞)) while the lower bound has an increased Doppler shift (νH (ζ = 0)) as
was described in Figure 2.7. Therefore there exsists a specific a0 for when different harmonics start to
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overlap and can be calculated using

∆ν= 0 = νH i (ζ=±∞)−νH j (ζ= 0)

a0∆H =
√

2
H j −H i

H i
(4.33)

where H i is a lower harmonic than H j . From this relation we find that for the first and the third har-
monic to start overlapping the intensity needs to be a0 ≥ 2. When the harmonics start to overlap Eq. 4.31
has a solution of the form |∑H fH |2 = | f1|2 +2Re

(
f1 f ∗

3

)+| f3|+ . . . , where f ∗ is the complex conjugate.
The dependence of η0 appears within the interfering harmonics. When we look at this cross term of
two adjacent harmonics we find that the amplitude at the peak of the higher harmonic depends on the

CEP as
∣∣∣ exp[iη0]

2

∣∣∣2
. This change in amplitude at a specific frequency can also be viewed as a shift of the

maximum to a different frequency:

νH ,η0 ∝
H

1+ a2
0

2

(
1± sin2(η0)

σζ

)
(4.34)

The results of numerically integrating Eq. 4.31 as function of ν & η0 are shown in Figure 4.18 (a0 = 2),
4.19 (a0 = 3) and 4.20 (a0 = 5). For a0 = 2 the effect of η0 is quite clear for the third and fifth harmonic,
although the amplitude does not follow smooth transition as the equation above suggests. Looking at ν=
2.4, which actually does not correspond to a harmonic number, shows the signs of a smooth transition.
Increasing the laser’s amplitude (a0) shows that for the third and the fifth harmonic the frequency keeps
this jump between two values (in Figure 4.19 near ν = 0.6 and in Figure 4.20 near ν = 0.2 and ν = 0.4
). For ν > 1 there are many harmonics that overlap and the shift of the peak is a smooth transition as
predicted by Eq. 4.34. Note that most of the energy emitted remains close to ν= 1 when the amplitude
is increased as described in Section 4.5. The spectral range ν< 1 is chaotic and not suitable for precision
measurement of η0. What we see in all figures is that the η0 dependency is symmetric around η0 = π

2 .
Therefore there is no unique solution for η0, e.g. νH ,η0 (η0 = π

4 ) = νH ,η0 (η0 = 3π
4 ). The physical reason

behind this is the 2η dependency of the longitudinal oscillation. This combined with the fact that for
the on-axis radiation the spectra for η0 = 0 and η0 = π are equal. To distinguish between the latter two
phases one needs to include off-axis radiation.
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Figure 4.18: Contour plot of on-axis radiation as function of the normalized frequency ν and the CEP
phase η0 for a single electron colliding head-on with a linearly polarized PW laser pulse with an
amplitude of a0 = 2.
Top: Complete range of the contour plot.
Bottom left: Cut-out around the 3rd harmonic including the behaviour of the peak according to Eq. 4.34
in black.
Bottom right: Cut-out around the 5th harmonic including the behaviour of the peak according to Eq.
4.34 in black.
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Figure 4.19: Contour plot of on-axis radiation as function of the normalized frequency ν and the CEP
phase η0 for a single electron colliding head-on with a linearly polarized PW laser pulse with an
amplitude of a0 = 3. For this and higher intensities many harmonic orders overlap and more of the
emitted energy is found in higher harmonics. The CEP dependence is stronger for the higher
harmonics, and clearly show a shift of the peak intensity as described by Eq. 4.34.
Top: Complete range of the contour plot.
Bottom left: Cut-out at the 5th harmonic.
Bottom right: Cut-out near the 14th harmonic. Due to the interference between harmonic orders we
find that for η0 = 0 even harmonics are emitted. For this case the electron has zero acceleration at the
peak of the laser pulse. For η0 = π

2 the electron experiences maximum acceleration at the peak of the
laser pulse.
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Figure 4.20: Contour plot of on-axis radiation as function of the normalized frequency ν and the CEP
phase η0 for a single electron colliding head-on with a linearly polarized PW laser pulse with an
amplitude of a0 = 5. For this and higher intensities many harmonic orders overlap and more of the
emitted energy is found in higher harmonics. For such many overlapping harmonics the pattern of the
CEP dependence is visible, though many harmonic peaks are shifted and crossing each other. Eq. 4.34
is no longer a good approximation for the shifting maximum.
Top: Complete range of the contour plot.
Bottom left: Cut-out at the 11th harmonic. This harmonic is emitted close to ν= 1 and contains
substantial energy of the fundamental harmonic emitted in the wings of the laser pulse (see Figure 2.7).
Bottom right: Cut-out near the 21st harmonic.

From Eq. 2.63 we know that the fundamental harmonic is radiated in a 1
γ cone. To include the higher

harmonics it is better increase the detection cone to 3
4γ . Figures 4.21 and 4.22 were obtained by numer-

ically integrating Eq. 4.31. For η0 = 0 we see that the angular spectrum is anti-symmetric around the x
axis, whereas for η0 = π

2 it is symmetric. This is in accordance with the anti-symmetry of the electron’s
trajectory as shown in Figure 4.17. The subsidiary peaks of a harmonic are emitted in the wings of the
laser pulse (see Figure 2.7) and therefore are emitted alternately in the positive and negative x axis. The
aforementioned uniqueness of the solution for η0 can be determined by the off-axis spectra; because
η0 = π will have a vertically mirrored spectrum of η0. In [165] it was shown that for a circularly polar-
ized laser pulse the CEP dependence is also visible, but only for off-axis radiation (where harmonics are
presented).
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Figure 4.21: Contour plot of emitted radiation as function of the normalized frequency ν and the
azimuthal angle ϑ (where ϑ=π is the backscattered direction) for a single electron with γ= 2 colliding
head-on with a linearly polarized PW laser pulse with an amplitude of a0 = 2 and length Nc = 5. The
azimuthal angle ranges from π(1− 3

