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Preface

The bulk of this thesis focuses on two fields that are being deeply investigated both by the
mathematical and physical community, namely spectral theory and unique continuation. Both
these theories are extremely rich and nowadays represent inclusive terms covering a wide variety
of branches of physics and mathematics. More precisely, the first one, in its general meaning,
includes theories which extend the eigenvalues analysis for square matrices to a much broader
class of mathematical characters, for instance, due to their relevance in quantum interpretation,
to unbounded operators in Hilbert space. The second one is concerned with the search for classes
of functions for which the vanishing in a region ensures the vanishing in a larger one, roughly
speaking it is the issue to find the correct analogue of harmonic functions for which the Liouville

theorem guarantees the stated rigidity.

The structure of this document is roughly the following. The main body of work of this thesis
is contained in the first two parts, in which the aforementioned themes are analyzed, specifically
spectral properties for the non self-adjoint perturbed Lamé operator of elasticity and unique
continuation for Zakharov-Kuznetzov dispersive equation are objects of our investigation. Each
part contains an introductory chapter which endeavors to give an overview of the problem in
exam and to clarify why it is worthy of attention. Moreover a time-based analysis, involving
also the recent developments of these matters, is provided in the same chapters. At times
the discussion is chosen to be informal in order to convey the basic underlying ideas. The
concise statements together with their proofs, employing the necessary rigor lacking in the

introductions, are given in the following chapters.

The third part is slightly different, it is not concerned with achieved results but it involves
a future possible project that we would like to deepen. More precisely the prospect presented
takes place in the field of inverse problems in elasticity. The possibility to re-adapt some useful
tools earned to address the problems described in the first two parts has played a relevant role

to motivate solidly this future investigation.






Part 1

Spectral Theory for Complex Perturbed Lamé

Operators

We will turn to the first part of this thesis. It is devoted to the analysis of spectral properties
connected with the Lamé operator of elasticity once it is perturbed by a potential which,
possibly, is assumed to be complex-valued, this will lead our way off the well beaten path of
self-adjoint operators.

In particular we focus on two distinct but intimately related problems that will be treated

separately:

PROBLEM 1. Verify whether the stability of the spectrum, or part of it, occurs

under suitable small perturbations.
and

PROBLEM 2. Produce bounds on the distribution of eigenvalues in the complex
plane, roughly speaking, obtain the correct analogue to Lieb-Thirring inequalities in

a complex setting.

All the results presented are mainly motivated by the deep connection between the Laplace

and Lamé operator that we will clarify later on by means of Helmholtz decomposition.

The results in this part couldn’t have been achieved without useful and encouraging con-

versations with Luca Fanelli.



I.1.| Introduction

This part is concerned with spectral analysis of operators of the form
—A* +V(x)

acting on the Hilbert space [L?(R%)]? that is the Hilbert space of vector fields with components
in L?(R%).

—A* denotes the Lamé operator of elasticity which rules the behavior of solid bodies, or
better their reversible deformation, once they are subjected to excitations of various physical
natures.

—A* is a linear symmetric differential operator of second order that acts on smooth L?

vector fields u on RY, for example [C(R?)]%, in this way:
— A*u = —p(Auy, Aug, ..., Aug) — (A + )V div(ug, ug, .. ., ug), (L.1.1)

where A and p are the so called Lamé’s coefficients.
V(z) is a notation for the multiplication operator by the complez-valued potential V (z),

this means that the context we are working in is a non self-adjoint setting.

Notations: In this part the following notations are used:

e Depending on our potential perturbation V be a scalar V: R? — C or matrix-valued

ViR - Mgyyq(C) function, the notation |V (z)| would represent the standard absolute

1

value for a complex number or the matrix norm |V (x)| := <Zf:1 Z?:I |Vij (x)\Q) °

e Since the operator we are dealing with acts on vector-valued functions, we will use

the following for the L” norm of a vector field u: R* — R% |lul|, := [ull{zpgaye =
1
(Xl ga)) 7 for all 1 < p < oo,

e Since treating the first problem only the L? norm is needed, we will skip the index 2 in

||, writing just ||||. The tradition notation will appear working on the second problem.

e In this part weighted estimates will appear, we will use the notation LP(w dx) for the LF—

space on R? with measure w(x) dr, under suitable assumptions about w.

The results involved in this part can be thought to belong to the very relevant domain usually
put under the “umbrella name” of theory of perturbations.

In general all the disciplines called theory of perturbations are based on the idea of



studying a system deviating possibly slightly from a simple ideal system for which

the complete solution of the problem under consideration is known.

According to this general notion, the ideology under the classical theory of perturbation for

linear operators is as follows.

Let Hy be a self-adjoint operator on a Hilbert space H, then suppose to perturb it,

that is to consider the new operator
H .= HO + ‘/,

with V' still a self-adjoint operator.

The main task of the theory is to deduce information about properties of H from the
knowledge of those of Hy.

In general there is no reason to expect that H preserves properties of the unperturbed
operator Hy, but it is more reasonable to believe that one can manage changes of

these characters if the perturbations are “small” if compared to Hy.

Clearly, a first non trivial issue is how to define properly and reasonably a “small”

perturbation.

For our aims, the characters attached to the operator we are interested in are mainly spectral

properties.

We would like to start out with a brief and not comprehensive description on the motivations
that pushed mathematical and physical community to get involved into spectral analysis. In
order to do that we need first to recall some very classical facts arising from quantum mechanics.

According to the postulate of quantum mechanics the state of a physical system is described
by a state vector in a certain Hilbert space which changes depending on the physical system we
are trying to describe. Moreover we recall that if the initial state, namely state at time ¢ = 0,
of a general system is represented by a reasonable vector 1y, then at any time ¢ > 0 the system

is represented by a vector
¢(t) = e_thw()J
where H represents the self-adjoint, time-independent energy operator in the Hilbert space

which is chosen to describe our physical system. Moreover, the state 1(t) so defined solves the

Cauchy problem associated to the Schrodinger equation

The self-adjointness of the energy operator H ensure the well-posedness of the initial value

problem attached with the equation above.



Just to have in mind a particular but relevant situation suppose we want to describe a
3
valued function of position and time 1 (z,t), z € R% ¢ € R, the so-called wave function, which

single particle state of mass m = 3, it is very well known that this is governed by a complex-
is a vector of the Hilbert space L?(R?). Moreover, suppose that the particle moves under the
force generated by a potential function V' then the energy operator, appointed to describe its

evolution, is the differential operator
H = H() + ‘/,

where, in this particular situation, H, is represented by the Laplacian —A.

It is worthy to underline that according to the interpretation of quantum mechanics, the
position of a particle cannot be determined as a definite point z € R, in fact with the aid of the
wave function v we can just obtain information about its probable location. To be more precise
the quantity |¢(x,t)|* dz is treated as a probability measure and specifically, it provides the
probability of finding a particle in any space region 2 = R? at time ¢ through the computation
$olv(x, t)|? dz. Therefore, the following normalization is required: Spalt(x, ) dx = 1.

Of a particular importance are the states described by eigenvectors of the energy operator

H, namely those vector functions 1y such that there exists E' € R for which the following
Huo = Evpo

holds true then, clearly, it follows that the evolved state 1 (t) = e~"F!4),. Since 1 differs from
Yo just by a phase factor, it describes the same state of the particle indeed, by virtue of
the postulate of quantum physics, the only relevant quantity attached to the description of
a particle’s evolution is represented by the density of probability ]w(x,t)|2 which does not
distinguish between ¢ and 1 multiplied by a phase factor. In other words, if the state of the
particle is represented by an eigenvector of H, then it is time-independent. In particular, the
probability §,|v(z, y)|? dz to find the particle in some region © < R? is then constant in time.
Therefore, a particle in such a state is said to be localized.

It is thus tmportant to know whether there exist real numbers E for which Hvg = Evqy holds
and, if so, how many of such numbers there are, how large they are, where they are located, etc.

This yields the aforementioned interest in spectral analysis and in particular, since several
quantum mechanical systems are described by Hamiltonian of that form, in spectral analysis
of operators of type —A + V. Clearly depending on the concrete physical problem at hand, the

Laplacian may need to be replaced by a more general differential operator Hy.

Spectral analysis for self-adjoints operators has been intensively studied for several decades.
Unfortunately the generalization of the achieved results in this topic to the non self-adjoint

framework seems to be not that straightforward. Indeed, the lack of spectral theorem and of
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a variational characterization of eigenvalues, among other tools, makes the theory of non self-
adjoint operators more challenging and therefore very much less unified that the self-adjoint
one. On the other hand, recently, there has been a growing interest in this subject, mainly
motivated by the surfacing of increasing number of problems in physics requiring the analysis
of non self-adjoint operators. We refer to [21] and references therein for an overview of different
sources of such problems and in general for a description of methods that have been used to

analyze the spectrum of non self-adjoint operators.

Even though the interest in this field is quite recent, the study of spectral properties of
non self-adjoint operators already has a bibliography especially in the context of Schrédinger
operators and it was precisely the presence of these results for Schréodinger operators that mainly
motivates our work. A deeper understanding of the action of Lamé operator on smooth vector
fields can explain this sentence. Using the Helmholtz decomposition, which is a standard way
to decompose smooth vector fields into a sum of a divergence free vector field and a gradient,

we can see that, for any u = up + ug, the operator —A* acts on v in this way:
—A*u = —pAug — (A + 2p) Aup,

where the component ug is the divergence free vector field and the component up is the gradient.
In other words, Lamé operator, up to multiplicative constants, is nothing but the sum of two
Laplacian acting on distinct components of the Helmholtz decomposition. This means that
there is a deep link between Lamé and Laplace operator and therefore, at least at first sight,
this fact augurs well for the possibility that results which can be seen as the proper counterpart

of ones already gotten for Schréodinger could be still meaningful if concern Lamé operator.

With respect to the existing result in the non self-adjoint landscape, since our aim is con-
cerned mainly with two topics, the stability of the spectrum and bounds of eigenvalues, we
limit ourselves to quoting just results regarding these two themes and that moreover were the

main source of inspiration for ours. Let us start with state of the art in the first theme.

PROBLEM 1

'''''

the picture of the stability of spectral properties for non self-adjoint Schridinger operators,
namely H := —A 4+ V in R?, with V: R? — C? complex-valued potential perturbation.
It is common knowledge that the spectrum of the Laplace operator is purely continuous

and coincides with the non negative semi-axis, in particular, by virtue of the disjoint par-

tition of the spectrum (see Appendix C), this means there are no eigenvalues. For d > 3



in [38] it was proved that, assuming for the complex-valued potential a suitable smallness

condition, the point spectrum of Schrodinger operator remains empty.

Our goal has been to obtain a result that represents the analogue for Lamé of the one
Fanelli, Kre¢ifik and Vega proved in the aforementioned work [38]. In other words, since
also for free Lamé operator the spectrum results to be purely continuos and coinciding with
the positive real line, we want to prove that, under suitable conditions about the potential,
this property is preserved, at least in part, in the perturbed setting, specifically it is proved
that no eigenvalues can occur. The formal statement is the following:

Theorem I.1. Let d > 3. Assume that A\, u € R satisfy

2
P> 0>~ p (1.1.2)
and that V: RY — My,q(C) is such that

(1.1.3)

Vue [H (R, f 2PVl < A2 f Vuf?
R4 R4

where A satisfies

A 4(2d — 3) A2 42 3
_ C+1)+ C+1)2
min{u, A + 2u} d—2 ( ) min{zu, A + Qu}% Vd— 2( )

and where C > 0 is a suitable constant. Then o,(—A* +V) = @.

<1, (L14)

As a further application of the multipliers technique we have developed to prove Theo-
rem .1, we are also able to perform uniform resolvent estimates for our operator —A* + V,
which generalize the ones obtained, for the Helmholtz equation, by Barceld, Vega and
Zubeldia in [6].

Precisely, in this regard we consider the resolvent equation
A*u—Vu+ ku = f, (I.1.5)

where k = k; + ik, is any complex constant, with k; := Rk and ks := Sk, and f: R? — C?
is a measurable function and we will prove, for solution of (I.1.5), the following result:
Theorem 1.2. Letd = 3, ||| - | f|| < o0 and assume that V satisfies (1.1.3). Then, there exist
¢ > 0 independent of k and f such that for any solution u € [H*(R%)]? of the equation (1.1.5)
one has

o~ ull < clllal ] (116)

Remark 1.1. We remark that the estimate (I.1.6) for the perturbed Lamé operator was

already proved in [4]. On the other hand our integral-smallness assumption on the potential




is weaker than the one required in that work. Indeed, to be more precise, assuming that

[|2]*V || . < 0, the authors provided the uniform resolvent estimate (1.1.6) for the equation
A*u—o0Vu+ ku = f,

using a purely perturbative argument, that is, roughly speaking, taking J as small as needs
in order to treat the term —)Vu as a mere correction.

Actually, in order to prove Theorem 1.2 we establish the following stronger result, which
shows that a priori estimates for solutions of (I.1.5) hold.
Theorem 1.3. Letd = 3, ||| - | f|| < o0 and assume that V satisfies (1.1.3). Then, there exist
¢ > 0 independent of k and f such that for any solution u € [H*(R%)]? of the equation (1.1.5)

one has

o for|ko| < Ky
IVug|l < clll=|fll,  and  [[Vup| < c|l|z|f]], (1.1.7)

where the vector fields ug and up will be defined in (1.4.10) and (1.4.12) respectively.

) fOT |]{Z2| > kl
[Vull < clf|z| f]]- (1.1.8)

From this theorem, as a straightforward corollary, we easily obtain Theorem I.2.

PROBLEM 2

With respect to the second topic, namely finding quantitative estimates regarding the
location in the complex plane of eigenvalues, among others, as it primarily motivated
our result, it is worthy to mention the recent work by Frank [40]. In this paper he was
concerned with the situation of a non self-adjoint Schrodinger operator H = —A + V in
R?, with V: R? — C? which is assumed to decay at infinity (at least in some averaged
sense). As in the self-adjoint case, this entails, by mean of a proper generalization of
Weyl’s theorem in the non self-adjoint situation, that the essential spectrum remains stable,
therefore coincides with [0,00). In a compact form, we say that the following chain of
identities holds: Tegs(—A+V) = 0ess(—A) = [0, 20). We underline that even if the “behavior”
of the essential spectrum does not change replacing real-valued potentials with complex
ones; the discrete spectrum represents more subtle issue, indeed unlike the self-adjoint
situation, in which we have just 0 as a possible accumulation point, in the non self-adjoint
context, since the spectrum is no more necessarily real, we might have positive accumulation

points and this fact makes the analysis of the discrete spectrum less manageable then the




self-adjoint situation.

In this direction in [40] it was improved the knowledge about the location of those eigen-
values, particularly it was shown that the absolute value of non positive eigenvalues for these
operators can be bounded in terms of LP— norms of the potential, in other words a weaker
form of classical Lieb-Thirring inequalities is provided also in a non self-adjoint context.
This and several other previous results in the same spirit share, as starting point in their
proof, the use of the very well known Birman-Schwinger principle which, roughly speak-
ing, permits to re-phrase conveniently the eigenvalue problem for the Schrédinger operator
in order to exploit compactness properties that were missing in the original formulation.
Coming up the classical formulation of this principle.

Proposition 1.1 (Birman-Schwinger principle). Let z ¢ o(Hy). Then
zeop(Hy+V) <= —leog,(K,),

where K := V1 (Hy — z)_l\V\%, with V1 := \V\% sgn(V).

Remark 1.2. Clearly, in the context of Schréodinger operators, Hy is replaced by —A and
the assumption about z is z € C\[0, ).

Remark 1.3. Let us observe that, since (—A — 2)~! is an integral operator for z € C\[0, )
with explicit integral kernel for all dimensions d > 1, this formulation has the additional
advantage to enable us to treat integral equations instead of the (less easy to handle) partial

differential equations.

Our original contribution in the setting of quantitative estimate for the spectrum of
—A* + V, was to obtain similar bounds to the ones shown in [10].

Since we want to use the same powerful approach, that is the Birman-Schwinger prin-
ciple, we need first to get an explicit expression for the resolvent operator associated with
—A*. In order to do that Helmholtz’s decomposition again plays a relevant role, indeed,
making use of this tool, precisely writing ¢ = gg + gp where gg is the divergence free
vector field and gp is the gradient, it turns out, as we will see in more details below, that

(—A* — 2)~! has a favorable form

(A =g = (- ) sk

. \—1
/\+2#(_A_ )\+2/,L) gp-

From the previous identity, the action of the resolvent of the Lamé operator on a sufficiently
smooth vector field g can be seen to be nothing but a sum of two resolvent operators
associated with the Laplacian for each component of g. This fact was responsible in laying
solid motivations to the possible success of our project. In fact the following were obtained:

Theorem 1.4. Letd > 2 and 0 < v < % Then any eigenvalue z € C\[0, 0) of the perturbed




Lamé operator —A* +V satisfies
4 < Dyass | V@) (119
Rd

with a constant D 4, independent of V.

Theorem L5. Letd >2,0 <~y <1 and (d—1)(2y+d)/2(d—27) <p <~v+ 4. Then any

eigenvalue z € C\[0,00) of the perturbed Lamé operator —A* + V satisfies

2v+d

2" < Dy st rd(r_df Vildy) T (11.10)
By (x)

x,r

Theorem 1.6. Let d > 2 and o > % Then any eigenvalue z € C\[0,00) of the perturbed

Lamé operator —A* +V satisfies

1
‘Z|2 < Cd,a,)\,,u Sup(l + "/1:'2)&"/(‘1')'

zeRd

Using similar arguments as in the previous results and making use of interpolation
theory, the following theorem was also proved.
Theorem 1.7. Let d > 2, v > 1 and a > v — 5. Then any eigenvalue z € C\[0, ) of the
perturbed Lamé operator —A* + 'V satisfies

(d—1)

17 < Canan [ V@5 (1t o) o

The previous four theorems match properly ones proved by Frank in [40].

We want to emphasize that even if the generalization to our context of the proofs by Fanelli,
Krecitik and Vega and Frank seems to be quite natural, mainly looking at the explicit expression
of the Lamé operator and its resolvent after the Helmholtz decomposition, this is not entirely
obvious. Indeed, as we will see a little further on in more details, the exploitation, at the very
beginning, of the Helmholtz decomposition as a fundamental tool to address the problems, gives

rise to new highly non-trivial difficulties.

I.2.

The perturbation theory in the self-adjoint

case

Even if, since we are working in a non self-adjoint setting, the majority of results in classical
theory of perturbation which give precise information about whether or not (and if negative

also how the changes occur) the preservation of the spectrum, or part of it, occurs cannot be
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used, we want to dedicate few rows to the description of some useful results that hold in the self-
adjoint context. The reason for discussing this more investigated case is twofold. In first place,
the theory of perturbation for self-adjoint operator, though classical, is not trivial. Secondly, it
essentially embodies certain features of perturbation theory that may arise also in the general
case. Moreover, since in this section we are not attempting to be exhaustive, the vast majority
of details will be given for the Schrédinger operator (see [58| for a more comprehensive analysis
on this topic).

Among several cornerstone results which take part to the classical theory of perturbations
for self-adjoint linear operators, we must mention the Weyl’s Theorem. In its general form
it ensures that the essential spectrum of a self-adjoint operator turns out to be stable under
relatively compact perturbations. In the particular situation in which the operator into account
is represented by the self-adjoint Schrodinger operator H = —A + V| this result has a more
handle form, indeed it ensures that if the potential V' decays sufficiently fast at infinity then
the essential spectrum is preserved and in particular the following holds: es(—A + V) =
Oess(—A) = [0, 00). This means that sufficiently decaying potentials do not change the essential
spectrum, but may create discrete eigenvalues below it. Hence, in this framework, since the
essential spectrum is easily determined, we are led to focus on the more particular issue to
understand how potential perturbations influence and change the discrete spectrum.

Our problem can be re-phrase in this way:

QUESTION. Which kind of assumptions about the potential perturbation ensures
that
info(—A+ V) =info(—A) =07

In the event of affirmative answer then we would say that the discrete spectrum is also stable,

therefore no negative eigenvalues can occur.

Let us start considering potential with definite sign. Clearly if V' > 0 then, as —A is a
non-negative operator (in sense of quadratic form, namely (¢, —Aw)) > 0 for all ¥ € Z(—A)),
H = —A+V = 0. Therefore, as a consequence of the mini/max principle which, we recall, gives
a variational characterization of the eigenvalues below the bottom of the essential spectrum of an
operator H in terms of the minimization problem for the functional (1), HY), inf o(—A+V) > 0,

this means that no negative eigenvalues arise.

Let us continue to consider the simpler case of definite sign potentials, namely V' < 0. Since
—A+V < —A, exploiting again mini/max principle we can say that inf o(—A+V') < inf o(—A),
but in general there is no reason for the inequality being strict.

It turns out that the fact the inequality is strict or not strongly depends on the dimension

of the Euclidean space R
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We consider first the dimension d > 3. As we will see, the discriminating factor is whether
or not a Hardy-type inequality exists. A general Hardy-type inequality for functions in H'(R?)
displays this form

fRd|V@/}|2dm > Jde|¢|2dx, p =0, (1.2.1)

where p is called Hardy weight.
We recall that in d > 3 the following inequality holds true:

2
J|Vw]2dx><d_2>2f i dz, Vi e HY(RY),
R4 R

T JaufaP
clearly, this is a particular case of the previous one in which we pick p = %‘# From the
previous it follows that
d—2)* 1
—A — Q_Q > 07
4 |z

again in sense of quadratic forms. This entails that if our potential decays at least as fast as |x|2
at infinity and it is sufficiently small then the spectrum of the so perturbed Laplace operator

remains empty. We attempt to be more precise: considering the operator
H=-A+¢V,

with « to be defined, we have

d—22 1 (d—2)? 1

—A+aV =—-A— 5 + 5 —¢|V].
4 |zl 4 |zl
o > o -/
Y Y
=0 =0
by Hardy-ineq. if Vdecays at least as |z ™2

and
asufficiently small
Hardy inequality shows that the kinetic term —A dominate at infinity if we consider a potential
V that behaves at infinity as V(z) = e|z| ™ with § > 2, orif = 2 and ¢ < 2 In d > 3, this

fact put —A, in the class of the so-called subcritical operators, where we recall that

H is subcritical if for all V' there exists g9 > 0 such that for all € € [0, ¢¢],

info(H +¢eV) =info(H).

In low dimensions, namely d = 1,2 the situation is completely different, indeed it can be
proved that an arbitrarily small perturbation V' always generates negative eigenvalue. This fact
is mainly due to the lack of existence of a Hardy-type inequality. It is not difficult to see that
if one assumes (1.2.1) to hold, then a proper choice of a sequence of test functions shows that
p is forced to be identically equal to zero. Now we want to give a rough and quick idea on how

to prove the so-called criticality of the operator —A in low dimensions, where we recall that
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H is critical if for all V and for all € > 0,

info(H +eV) <info(H).

Substantially, using again mini/max principle, we want to prove that —A + £V is negative for
arbitrarily small e. It is sufficient to build a test function ¢, such that || V||* + (b, Vib) < 0.
The rigorous way to proceed would be to find a trial function 1) which resemble the constant
function ¢ = 1, indeed with this choice V1 = 0 and ¢ {, V() dz < 0.

Summing up, we have showed, if not in a rigorous way at least giving the main ideas, that

the the following equivalence is valid:

—Ais subcritical <= JHardy inequality for — A.

I.3.

Preliminaries: Helmholtz decomposition and

its consequences

This preliminary section is devoted to a deeper analysis of what has represented a fundamental
tool for our scopes: the Helmholtz decomposition. As it is well known this is a standard way
to decompose a vector field into a sum of a gradient and a divergence free vector field. To be
more precise, we have that every smooth vector field u sufficiently rapidly decaying at infinity,

can be uniquely decomposed as

U =1ug + up,

where divug = 0 and up = Vi, for some smooth scalar function .
A very useful property of the two components of the Helmholtz decomposition is summarized

in the following lemma.

Lemma 1.1. Let u be a smooth vector field sufficiently rapidly decaying at infinity. Let ug and

up be the two components of the Helmholtz decomposition. Then
o ug and up are L?—orthogonal.
o ug and up are H'—orthogonal.

Proof. The proof of both the sentences makes use of an integration by part argument. The first

one immediately follows from the assumption about ug and up.
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Let us now consider the second sentence. In order to simplify the notation we call F' := ug

and G := up, thus F' is the divergence free vector field and G is the gradient.

d
(VF,VG) = VF VG = Z VF-Vsz—ZJ FAG; = ZJ

d
j=1 R4 R4
O

Using the Helmholtz decomposition, a straightforward computation shows that for any

u = ug + up, the operator —A* acts on u in this way

— A%u = —pAug — (A + 2p)Aup. (I.3.1)
This makes evident the similarity between Lamé and Laplace operator, which primarily moti-
vates our work.

As already said one of our main character in this part will be the resolvent operator asso-
ciated to —A*, namely (—A* — 2)71, for any z ¢ o(—A*) = [0, ).

The following lemma let to a better understanding of this operator.

Lemma I.2. Let z € C\[0,0) and g € [L?(R?)]?, assume that X and p satisfy pn > 0, \+2p > 0.
Then the following identity holds:

_ 1 _
(—A-2) 1g5+/\+2ﬂ(—A—ﬁ) Lop, (1.3.2)

where

(—A —2) g = ((—A —2) gL, (A = 2) gy, (A — z)’lgd).
Proof. Given g € [L*(R9)]¢, we want to obtain an explicit expression of the vector field f, where
f=(-A*—2)"g. (1.3.3)
Let us observe that, since z ¢ o(—A*) = [0, 0), the previous is equivalent to
(A" =2)f =y

Now, writing f = fs + fp and g = gs + gp and using (1.3.1), we obtain that the previous can

be re-written as

—uAfs — (AN + 2u)Afp — zfs — zfp = gs + gp.

13



The H!'— orthogonality of the two components of the decomposition enables us to split this
intertwining equation for both the two components into a system of two decoupled equations,
ie
{—Mﬁfs —2fs = gs,
—(A+2u)Afp —2fp = gp.

The prior system can be written in an equivalent form as
{M( —A—2)fs = gs,
A+2u)(—A— ﬁ)fp = gp-

From the previous identities, since by our hypotheses about Lamé’s parameters i, 3 JfQH ¢

o(—A), we get
1 -1 1 2 \—1
fS:p(—A_f) gs, fP:)\_}_Q#(_A_)\JrQ#) gp-

Making use of this explicit expressions in f = fg + fp and of (1.3.3) we obtain (1.3.2). This

concludes the proof of the lemma. n

1.4.| Problem 1

The discussion in this chapter is mainly taken from [19] and more precisely it is concerned with
the proof of Theorem I.1 and Theorem I.1.6.

[.4.1. Absence of eigenvalues: proof of Theorem 1.1

We devote this section to the proof of Theorem 1.1 we stated in the introduction.
We recall that our strategy wants to be built in analogy to that one in the recent work [38]

of Fanelli, Krejc¢itic and Vega, who established the analogous result for the Laplace operator.

First of all, to this end, starting from the eigenvalue equation associated with the perturbed
Laplacian, they provided three integral identities which had a crucial role in the proof of their
main result; in order to do that they re-adapted to a non self-adjoint setting the standard tech-
nique of Morawetz multipliers. This tool was introduced in |71] for the Klein-Gordon equation
and then it was developed in several other contexts. For example, with respect to the Helmholtz
equation’s framework, let us mention the seminal works of Perthame and Vega [77], [78] which
are concerned with the purely electric case and then [39, 37, 92, 3, 6, 93|, which extend the tech-
nique in an electromagnetic setting. We should also quote [15] for an adaptation of multipliers

method on exterior domains.

14



Now we are in position to begin the proof of our result.

The eigenvalue problem for the perturbed Lamé operator is
A*u + ku = Vu, (L.4.1)

where k is any complex constant (throughout the paper we will denote by k; = Rk and by
ky = k).
Just to simplify the notations, we start assuming that u is a solution of this more general
problem
A*u+ ku = f, (I.4.2)

where f: R? - C? is a measurable function.

Clearly, we can identify the problem (I1.4.2) with (1.4.1) by setting f = Vu.

As we said above, the Helmholtz decomposition has been a fundamental tool for our pur-
poses, according to this, writing u = ug + up and f = fs + fp, the resolvent equation (I1.4.2)

associated to the Lamé operator can be re-written as
pAus + (A + 2p)Aup + kus + kup = fs + fp, (1.4.3)

where, again, the S component is the divergence free vector field and the P component is the
gradient.

Let us observe that the equation written in this form is very far to be easy to handle,
indeed the two components has the same frequency of oscillation k£ but different speed of
propagation p and A\ + 2u respectively, and therefore the first attempt one would like to try is
splitting the previous equation into a system of two decoupled equations involving separately
the two components ug and up. This attempt is going to work indeed, as a consequence of
Lemma .1 which guarantees the L?—orthogonality of the S and P components of the Helmholtz
decomposition and of their gradients, we are allowed to reduce our “intertwining” equation into

a system of two decoupled equations, precisely one has the following result:

Lemma 1.3. Let u = ug + up be a solution to equation (1.4.3), then the two components of the

Helmholtz decomposition, us and up respectively, satisfies this two unrelated problems

{#Aus + kus = fs

(L.4.4)
(A + 2u)Aup + kup = fp.

Proof. As we have already said we basically are going to use the L? and H'—orthogonality of
ug and up.

Since w is a solution to (1.4.3), clearly we have
|pAus + (A + 2p) Aup + kug + kup — fs — fp||* = 0,

15



or more explicitly

f (uAug + (A + 2u)Aup + kug + kup — fs — fp)
Rd
(pAug + (A + 2u)Aup + kug + kup — fs — fp) = 0.

A straightforward computation allows us to write the previous as

lulus + kus — fs + 1A+ 2) Dup + kup — fo|

+ Q%J (nAug + kus — fs) - (A + 2u)Aup + kup — fp) = 0.

In order to obtain the thesis is just needed to show that the third term is zero. Let us consider

I:= J(,uAus + kus — fs) - (A + 2u)Aup + kup — fp),

we can write this explicitly and we have

Iz,u()\—i—2u)f AES-Aup+ukJ AES'up—uf Aﬂgfp—I-()\—i—Zu)EJ Ug - Aup

R R4 Rd R

+|]{?|2f ES'UP_EJ ﬂs'fp—()\+2u)f ?S'AUP—kf ?S.UP—’_J‘ 7S'fp.
R4 R4 R4 R4 R4

(1.4.5)

The L?—orthogonality of the S component and P component gives immediately that the first

two and the last two integrals in the second row of (1.4.5) vanish. Thus one gets

I=M(A+2M)J

R4

Aﬂs : AUP +,ka

Atg - up —MJ Aug fp
Rd Rd

v~ v~

I Ip) I3

+ (A + 2/1)%[ Us - Aup —(\ + 2/L)J fs-Aup.
R¢ Rd

I4 15

We are going to consider the five integrals separately. In order to simplify the details, again we
use the notation adopted in Lemma I.1, that is F' := ug and G := up, thus F' is the divergence

free vector field and G is the gradient.

d d
L= | AF-AG=) AEAGJ-:ZJ AEA@@:—J AdivF Ag = 0.
j=1 JRd R4

R4 j:1 Rd

Now we see Iy, we omit the details for I3, I, and I5, indeed they could be handle in the same

manner.

d d
Ig—f AF-G—ZJ AF;Gj=—->.| VF;-VG;=(VF,VG)=0.
Rd j=1 R4

j=1 R

16



Putting the previous altogether we obtain that I = 0 and consequently we have
|pAus + kug — fs|* + ||(A + 2p)Aup + kup — fp|°> =0
which obviously implies (I.4.4). O

As a starting point for the proof of Theorem 1.1, we consider the weak formulation of (1.4.4)

—u(Vv, Vug) + k(v,us) = (v, fs)

(1.4.6)
—(A+2u)(Vu, Vup) + k(v,up) = (v, fp).

Vo e [HY(RY)]Y, {

Following [6] we divide the proof of our result into two cases depending on the relation between
real and imaginary part of the eigenvalue k: |ko| < ki and |ko| > k.

Let us start by the more technical case |ko| < k.

Case |ky| < ky. For the purpose of letting the proof more understandable, we will point out
in the following lemma what Fanelli, Krej¢ific and Vega have proved in their paper [38] as the

main tool to guarantee the absence of eigenvalues for the perturbed Laplace operator.

Lemma 1.4. Let u: R — C be a solution to
Au + ku = f,

where k is any complex constants, we write ky = Rk and ky = Sk and f: RY — C is a

measurable function. If one sets
1

the following estimate holds

2(2d — 3) V2

- WﬂﬂWVUI%+¢E:§WﬂfWHVUHQ-@4?

d— 3|k
Vet + S g <
d—1 k1§ Rd

Proof. As we have already mentioned in the introduction, this result is based on an appropriate

use of the multipliers technique and we refer to [38] for the details of the proof. O

Remark 1.4. Let us just underline that the main tool of the proof is an integration by parts
argument, therefore in order to make the calculations rigorous they need to assume u and f

sufficiently smooth and then the result will be obtained by a standard density argument.