4γ ) ≤ϑ≤π(1+ 3
4γ ). The top plots don’t change in shape when γ

increases, except for the values of the vertical axis. In contrary the bottom plots will be confined in a
smaller cone.
Top left: Contour plot where η0 = 0. The emitted radiation is anti-symmetric around ϑ=π.
Top right: Contour plot where η0 = π

2 . The emitted radiation is symmetric around ϑ=π.
Bottom left: Same as Top left, but represented as a polar plot.
Bottom right: Same as Top right but represented as a polar plot.
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Figure 4.22: Contour plot of emitted radiation as function of the normalized frequency ν and the
azimuthal angle ϑ (where ϑ=π is the backscattered direction) for a single electron with γ= 2 colliding
head-on with a linearly polarized PW laser pulse with an amplitude of a0 = 5 and length Nc = 5. The
azimuthal angle ranges from π(1− 3

4γ ) ≤ϑ≤π(1+ 3
4γ ). The top plots don’t change in shape when γ

increases, except for the values of the vertical axis. In contrary the bottom plots will be confined in a
smaller cone.
Top left: Contour plot where η0 = 0. The emitted radiation is anti-symmetric around ϑ=π.
Top right: Contour plot where η0 = π

2 . The emitted radiation is symmetric around ϑ=π. Comparing
Bottom left: Same as Top left, but represented as a polar plot.
Bottom right: Same as Top right but represented as a polar plot.

4.6.2 Electron beam

In this section the radiated energy within an aperture is calculated (i.e. Eq. 2.24 integrated over the
solid angle of the aperture) for Thomson scattering with an electron bunch. Only a fraction of the emis-
sion cone is used as an aperture, ϑmax = 1

10γ , since integration over the angle of Figure 4.21 clearly will

washout the CEP dependence. The electron bunch considered here consists out of Ne = 103 macro par-
ticles with an energy spread (σγ = 10−3) and emittance (ϵN

x = 10−6 mm mrad). The average energy of the
electrons are chosen on the MeV scale (2 ≤ γ ≤ 10). These parameters are easily achievable and require
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only a small beamline. First the electron bunch is collided with a plane wave laser pulse with a hyper-
bolic secant longitudinal profile, to showcase the effect for a realistic bunch and to omit the transverse
laser profile dependency (see Section 4.5). Figure 4.23 shows the result for different values of a0 and
γ with dashed vertical lines indicating the position of odd harmonics for η0 = 0 and the solid lines for
η0 = π

2 according to Eq. 4.34. The η0 dependence remains quite clear.

Figure 4.23: CEP dependence in Thomson scattering for a realistic electron bunch colliding with a
linearly polarized plane wave laser pulse. The radiation is collected within a cone of 1

10γ . The bunch

consists out of Ne = 103 macro particles with an energy spread (σγ = 10−3) and emittance (ϵN
x = 10−6

mm mrad), and the laser pulse’s longitudinal profile is a hyperbolic secant.
Top left: Laser amplitude of a0 = 2 and γ= 2. The black lines indicate the fifth, seventh and ninth
harmonic.
Top right: Same as left, but with γ= 10. The shift in the harmonic peaks, as compared to the left panel,
is due to the reduced ratio in the initial transverse and longitudinal momentum of the electrons.
Bottom left: Laser amplitude of a0 = 5 and γ= 10. Within the frequency range 0 ≤ ν≤ 1 the spectrum is
chaotic due to the amount of radiation emitted in the wings of the laser pulse, see Section 4.5. For
harmonics ν> 1 the CEP dependence is clear.
Bottom right: Cut out of bottom left.

Electrons with a different transverse position experience a different intensity when colliding with a
laser pulse with a transverse profile. If one were to use an electron bunch with the same spot size as that
of the laser one cannot observe fine details, as is required for η0. As was shown in Figure 4.16 one expects
to see a clean signal for an electron bunch three times smaller than the laser pulse’s width. Note that for a
fixed emittance and reducing the width equates a stronger focussed beam (i.e. larger divergence). Figure
4.24 shows that the increase in divergence does not influence the spectrum as much as the reduction in
width of the electron bunch. A smaller width of 1

3W0 does not lead to a cleaner signal.
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Figure 4.24: Comparison of the radiated energy collected within ϑ= 1
10γ between three electron

bunches with different transverse size. The laser parameters are a0 = 2, Nc = 5, W0 = 45µm and electron
parameters γ= 2, ϵN = 10−6 mm mrad and

σγ
γ = 10−3. The profile of the laser pulse is given by Eq. 2.36.

In order to see the effect of ηcep the ratio between the laser- and electron width needs to be small,
because of the non-linear broadening depends on the (initial) transverse position of the particle (see
Figure 4.16).
Left: For W0

We
= 2 the non-linear broadening for each electron is so different that the signal of ηcep is not

visible.
Middle: For W0

We
= 3 the ηcep becomes visible at the higher harmonics. The first harmonic can be used to

determine a0.
Right: Smaller electron bunches does not lead to a cleaner signal.

4.6.3 Discussion

In the previous sections the classical description of non-linear Thomson scattering was used to show
and explain the CEP dependency. To fulfil the classical limit the electron recoil needs to be very small
including the recoil from multi-photon scattering. For example, to measure near the 100th harmonic,
with a laser pulse with photon energy of 1 eV, the electron energy cannot exceed γ≪ 130, for the recoil
factor to be χ≤ 0.01. In [98, 99] was shown that for γ= 100 no difference between the classical and quan-
tum description of the on-axis spectrum. Some minor deviations do occur for the harmonics measured
at the ϑ = 1

γ as was shown in [98] for γ = 80 up to the fourth harmonic. For the numerical results given
in the previous sections the electron energy was γ≤ 10, reducing the deviation of the classical from the
quantum description. Measuring the spectrum with a small aperture close to the axis as in Figure 4.24
further ensures that the classical limit is valid.

Furthermore, the use of these (relatively) low energy electrons have three further positive effects: a
small beamline for electrons, the radiation cone is large as it scales with 3

4γ and the wavelength of the
emitted radiation remain in the UV - soft x-ray range. For the latter the optics required for measurement
are well established and the detector resolutions are high.