At this point, the next step is, in some sense, obliged. Indeed the most natural way to proceed
is to use directly the estimate which appears in Lemma [.4.7 for our two decoupled equa-
tions (1.4.4).
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In order to do that we have to make the two equations independent of Lamé’s coefficients,
for this purpose we need to re-define appropriately & and f (differently in each equations).

Precisely calling

k
kS = gs = E (148)
H K
and on the counterpart
k fr
kp = = 1.4.9
P \ + 21u7 gp \ T 2M7 ( )

we have that ug and up satisfies

A’U,S + ]{ZS us = gs
Aup + kpup = gp,

that written in components clearly are
{A(Us)j + ks (us); = (9s);
A(up); + kp (up); = (9p);,
forall j =1,...,d.
First let us handle the equation for ug.

Setting
1
ug () = e_isgn(ksvz)kg,lmus(x), (1.4.10)

where kg := R(ks) and kg2 = S(ks) and exploiting Lemma 1.4.7, we have that

_ d—3|k 2d — 3 _
IV (ug ) + 1';2‘[ 1V 3 <22l (g), 1V 5,

V2 IV (w2
by 1 L CON R NG

Summing on j = 1,...,d and using Cauchy-Schwartz and Holder inequalities for descrete

measures in the last two terms respectively, we get

_ d— 3 |ks2 _ 2(2d — 3)
VI + G55 | JlvEl < S sVl +
S,1

V2 lalgslF vz
d— Vd 2SI s

Going back to our old notation, i.e. recalling (I.4.8), it is easy to obtain

e 1 d 3|k| 12(2d 3)
IVug|* + : J 2| Vug)* < <. — =l fslVus]

if
pzd—2

(L4.11)

3 _, 1
Izl fs ]2 [[Vugl]?.
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Now we can provide the same estimate for the P component. Clearly, we mostly omit the

details in fact these are the same we have already shown for the divergence free vector field ug.

We define uj in the same way as ug, precisely
1
up(z) = et sen(kp2)kp el up(x), (1.4.12)

where k’p71 = %(l{?p) and k'p72 = %(k’p)
Now proceeding in the same way as the previous case we get

1 d—3\kQ|J ][V < 1 2(2d-3)
VAF2ud—1 13 Jga PUSN42u d—2
1 (1.4.13)

1 V2 3 1
+ T 2||Vupl2.
(A+2M)%m‘|’ ‘fp” H PH

In order to complete the argument and to obtain the thesis, the following elliptic regularity

2
IVupll” +

llz] fellllVupll

lemma will be useful in the immediate sequel.

Lemma 1.5. Let f € [C*(RY)]? be a smooth-compactly supported vector field in R, and let
¥: R4 — C be a smooth solution to
Aty =div f. (1.4.14)

Then for any s € (—d,d) the following estimate holds

2"Vl < e Qa(l2]*)[ll* £,

or some constant ¢ > 0 only depending on the dimension d and Qs(|x|?) the As—characteristic
Yy aep g

of the weight |z|” whose definition is recalled below.

Proof. The proof of this result basically relies on the very well known theorem about Calderén-
Zygmund operator, which ensures that if 7" is an operator of Calderén-Zygmund type, which,
roughly speaking, is a class of integral operator whose kernel has a singularity of the size |x—y|_d
asymptotically as |x — y| goes to zero, then for any weight w in the A,—class, with 1 < p < o0,
T is bounded on the weighted space LP(w dx) (see for example [25], Thm. 7.11). Actually we
are interested on a particular Calderén-Zygmund operator, i.e. the well known Riesz transform

defined for any f € L?(R?), via Fourier transform, by

RHQ) =~ i), ¥i=12d (14.15)
In particular we will use the following result of Petermichl which is concerned with the sharp
bound for the operator norm of the Riesz transform in L?(w). He proved [79] that for all

j=1,2,...d, if we Ay then
1R L2y < € Qo)1 200, (1.4.16)
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where @QQ2(w) is the As—characteristic of the weight w defined as

Q2 (w) = Sgp <|é?| JQ w) (ﬁ JQ wfl)’

with @ any cube in R? and ¢ a constant only depending upon the dimension.

We are interested in the weighted boundedness of the Riesz transform because our operator
T(f) := Vi, with ¢ a solution to (1.4.14), can be written in terms of Riesz transform in this
way: forall j =1,2,...,d
d
0 = —(d —2) > RjRy.Fy. (1.4.17)
k=1
Indeed, using the fundamental solution of —A in R?, we can write
1 1<
Y= (—A)TdivE = ——[a| TP divF = —— ) gila| Y < B,
Wd Wd =
where wy is the surface area of the d-dimensional unit sphere, precisely, making use of the

gamma function, it is wy := ded/; . We are interested in the partial derivatives of v, that is
(3

1 & (a
k=1

—

Consequently, using that the Fourier transform of the homogeneous function |z|™“ is |z]”*(§) :=

d
27 (dze — N
€17, with cgq = % and that f g = (2m)¥2f§, we get

2

Cd.o

- d/2 d R
Fie) = e S e e ).
d k=1

From the definition of the Riesz transform (I.4.15), given in terms of Fourier transform, it is
straightforward to see that, for all j,k=1,2....d

REf() = 5% f

- |€|2 (5)7

this clearly means that
(27T)d/20d7d,2

Wy

d
O50(8) = - > BiReFi().

k=1
Now, using the linearity of the Fourier transform, antitrasforming the previous identity and

making explicit the constants, we obtain our claim.

Moreover it can be proved that if —d < s < d then |z|* belongs to Ay—class. Calling w := |z|%,

the statement of our lemma is equivalent to find a constant C' such that
VOl 22 gaywnpe < CNEz2gayye-
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Putting all the previous facts together we get

1

d 1 d
IVl = ( D0 ) < dd=2)( X 1R RLFl ooy )
j=1

Gk=1
< dV(d - 2)Qa(w (ZHFkHW )

= dvd(d - 2)*Q(w)? 1 22 ety -
This concludes the proof.

Remark 1.5. Let’s underline that the constant ¢ that appears in the previous equation is the

one stated in the Petermichl result.

Let us introduce a trivial decomposition of our f :

f=F=Vi+Vy,

where 9 is the unique solution of (I.4.14); as a consequence we have div(f — Vi) = 0. By the
uniqueness of the Helmholtz decomposition, it follows that fg = f—V, fp = V1. Substituting
these in (I.4.11) and (1.4.13) respectively, one gets the two following estimates

_ RS d d—=3 k 12 2d -3
IV + T [l <L T e+ v
1 \f 3 1
+ 22 (lal 1 + el Vol Vs |
pe Vd =
and
e 1 d- 3|k2| 1 2(2d - 3) .
IVupl + e T [ falVapl <5y 2 el Tl T
L

. V|2 ([ Vuz]?.
o )iﬁ\lm ¢l Vg

Using the elliptic regularity result 1.5 we obtain respectively

_ 1 d 3 k 12(2d 3) _
IVusl? + 72 f 2| Vug 2 <2223 oy D el
1 \/§ 3 3 1
+ = O+ 13l f 1?1Vl
(O D)
and
2 1 d—3|k2‘ _9 1 2(2d—3) _
<
e e L e = e
1 \/§ 3 3 _ 1
" O3 el f11E [ Vup ] .

(A +2u)7 Vd =2
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Recalling that, at the beginning, f = Vu and using (1.1.3) one has

Il 1= [l Val < fllz[Vus|| + |[|[z[Vup] < A[Vug|| + Al[Vup]]

By virtue of the previous inequality and using the convexity of the function g(x)

= |z|” for
p =1 (in the inequality for the S component), we have

1 d 3|1<|
IVuz | + 2 f 2| Vg
A2(2d—3) A2 s
< =2 2 = 1)3
i i3 O DIV e (O 1V
A2(2d - 3) Az 2 3 ik .3
S O DIV T + O+ )T v
and
) 1 d— 3|k
IVurl’® + = QJerpr
A 2(2d - 3) 2 A2 2 s
< C|Vup|” + 5 C2||Vu
oan s IVl s v

Nlw

A 2(2d—3) B _ A 2
+ C||VvV \Y +
>\+2N d—2 || uSHH uPH ()\+2u)%m

Summing these two inequality together and majoring C' with C' + 1, we obtain

. o, 1d- 3|k:| L =3[k
Vg2 + [Vup)? + : f 2| Vuz [ + : f 2|V

3 _n3 i
C2|[Vug |2 [|Vup|>.

Vid—1 VAF2ud—1 3
< 2T DI+ e T + IVl
+%¢Cf_i2<c+1>3nwgu2+( = TEw =GR AL
+ 22 0 IV + f% B2 0+ 1)Ivaz 1vu)
+2—§W%<O+1>3||w;||%||w;||3+(MA;)@Mjf?<0+1>3||wg||3||w;n5.

Making use of the Young’s inequality, which state that for all non-negative real numbers a and
b holds

a? bl
ab < — + —
p q
) 1 1
where p, g are determined by — + — = 1, one gets
p
_ T S ST Tt
Vsl Vupll < 5 Vug ) + 5[ Vupl
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1 .3 1 - 3 _ .3 1 3 _ 1 _
[Vug|[?[|[Vup||? < Z||Vu5||2+;l||VuP||2 and  ||Vug]?[[Vup|? < ZHV%HQWIIVUPH?

Using the latter in the former and the fact that pu, A + 2u = min{u, A + 2u}, we have

A 4(2d — 3) A3 4 3 2 2
1 - — C+1)— ; C+1)2 Vug||” + [[Vu
1 d-— 3\1@\] 1 d- 3\1@\[
+\/>d—1 ‘ Hv S’ +m % ‘ Hv P’

Since the two term in the second row are positive, the last inequality becomes

( . A 4(2d — 3) A3

3 —2 —2
- — Cc+1 C+1)2 Vue||*+||Vu <0
min{p, A + 2u} d—2 ( ) - min{p, A + 2u) 3 \/7( ) )(H s 17+ Vup]”)

Clearly, by virtue of (I.1.4), the term in parenthesis is strictly positive, then it follows that
ug,up and thus ug,up are identically equal to zero and, as a consequence of the Helmholtz

decomposition, u is identically equal to zero as well.

We treat now the simpler case |ko| > k.

Case |ko| > k;y let u e [HY(RY)]? be a solution of (1.4.2), i.e. a solution of (1.4.6). Choosing
= tug in the first of (1.4.6) and v := +up in the second of (1.4.6), taking real and imaginary
parts of the resulting identities and summing these two identities, we obtain respectively for

ug and up

(klikZ)J ]uSF:,uJ |VUS|2+%J ES'fSi%J us - fs,
R4 R4 R4

Rd

and

(k1 = ko) J

Rd

|rLLP|2 = (A+2M)Jd|VUP|2 + %Jdﬂp . fp + %f Ep . fp.
R R

Rd

Taking the sum of the previous and making use of the H'- orthogonality of ug and up, one has
(ky J_rkrg)f fuf? — Mf Val? + ()\+u)f 1Vup|2+§ref H-fJ_r%J a-f (L4.18)
R Rd R R R

Now we want to estimate the last two terms on the right hand side of (1.4.18), in order to
obtain the bound we are going to make use only of the Schwarz’s inequality, the classical

Hardy’s inequality that reads

2
4
Vi e HY(RY), JRd % dr < CEE JRJW)'Q’ (1.4.19)

and the assumption (I.1.3). Indeed, recalling that f := Vu, one has

f ull 7l < 25 Al Tl
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using the following trivial chains of inequalities

R ﬂ-f>—U ﬂ~f’>—f lul] f1, and i%f a-f>—U a‘f‘>—J lul| f1,
R4 R4 R4 R4 R4 R4

we easily obtain

4

(k1 £ kz)f [ul® > <u - ﬂ/\) IV7ull* + (A + ) Vup|*.
R4 -

Let us recall that, to make the quadratic form associated to the Lamé operator positive, we

have assumed for the Lamé coefficients the condition (I.1.2); under this hypothesis immediately

follows that A + p > 0 thus we obtain

4
k) [ 0P = (w250 19l
R4 -
It’s easy to see that any A verifying (I.1.4), necessarily satisfies ﬁ/\ < i, therefore one gets

(l{il + kQ) |u|2 = 0.

Rd
Thus from the last inequality follows that &y + ks > 0, unless wu is identically equal to zero.

It is a straightforward exercise to prove that, under conditions (I1.1.3) and (I.1.4), the possible
eigenvalues of —A* 4+ V have to be included in the right complex plane, that is k; > 0. Noticing
that we are assuming |ks| > k; > 0, which implies that the inequality k; + ko = 0 cannot hold,

we obtain u = 0.

This concludes the proof of Theorem I.1. ]

1.4.2. Uniform resolvent estimate

The aim of this section is to investigate about uniform resolvent estimate for the solution
u: R — C? of (I.1.5).

Just to quote a pair of papers on this topic, in a context of Helmholtz equation, we recall
Burq, Planchon, Stalker and Tahvildar-Zadeh [11, 12| and later the work of Barcel6, Vega and
Zubeldia [6] which generalizes the previous to electromagnetic Hamiltonians. Whereas, for this

kind of estimate in an elasticity setting, we can cite [5].

As we have already mentioned in the introduction, as a starting point we are going to prove
a stronger result than Theorem 1.2, which establishes the validity of a priori estimates, then
our theorem will follows as a corollary making use of Hardy’s inequality only.

In view of the previous comment, we can now start with the proof of Theorem 1.3
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1.4.2.1. Proof of Theorem 1.3

Since the estimates we want to prove are different according to the relation between the real
and imaginary part of the frequency, that is when |ky| < k; or the contrary, we treat the two
cases separately.

As a starting point, we will easily show that this kind of estimates holds in the free frame-
work, that is in the setting in which V = 0. Secondly we prove the estimates in the perturbed

case, assuming about V' the same integral-smallness condition of Theorem I.1.

Case |ky| < k1 We consider the case V' = 0. In this framework our equation (I.1.5) reduces to
the one we considered in Theorem 1.1, precisely (1.4.2). Throughout the proof of Theorem 1.1,
taking into account the Helmholtz decomposition, we proved for this equation the two esti-
mates (1.4.11) and (1.4.13) respectively for the S and P component of the solution u of (1.4.2)

that we are going to rewrite in order to clarify our argument. One had

k;
IV ? + 2'[ 2l Vug]?
2(2d - 3) B V2 o
<;—d_2 el fsIVusll + — ﬁ||\:z:|fs|| |Vugll?, (14.20)
and

) 1 d—3 k| 1 2(2d—3) B
IV + =1 ) | o175l <5 2= el el 931

T V2
(A+2p)% Vd -

Let us consider the first inequality only, the details for the second one will be similar.

1
|||£U|fPH [Vup|?.

We want to estimate the right hand side of the inequality, to this end, let ¢, § > 0, making use

of the Young’s inequality one has

_ 1 g2 B 3 1 3 54 -~
Izl fs I Vug |l < 2—62|||~”C|fs||2+§||Vus||2 and |[[|z]fs||?[[Vug||? < 45§|||I|fs”2+zl|vus||2-

Putting this two in (1.4.20) and observing that the quantity Tﬂu SRd|x||VuS| is positive,
we get
112d-3 21243 3.1 W2
Vug ||’ < —= 2| fs||” + &= ———||Vug|” + — T
IVug]] 27— Melfsll”+ = S IVus]® 08 3 \/—Hl | fs]”
51 2 o
+ Vgl

43 d—2
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Thus it may be concluded that
) 12d 3 601 /2 Vs < 112df34r 3 1 \f izl 12
— —— U < | —-= x
Twd-2 4 aVd—2 ¥ pet d—2 ' 468 pid— °
The same calculations done for the P component give

, 1 2d-3 & 1 V2 o
l—e — — 5 [Vup]|
A+2u d—2 4 (N+2u)2Vd—2

1 12d—-3 3 1 V2 2
< - +— - ] fp|”
A+2pue? d—2 453()\+2u)2\/d—2

Now, since p, A + 2p = min{u, A + 2u} and choosing €, § small enough, one can write

IVug|l < Deslll|fs]l,

and
IVupll < Desll|=]fpll,
where 1
1 2d— + 3 1 V2 2
D min{ s, )\+2,u} e2 d— 453 min{u,)\+2u}% Vd—2
&6 = 1 _ 22 1 2d—3 &4 1 V2

£ min{u, A+2u} d—2 4 min{,u,)\—i-Q,u}% A d—2
At the end, using the trivial Helmholtz decomposition of f = f — Vi 4+ Vi) and the elliptic
regularity Lemma 1.5, one easily concludes

IVugll < clllz[f]l and  [[Vup| < cll|z|f],

where ¢ := (C' + 1)D.

Let us remark that ¢ > 0 does not depend on the frequency k and on f.

Now we can prove our result in the perturbed setting, namely V' # 0.

First of all we define g := Vu and h := f + ¢g. Thus, with this notation, u solves the following
equation
A*u + ku = h; (I.4.21)

again we have these estimates for the two components of the solution:

12(2d - 3) 1 42

IVug|* < - [z |hs|l[[Vug ]l + %ﬁlHﬂhsll IVug]|?,
and
1 2(2d-3) _ 1 V2 3 1
IVl < Sg — g Melhe IVl + o= ﬁ|||x|hp||2uwpn2.
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We only consider the first one. Clearly, since hg = fg + gs, it can be rewritten as
_12(2d—3)
P ﬁﬂlxlfs
12(2d — 3) 1
= lzlgsllVus | + — 3 Fll\l’lgsll Vg

Since in the free case we have already bounded the terms in which f appears, now let us only

Vg < el fs I Vusll + — 12 Vs

consider the terms involving g.

We introduce the trivial decomposition of g = g — V¢ + V¢, where, as usual, ¢ is the unique
solution of the elliptic problem A¢ = divg. Following the strategy in Theorem 1.1 about
the absence of eigenvalues and, in particular, recalling that formerly ¢ = Vu and that V

satisfies (I.1.3), one can show

193517 < 225 el 9usl + 7~ el o1
22D s v +fﬁ<o+1> Vs ?
AL 0 i+ 220 Hmaslvi
For the P component we have the following analogue estimate
i e L e L R
b + 5 f;)gjd@c |Vup
g I+ f;)g 22w vl

Now estimating the terms involving f as in the free case, summing these inequalities, and using

the Young’s inequality, we obtain

. A 4(2d—3)(0+1)_ Az 402
min{y, A +2u} d—2 min{, )\4_2“}% \Vd—2

[S]Y)

(C+1)

| 2d -3 4 1 1
—e’— -5 Vuz|® + || Vuz|?
min{u, A +2u} d =2 2 min{u, X+ 2u}2 \/m> (Vs |+ Vupll)
1 12d—3 3 1 1 , )
: - + +

Since V satisfies (I.1.3) and assuming ¢, § sufficiently small, the constant in the left hand side

of the previous inequality is positive, thus we can write
2 2 2 2
(IVusll” + [Vupl”) < D25l fsI” + ) fp 1),
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where, obviously, Di s 1s the ratio between the two constants which respectively appear on the

right and on the left hand side of the last but one inequality.

Using now the trivial Helmholtz decomposition of f = f — Vi + Vi) and the elliptic regularity

Lemma [.5, one easily has
2 2 2
IVugll” + [[Vup|” < l|=] £,

where
¢ :=2(C +1)°DZ;

does not depend on the frequency k and on f. Moreover, it is clear that the following hold

Vugll < elllelfll - and  [[Vupl| < efllz|f]]-

Now we can treat the less technical case.
Case |ko| > k.

First we consider the free setting. As the previous case, our equation (I.1.5) becomes the one
we have considered in Theorem 1.1, precisely (I1.4.2). Choosing v = ug in the first of (1.4.6) and

v = up in the second and taking the real part of the resulting identity one obtains respectively
2 2 _
k’lf |U5| —Mf |VUS| =§RJ uS'fS
R4 R4 R4

b [ furl = k2 | [Vurf =R [ @ g
R4 R4 R4

Taking the sum of the previous and making use of the L? and H!'—orthogonality of ug and up,

klf |u|® —,uf |Vu|* — (A+,u)f \Vup|® = %J - f.
R4 Rd Rd R4

Starting again from the weak formulation (1.4.6), choosing v = %us in the first and v = “Iz—ilu P

and
one has

in the second, taking the imaginary part and then summing the resulting identities, one obtains

ol | Jul* < [ Jullf.
R4 R4

Using the latter in the former (here we need the assumption |ko| > k;) and observing the

positivity of the term (X + ) 4| Vup|?, we have

MJ\VM2<2JIMUL
Rd Rd

From the Cauchy Schwarz and Hardy’s inequalities follows

4
d—2

ullVul® < ] FIHIVul]

28



Thus, it may be concluded that

1 4
Vul| < ———|||z|f]|-
[Vl s Sl ]
We now proceed to show the a-priori estimates in the perturbed context. Exploiting the same
notation we have used in the case |ko| < k;, again u solves the equation (1.4.21). As a con-
sequence of the estimates we have just proved for the free case, recalling that h = f + g, one
easily obtains

1 4 1 4 1 4
[Vul| < ;mmﬂh” < ;m|||$|f|| + ;E|||$|g||~

Writing now explicitly g as Vu, by assumption (I.1.3) we have

1 4 A 4
[Vul| < ﬁmmﬂf” + EEHVUH

or, more explicitly
A 4

1 4
[ p— - .
( WH) IVul < - =5 lsl |

The condition (I.1.4) about A guarantees the positivity of the parenthesis of the left hand side

and then the theorem is proved.

Finally, we are in position to prove the uniform resolvent estimate we are looking for.

1.4.2.2. Proof of Theorem 1.2

First of all, we consider the case |ka| < ki, as a consequence of (I.1.7), making use of the

Hardy’s inequality, it is not difficult to show that the following chain of inequalities holds
—1 -1 _ -1 2 - -
el ull < [l us |l + el upll < = (IVugll + [Vuz])

4c
[ £]-

<
d—2

Assuming |ks| > ky, using (I.1.8) and again the Hardy’s inequality, we have

2c H
d—2

-1
] ull <

[z f1]-

1.5.| Problem 2

This chapter is devoted to the proof of the Theorem 1.4 - Theorem I1.7.
Before moving on in the proof of our results, we would like to give a (not comprehensive)

overview concerning the issue of spectral bounds.
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As one can see, we will outline the main results obtained in this topic over the years but
just for the Schrodinger operators. Indeed, if the literature in the context of spectral bounds
for Schrodinger is more than abundant, the one for the perturbed Lamé operator is almost
absent. Nevertheless by virtue of the likeness of the two operators highlighted by Helmholtz

decomposition, also the only state of the art for Schrédinger is worthy to be recalled.

I.5.1. Historical Background

In this section we will treat separately the state of the art for self-adjoint situation and the less

developed non self-adjoint one, in that order.

We will focus our attention in considering some fundamental inequalities in this topic that
go under the “umbrella” name of Lieb-Thirring inequalities, providing their classical statement
and the successive generalizations.

The standard Lieb-Thirring inequalities, named after E.H. Lieb and W.E. Thirring, give
an upper bound on the sums of powers of the absolute value of the negative eigenvalues of a
Schrodinger operators in terms of integrals of the potential, that, in the original formulation,
is assumed to be real-valued. This sets a self-adjoint framework. More precisely, considering
H=—-A+V(z)on L*(R%),d > 1 and denoting with e; < e; < --- < 0 the negative eigenvalues
of H (if any), the Lieb-Thirring inequalities state that for suitable constants L. 4 the following
holds:

el < Ly fRd V_(2)7*% da, (15.1)

i>1

with V_(x) := max{—V (x), 0}, for any ~ satisfying

1
v>0 ifd=2,
v=0 ifd=>3.

The proof of the previous inequalities in the cases v > %, d=1and v > 0,d > 2 were
covered by E.H. Lieb and W.E. Thirring in [64] in connection with their proof of stability of
matter. The case v = %, d = 1 was established by T. Weidl in [89]. The further endpoint case
v =0, d = 3 was independently obtained by Rozenblyum [82, 83], Cwikel [20] and Lieb [63] by
different methods and is usually referred to as the Rozenblyum-Cwikel-Lieb inequality.

Some comments on the previous inequality follow.

Remark 1.6. The relevance of this kind of spectral bounds, at least at the birth, comes from

physics and, in particular, from quantum mechanics. A sizable role among the estimates (1.5.1)
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is played by the case v = 1. With this choice an upper bound for the sum of the absolute
value of negative eigenvalues, that is a lower bound on the sum of negative eigenvalues, namely
> i=1€j» 1s given. This was one of the essential ingredients in Lieb’s and Thirring’s proof of the
stability of matter: indeed since the energy of the ground state of a system of N interacting
fermions is ) =1 ¢j, from the previous estimate turns out that this quantity can be estimated
from below by the integral of the negative part of the potential to the power 1+ g, guaranteeing
the stability.

Remark 1.7. Let us notice that only the negative part of V, namely V_, plays a role in the Lieb-
Thirring inequalities. Of course, since —A is a non-negative operator, if V' is also non-negative
then —A + V > 0 and therefore no negative eigenvalues can occur. If V' change its sign, that
is if both the positive and negative part of V' = V, — V_ are non-trivial, clearly both parts
influence negative eigenvalues. On the other hand, one can observe that, since V' > —V_, in
particular —A +V > —A — V_ and by virtue of the mini/max principle an upper estimate
for the sum of a suitable power of the absolute values of the negative eigenvalues of —A — V_
provides automatically the same upper estimate for the negative eigenvalues of the complete
hamiltonian —A + V| indeed the effect of V, on the negative eigenvalues is only to increase

their size.

Remark 1.8. It is not difficult to see that if e is an eigenvalue of —A + V' (z) with eigenfunction
1, then @y (+) := (A -) is an eigenfunction of —A+ V) (z) where V;(-) = A2V () ) with eigenvalue
Ae. By a simple scaling this gives that p = v + g is the only possible exponent for which a
inequality of the following type

Sl < Lo [ V@ da
Rd

j=1

can hold.

Remark 1.9. Let us underline that there are “natural” constraints on the soundness of inequal-
ities of type (1.5.1). We emphasize a pathological behavior in dimension d = 1, 2. First of all,
regardless of the dimension, since we are assuming V' to vanish at infinity, o.s(—A + V(x)) =
Oess(—A) = [0,00). In some sense this means that the non-negative spectrum is easily deter-
mined. Therefore the question is deflected to a deeper analysis of the negative part. It is well
known (look at chapter 1.2) that from the criticality of —A or, in other words, due to the lack
of a Hardy-type inequality in low dimension, namely d = 1,2, for any attractive potentials V,
that is V' non-trivial and V' < 0 (beyond the request to vanish at infinity), negative bound

states always exists (actually the assumption V' to be attractive can be weakened requiring V'
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to be just “attractive in the mean”, that is {;, V(x) dz < 0). On the other hand if an inequality
of the form (I.5.1) with v = 0 holds, we would have that the left-hand side turns out to be the
counting function of negative eigenvalues and therefore is a positive integer for any such poten-
tial. On the contrary, the right-hand side can be made arbitrarily small, indeed is sufficient to

assume { ., V_ ()% dz < Ly » to obtain an evident contradiction.

Remark 1.10. Even if common knowledge, we want to show, at least in two very simple cases,
the important and deep relation between the possibility to obtain bounds for eigenvalues of the

Schrodinger operators and the validity of Sobolev inequality

2 2d
JRJVUF dr > Sd<JRd|u|q> : =7 d >3, (I.5.2)

in the self-adjoint context.

e We consider first the Rozenblyum-Cwikel-Lieb inequality, that is (I.5.1) with v = 0. This
can be explicitly written as
N (—A+V) < Lo J V (2)% da, (15.3)
R4
where N_(—A + V) is a notation for the number of negative eigenvalues (if any) of the

operator —A + V.

Even if this inequality was first discovered by Rozenblum, Cwikel and Lieb, afterwards
other proofs of (I.5.3) were given. It is worth mentioning the proof of Li and Yau [69],
indeed it relies only upon the Sobolev inequality and the positivity of the heat kernel.
Then Levin and Solomyak [62] generalized the strategy in the aforementioned work in
order to obtain, under suitable Markov condition, the equivalence between R-C-L and

the Sobolev inequality.

Now we use partial tools from [62] in order to make less theoretical the relation between
the two inequalities. More precisely we will see first that Sobolev inequality provides a
condition for the absence of negative eigenvalues of —A + V in d > 3. After that we
will show that the absence of eigenvalues follows, “sub conditionem”; from the R-C-L.
This means that, in essence, we would have performed an equivalence between Sobolev

inequality and a weaker form of R-C-L.

Proposition 1.2. Let d > 3, ¢ = 2% and assume V = —V_ such that ||V,Hg < Sq, then

2

f |Vu\2 dr > Sd(f |u]q> "« there are no negative eigenvalues for — A — V_.
R R

Proof. The proof proceeds with the following steps:
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1. We will prove that

2
\Vu|? do > Sd<J |u|q> ! = J V_|ul|? dz < J |Vu|?
Rd Rd R4 Rd

2. We notice that

f V_|u|2dx<f Vu|? <— —-A-V_>0.
Ré Rd

3. By virtue of the min/max principle

—A—-V_>0 <= there are no negative eigenvalues for — A — V_.

The only part which requires more clarifications is (1). We will explicitly prove this

equivalence in the Appendix D. O

d

We observe that if ||V_||3 < Ly}, then R-C-L inequality implies that N_(—A — V_) = 0
2 b

that is no negative eigenvalues can occur. In this sence we say that the absence of

eigenvalues is a weaker form of R-C-L.

Now we will see that if one is interested in a weaker result about the bound of a single
eigenvalue of —A + V', assuming V' to be real-valued (so that possible discrete eigenval-
ues are negative), such a bound will follow again as an easy application of the Sobolev

inequality.

Theorem 1.8. Let V' be real-valued, if d =1 and v = %

non-negative eigenvalue A of the Schrodinger operator —A + V' satisfies

orifd =2 and v > 0, then any

A7 < Lo | V) da,
R

with a constant independent of V.

Proof. To avoid technical computations, we will prove the result just for v = 1. Without
loss of generality we assume V' = —V_. Let us define H := —A — V_, by the variational

characterization of the eigenvalues one has

info(H) = inf (u, Hu).

l[ull,=1

It follows by integration by parts that

(u, Huy = J |Vu|> — J V_|u)?.
Rd Rd
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Defining p := |u\2, making use of Holder and of the inequality ab < % + % which holds

for all positive a, b and % + % =1, we get

1 1+7 d+2
| Vo< Vlglolen < g g VoI 0% 5ol (a5
The Sobolev inequality gives
2d
Vul’ = S : = —.
| val = sulolly, 4= 57
Using again Hélder and the assumption |||, := ||u]s = 1 we have
dar2 2 2
ol = [ oto < lollloll = ol
d R4
From this we conclude that
d+2
[ jvul® = salol 2. 15.5)
R4 2

Using (I.5.4) and (1.5.5) together we obtain the following lower bound

) el -

a+2

(u, Huy > (Sd —§d

1 2 ||1+é

Choosing suitably 9, one has

1+

(u, Huy > _LO’dJ Vo2 () dx.
Rd

Now let A\ any negative eigenvalue, we get

1+4¢

~ 2 (x) dx,

A=info(H) = —Lo,df V
Rd

which is the thesis. O

Let us observe that until now, in the whole dissertation, the potential V' was assumed to be
real-valued, leading to a self-adjoint context. Now we are interested in consider the complex-
valued frame. As already mentioned in the introduction, the generalization of the spectral
results from the self-adjoint to the non self-adjoint picture is very far to be easy. This can
be already justified by the previous remark. As it shown, spectral bounds in the “self-adjoint
paradise” make strongly use of variational characterizations of eigenvalues which do not hold in
the non self-adjoint context; moreover another fundamental tool is Sobolev inequality which,
as showed in Frank [10], does not suffice to prove similar bound than Theorem [.8 which may

cover complex-valued potentials, indeed more subtle estimates are needed.

We conclude this historical section with a short overview of what is known for the location

of discrete eigenvalues for non self-adjoint Schrodinger operators. In order to do that we need
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to come back to the work by Abramov, Aslanyan and Davies [1], in this paper was proved that

in dimension d = 1 every eigenvalues \ € C\[0, o) of % + V satisfies
11
A2 < —J \V(z)|de. (LI.5.7)
2 e

The numerous paper after [I| were primarily motivated by a question posed by E. B. Davies
about the possibility to extend the previous estimate to dimension d > 2. In [41] Frank, Laptev,
Lieb and Seiringer extended the previous result to higher dimensions and to LP norm of the
potential with p # 1, finding the non self-adjoint counterpart of the Lieb-Thirring inequality
for the eigenvalue power sums. However in this work they were able to prove the bound just
for eigenvalues lying sufficiently far from the positive real axis. In [61] Laptev and Safronov
overcame this constraint, obtaining a result which covers eigenvalues possibly close to the essen-

tial spectrum. In the same work, Laptev and Safronov conjectured the natural generalization
of (I.5.7), this reads as

I\ < D%dJ IV (2)]""% da (L5.8)
Rd

for d > 2 and 0 < v < %. This remained a conjecture since 2011 when Frank [10] proved
that (I.5.8) holds for d > 2 and 0 < v < 1. After, Frank and Simon [42] proved the conjecture
d=>

for radial potentials for 2 and % << % and “disprove” it in the general case.