The results given here, were for a pulse length of Nc = 5 ( σt = 9 fs). It is expected that for shorter
pulses η0 has a larger effect, however the profile described by Eq. 2.36 no longer is a good approximation
to Maxwell’s equations (see Figure 2.5).

Direct measurement of the angular difference of a harmonic as function of η0 was first proposed in
[164]. One might be tempted to use the off-axis spectrum (as shown in Figure 4.21) from two angles as a
form of interferometer to determine η0. This, however, is not that straightforward as it is a field depend-
ing phenomenon and the results given here are energy spectra (i.e. no more phase dependent). Adding
the fields up at a specific angle, within the absolute brackets of Eq. 4.31, did not give the envisioned
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result: for η0 = π
2 the expectation is that the two fields cancel each other out, but this is not the case. One

could of course subtract two energy spectra, obtained by two detectors positioned symmetrically around
the backscattered direction, to find the η0.
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Chapter 5

Conclusions & Perspectives

To increase the efficiency of an FEL it is necessary to increase the brightness of a bunch. This can be
achieved by compressors, such as chicanes or a double bend achromat. Here the electric and magnetic
fields emanating from the electrons inside the bunch can cause unwanted effects. A computational tool
has been developed to calculate the retarded time for electrons travelling along circular paths.

For the 1D model the retarded time, as function of the electron’s energy, follows an “S” curve and
three approximations have been found. One of them is a fitted function, consisting out of hyperbolic
geometric functions, and although it does perform the worst I think it indicates to an exact analytical
solution, because the critical points of the fit coincide with that of the electric field. From the geometric
constraint a relation is given for the asymptotic value of the retarded time.

Using these solutions it was found that the Coulomb field increases in magnitude after a certain
energy, and much larger than usually described as the relativistic regime. For example for a particle
separation of 1 [µm], radius of curvature R = 5[m] the rise in the magnitude of the Coulomb field starts
at γ ∼ 50. At this energy the Coulomb and radiation field have the same magnitude, but because they
point in opposite directions the total field is lower. The Coulomb field has its largest magnitude when
the retarded time curve is at the inflection point. For the associated energy and particle separation a
proportionality relation is given. The total electric field has an asymptote as the energy keeps increasing.
This is because the Coulomb field becomes negligible. Also for this a proportionality relation is given.

From the 2D model, where the source travels along a circular path but the observation points can be
in 3D, it was shown how the retarded time is very asymmetric for large distances away from the source’s
current position. The largest value for the retarded time is not found along β⃗ of the current position

but rather for δ̂r · β̂ =
p

2
2 . With the 2D solution it was explained why the radiation field is zero before it

becomes dominant: there exists a surface around the source’s current position for which the term n̂ − β⃗
is parallel to the acceleration. This surface becomes narrower and envelopes the source particle more
closely as the energy increases. That the Coulomb field and radiation field point in different directions
has been shown clearly for the energy proportionality relations mentioned earlier.

Finally, the retarded time has been investigated for a bunch travelling in a dipole. Meaning that it
travels along a helical path. The initial results of the algorithm, based on the analytical constraint, are
quite good; the error in the retarded time and field are less than 10% for most particle pairs. For particles
nearest to each other there is a larger error.

The algorithm needs to be optimized by itself and parallelization of the calculations need to imple-
mented to decrease the simulation time. For example, it takes about 26 second to calculate the electric
field on a grid of the 500x500 points for a single source. This is essentially the same as a bunch consisting
of 500 macro-particles and calculating the fields for each pair. It will be very interesting to calculate the
field effects for the aforementioned energy relations, and to calculate the effects on a practical example.

Most of the current production of synchrotron radiation using laser-electron scattering lie within the
linear Thomson regime. The most common method is to use a Fabry-Perot cavity to obtain medium-
high intensities of up to I ∼ 1014 −1015 [W/cm2]. Higher order transverse modes can be excited because
of imperfections of the mirrors or deformations of them caused by heat dissipation. These modes are
n ≥ 10 and can have powers up to 20%. The incoherent summation of the emitted radiation is still a valid
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approximation for such laser pulses if its spot size equals that of the electron bunch. The shape of the
Thomson spectra for the degenerate modes equal that of the fundamental mode, but with a decreased
intensity. Furthermore, different degenerate pulses could not be distinguished.

The general method for Thomson scattering is to collide a (quasi) monochromatic laser pulse with
an electron bunch that has a very small energy spread to ensure that the emitted radiation has a narrow
bandwidth. It has been investigated in detail if an electron bunch with a large linear energy spread can be
compensated by a chirped laser pulse. This could improve the yield of the emitted radiation by increas-
ing the bunch charge, without deterioration of the final spectrum. Laser pulses with the right criteria are
readily available and are based on the chirped pulse amplification technique. Two geometries have been
investigated: a longitudinal and a transverse chirp. For both cases the bandwidth of the monochromatic
case can be retrieved.

The longitudinal configuration requires that the energy gradient to be small compared to the inter-
action length: L I ≤ 3

5σz . Also it requires an angle of incidence between the laser pulse and the electron
beam. This poses a problem for self-injected plasma accelerated electron bunches, but not for external
injection or RF accelerated bunches. It has been shown that even for a realistic bunch this configuration
retrieves the bandwidth of the ideal case, but with lower number of emitted photons.

The transverse configuration requires a dispersive element for both the laser and the electron bunch,
but the plus side is that a single electron traverses the entire laser pulse and there are no further con-
straints. Inspiration for the design of a beamline can be taken from the transverse gradient undulator,
and should not pose big issues. For an idealized chirped electron bunch the transverse configuration
performs excellent. For a realistic case the energy spread along a transverse position does reduce its per-
formance, similar as with the longitudinal case. In the simulation the laser pulse and electron bunch
collide head-on, another study should decide if the angle of incidence for a realistic case has no influ-
ence.

What would be interesting is to investigate the two configurations combined: a laser pulse with a
tilted wavefront. In such a configuration the energy spread of the electrons are along the propagation di-
rection, and a single electron will travel through the entire pulse. Furthermore, the study here focussed
only on a linear energy correlation of the electron bunch. In principle nothing prevents the compensa-
tion of a quadratic, or higher order, correlation. A further study is required in order to confirm this.

Within the non-linear Thomson regime two studies have been performed; the non-linear broaden-
ing from the laser pulse shape and the carrier phase envelope. To compare the different pulse shapes
the FWHM temporal length has been used so that all profiles have the same energy, duration and inten-
sity. For a rectangular temporal profile the on-axis radiation is identical to that of an electron traversing
a dipole magnet. For other pulse shapes most of the on-axis radiation is emitted in the normalized
frequency range 0 ≤ ν ≤ 1. The non-linear broadening due to a Gaussian transverse profile has been
investigated and shown that it is maximal for a0 ∼ 1. In order to omit this broadening effect the width
of an electron bunch should be σx ≤ W0

3 . For a0 ≥ 10 the broadening effect is greatly diminished within
W0, as the non-linear broadening can be approximated with 1

a2
0

independent of the transverse position

of the electrons.
For ultra-short pulses, the length comparable to or smaller than its wavelength, the carrier envelope
phase determines the exact shape of the electromagnetic wave. Here it is shown that Thomson scatter-
ing can be used to measure this phase in the non-linear regime (I> 1018 [W/cm2], a0 > 1). For these high
intensities the different harmonic orders overlap in the spectrum and carrier envelope phase changes the
positions of the harmonic peaks. By using low energy electrons of several MeV the classical description
is still a good approximation. Coincidentally the wavelength of the emitted radiation is in the UV-soft
x-ray range wherefore optics and detectors are well established.
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Appendix A

Derivations Equation of Motion

A.1 Force relations

Lorentz Force
The Lorentz force is given by

dUµ

d s
= q

mc2 FµνUν = q

mc2 (∂µAν−∂νAµ)Uν. (A.1)

The prefactors can be combined with the vector-potential, since the definition of the four-velocity used
here is dimensionless, to the normalized vector potential

aµ = q

mc2 Aµ (A.2)

Landau-Lifshitz
Starting from the Lorentz-Abraham-Dirac equation [XXX]

dUµ

d s
= q

mc2 FµνUν+ 2e2

3mc2 Fµ

r ad (A.3)

Fµ

r ad =
(

d 2Uµ

d s2 −UµUν d 2Uν

d s2

)
(A.4)

The approximation made by Landau & Lifshitz [XXX] is to take the second derivative of the velocity
as the derivative of the Lorentz Force, as shown below.

d 2U

d s2 = q

mc2

d

d s
FµνUν = q

mc2

(
∂γFµνUνUγ+FµνFνβUβ

)
, (A.5)

where the partial derivative acts on the components of the electromagnetic field tensor. Substitution
results in the Landau-Lifshitz equation of motion

dUµ

d s
= q

mc2 FµνUν+ 2e2

3mc2 Fµ

r ad (A.6)

dUµ

d s
= q

mc2 FµνUν+ 2q2

3mc2

(
q

mc2 ∂γFµνUνUγ+ ( q
mc2

)2 (
FµνFνβUβ−FνβFβαUαUνUµ

))
. (A.7)
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A.2 Electron - Constant Electric Field - Lorentz Force

An electron in a constant electric field will accelerate in the direction of that field. Here we will take
E⃗ = E0 ẑ. The equations of motion are then given by

dU 0

d s
= − eE0

mc2 U 3 (A.8)

dU 1

d s
= 0 (A.9)

dU 2

d s
= 0 (A.10)

dU 3

d s
= − eE0

mc2 U 0 (A.11)

Subtracting the last relation from the first we find dU 0−U 3

d s = eE0

mc2 (U 0 −U 3). This can readily be solved by
separating the variables

U 0 −U 3 = exp

[
eE0

mc2 s +C

]
, (A.12)

where C depends on the initial conditions and equals to exp[C ] = γ(0)(1−βz (0)). Using the magnitude
relation of the four-velocity we can find the solutions of the equation of motion

UµUµ = 1 = (U 0)2 − (U 1)2 − (U 2)2 − (U 3)2, (A.13)

1 = (U 0 +U 3)(U 0 −U 3)− (U⊥)2, (A.14)

where (U⊥)2 = γ2(0)
[
β2

x (0)+β2
y (0)

]
. The solutions for the four-velocity are

Uµ =


cosh

(
eE0

mc2 s +C
)
+ U 2

⊥ exp
[
−

(
eE0
mc2 s+C

)]
2

γ(0)βx (0)
γ(0)βy (0)

−sinh
(

eE0

mc2 s +C
)
+ U 2

⊥ exp
[
−

(
eE0
mc2 s+C

)]
2

 (A.15)

A.3 Electron - Constant Magnetic field - Lorentz Force

The equations of motion for an electron in a constant magnetic field in +ŷ governed by the Lorentz Force
are given by

dU 0

d s
= 0 (A.16)

dU 1

d s
= eB0

mc2 U 3 (A.17)

dU 2

d s
= 0 (A.18)

dU 3

d s
= − eB0

mc2 U 1 (A.19)

From the first relation we find that not only is the energy (U 0 = γ) constant but also d s = dct
γ → s = ct

γ .
There are several ways to solve for the perpendicular motion, here we take the method of introducing
V =U 1 + iU 3. For which we find

dV

d s
= dU 1

d s
+ i

dU 3

d s
=−iΩV , (A.20)
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whereΩ= eB0

mc2 . This equation has the solution V = A exp[−iΩ(s+s0)] =U 1+iU 3 = A (cos(Ω(s + s0))− i sin(Ω(s + s0))).

The constant A can be found by taking |V | = A = γ
√
β2

x +β2
y = γβ⊥

The final solution is thus given by

Uµ = γ


1

β⊥ cos( eB0

γmc2 (ct + ct0))

βy (0)

−β⊥ sin( eB0

γmc2 (ct + ct0))

 (A.21)

and upon integration

X µ =


ct

R sin( eB0

γmc2 (ct + ct0))

βy (0)ct

R cos( eB0

γmc2 (ct + ct0))

 , (A.22)

where R = γβ⊥mc2

eB0
. The argument of the sinusoidal functions can be rewritten into eB0

γmc2 ct = β⊥
R ct .