Now we are in position to prove our results.

1.5.2. Proofs

Proof of Theorem 1.4 As already mentioned in the introduction, several works which treat
spectral analysis use as a starting point the Birman-Schwinger principle. In our case
this state that if z € C\[0,00) is an eigenvalue of —A* + V' then —1 is an eigenvalue of
K= Vi(=A" - z)_1|V|% and vice-versa, where we defined Vi = |V|% sgn(V). It is clear
that if —1 is an eigenvalue of K, then the norm of K, is at least 1. Therefore in order to

obtain the thesis of our result, it is sufficient to prove that the following holds

Vy(-a =2y VT < Dyl [ Ve (15.9)
R4

As we have already seen in Chapter 1.3, which is devoted to highlight some useful conse-
quence of the Helmholtz decomposition, the resolvent of Lamé operator has a favorable
form in terms of resolvents of the Laplace operator, precisely (—A* — z)~! can be written
as in (1.3.2) (see Lemma 1.2 for further details).

In view of this remark now we are in position to compute explicitly the operator norm of
K. = Vi(-A* - z)_l\V\%, in order to do that, for any f,g € [L?(R%)]¢, we estimate the
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quantity |(f, K,g)|. We have

KKl < L[V (= A= 2) (VIR0 |+ 135 Ve (= A= i) (v Ean)]

A+ 2
To simplify the notations from now on we will write G = \V\%g and Gg = (]V]%g)s and
Gp = (|V|% g)p the respective components of the Helmholtz decomposition. Therefore

the previous inequality can be re-written as

[(f K9] < %kf, Vi(—A- §)71G5>‘ (<f, — s5.) " 'Gr) ’ (1.5.10)

>\+2

As a starting estimate we consider the first term, we recall that we are dealing with
vector-valued function, this will involve the necessity to obtain estimates for components.
Using Holder inequality, with p and p’ such that % + 1% = 1 and its version for discrete

measures, we have
V(A -2 G < Y | simii-a -6y
7j=1
d .
Z|fJ|V| Il (~A - 2)7'G3]l,
d L 1 d
SONHAE (Z -7 G)’
j=1

]:

— IV, (ﬁ] -G

1
7

==

Proceeding as in [410] we will strongly use the “uniform Sobolev inequality” by Kenig, Ruiz

and Sogge [57], which adfirms that

d+2 , d

(=2 = 2)7Hl,mpy < Cpalal™ 27, (L.5.11)

ford+2<p\ d+3 )ifd > >3 and for 1 < p < gifd=2.

From (1.5.11) it follows

IR Cha _di2
(=2 = 2)7'Gill, < — 2~ G,
poor
1
This, along with the superadditivity of the convex function |z|”, namely (Z? L ah)? <

Z? 1 aj, which holds for all non-negative a;, and p > 1 and the Holder inequality for
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sums, gives

1
7/

d AN C dt2 | d
(Zl-a—-pn7ady)" < 2l *(Z L)
j=1

o j=1
Chp.a _d+2  d d
< d42~2 d | p Z
1 =1
Chp.a _di2
< W | v (ZHG )
H P
Chp.a _de2y
= W Z| thav ||G5||
L P
At the end we get
z\—1 C —at2
[ Vi(=A=2)"Gs)l < W 77 T | £V, IGsll,,
ILL P

performing the same computation for the second term in (1.5.10) we have

Cp.a _d+2
T2 1; ) T | V2 G,
,LL 2

Plugging the previous two together in (1.5.10) one obtains

|<f7 V%(_A - ,\JfQu)ilGP>| <

F Vi (=A% = 2)7'6)| < Cpanal2l™ 7 IV, (IGs], + 1GI,),

where Cp gn = Cpa dp max {;ﬁ P ()\+2,u)g_%}. In order to conclude we need to obtain
a bound for the sum of the L” norm of the S and P component of G in terms of the LP
norm of the whole function G. Following a strategy similar to the one used in [19] and

set out in the previous chapter 1.4, we write this trivial decomposition for G :
G=G-Vy+Vy
and we assume that v is a solution of the elliptic problem
Ay =divG. (1.5.12)

Since 1 is a solution of (I.5.12) then it is clear that div(G — Vi) = 0. By uniqueness
of the Helmholtz decomposition it follows that Gg = G — Vi and Gp = V. From this

explicit form for the components we obtain
1Gsll, + Gpll, < [IGl, + 2[[ Ve,

It remains to obtain an estimate for [[V)|,, more precisely we want to obtain from this

norm another contribution of |G|,

37



Let us define the operator T' such that T'(G) := V1, where ¢ is the unique solution
of (I1.5.12), in [19] and also recalled above, following a previous insight in [4], was proved
that this operator T is noting but a composition of the Riesz transforms, more precisely,
forall j =1,2,...,d
d
0t = ca Y| RiRyGh.

k=1
This addressed our interest toward finding boundedness result for the Riesz transform.
Will be a fundamental tool for our aim the following result by Iwaniec and Martin [51]
and Baniuelos and Wang [2|. They assert that for all j =1,2,...,d

|R;ll,,, = cot <2;<) =:¢p, l<p<ow, p*=max{p,p} (1.5.13)

Using (1.5.13) and the Holder inequality for discrete measures, we obtain
d

d 1 d 7 o
Ivell, == (Ylowlr)” < cd<2 ( ||RijGk||p)p) <cacds Y|IGill,
j=1 k=1

j=1 k=1
2 1.5 2
< cuc,drd?” |G|, = cac, d[|G],
Summing up, recalling that at the very beginning G = |V|% g, we have

* — 1 ~ _d+2 . d 1 1
K V(=A% =) TVl < Capaulzl™ = T 1AV V29,

Let’s see || f ]V]% [,- Using again the discrete Holder inequality we get

d 1 d 1 d
1 1 P 4 P 1
1FVEEL = (SIAVIER) < (DIGIBIVIE. )" < IVIE Yisl,
j=1 j=1 j=1

1 1
< dz|[V|% [If]]-

2—p

Performing the same computations for || |V|% gll, one has

- i X _d+2 ., d
V(A% = 27 VRG] < a2l E 217 oIV o

Now for 0 < v < 3 (as for v = 0 in d > 3) we can choose p = ;Eﬁ;ﬁ;, indeed this

restriction on ~ guarantees that p, chosen as above, satisfies the hypotheses requested in

the estimate of Kenig, Ruiz and Sogge. Taking the supremum over all f and g € [L?(R%)]?
with norm less than or equal to one we obtain (1.5.9). This concludes the the proof of

Theorem 1.4.

Proof of Theorem 1.5 Now we are in position to prove Theorem [.5. We underline that this

is a stronger result than Theorem I.4. Indeed as already pointed out in [40] with respect
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to eigenvalues’ bounds for Schrédinger operators, it turns out that the control of the
size of the potential in terms of its Morrey-Campanato norm is a sufficient condition in
order to obtain a similar bound for the eigenvalues than the one obtained in Theorem I.4.
Before turning to the core part of the proof, we recall the standard definition of Morrey-

Campanato’s norm is given:

Vlees = s (4 | W) a)”
z,r Br(z

This assumption about the perturbation V' allows us to treat potentials with local stronger
singularities then the ones covered by the previous result Theorem [.4, in which the

potentials were required to belong to a suitable L” space.

As we will see in a moment we need to replace the uniform Sobolev estimate by Kenig,
Ruiz and Sogge, with L?— weighted estimates. More precisely we will use the following

result, a proof of which can be found in [40].

Lemma 1.6. Let4<a<22fd—2,m<0z\ if d > 3andlet%<p<g.Then
for all 0 < w e L¥P(RY),

— —1+<
(A —2) 1||L2(url de)—L2(wdz) S Ca,apllw]l o] 2] e (15.14)

As in the previous result, the explicit expression (I1.3.2) of the resolvent for the Lamé
operators in terms of the resolvents of the Laplacian will be of great relevance . Let’s
start with (I.5.10) and again with the first term in there.

Proceeding in analogy with the work by Frank, we pick a strictly positive function ¢ €

L? and we define a strictly positive approximation of our potential, that is V.(z) :=
sup,epe{|V (z)], £ (x)}.

Using Cauchy-Schwartz and Holder inequalities we have

[f V(A= 2)"'Gs)l < ZIIfJIVI V(- )Gl 2, a

N

1 d )
< (DI (S8 276l En)
j=1 j=1

Making use of (I.5.14) one obtains

2\ — ; Cda, —1
1A =57 Gz an < 5 T Vel IV Gl
This gives

[(f V(A= 2)7'Gs)l < da’pl T Vel LAV V2 %G,
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performing the same computation for the second term in (I.5.10) we have

Oda — 2
L 2| R Vil e | STV Vel IVE 2 Gl

[foVi(=A = 55,) 7 Gp)l < g ou) 8

Plugging the previous two together in (I1.5.10) one obtains

[FVL(=A"=2) " O] < Caapanlzl ™ 2 IVell o ISV IVIVE DL (122 Gl + IV 2 Glly),

where Cyopry = Ciap max {u 2 (AN +2u)” } W 2Cdap

Again we write the trivial decomposition for G :
G=G-Vy+Vy

and we assume that v is a solution of the elliptic problem (I1.5.12), namely Ay = divG.

Since v is a solution of the mentioned equation, then div(G — V1) = 0 and by uniqueness
of the Helmholtz decomposition it follows that Gg = G — Vi and Gp = V. From this

explicit form for the components we obtain
IV 2Gslly + IV 2 Gl < V2 2Glly + 2VE 2V,

In order to conclude we need to obtain an estimate for the last term of the previous
inequality. For this aim the following lemma, which is a generalization of Lemma 1.5, will

be useful.

Lemma 1.7. Let G € [C®(R)]|? be a smooth-compactly supported vector field in R, and

let : RY — C be a smooth solution to
Ay =divG.
Then for any w belonging to the A,—class, 1 < p < oo the following estimate holds

||vw||LP(wdz CHG”LP wdx)’

for some constant ¢ > 0 independent on G.

The proof of this result basically follows from the weighted LP—boundednees of Calderén-
Zygmund operator when the weights belong to the A,—class.

Now if V7! is assumed to belong to the A;—class then
IV 2Vl < el Vi 2 Gl
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Summing up, recalling that at the very beginning G = ]V]%g, we have

AR WVl o LV VI Vel g/ TV Ve
2Vl o 512 N9l

Therefore the theorem is proved once ¢ goes to zero, taking the supremum over all f, g €

2d
2y+d”

(V=A% = 2) 7' V] < Crapa

< Cd,a,p«\,u

[L?(R%)]? with norm less than or equal to one and by choosing o =

Proof of Theorem 1.6 As Frank himself underlined for his Schrodinger counterpart’s result,
the previous theorem is not fully satisfactory because, in essence, is required to the po-

tential to decay as |x|™” with p > this means that slowly decaying potentials, that is

d+1’
potentials which decay just as |z|™” with p > 1, are not included. For this reason, in the
same paper, Frank proved a similar result which allows to consider this decay rate, and

we do the same with providing Theorem I.6.

Let us start, as in the previous results, with the inequality (1.5.10) and in particular with

the first term in it.

From now on we will use the following notation (z) := (1 + |z|*)2.
d .
(KL Vi(=A=2)71Gs)l < Z|<fg, Vida)y* (@)™ (=A = £)71Gy))

< MA@ @y (A — 2)7 Gl

.

d
|
=1
d ) . A 1
< (VIR 15) % ( le<x> —A = 2)7IGE)R
j=1 j=1

Now we need the following resolvent estimate

_ _1 1
(=8 = 27l oedn 220 < Loooazg (L5.15)
Using (1.5.15) we have
-« z\— ] Cda -3 a
[<o) ™ (=A = £) 7G4l < - 2|72 () Gl

Summing up we obtained

Cd «

[(fVi(=A=2)"1Gs)l < 2V )Gl

Performing the same computation for the second term in (I1.5.10) we have

Crn
WM | FIVIE@ |, [ Gl

|<fu V%<_A - )\sz‘u)_lGP>| <
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Putting the two estimates together in (1.5.10) one has

(Vi (=A = 27| < Camnnld FIFIVIHE (@) Gsll, + @) Grly),
where Cyo = Caa max{/f%, A+ 2u)’%} = /,L’%Cd,a.
Again we write the trivial decomposition for G :
G=G-VyY+ Vi,

where 9 is a solution of the elliptic problem (I1.5.12). As in the previous cases it turns out
that Gg and G p, the components of the Helmholtz decomposition, have to be respectively
equal to G — Vi and V). This gives

IKz)*Gslly + [IKz)*Gplly < [K2)?Glly + 2[[<z)* Vb |,
This means that again we need an estimate involving the Calderén-Zygmund operator
V.

Since (x)® belongs to the As—class for all s € R, in particular this is true for s = 2« with

o> %, this guarantees from Lemma [.7 that
[<2)* Vb, < ell<e)?Gll,.
Using the previous estimate and recalling that at first G = |V|% g, we have
ik ~ _1 1 atend
[ V(=2 = 2) V2 )] < Caannlz I FIVIE@ LI V2 gll,

< Caapalz] SUHg(l + =) V@) N9l
e

Taking the supremum over all f, g € [L?(R¢)]¢ with norm less then or equal to one we get

the desired result.

Proof of Theorem 1.7 As a byproduct, in his work Frank performed the following resolvent

estimate for the Laplace operator:

—fa -1 —Oa -9 _e 1
IK2)™™ (A = 2)" @) |l g < Cagalzl 72, a> o, (1.5.16)
where % = % + g and pg = Q(ddj;).

Starting again from (1.5.10), or better from the term involving the S-component, we have

[(f,Vi(=A = 2)7'G)| < ZI<fJ>V1<9:>9“<x> (—A - 2)7GY)l
d
< DAV 1@ (=4 = 2) Gl

< (I (S - 27’
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Making use of (I.5.16), similarly as our first result, we obtain

d % -
(Do -2 GhllL) ¥ < e oyt g(Z||<a:>9aa 7)’
i=1 2

Iud+1 ]1

1
7

/

N

el T g2||<ac>9°fa

N

| (Zuwaa )

,u d+1

_ MM s qu ||<x>0aG5||

Iu_ d+1

This gives

KFVi(-A - 2)7'Gs)| <

/JJd+1 2

- Caga
KFVA(=D = i) Gl € —225

(A + 2p) "

1109 1, 6a o
A 2|7 F | F V2 ) ) Gl

Putting the two previous estimate together in (I.5.10) one has

_1-6_9 1 o o o
[ V(= = 2)7 O] < Cagapulzl”F 2| FIV@ (|, (1<) Csll, + [K2)**Gell,)

N[

where Cygar, = quadq max{ludﬂ ()\_{_QM):J ot _1} = Cqgad? Ud+1+9 -1

Again we write the trivial decomposition for G :
G=G—-Vy+Vy,

where 1) is a solution of the elliptic problem (I1.5.12). Arguing as above, the next inequality

easily follows:
I<z)**Gsll, + [K2)**Gpll, < [K2)**Gll, + 2[<z)** V],
Since (x)® belongs to the A,—class, using again Lemma 1.7 we get
[z vy, < el G,
Using this estimate and the fact that at the very beginning G := |V|% g, we obtain

" _ 1 ~ _1-0_9 1 o ot
[ V(=2 = 2) V2 )l < Capannlzl 2 F V2@ K2 V]2 g,
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Let’s sce || f]V]2¢z)%]..
1 d 1 L d q L 1 d
IAVE@=I, = ( DIAVIE@=1E) " < (DIGIIVIED21E )T < IVE 12 Yl
j=1 j=1 j=1

Performing the same computations for H<x>9a|V]%gH , one gets

~
~

KF Vi (=A% = 2) 7V 2g)] < Capapalzl 550 2|HV\<fﬂ>29“H ALl Ngll-

Taking the supremum over all f and g € [L?(R%)]? with norm less than or equal to one

we obtain
0
—120_¢ 0
IVy (A" = ) WV RIE 12 < Capanal2lTH 85 Vi) 0
Calling
|14 N 0 q

T ldr1 T 2| 2—¢
this clearly gives Q‘ZTq = 275 d(j +1 -5 Since we also have % = 1p—_d€ + g where pg = 2?:31),
this provides a constraint in the choice of 0, precisely 6 = 1 — 4;121_1. Using this explicit

expression for # and the fact that, by virtue of Birman-Schwinger principle, —1 is an

1
eigenvalue of our operator Vi (—A* — 2)~YV|2, one has

~
~

d—1
|Z|’Y < Cd,p,oa,/\,,ufd|v|2’y+ 3 (1 + |$|2)a(2’Y—1).
R

Renaming a(2y — 1) = a we obtain the aforementioned result.

44



A.