A.4 Electron - Constant Magnetic field - Landau-Lifshitz equation

Here we follows the solutions provided in [Elkina2014]. The derivative of constant magnetic field (in
space and time) is zero and therefore the term containing the partial derivative in Eq. A.7 vanishes. To
be explicit the equation of motion for an electron in a constant magnetic field in +ŷ is given by

dUµ

d s
=− e

mc2


0

−U 3

0
U 1

+ 2e2

3mc2

( e

mc2

)2




0
−U 1

0
−U 3

− (
(U 1)2 + (U 3)2)


U 0

U 1

U 2

U 3


 (A.23)

For abbreviation we will use e
mc2 =Ω and E = 2e2

3mc2 Since without the friction term we have to solution of
a particle travelling along a circular trajectory (for the components perpendicular to the magnetic field)
the authors of [Elkina2014] rightfully assume that the solution including a small friction force will have a
similar solution. (

U 1

U 3

)
=U⊥

(
cos(φ)
−sin(φ)

)
(A.24)

where U⊥ =
√

(U 1)2 + (U 3)2. We will first look at how this term behaves upon taking the derivative

d

d s

√
(U 1)2 + (U 3)2 = U 1 dU 1

d s +U 3 dU 3

d s√
(U 1)2 + (U 3)2

. (A.25)

Now we can use the derivatives from Eq. A.23 to find that

U 1 dU 1

d s
+U 3 dU 3

d s
=−EΩ2(1+U 2

⊥)U⊥ (A.26)

Combining the last two equations and separating the variables we find

dU⊥
(1+U 2

⊥)U⊥
=−EΩ2d s (A.27)

U⊥ = U⊥(0)√
(1+U⊥(0)2)exp[2ks]−U⊥(0)2

(A.28)
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where k = EΩ2 To find the solution for φ we look at the

dU 1

d s
= dU⊥

d s cos(φ)−U⊥si n(φ) dφ
d s (A.29)

= −Ω(−U 3)+EΩ2
[−U 1 −U⊥U 1

]
(A.30)

Rewriting the terms we in the end find
dφ

d s
=Ω (A.31)

Now there are two components left to solve for which are of the form d
d s f = f g (s) which can (also) be

solved using separation of variables. The final result for the motion is given by

Uµ =



U 0(0)exp[ks]p
U⊥(0)(exp[2ks]−1)+exp[2ks]

U 2
⊥p

(1+U⊥(0)2)exp[2ks]−U⊥(0)2
cos(Ωs)

− U 2
⊥p

(1+U⊥(0)2)exp[2ks]−U⊥(0)2
sin(Ωs)

U 3(0)exp[ks]p
U⊥(0)(exp[2ks]−1)+exp[2ks]


(A.32)

A.5 Electron - Plane Wave interaction - Lorentz Force

The (four-) vector potential for a plane wave propagating in the +z direction is given by

Aµ = a0E (ζ)e iζ


0
1
0
0

 , (A.33)

for linear polarization and

Aµ = a0E (ζ)e iζ


0
1
i
0

 , (A.34)

for circular polarization, where ζ= k(ct − z). This coordinate can also be expressed in terms
ζ= KµX µ = K ′

µX ′µ.

K µ =


ω
c
0
0
k

 , X µ =


ct
x
y
z

 (A.35)

K ′µ =


γ(1+β)ωc

0
0

γ(1+β)k

 , X ′µ =


γct +γβz

x
y

γβct +γz

 (A.36)

The derivation here will take the latter as the necessary steps are equal for the former.
Taking the electromagnetic field tensor as the partial derivatives of the vector potential, we obtain

the following set of equations
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dU 0

d s
= −(

∂0a1U1 +∂0a2U2
)

(A.37)

dU 1

d s
= −(−∂0a1U0 −∂3a1U3

)
(A.38)

dU 2

d s
= −(−∂0a2U0 −∂3a2U3

)
(A.39)

dU 3

d s
= −(

∂3a1U1 +∂3a2U2
)

. (A.40)

The Eq. A.38 can be rewritten by noticing ∂0a1U0 +∂3a1U3 = ∂0a1 d X 0

d s +∂3a1 d X 3

d s = d a1

d s , and leads to
the result that the transverse motion is

U⊥ = a⊥ (A.41)

Second, since ∂0ζ = −∂3ζ difference between the Eq. A.37 and A.40 is zero, and taking the initial
condition of the electron as Uµ(ct = 0) = γ(1,0,0,−β), i.e. a head-on collision, we obtain

dU 0 −U 3

d s
= 0, (A.42)

U 0 −U 3 = const = γ(1+β), (A.43)

d X 0 −X 3

d s
= 1

k

dζ

d s
= γ(1+β). (A.44)

The last equation has an important physical interpretation: the motion of the electron is in phase
with the driving EM field. To find the final solution to the motion we use the relation

UµUµ = 1 = (U 0)2 − (U 1)2 − (U 2)2 − (U 3)2, (A.45)

1 = (U 0 +U 3)(U 0 −U 3)− (a)2, (A.46)

where (a)2 = −aµaµ Using the previously obtained solutions the motion of the electron is solved and
reads

Uµ =


γ+ (a)2

2 γ(1−β)
a1

a2

−γβ+ (a)2

2 γ(1−β)

 (A.47)

A.6 Electron - Undulator

The equations of motion for an electron traversing an undulator are often solved using the three vector
Lorentz Force equation in combination with the magnetic field, see textbooks like [Schmüser]. Moreover,
the solutions of the motion are derived by starting with an approximation: that the velocity perpendicu-
lar to the magnetic field is taken constant (first order) and using the solution of the transverse velocity to
produce a second order solution of the perpendicular velocity.

These approximations are unnecessary when four-vectors are used and an exact solution can be de-
rived as follows. The vector potential of an undulator is given by (This field is equivalent to the magnetic
field as given in [Schmüser] and can be shown by using B⃗ =∇× A⃗, through which we find that B0 = A0ku)

Aµ = A0 cosh(ku y)sinh(ku z)


0
1
0
0

 (A.48)
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If we consider an electron to travel on-axis, i.e. y = 0 & βy = 0, and use the normalization a0 = e A0

mc2

we find the following equations of motion

dU 0

d s
= 0 (A.49)

dU 1

d s
= −∂3a1U3 (A.50)

dU 2

d s
= 0 (A.51)

dU 3

d s
= −∂3a1U1. (A.52)

Here we can use again that d a1(X 3)
d s = ∂3a1U 3 and thus find that the transverse velocity equals the vector

potential. The second step is to use the magnitude of the four-velocity

UµUµ = 1 = (U 0)2 − (U 1)2 − (U 2)2 − (U 3)2 (A.53)

U 3 =
√
γ2 − (1+ (a)2), (A.54)

where (a)2 =−aµaµ is the magnitude squared of the vector potential. Thus the solution to the velocity is
given by

Uµ =


γ

a1

0√
γ2 − (1+ (a)2)

 (A.55)

Note that in literature “ the undulator parameter K” is usually found instead of the normalized vector
potential a0. They are equivalent, however, from a theoretical point this amplitude is better expressed as
the vector potential as it is not inherently related to the magnetic field of an undulator.

To obtain the position of the particle we will need to integrate, and since γ=constant we end up with
the following relation

d X 3

d s
=

√
γ2 − (1+ (a)2) (A.56)

d X 3

dct
=

√
1− (1+ (a)2)

γ2

d X 3√
1− (1+(a)2)

γ2

= dct (A.57)

This last equation does have an analytical expression that contains an elliptic integral of the first kind,
but it does not give any meaningful insight to the problem at hand nor does it make the integral for the
transverse velocity component easier. Thus, here, we take the series of U 3.

U 3 =
√
γ2 − (1+ (a)2) (A.58)

≈ γ

[
1− 1+ a2

0
2

2γ2 −
(

a0
2γ

)2
cos(2ku z)

]
(A.59)

Here there are two ways to find the solution:
1) Separation of variables, for which the solution is given by

X 3 =− 1

ku
tan−1

(p
(B 2 − A2)

A+B
tanh(ku

√
B 2 − A2ct )

)
(A.60)
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where A = 1− 1+ a022

2
2γ2 and B =

(
a0
2γ

)2
.

2) Make the approximation that Eq. A.59 can be read as a drift velocity and a fast oscillatory function
with a small amplitude. The oscillatory function is then considered negligible and we find

X µ =


ct

a0

β̄z kuγ
sin(kuβ̄z ct )

0

β̄z ct −
(

a0
2γ

)2 sin(2ku β̄z ct )
2ku

 , (A.61)

where the drift velocity is β̄z = 1− 1+ a022

2
2γ2 .
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Appendix B

Derivations & Additional information for
Retarded Time

B.1 Cardano’s Formula

A polynomial of third order is given by

ax3 +bx2 + cx +d = 0 (B.1)

and its real root be solved by first depressing it to the form

t 3 +pt +q = 0, (B.2)

where t = x+ b
3a , p = 3ac−b2

3a2 and q = 2b3−32abc+33a2d
33a3 . Then Cardano’s formula can be used, which is given

by

t =C F (p, q) = 3

√√√√−q

2
+

√( q

2

)2
+

( p

3

)3
+ 3

√√√√−q

2
−

√( q

2

)2
+

( p

3

)3
. (B.3)

B.2 Derivation Analytical Approximation cτ 1D circular motion

B.2.1 Fraction of radiation cone

We start by splitting the transcendental equation B.9 into two parts and subtracting them one from an-
other

α

2
= βcτ

2R + δϑ
2 (B.4)

cτ

2R
= βsin(α2 ) (B.5)

cτ= 2R(1+β)γ2
(
sin(α2 )− α

2 + δϑ
2

)
(B.6)

Now we assume that ro lies on a fraction of the radiation cone of r ′
s , i.e. α

2 = 1
f γ . Now we take the

series of the sine function up to third order (sin
(

1
f γ

)
= 1

f γ − 1
3!

(
1

f γ

)3
) and substitute it into Eq. B.9, which

gives us the following function
δϑγ3

2
= 1

(1+β) f
+ 1

3! f 3 (B.7)

Now we set 1+βs ≈ 2 and using Cardano’s formula (Eq. B.3) we can calculate the fraction f for the given
δϑ and γs . We also calculate a new energy γ f using Eq. B.7, which corresponds to the energy for which
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cτ(γ) and 1
f γs

intersect (see Figure 3.11). Finally we substitute f and γ f in Eq. B.6 and obtain

cτ( f ) = 2R

√√√√1−
(

3δϑ

3 f 2 +1

) 2
3

(
3

√
3δϑ

3 f 2 +1
− δϑ

2

)
(B.8)

B.2.2 Geometric O (4) Polynomial 2D motion

The relation of the retarded time for a particle travelling along a circular trajectory can be expressed using
the law of cosines

cτ2 = r ′2
s + r 2

o −2r ′
sro cos

(
βscτ

R
+δϑ

)
(B.9)

We start by taking the series of the cosine up to fourth order at δϑ. This gives us

cτ2 = r ′2
s +r 2

o −2r ′
sro

[
cos(δϑ)− sin(δϑ)

(
βscτ

R

)
− cos(δϑ)

2!

(
βscτ

R

)2

+ sin(δϑ)

3!

(
βscτ

R

)3

+ cos(δϑ)

4!