Self-adjointness

First of all we want to give a rigorous meaning to the free Lamé operator as a self-adjoint
operator, i.e. we want to build the self-adjoint extension of the operator —A*; in order to
do that we proceed using a quadratic form approach. After that we will treat the perturbed
setting, distinguishing the case of real-valued perturbation from complex-valued one.

Let us introduce the quadratic form associated with the operator —A*,

Qulul = | wlulde

where
dau»Q 1L lou;  oul?
— 5 M j c® Rd d.
wld =N F2 +5 X (TG welr®)

Remark 1.11. Since a complex setting will be needed once the perturbation V' will come into
play, from now on we assume u to be complex-valued; although this assumption is not yet

necessary in the free framework, namely V' = 0.

A straightforward computation, made explicit in Appendix B shows that under the physical

assumption (I.1.2) the quadratic form go[u], and thus —A*, is positive.
Remark 1.12. The quadratic form clearly remains positive under the stronger condition A, ¢ > 0.

We recall that, since our form () is associated with a densely defined positive and symmetric
operator, this form is closable.

Let Q, be the closure of our form. Even though completely standard, for reason of com-
pleteness, we will show the closedness of our form @, with form domain the Sobolev space of

H!- vector fields. In order to do that we need to prove that [H!(R?)]? equipped with the norm

||u||60 = (@o[u] + ”UH?B(Rd)]d)i

is complete. For this purpose we just have to prove that [|u||5 is equivalent to [lul[jz gaya =

1
(HUH?LQ(Rd)]d + ||Vu||fL2(Rd)]d) 2. We need the following trivial chain of inequalities, for every d x d

matrix &
2
AT OF < 56+ €N < el (A1)
Calling ¢ the Jacobian matrix, ff = 27“; we can rewrite @, in terms of ¢ in this way:

Qlud =20 [ 3+ +a [ o

Assuming A and p to satisfy (I.1.2) and using (A.1), we get
— 2
Qolul <20 [ |36+ € +2urrd) [ IO < pead) |6 = (A [Tl
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Summing up we proved that
lullg, < (4 + AVl agays + ullfpegae < max{dp + Ad, 1 ullf goya- (A.2)

As a starting point for proving the opposite inequality, we show that there exists ¢ > 0 such
that

Ve[ Jserenf=e 3 [ p A3
7,k=1

Since the Lamé parameters have to satisfy (I.1.2), there exists ¢ > 0 such that 2y > ¢ and

24 + Ad = ¢, using this fact we obtain
. 1 N > (2u— 1 NP = LTr(€)*| = 0
ul —c| [3E+EN = @u—c | |3+ =T @] =0,
Rd Rd

and this clearly gives the claim. In order to conclude we make use of the Korn’s inequality that

reads
2
6u 0
(-~ ZJWA+ZJ%$-£)) (A.4)
7,k=1
for some constant ¢ > 0.
Exploiting (A.3) and (A.4) we easily obtain
a N 2 in{c,1} 1. 12
i, e 3 [ 2 o 3 [l s ey A9
jk=1 j=1

Observe that from (A.2) and (A.5) we have the anticipated equivalence, that is @, is closed.
Therefore, as @, is a densely defined lower semi-bounded (actually positive) closed form
on an Hilbert space, then there is a canonical way to build from it a distinguished self-adjoint
extension, called Friedrichs extension, of the symmetric operator —A*, that is the self-adjoint
operator we are looking for and that, with abuse of notation, we again write as —A*.
In order to handle the perturbed operator, we want to use the operator written after the

use of the Helmholtz decomposizion:
—A*u = —pAug — (A + 2p)up

The quadratic form associated with the operator —A*, explicitly written in the previous

form, is
Qulul = | wlulde
with
go[u] = u[Vus|* + (A +20)|Vup[*  and  2(Qo) = [H' (R,
where |Vo|?, when v = (vy, v, ..., v4) is a vector field, denotes Z?:1|ij|2.
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We observe that here, with an abuse of notation, we have used the same symbol @)y for
the quadratic form associated with —A*, both when its action is written explicitly using the

Helmholtz decomposition and when the operator is defined in its classical way.

Now we are in position to consider the perturbed operator
A" 4V,

where V: R? — M,4(C) is the perturbation term.
Clearly, in the Helmholtz decomposition, this operator acts on a smooth vector fields u in

this way
(A" + V)u = —pAug — (A + 2u)Aup + Vu.

The corresponding perturbed quadratic form associated with this operator is

Qpen[u] = Qolu] + Qv[u] = Qolu] + j av[u] dr,

Rd

where

glul =Vu-u  and  2(Qy) = {u e [L2(RY)] : denuﬁ < oo}.

Let us suppose now to assume the following smallness condition about V' :
Ja < min{p, A +2u},  Yue [HYR], f Vul* < af |Vul®. (A.6)
R4 R4

It’s not difficult to see that, as a consequence of the constrictions on a, Qv is relatively bounded
with respect to (o with bound less than one.

Let us suppose, for a moment, that our potential V' is real-valued. As a consequence, the
sesquilinear form, associated with the quadratic form )y, is symmetric. By virtue of these
remarks, we are able to build from Qe an associated self-adjoint operator on [L?(R%)]¢ ex-
ploiting the well known forms counterpart of the Kato-Rellich perturbation result for operators,
namely the KLMN theorem (see for example [30], Thm X.17, or [85], Thm 10.21).

If one is dealing with complex-valued potentials, as our setting, instead of real-valued ones,
the scenario turns out to be quite different. In fact, assuming now that V' is a complex-valued
potential, the sesquilinear form @)y is no more symmetric and, as a consequence, we clearly
cannot expect to be able to build from Qper a self-adjoint extension of —A* 4+ V. Nevertheless,
even though we are dealing with non symmetric forms, we can obtain useful information about
the operator —A*+V by exploiting the theory about sectorial forms (resp. operators). Precisely
we can use the representation theorem (see [52], Thm. VI.2.1) to build an m-sectorial operator

from a densely defined, sectorial and closed form.
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B.

Ellipticity properties

The aim of this section is to point out how the notion of ellipticity has been generalized for
systems, in particular for systems of second order differential operators. Let’s consider the

system of second order constant coefficients operator L acting on u: R™ — C™ and defined as

n

Lu:=— ) i A“P0,05u; (B.1)

a=1p8=1

more precisely the j-th component of Lu is
[Luly e 2 DD AN 0t
a=18=1k=1

where A = (Aj ,f )1<a,8<n is the coefficient tensor associated with L. Via Fourier transformation
1<j,k<m
we associate to L its principal symbol p(§) that is an m x m matrix of this form

= > AL
a=1 =1

By virtue of the previous definition, the classical notion of ellipticity for operators is naturally
generalized to systems as the condition of invertibility of the symbol p(&).
Now we introduce a stronger notion of ellipticity. An operator as in (B.1) is strongly elliptic

if satisfies the so called Legendre-Hadamard condition, that is, if there exists ¢ > 0 such that

(DS ALesmm) > el

a,8=1j,k=1

. VEeR", neC™. (B.2)

To conclude our survey about elliptic properties for systems of constant coefficients second
order operators, we state the notion of very strong ellipticity: an operator as in (B.1) is very
strongly elliptic if satisfies the Legendre condition, that is, if there exists ¢ > 0 such that
§R< Z Z A 7'57']> > | T)2mim VreCrm.
=1j,k=1

Remark 1.13. However for many applications the Legendre condition is too strong. This comes
from the fact that the tensor A usually, for example in elasticity theory and in compressible
fluids, has symmetries like

A% = AlY = A%k = AT (B.3)
These symmetries are called hyperelastic and mean that A only acts on the symmetric part
of a matrix and yields again a symmetric matrix. For this situation the appropriate condition

reads
9?( Z Z Aj aﬁoj) > |0 Zmim Vo e Sym(C™*™), (B.4)

=1j,k=1

for some ¢ > 0, where Sym((mem) is the space of symmetric matrices.
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Now we are in position to consider our Lamé system —A*. We want to write —A* in the
form of a general system of d second order constant coefficients operator, precisely we want to
rewrite —A* as in (B.1). Let’s underline that two different coefficient tensors A may have the

same associated operator L, indeed, it’s easy to see that both the tensors
A% = (N + 1)6ja0ks + 110ap0in

and
A% = 1(6apdji + Gardss) + Aasdgn
give the Lamé operator of elasticity (here we used the J-Kronecker formalism).
The rest of the section will be used to highlight under which conditions about Lamé param-
eters A and p, our operator is elliptic (in sense of the three definitions stated above).
First of all we want to point out that the characteristic matrix (or principal symbol) of
—A* is invertible. This guarantees the ellipticity of the operator in the most classical sense. A

straightforward computation shows that the principal symbol of —A*, is a matrix of this form:

p&) = plePT+ A+ pE®E, YEeRY

where £ ® € is the dyadic product of £ and § that is defined as (v ® w);; = v;wy for all
v = (v1,V,...,v4) and w = (wy, ws,...,wy), and I denotes the d x d identity matrix. For our

convenience we rewrite p(¢£) in this way:

pl6) = el (1+ 211 )

now the matrix /(&) := é—| ® % is idempotent, i.e [2(£) = I(£), and therefore p(€) is invertible

and it is quite easy to find its inverse, that is

P _Atw
PO = o (1= 3al©))

Remark 1.14. Let’s underline that everything makes sense if p, A + 21 # 0, however our condi-

tion (I.1.2) guarantees that the previous assumption is fulfilled.

Now let’s see that assuming > 0 and A+ 2p > 0, the operator —A* satisfies the Legendre-
Hadamard condition(B.2). Using one of the two possible definitions of the tensor associated

with the Lamé operator, we easily have

d d d d
SN Ak = Y (A ) Eanalais + Y. n&2IniP = A+ W)€ nl® + plelPlnl.
a,B=1j k=1 a,B=1 a,j=1

At this point, we just need to prove that there exists a constant ¢ > 0 such that

A+ W€ nl* + plefn® = clefn)*.
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It’s not difficult to see ( [70] Lemma 3.1) that the previous is equivalent to
min{u, A + 2u} > 0,

which proves the claim.

Remark 1.15. We observe that the Legendre-Hadamard condition can be reformulated in terms
of the characteristic matrix saying that our operator is strongly elliptic if the symbol p(§) is a

positive defined matrix, that is, if there exists ¢ > 0 such that

(P(E)n,m) = plélPInf® + A+ @& - nl* = ¢l

Now we analyze the very strong ellipticity. Considering the second form of the tensor A,
one can observe that the hyperelasticity condition (B.3) holds. This means that we just need
to prove that —A* satisfies (B.4).

Considering the second form of the tensor A, assuming > 0 and 2u + dA > 0, by the same
argument exploited in the previous section for proving the closedness of the quadratic form @,

it is easy to see the validity of the condition (B.4), indeed for all o € Sym(C%*?), we have

d
Z Z A, aﬁaj =2u Z o7 |* + )\|Z o2 = 2ulo|® + A Tr(0)]® = c|o.
a=1

a,f=1jk=1 a,j=1
Remark 1.16. Note that if one assume A to satisfy (B.4), that is if —A* is very strongly elliptic,
immediately follows the positivity of the quadratic form () associated with the operator. Let’s
consider our quadratic form @)y, we want to write )y in terms of the simmetric matrix o =

(O’?)lgj’kgd = (gz; + a“’ﬁ) A straightforward computation gives

d
Ledus 5% L % M _ J J
J ZZ((}J:J al’] ZJ | axk =2p ’U| + A |Tr (o),

since 0 € Sym(C%?) and —A* satisfies (B.4), we conclude that Qglu] > cSRd|cr|2 which, in
particular, gives the positivity. Summing up, if —A* is very strongly elliptic, that is if > 0
and 2u + dX > 0, our quadratic form is positive.

Remark 1.17. Let’s underline that if one assume for the Lamé operator just to be strongly
elliptic, the quadratic form associated with the operator is still positive under weaker conditions

about the Lamé parameters. Indeed by Plancherel theorem we can see that

ou; ou, 6u
= )‘”Z = ||L2 Z “ g kHLQ = )\||Z€Juj||L2 +3 Z €kt + ngk:HL?

jkl

—Af |Zs]uj| +u2f sl [ Je-al = e [ Jeeal e [ il

J,k=1
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Now, if ;> 0 and A + 2u > 0, the Lamé operator satisfies (B.2), therefore there exists ¢ > 0
such that

Ot [ Jeealn | Jeltal = c | jePlar,
Rd Rd Ra

and clearly this provides the positivity of the quadratic form.

C.| Spectrum of closed linear operator

We want to recall, although totally classical, the definition of the spectrum of a closed linear

operator H on a Hilbert space H and of its usual partitions.

First of all we give the notion of resolvent of H : a complex number z belongs to the
resolvent set p(H) of H if the operator H — zI has a bounded everywhere on H defined inverse
(H — 2I)71, called the resolvent of H.

Let us observe that since H is assumed to be close, then the requirement that the in-
verse (H — zI)~! is bounded can be omitted (this readily follows from closed graph Theorem).

Therefore we can give the following definition for the resolvent of a closed linear operator H :
p(H):={2€C| H—z[: 2(H)—H is bijective}.
Here, as usual H is a notation for the domain of the closed operator H. Its complement
o(H):= C\p(H)

is called the spectrum of H and denoted by o(H). In other words the spectrum of a closed
operator H in a complex Hilbert space H is determined by the set of points z € C for which
H —zI: 9(H) — H is not bijective.

It is customary to have the following partition of the spectrum by means of three disjoint
subsets of o(H) which saturate the spectrum itself: they are respectively point spectrum that

is the set of all eigenvalues of H

op(H):={2e€C| H—=zI isnot injective},
the continuous spectrum

oc(H) :={z€o(H)\op(H)| R(H —zI) = H},
and the residual spectrum

on(H) = {z € o(H)\oy(H)| R(H —21) # H}.
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The following relation holds true
o(H) =0,(H)vo.(H)uo.(H).

We notice that for self-adjoint operators H, o(H) < R and o,.(H) = (.

We add a last remark: for a self-adjoint operators a different disjoint partition can be given:
0(H) = 0qgisc(H) U 0ess(H).

odgisc(H) is the so called discrete spectrum and it is the set of isolated eigenvalues of H which
have finite multiplicity. Its complement oes(H), called essential spectrum consists of either

accumulation points of o(H) or isolated eigenvalues of H which have infinite multiplicity.

D.| An equivalent formulation for Sobolev inequal-
1ty
In this appendix we will prove the following equivalence:

Lemma 1.8. Let d > 3 and let V be such that |V« < Sy, then the Sobolev inequality

J Vol dr> sy(jul?)’. q= (D.1)
Rd -

18 equivalent to

J x7—|u|2dx<J IVl da. (D.2)
R4 R4

Proof. (D.1) = (D.2) By Hélder inequality and our hypotheses we easily obtain

J Viufdz < |[7]4 J|u|qu) dz < sd J |u|qda: f|vu| dz.

(D.2)= (D.1) For any V € L2(R%), by virtue of our hypothesis we have

Vlla 1
J Viu|* dz| = 2 V|u|2 dr < —||V||df \Vul|® dz,
R4 S'd Sd 2 Jrd

where we defined V := =34V in order to use (D.2).

HVH
The last inequality shows that for any uw € H'(R?) the integral {.,V|u|*dz is a linear
functional on L%(R?), with norm less then or equal to Sid SRd|Vu\2 dx. Then, using the Riesz

representation theorem, we conclude that |u|” € L2 (R%), with ¢ as in the statement and that

(] Julede) =y = Il g0 < 5 [ [Vl

where T,,(V) := {0 Vu|* do.
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Part 11

Unique Continuation for ZK Equation

We we will turn to the second and deeper part of this thesis, namely the study of unique
continuation’s properties connected with the Zakharov-Kuznetsov (ZK) equation arises from

plasma physics. The discussion in this part is the fruit of a collaboration with Felipe Linares.

I1.1.| Introduction

In the present work, we shall provide a result in matter of unique continuation for the so called

Zakharov-Kuznetsov equation
Oru + 0w + 0y 0iu + udyu = 0, (z,y) e R* te[0,1]. (I1.1.1)

Actually our designs concern the analysis of unique continuation properties attached to a sym-

metric version of the previous, more precisely
O+ (02 + )u+475u(0, +0,)u=0,  (z,y)eR% te[0,1]. (IL.1.2)

Here will be treated the most recent notion of unique continuation, in other words we crave

to give an answer to the following question:

QUESTION. Let uy and uy be two solutions of (11.1.2) which kind of assumptions
for the behavior of their difference u; — ug at two distinct times we need in order to

ensure the uniqueness uy = us?
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Before stating our main theorem which contains the answer to the above question, we want
to make a quick description of the equation we are dealing with. Equation (II.1.1) is one of
the variants of the (2 + 1)-dimensional generalization of the Korteweg-de Vries (KdV) equation
that reads

Ou + O2u + ud,u = 0, reR, tel0,1]. (I1.1.3)

The equation (I1.1.1) was introduced in the context of plasma physic by Zakharov and Kuznetsov,
indeed in [90] they formally deduced that the propagation of nonlinear ion-acoustic waves in
magnetized plasma is governed by this mathematical model. Further, this equation became

known as the Zakharov-Kuznetsov equation.

The problem of local and global well-posedness for the Cauchy problem associated to (I1.1.1)
has extensively been studied in the literature. In [35] Faminskii showed local and global well-
posedness for initial data in H™(R?), m > 1, integer. His method of proof was inspired by the
argument developed by Kenig, Ponce and Vega [53] to prove local well-posedness for the initial
value problem associated to the KdV equation. Indeed he proved the local smoothing effect,
a maximal function estimate as well as a Strichartz type inequality for the linear equation to
obtain local well-posedness by the contraction mapping principle. Then, as usual, the global
result follows as a consequence of the presence of L? and H! conserved quantities for solutions
of (II.1.1). In [66] Linares and Pastor established the local well-posedness for initial data
in H3(R?), s > %. Moreover, even though it can be shown, performing a scaling argument,
that the critical space for this equation is L?(R?), they also proved that well-posedness is not
possible in such space. Last but not least it is worthy to be mentioned the work by Griinrock
and Herr [43] in which an improvement of the latest threshold was given. Precisely they proved
the local well-posedness for in H*(R?) with s > % Without attempting to be complete we
refer to |7, 66, 68, 67] and references therein for other result of this type and several additional

remarks concerning with properties of this equation.

Now we want to give mention to the motivations which primarily are under our intent. In
order to do that we shall comment on a previous related result. For the case of the original ZK

equation (II.1.1) in a recent work [14] Bustamante, Isaza and Mejia proved the following result:
Theorem II.1. Suppose that for some small € > 0
ur,us € C([0,1]; HA(R?) n L2((1 + 2® + 4?)3+° dady))  C*([0,1]; L2(R?)),

are solutions of (I1.1.1). Then there exists a universal constant ag > 0, such that if for some
a > Qg
2 2 3
ur(0) — u(0), ur (1) — up(1) € LA (e dady),

then u; = us.
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This result was obtained following the scheme in [29], that is by applying two types of
estimates: a lower estimate which follows after performing a suitable Carleman estimate and
an upper bound for the L?— norm of the solution and its derivatives.

This result, as the authors themselves pointed out, can’t be optimal, indeed the symmetric
character in x and y of the decay assumption does not reflect the non symmetric form of the
equation (II.1.1). To justify this sentence we want to come back to discuss the structure of the

ZK equation, or better the structure of the associated linear problem
Ovu + 2u + 81(3511 = 0. (I1.1.4)

Looking at the structure of the equation (II.1.4) that, roughly speaking, resembles a KdV
equation in the z variable and a parabolic equation in y, the result that should naively be

3
expected as optimal is that one in which the decay assumed is of the form e—e® ¥’

, le. a
no more symmetric decay in the two variables. Indeed the exponent % in the x variable would
reflect the decay of the fundamental solution to the linearized KdV (the Airy function) and in
the y variable we would suppose to have a gaussian decay which comes out from the parabolic
heritage.

This uncertainty about the right decay of the fundamental solution of the linearized ZK
comes out from the fact that, contrary to KdV equation, ZK was very much less investigated.
Recently Faminskii and Antonova in [36] cleared up any confusion: indeed in this quoted work

they proved that actually the fundamental solution to the operator d; + 02 + &ﬁj still displays

an exponential decay but just in the x variable. Let us consider the initial value problem
O+ Pu + &T&Su =0,
U(ZL‘, Y, O) = U'U(Ia y)7

it is easy to see that the solution of this linear problem is given by

az,y,t) = "0s (i %) < uo(, ),

13 157 45

where

1

1 . . . .
S(a.y) i= 5 F (€ m) = €] = — fRQ i im HE ) e gy (I1.1.5)

42
0 is the Heaviside function and F~! represents the inverse Fourier transform. The rigorous
result in [36] (Lemma 7) in which the correct decay of the fundamental solution turns out is

the following:

Lemma II.1. Let S(z,y) be as in (I1.1.5), for any x € R and integer k > 0 the derivative
%S(z,y) belongs to the Schwartz space S(R) with respect to y and there exists a constant

co > 0 such that for any xo € R, integer m = 0 and multi-index v

[N

(1 + [y)"|D"S (e, )] < clm, v], 20} Yo >w, ¥yeR.  (ILLG)
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Motivated by this deeper knowledge of the ZK equation, our first attempt was to draw
inspiration from the strategy in [14] and, as a starting point, try to perform a Carleman

estimate of this form
@50 g| < c(a)[|e*®@¥ (0, + 03 + 0,02) g«

where e, clearly, must remind the right exponential decay of the fundamental solution asso-
ciated with the operator ¢, + &3 + 0,02 that first came to light in the aforementioned work [36].
In [14] the estimate above was proved by taking as € the following function
x 2y
Oy, t) = (F+ o) + 7.
and requiring for a to equal (up to a multiplicative constant) the quantity R:. But clearly, by
virtue of the previous remarks, with this choice no optimal result can occur.

Therefore our attempt was to choose as 6 the function

O(z,y,t) = 0(zx,t) = (% + ¢(t))2

in order to let appear the decay just in the x coordinate.

Unfortunately it turns out that the absence of the y component in our choice of 6, or better
of a nonlinear dependance of # by y, does not let the argument work, in other word we are
not able to obtain the desired Carleman estimate. This means that new ideas to tackle this

problem have still to be found and this will be matter of future investigations.

All these facts brought us to a slightly alternative analysis which find its source of inspiration,
at least at the beginning, in already quoted work of Griinrock and Herr [43]|. Even if the problem
addressed therein relates to a different topic then one we aim to solve, namely the local well-
posedness for the Cauchy problem associated to the ZK equation, there it was shown that
making use of a very simple tool that is a linear change of variable, essentially a rotation,
equation (II.1.1) can be written in a symmetric form, precisely (I1.1.2).

It is worthy to be underlined that for an equation of this form it is reasonable to believe
that the correct and optimal decay to possibly guarantee the unique continuation principle
should be exactly the one that appears in the paper [11], that is [(2%+y?2)2]2. Indeed in (II.1.2)
we can recognize the structure of a two dimensional KdV equation and the decay r%, with
ro= (2% + yz)%, resembles the asymptotic behavior of the Airy function, the fundamental
solution of the linearized KdV.

Encouraged by the previous fact we proved the following result which sharpness follows
analogously to [29] where the construction of local solutions with the estimated decay for 1-

dimensional KdV is provided.
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Theorem I1.2. Suppose that for some € > 0,
u, u € C([0,1]; HY(R?) ~ L2((1 + 22 + ¢?)5+ dady)) n C([0,1]; L2(R?), (IL1.7)

are solutions of the equation (I1.1.2).

Then there exists a universal constant ag, such that if for some a > ag
3
1 (0) — us(0), ur (1) — ug(1) € L2 (2@ ) dady), (I1.1.8)
then u; = us.

As it is customary in these contexts, we will see that our nonlinear result, Theorem II.2,

will be a consequence of the following linear result:
Theorem I1.3. Suppose that for some € > 0,
ve C([0,1]; H*(R*) n L*((1 + 2% + y2)%+8 dzdy)) n C'([0,1]; L*(R?)),
18 a solution of
o+ (03 + )+ ar(x,y,1) (00 + 0y)v + ao(z, y, t)v = 0, (I1.1.9)

0 210 oo 2100 1700
where ag € L™ n Ly L7, and ay € L™ n LyLy; n L, L.

Then there exists a universal constant ag > 0 such that if for some a > ay
3
v(0),v(1) € L2(e®*+7 dudy), (11.1.10)
then v = 0.

Remark 11.1. The linear equation (II.1.9) comes out from the fact that we are interested in
a result involving the difference of two solutions u; and wuy of (II.1.2). It is easy to see that

defining v := u; — uy this satisfies
O + (02 + 0))v + 4’%u1(63; + 0y)v + 473(0, + Oy)ugv = 0,

that clearly is a particular case of (I1.1.9) choosing ay = 4’%(633 + 0y)ug and a; = 4750,

Before moving on in outlining the main steps in the proof of our result, as an matter of
keen interest for the mathematical community, we want to devoted the coming section to give
an overview, from its birth to the more recent developments, of the main issues and results in

unique continuation.
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I1.1.1. Unique continuation

Now we are in position to discuss in greater depth the notion of unique continuation.

It is well known that a real analytic function has the property that if it vanishes sufficiently
fast at a point then it is vanishing all over its definition domain. This property is called unique
continuation property of real analytic functions.

The following question comes naturally: which other classes of functions enjoy this property?

A first further example of such a class of functions is represented by the harmonic functions,
indeed it is common knowledge that harmonic functions are real analytic and therefore they
still display the unique continuation property.

Actually, it was shown, see for instance the classical Holmgren’s theorem, that this property
is shared by solutions of more general elliptic partial differential equations, more precisely if
P(z, D) is an elliptic differential operator with real analytic coeflicients and P(z, D)u = 0 in a
bounded open connected set, then u is real analytic and again we can conclude that the unique
continuation property holds.

Therefore, now, when one is dealing with a unique continuation result it is customary to

refer to any statement of the following type:

Let Q < R? be a bounded connected open set. Given a linear partial differential
operator P, if a solution u to Pu = 0 in the region ) satisfies that u vanishes to

infinite order at xq € §2, in the sense that
1 2
lim — |u|"dx =0, forall N =0,
B(zo,r)

then u = 0 in €.

The previous statement is known as Strong Unique Continuation Principle.
Enlarging the point xy to an open set B we can get the same conclusion if we assume
the vanishing of the solution in that region B. This provides a weaker version of the unique

continuation principle stated above:

Let Q = R? be a bounded connected open set. Given a linear partial differential
operator P, if a solution u to Pu = 0 in the region ) satisfies that u = 0 in some
ball B contained in ), then u = 0 in €.

Namely the solution u is uniquely determined in the larger set ) by its behavior in

the smaller region B.

This version is known as Weak Unique Continuation Principle.
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A naive explanation of why the name “unique continuation” is used can be easily given. In
this regard one can just observe that since the operator P is linear, the unique continuation
principles, as stated above, ensure that any two solutions u; and us must coincide in the whole
domain €2 once they coincide in a smaller region.

In other words this means that the unique continuation principle guarantees the problem

to have a unique solution.

From the cornerstone work by Hadamard [44] in which the notion of well-posed Cauchy
problems was coined, it took three decades to realize that it would be desirable, for example
for the applications to nonlinear problems, to establish the unique continuation property for
operator for which is not required a strong analyticity structure as, instead, was done so far.

The first results in establishing the strong unique continuation property for elliptic operators
whose coefficients are not necessarily real analytic, are to be found in the pioneering work [17]
by Torsten Carleman dating back to 1939. Here he proved the strong unique continuation
property for

P(x,D) =A+V(x), with Ve L. (R?).

To avoid analyticity conditions, Carleman introduced the type of estimates that bear his
name and that have permeated essentially all the subsequent works in the subject. Roughly
speaking these are weighted estimates in which weights are chosen to be extremely concentrated
in certain parts of the underlying domain and it is precisely for this reason that they represent
a successful tool in proving uniqueness’ results, indeed concentrations can be created close to
points at which informations of the function under consideration are given.

Carleman’s method was improved and extended beyond the elliptic operators to address
the unique continuation principle for several other equations, even for evolution equations such

as parabolic and dispersive equations.

Even though in this work we are mainly interested in dispersive equations, we are going to
mention briefly how the unique continuation results can be phrased for parabolic equations,

greater attention to the dispersive equation will be devoted later on.

I1.1.1.1. Unique continuation for parabolic equations

As already pointed out by Escauriaza in [26], for second order linear parabolic operators with

time-independent coefficients, such as
o — Au + V(z)u = 0, (I1.1.11)

the strong unique continuation property is reduced to the previously established elliptic coun-

terparts as shown in [65]. This reduction in essence relies on a representation formula for
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solutions of parabolic equations in terms of eigenfunctions of the corresponding elliptic opera-
tor. This clearly means that this technique cannot be applied to more general equations with
time-dependent coefficients. Therefore in order to accomplish our aim that, roughly speaking, is
to find sufficient conditions for a solution of a parabolic equation to vanish, we need to examine
the structure of the equation thoroughly. As a first sight we consider the prototypical example
of parabolic PDE, the heat equation

ou — Au = f, (11.1.12)

in R? x (0,1],

As it is well-known the following uniqueness for the heat equation holds:
If lu(z, )| < Ce for all t € (0,1] and u(z,0) = 0, then u =0 in RY x [0,1].

This kind of forward in time uniqueness for the heat equation is quite classical and easily
follows by an application of the maximum principle for unbounded domains (see [34]). A rather
more subtle question, due to the lack of time-reversal symmetry for the heat equation which
describes irreversible processes or, in other words, phenomena with a preferential direction of
time, concerns uniqueness backward in time. Although unexpected, a backward uniqueness
result still holds for the heat equation. We will present the statement for the more general

parabolic equation with time-dependent coefficients
ou — Au+ Wz, t) - Vu+ V(z,t)u =0, (I1.1.13)
in R? x (0,1], with |[W| < N,|V| < M.

Let u be a solution of (I1.1.13) such that |u(x,t)] < Cy and u(z,1) =0, then u=0
in RY x [0,1]

(see [60]). This result has been extended by Escauriaza, Kenig, Ponce and Vega in [27] in
which they proved that the backward uniqueness still holds if, instead of assuming at ¢t = 1
that u(z,1) = 0, one assumes that |u(z,1)| < Ce= "™ for some & > 0. The proof of this

result, as in the elliptic setting, makes use of the parabolic version of Carleman estimates.

Now we are in position to treat in greater details dispersive equations, making a deeper
analysis of how to rephrase the unique continuation principle in this setting. Moreover the
historical developments and the achieved results in matter of unique continuation for this kind

of equations will be resumed.
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I1.1.1.2. Unique continuation for dispersive equations

As already mentioned, particular attention has been paid to the unique continuation results
for nonlinear dispersive equations, especially for Schrodinger and KdV equations. This two
equations, together with most dispersive models, enjoy a time-reversal symmetry. Roughly
speaking, this means that every solution to these equations comes with a counterpart which
evolves backward in time if compared to the original solution, this entails that the forward
behavior of solutions is typically very similar to the backward one. The time-reversibility
represents the first obstacle into understanding what is the analog of the parabolic unique
continuation results for dispersive equations, indeed, clearly, backward in time does not make

any sense in this context. Let us start considering linear Schrodinger equation of the form
i+ Au + V(x, t)u = 0, (I1.1.14)

in R? x [0, 1]. Then, choosing V (z,t) = F(u(xz,t),u(z,t)) we are allowed to consider nonlinear
equations of the type
i0u + Au+ F(u,u) = 0. (I1.1.15)

In order to understand how to formulate unique continuation results in this setting and which
kind of assumptions about the solution has to be made in order to get those results, particular
relevance can be attributed to the Heisenberg uncertainty principle and its connection with the
so-called Fourier uncertainty.

The Heisenberg uncertainty principle represents one of the fundamental implications of
quantum theory. Vaguely speaking it states that certain pairs of physical quantities cannot
be measured simultaneously with arbitrary accuracy. Before moving on in giving the precise
mathematical statement of Heisenberg uncertainty principle, we would like to recall some very

basic facts from quantum mechanics.

Let us turn our attention to observables. Generally speaking an observable is a quantity
that can be experimentally measured in a given physical framework. The interpretive rules in
quantum mechanics dictate that a physical observable a (position, momentum, energy etc.) has
a quantum mechanics counterpart that is a self-adjoint operator A on the state space L?(R?).

For our aims, as we will see in a moment, it is interesting to see how quantum mechanics
predicts mean value, or expectation, {(a), and variance Var(a), of a physical observable a
prepared in the state 1 in terms of analogue quantities involving the associated self-adjoint
operator A. We recall that in a probability setting the mean value of a certain non deterministic
quantity a is the best guess of the value of the quantity, strictly connected to expectation is
the notion of variance, which quantifies the uncertainty on the quantity for which a guess of its

“real” value is given.
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Quantum theory gives precise rules in order to predict those quantities:
i <a>¢ = <A>w = <¢7A1/}>7

o Var(a)y = (A = (Ay1)y i= (@, (A = (Ay 1)) = [[(A = (A 1)|| 2 ga),

where, also in this part, the brackets (-, -) is the notation used to indicate the inner product of
L3(RY).

Now we are in position to state the Heisenberg uncertainty principle of quantum mechanics.