(
βscτ

R

)4]
(B.10)

Since the source travels along a circle the magnitude |r ′
s | = |rs | = R. Therefore the leading terms on the

rights hand side are simply r 2
s + r 2

o − 2rsro cos(δϑ) = δr 2. From numerical observation, we know that
cτ ∼[cm] for the (electric) field travelling in the forward direction. Within the domain of small angles
(δϑ) and that ro lies on the circle too, we can safely assume δr 2 is negligible. In fact, the other terms
in the polynomial are on the order of δr . This turns the equation above to a third order polynomial.
Reordering gives us

(
βscτ

2R

)3

+
(
βscτ

2R

)2

2tan(δϑ)+
(
βscτ

2R

)
3

1
β2 −cos(δϑ)

cos(δϑ)
−3tan(δϑ) = 0 (B.11)

This third order equation can be depressed, i.e. written in t 3 + pt + q = 0, with p = 3ac−b2

3a2 and q =
2b3−32abc−33a2d

(3a)3 . Since the coefficients (a,b,c,d) of the polynomial are on the same order and small, in
the depressed form we disregard the quadratic terms, i.e. p ≈ c and q ≈ d . Finally we approximate the
trigonometric functions up to first order and stress that directionality is important, that is cos(δϑ) ≈ 1
and tan(δϑ) ≈ sign(δ⃗r · β⃗s)δϑ≈ δ̂r · β̂s

δr
R . The resulting polynomial is

X 3 +X 3

(
1

β2
s
−1

)
−3

δ⃗r · β⃗s

Rβs
= 0 (B.12)

where X =
(
βs cτ
2R

)
− 2tan(δϑ)

3 . Now Cardano’s Formula (B.3) can be used to obtain the solution for X . From

observations the quantity
(
βs cτ
2R

)
≫ 2tan(δϑ)

3 , meaning that X ≈
(
βs cτ
2R

)
.
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Appendix C

Derivation Spectral Equations

In this section the approximate solution to the spectral (double differential) equation for a single electron
in a plane wave is derived. The double differential equation is given by

d 2I

dωdΩ
= e2

4π2c

∣∣∣∣ωc
∫ ∞

−∞
dctn̂ × n̂ × β⃗exp

[
i
ω

c
(ct − n̂ · r⃗ )

]∣∣∣∣2

. (C.1)

We can rewrite this equation in terms of ζ, since the equations of motion are expressed in terms of it

(Eq. A.47). Thus dct β⃗= dct
γ γβ= d sU⃗ = dζ U⃗

kγ(1+β) . Moreover, the terms in the exponential can be rewrit-

ten as an integral of the four-velocities with respect to ζ: ct − n̂ · r⃗ = ∫ s
−∞ d s′U 0 − n̂U⃗ = ∫ ζ

−∞ dζ′U 0−n̂·U⃗
kγ(1+β) .

Thus the double differential in terms of the laser phase is given by

d 2I

dωdΩ
= e2

4π2c

∣∣∣∣νγ(1+β)
∫ ∞

−∞
dζn̂ × n̂ ×U⃗ exp

[
iνγ(1+β)

∫ ζ

−∞
dζ′U 0 − n̂ ·U⃗

]∣∣∣∣2

, (C.2)

where ν= ω
ωl

1
γ2(1+β)2 . Due to non-linearity of the motion of the electron (Eq. A.47) there are no exact so-

lutions to the integral above. However, by utilizing the oscillatory behaviour one can find useful relations
and make accurate approximations.

Here we will focus on a single observation angle; the backscattered case (ϑ=π: n̂ =−1ẑ).

C.1 Phase Approximations

Solutions for integrals where the integrand is a highly oscillating functions exist in the form of approxi-
mations: where the integrand oscillates rapidly, the contributions to the integral are negligible and only
the points where the integrand oscillates slowly contribute. The integral in the general form is given by

I =
∫

d xg (x)exp[i f (x)]. (C.3)

If f (x) = f (x,k), with k being the complementary variable, the equation is a generalized Fourier trans-
form. The phase function f (x) is Taylor expanded around points (λ) that contribute to the integral.

f (x) ≈ f (λ)+ d f (x)

d x

∣∣∣∣
λ

(x −λ)+ d 2 f (x)

d x2

∣∣∣∣
λ

(x −λ)2

2!
+ d 3 f (x)

d x3

∣∣∣∣
λ

(x −λ)3

3!
+O (4) (C.4)

To the values for λ are found by setting one of the derivatives to zero and is explained further below.

Stationary Phase Approximation

Stationary phase points are those for which d f (x)
d x = 0. For these points the Taylor expansion only needs

to be taken up to quadratic order. Substitution of the expansion into Eq. C.3 leads to a Gaussian integral
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for which the solution is

I ≈ exp[i f (λ)]exp
[

i
µπ

4

]√√√√√ 2π∣∣∣∣d 2 f (x)
d x2

∣∣∣∣
λ

∣∣∣∣ . (C.5)

This solution can only be used for stationary points where d 2 f
d x2

∣∣∣
λ
̸= 0. The next section will describe

the case for when this condition is not met. Figure C.1 shows two examples: one function for which
the stationary phase approximation can be used, and a second function that is a generalized Fourier
transform for which the stationary phase approximation can be used conditionally.

Figure C.1: Examples of the stationary phase approximation.
Left: The function contains a single stationary point and clearly shows that the contribution comes
from where the change of the phase is small. The solution of the integral are 0.637 and 0.627 for
numerical and Eq. C.5 respectively.
Right: The function represents a generalized Fourier transform. The parameter k changes the vertical

position of d f
d x and thus provides different contributions for different frequencies. For one value of k the

stationary point is at λ= 0, for which d 2 f
d x2

∣∣∣
λ
= 0. For this point the solution of Eq. C.5 is not applicable.

For all other values of k there exist two stationary phase points.

Zero Convexity

A point for which d 2 f
d x2 = 0 is called a zero convexity point. In such cases the solution to the integral is

found by taking Taylor expansion up to the cubic term. Using the definition of the Airy function

Ai(z) = 1

2π

∫ ∞

−∞
d t exp

[
i

(
zt − t 3

3

)]
, (C.6)

the approximated solution of Eq. C.3 is then given by

I ≈ exp[i f (λ)]Ai

(
d f

d x

∣∣∣∣
λ

3

√
1

2

d 3 f (x)

d x3

∣∣∣∣
λ

)
. (C.7)
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C.2 PW Linear Polarization

The normalized vector potential of a linearly polarized plane wave (laser pulse) propagating in +z is
given by

aµ = a0E (ζ)Re

e iη(ζ)+η0


0
1
0
0


 , (C.8)

Substitution of the laser field into Eq. C.2 (through also Eq. A.47) leads to

d 2I

dωdΩ
∝

∣∣∣∣νγ(1+β)
∫ ∞

−∞
dζa0E (ζ)

exp[i (η(ζ)+η0)]+exp[−i (η(ζ)+η0)]

2
exp

[
iν

∫ ζ

−∞
dζ′1+a2

0E 2 1+cos(2(η+η0))

2

]∣∣∣∣2

(C.9)
This equation needs to be rewritten into the form where the SPA can be used; separate the slowly varying
functions and a rapidly oscillating exponent. To obtain this we notice that the integral term in the expo-
nent containing the cosine can be solved using the slowly varying amplitude approximation. To write the
following steps more compact, we will only focus on the integrand with the exponent containing −η(ζ).
This exponent, in addition, is included in the exponent with the integral. Thus now we have

a0E (ζ)exp

iν
a2

0E 2

22

sin(2(η(ζ)+η0))
∂η
∂ζ

exp

[
i
∫ ζ

−∞
dζ′− ∂η

∂ζ
+ν

(
1+ a2

0E 2

2

)]
(C.10)

This result allows for the Jacobi-Anger expansion on the first exponent.

exp[i a sin(bx)] =
∞∑

m=−∞
J(a)exp[i mb] (C.11)

Using this expansion gives us

a0E
∞∑

m=−∞
Jm (B)exp

[
iη0(2m −1)

]
exp

[
i
∫ ζ

−∞
dζ′

∂η

∂ζ
(2m −1)+ν

(
1+ a2

0E 2

2

)]
, (C.12)

where B = ν
(

a0E
2

)2 (
∂η
∂ζ

)−1
. Combining with the other part of the integrand, i.e. with the exponent con-

taining +η(ζ)+η0, leads to terms with 2m+1. Because the summations of the Bessel functions run from
−∞≤ m ≤∞ we can shift this summation to get the final form of the integrand:∫ ∞

=∞
dζa0E

∞∑
m=−∞

(Jm (B)+ Jm+1 (B))
exp

[
iη0(2m +1)

]
2

exp

[
i
∫ ζ

−∞
dζ′

∂η

∂ζ
(2m +1)+ν

(
1+ a2

0E 2

2

)]
(C.13)

Using the stationary phase approximation we find can find two relations: 1) the emitted frequencies and
2) the stationary phase points. The former is given by the relation

ν=− 2m +1

1+ a2
0E 2(ζ)

2

∂η

∂ζ
(C.14)

From here we find that m ≤ 0, since only positive frequencies are relevant. Notable is that 2m +1 has a
physical meaning: it is the harmonic number of the emitted radiation. To solve for the stationary phase
points the following equation needs to be solved for ζ

E (ζ) =
√(

−∂η
∂ζ

2m +1

ν
−1

)
2

a2
0

. (C.15)
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This, however, depends on the chosen envelop function if there are analytical solutions available. It also
needs to be noted that for a laser pulse with symmetric shape and a single maximum, the second deriva-
tive is zero at the peak of the pulse. This means that for this point the Stationary Phase Approximation
fails and one should use the zero convexity approach. However the latter is not a good approximation
far from the centre of the pulse. An analytical solution for the spectrum can only be constructed by
piecewise functions.

C.3 Circular Polarization

The normalized vector potential of a circularly polarized plane wave (laser pulse) propagating in +z is
given by

aµ = a0E (ζ)Re

e iη(ζ)+η0


0
1
i
0


 , (C.16)

Substitution of the laser field into Eq. C.2 (through also Eq. A.47) leads to

d 2I

dωdΩ
∝

∣∣∣∣∣νγ(1+β)
∫ ∞

−∞
dζa0E (ζ)

(
exp[i (η(ζ)+η0)]+exp[−i (η(ζ)+η0)]

2
exp[i (η(ζ)+η0)]−exp[−i (η(ζ)+η0)]

2

)
exp

[
iν

∫ ζ

−∞
dζ′1+a2

0E 2
]∣∣∣∣∣

2

(C.17)

The two vectorial components are almost identical and therefore we will concentrate on the integrand
of one. Moreover we will look to the to the term containing −(η(ζ)+η0). The resulting integrand is given
by ∫ ∞

−∞
dζa0E exp

[−iη0
]

exp

[
i
∫ ζ

−∞
dζ′− ∂η

∂ζ
+ν(1+a2

0E )

]
(C.18)

Using the stationary phase approximation we find can find two relations: 1) the emitted frequencies and
2) the stationary phase points. The former is given by the relation

ν= 1

1+a2
0E 2(ζ)

∂η

∂ζ
(C.19)

To solve for the stationary phase points the following equation needs to be solved for ζ

E (ζ) =
√(

∂η

∂ζ

1

ν
−1

)
2

a2
0

. (C.20)

This, however, depends on the chosen envelop function if there are analytical solutions available. It
also needs to be noted that for a laser pulse with symmetric shape and a single maximum, the second
derivative is zero at the peak of the pulse.

C.4 Off-Axis Radiation

For radiation close to the backscattered angle we take a look at the interesting part of ν
∫ ζ
−∞ dζ′γ(1+

β)(U 0 − n̂ ·U⃗ ), namely

γ(1+β)(U 0 −cosϑU 3) = γ(1+β)

(
γ(1−βcosϑ′)+γ(1−β)

(a)2

2
(1+cosϑ′)

)
(C.21)

where ϑ′ = π−ϑ. The cosine term is expanded for small angles. For the last term in the equation we
only need to take the first order of the expansion. The first term however we need to take a couple of
additional steps
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γ(1+β)γ(1−βcosϑ) = γ2(1+β−βcosϑ′−β2 cosϑ′)

= γ2
(
1+β(1− (1+ ϑ′2

2 ))−β2(1+ ϑ′2
2 )

)
= ������: 1

γ2(1−β2)+γ2ϑ′2 β+β2

2

≈ 1+γ2ϑ′2 (C.22)

If we use this relation in combination with Eq. C.14 and C.19 we find

ν= H

1+γ2ϑ′2 +〈a2〉
∂η

∂ζ
(C.23)

where H is the harmonic order and is equal to 2m +1 for linear polarization and 1 for circular polariza-

tion, and 〈a2〉 is non-oscillating magnitude square of the vector potential and is equal to
a2

0E 2

2 for linear
polarization and a2

0E 2 for circular polarization.
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