Let A, B be two densely defined self-adjoint operators on L?(R?). Suppose that there

exists a linear, dense subspace S = L?(R?) invariant for both A and B, therefore
1
Var(A)y Var(B)y = 2|0, [A, BIY)I",
or, what is equivalent

1
oy(A)oy(B) = 5 [, [4, Byl (IL.1.16)
where oy, represents the standard deviation, namely the square root of the variance.

Recalling that the standard deviation quantifies the precision of an observable’s measure-
ment (the smaller it is, the more precise is the measurement), the previous statement says that
the possibility to measure simultaneously two observables with arbitrary precision is strictly
connected with the commutation relations between the two corresponding self-adjoint opera-
tors. More precisely, if the operators which theoretically represent the physical observables we
are focusing on have non-vanishing commutator, this yields a non trivial lower bound for the
product of the precisions of the observables’ measurements, so the more certain we are about
the measurement of one of the observable, the less certain we can be about the other one.

For our purpose we are mainly interested in two observables: momentum and position
or better in the j* component of them j = 1,2,...,d. Quantum theory represents the two
observables respectively by the operator A = P; := —i% and by B = X, the multiplication

J
operator by the j"—coordinate ;. More precisely the action of the two operators is as follows:

%W),

X p(x) = xj(z).

A straightforward computation gives the that the commutator of these two operators is

Py: p(a) > i

[A7B] = [P],Xl] = —Z'5j7l]l,
where d;; is the kronecker symbol, defined as it is usual.
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By virtue of Heisenberg uncertainty principle as stated in (I1.1.16) we can conclude

1
oy (Py) op(Xi) = 5050

roughly speaking, this means that if we want to measure position and momentum in the same
direction, namely 7 = [, we have a non-trivial lower bound for the precision of their simultaneous

measurements. In particular the following lower bound

oy (F)) oy(X;) = (11.1.17)

N | —

holds.

In order to see explicitly the deep attachment between the uncertainty principle of quantum
mechanics and the not yet stated Fourier uncertainty, we want to compute explicitly oy (F;)
and o, (X;) making use of the interpretative rules which appear above.

In order to do that we formerly compute Var(F;), and Var(X;),. Using Plancherel theorem

for the operator P; and simply the definition of variance for X; we have

Var(Py) = [P} 3agey = (P20 72 ey =fRd<5j—§}>2 D) dg =: Var (),
Var(X,) o= X0y = | (o5 = 2 100 do = Vi),

where here we used the following notation &; = (P;),, and 7; = (X;)y.

From the previous identities we can infer that the variance of the observable momentum for
a particle in the state v is the same as the variance of the observable position for a particle in
the state 77/[}\

Notice that if 9 is highly concentrated near the mean value Z;, by virtue of our interpretation
of the wave function v, this means that there is a high probability that the location of the
j'"— coordinate x; of the particle is near Z; and so we expect the uncertainty to be small.
This is precisely what happens, indeed looking at the quantity {,.(z; — z;)? l(x)|? de which
represents the variance, in other words the uncertainty, this quantity is small because most of
the contribution to the integral arises from values of z; near to ;. Clearly, the same reasoning

can be done for the momentum.

Now plugging these two quantities in (II1.1.17) or better in the square of the quoted identity

( | @ = dx) ( | d(@—&)%(g)ﬁdg) > (IL1.18)

The previous represents the rigorous statement of the Fourier uncertainty. Indeed, by virtue
of the lower bound (I1.1.18), if the first term in the product on the left-hand side is small and

we get

this can occur making 1 more concentrated near Z;, therefore the second term in the product
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cannot be small as well and this forces @Z to be sufficiently spread. We can re-phrase the previous

result in this way: a function and its Fourier transform cannot both be essentially localized.

Now we are interested into see what inequality (I1.1.18) says if our particle is described
by a function ¢ which resembles a gaussian. First of all for notational simplicity we assume
& :=(P;), = 0 and that 7; := (X}), = 0.

Let us consider an L?— normalized gaussian function, that is 1, (z) = cae_%, with ¢, such
that [|¢]| 2gay = 1. A straightforward computation gives Var(i,) as defined above is related to
the parameter o, more precisely equals o2. .

Now, without attempting to be rigorous, assglming our particle described by ¥ (x) = 0(6_%)

aj¢|

and that its Fourier transform @Z(f) = O(e o7 ), therefore we expect the following values for

their variances:

B 52 ~ Cl/2
Var(e) = o, Var(d) = I,
that, in particular, gives
o) =2, od)=12
-2’ 4

Plugging these two explicit values of the standard deviations in (I1.1.17) we get a constraint

for the parameters o and [, namely

af = 4.

Also in this setting we can re-phrase the constraint above saying that if we want to peak our
“gaussian” 1 at its mean value ( the origin in this case), that is letting o become more and more
small, then this coerces [ to be remarkably large, i.e the gaussian 12)\ has to become increasingly
flattened.

Now in view of the above, leaving aside the quantum mechanical interpretation, the following

result should appear reasonable:

2
~ 4)¢)?

If f(z) = O(e_%) and its Fourier transform f(§) = O(e™ =7 ), then

o [faf<4d= f=N0.
o Ifaf =4 = f is a constant multiple of e 7.

The previous is known as the Hardy uncertainty principle.
It can be seen that from the Hardy uncertainty principle one can easily obtain a PDE’s
counterpart of this. In order to do that we need to recall that the solution to the free Schrédinger

equation i0,u + Au = 0 with initial datum f € L? has the following form:

u(z,t) := e f(x) = (4mit)” T x ),

femwﬁwmy=mwﬁfﬁf@Hd“f@ﬂg
Rd
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where F represents the Fourier transform as well as the hat notation ~. This representation
formula tells us that, in essence, up to multiplication by a phase factor, the solution u(z,t) of
the free Schrodinger equation is a multiple of a rescaled Fourier transform of the initial datum
f. In view of this remark, the PDE’s counterpart of the Hardy uncertainty principle can be

stated as follows:

2
||

If u(x,0) = 0(67%) and u(z,T) := eTPu(z,0) = O(e” 7)), then

o [faf <d4T = f=0.

1 .
B*Q'f‘ﬁ)ag

o [fap =4T = f is a constant multiple of e

Clearly, without loss of generality, we can restrict ourselves to the case T' = 1.

Thus, for time-reversible equations, the analog of backward uniqueness will be uniqueness
from behavior of the solution at two distinct times. To be more precise, we are interested in
such results with data eventually 0 or even with data which decay very fast.

Just to go off a slight but remarkable tangent, as already mentioned by Escauriaza, Kenig,
Ponce and Vega in [31], the Hardy uncertainty principle can be applied to prove unique continua-
tion for the free heat equation by only assuming the solution to satisfy at time ¢ = 1 a sufficiently
strong decay, together with the square-integrability of the igitial datum wu(z,0). Precisely the
following sharp result holds: if u(z, 1) := e®u(x,0) = O(e

_lz]

52 ), with 0 < 2, then f = 0. Indeed
let us consider f(x) := u(x, 1), from our hypothesis we have f(z) = O(e_%z), moreover it is
easy to see that f(€) = (&, 1) := e °G(£,0) = 6*4‘5*42@(5,0). That is 7(¢) — O(¢ 5 ). The
application of Hardy uncertainty principle to f gives that if 26 < 4, that is if 0 < 2, then f,
and so u(z,1),= 0. Then backward uniqueness arguments guarantee that u(x,t) = 0 for all

te[0,1].

Going back to Schrodinger equation, there is a large literature concerning the uniqueness
question for data eventually zero. For the one dimensional cubic Schrédinger equation, i0,u +
2u T |ul*u = 0, in R x [0,1], in [91] Zhang showed that if u = 0 in (—0,a) x {to,t;} (or in
(a,00) x {tg,t1} ) for some a € R, then u = 0.

Then, the result of Zhang was extended, under more general assumption on the potential V'
in (II.1.14) and on the domain where the vanishing of u(0) and u(1) is assumed, first by Kenig,
Ponce and Vega in [54] and then by Ionescu and Kenig in [46, 47].

As anticipated unique continuation of the kind described above has also been established for
other dispersive equations. In [84] the unique continuation principle was proved for a general

class of dispersive equations, including the KdV equation. More precisely it was proved that if
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a sufficiently smooth solution u of

2
O+ 03u+ Y r(x,)u=0,  xe(ab), te(t,t)
j=0
with r; € L L2 ., vanishes in an open set Q of the space-time space, then u vanishes in all
horizontal components of €.
In [8] Bourgain proved that if a solution u of the KdV equation is supported in a compact
set on a non trivial time interval, then v must be identically zero.

In [55], Kenig, Ponce and Vega considered a solution of the generalized KdV equation
O+ OPu + uFd,u =0, reR, tel0,1]

which vanishes only in two half-line [B, +0) x {to} and [B,+w) x {t1}, they proved that u
vanishes identically. A result in the same spirit but for the difference of two solutions of the
equation above was proved by the same authors in [56]. They proved that, the solutions of
the generalized KdV equation are uniquely determined by their values on a semi-line at two

different instant of times.

The historical path of unique continuation results for the bi-dimensional Z-K equation fol-
lowed the same landmarks of the KdV equation. Indeed in [79], Panthee proved that if a
solution w of this equation is supported in a set [—M, M| x [—M, M] for a non trivial time
interval, then u must be identically zero. Following the method introduced for KdV equation
by Kenig,Ponce and Vega in [55], Bustamante, Isaza and Mejia in [13] showed, improving the
result in [79], that one can conclude the same even just assuming u to be compactly supported

only at two distinct times.

So far we have only mentioned uniqueness results assuming data eventually identically
zero at two distinct times. Actually, taking into account our intents, we want to employ the
remaining part of this historical background presenting the main advances in the field of unique
continuation principles for dispersive equations where, instead of requiring the solution to be
zero on large sub-domains of R?, we just assume a sufficiently rapid decay for two distinct time.
Roughly speaking, we will show the extensions of Hardy uncertainty principle for no more free
dispersive equations.

Let us start with Schrodinger equation. In [28] Escauriaza, Kenig, Ponce and Vega proved
that if at two distinct times the solution w of the Schrédinger equation (II.1.14) and its first
spatial derivatives decay faster than any quadratic exponential, that is decay as e " with
a > 2 and a > 0 sufficiently large and providing suitable assumptions on the potential V, then
u has to be identically equal to zero. This linear result was then applied by the same authors to

nonlinear equation of the form (II.1.15). They showed that if the difference of two sufficiently
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smooth solution u; and uy of (I1.1.15) and the difference of their gradients have a stronger
decay than the gaussian one for two different instants of time, then the two solutions are forced
to agree in R? in the whole time interval. Later, a deeper analysis of the solutions of (I1.1.14)
displaying gaussian decay and in particular of the convexity properties of the L?—exponentially
weighted norm of those solutions, allowed Escauriaza, Kenig, Ponce and Vega in [31] to obtain an
improvement upon the results in [28], their ma1112 contribution is as follows: let u be a solution of
the linear Schrodinger equation (I1.1.14), if He%u(O)HLZ(Rd) and ||e%22u(1)||L2(Rd) are both finite
and assuming appropriate and not too much restrictive hypothesis on the potential V| therefore
if aff < 2 the u = 0. Moreover, as already done in their previous work, this result was applied
to the nonlinear equation (II.1.15), this S?OWS that two regular solutions u; and us must agree
in R% x [0, 1] when one requests that ||e‘57‘2(u1(0) —u2(0))|| 12 (gay and Helcff(ul(l) —uz2(1) || 12 (gay
are both finite. It is worth noting that this result cannot be the optimal one, indeed the decay
requested is stronger than the one that appears in Hardy uncertainty principle, in other words
this result can be considered as a weaker variant of the Hardy uncertainty principle. Only later
the same authors in [32| showed that for many general bounded potentials the optimal version
of Hardy uncertainty principle holds, that is just requiring for the decay that af < 4.

For the KdV equation, in [29], Escauriaza, Kenig, Ponce and Vega, making use of suit-
able Carleman inequalities which replace the “energy” estimates that were used for the unique
continuation for Schrodinger and, as in that context, introducing lower estimates that comes
from the work of Isakov [48], proved that if the difference of two solutions of the KdV equation
decays as e‘“’”% for x > 0 and a > 0 sufficiently large for two distinct times, then the solutions
must agree.

With respect to the ZK equation, as already said in the introduction, results in this direction
were already obtained. Bustamante, Isaza and Mejia in [14] proved that if the difference of
two sufficiently smooth solutions u; and us of (II.1.1) decays as e‘“(””2+92)% for a large enough
a > 0, at two distinct instant of times, the the solutions must agree.

This concludes our overview over the unique continuation results.

I1.2.

The proof of Theorem I1.2 and Theorem I1.3

This chapter is devoted to focus on a very detailed and comprehensive discussion about the
main tools we used to achieve our result Theorem I1.3 and as a consequence Theorem II.2 and
then the endgame will consist to the proof of both the theorems.

As already said we want to proceed embracing the now well rooted strategy underlying the

proof of this kind of results that, for instance, is exploited in [29] to treat unique continuation
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for KdV.

In essence those results follows by making a comparison between two estimates: a lower
bound for the L?— norm of a solution in an annular domain, which follows after performing
a suitable Carleman estimate and an upper bound for the L?— norm of the solution and its

derivatives up to order two.

As a starting point, for sake of completeness, we want to make explicit the computations
carried out in [43] in order to pass from ZK equation to its symmetric counterpart.
Getting down into details, for the space variables the following linear transformation was

used:

Let v(2’,y") = u(z,y), then it is easy to see that

pu(z,y) = u(0p + 0y )v(a’,y)
MOy — Oy )u(2,y').

@,u(w, y)
This implies
(02 + 0202 u(z,y) = 1° (0w + Oy )*v(2',y') + pA* (O + Oy ) (O — Oy )*0 (2, y))
= (1 + pX) (0% + )@ ) + (Bu® — pX?) (020, + dwd)u(a’,y).

In order to symmetrize the equation, we want to make the last term of the previous equal to

1
zero, this leads us in choosing A = /3y, then fixing also 1 = 473 we get

(0% + ,0)ule,y) = (3% + 0 )o(a',y)
which implies that, without changing the well-posedness theory, we can reduce equation (I1.1.1)

to the symmetric-type equation (I1.1.1).

Now we are in position to perform our first crucial estimate, namely the lower bound in the

annulus domain.

I11.2.1. Lower bound in the annulus domain

This section is concerned with a lower bound estimate for the L?2—norm of the difference between

two solutions u; and us of (I1.1.2), its first order and second order space derivative in the annular
3
region {(z,y): R — 1< +/22 + y2 < R} x [0,1] with an exponential of the form e~#?.

The result we proved has the following precise statement:
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Theorem I1.4. Letv e C([0,1]; H*(R?)) be a solution of (11.1.9) with ag, a; € L*(R?). Assume
that .
J f (|U|2 + Vol + |Av|2) dx dy dt < A®.
r2 Jo

Let 6 > 0, 7 € (0,2) and Q = {(z,y,t): \/2>+y*> < 1,t € [r,1 — 1|} and suppose that
such that

[v[[2(q) = 0. Then there exist constants Ry, ¢y, ¢1 depending on A, llaoll, and ||ai]|,

for R > Ro

1 1 .
Agp(v) = (J J ([v]* + |V + |Av]?) do dy dt) > coe R
0 JR—1<4/2%2+y%<R

The previous idea of establishing lower bounds for the asimptotic behavior of a suitable
norm of the solution in an annulus domain stems from a work by Bourgain and Kenig [9]
on a class of stationary Schrodinger operators —A + V(z) in which the property of spectral
localization, that is the phenomenon for which the point spectrum of the analyzed operator
presents exponentially decaying eigenfunctions, is studied.

In that work they needed precise quantitative information on the rate of local vanishing for
eigenfunctions, more precisely, local bounds on the eigenfunctions both from above and from
below were required. Unlike the upper bound, which just needs classical tools to be achieved,

the lower bound is a more subtle issue. The statement (Lemma 3.10 in [9]) is as follows

Lemma I1.2. Let u be a bounded solution of Au + Vu = 0 in R with suitable additional

assumptions about V. Let xg € R, |xg| = R > 1. Then

4
max |u(z)] > coe~ 18 IR
R—-1<z<R

This was derived from the following Carleman type estimate.

Lemma I1.3. There are constants C1, Cy, C3, depending only on d and an increasing function

w = w(r) for 0 <r <10 such that

1 w(r)
a -y

and for all f € C(B1o\{0}), a > Cy, we have

<Cl

Oé3f w—1—2af2 < 03\[ w2_2a(Af)2.
R4 R4

In order to obtain our lower bound Theorem II.4 we will perform a Carleman estimate as
the one stated in Lemma II.3.
Before proving in our case such a Carleman estimate, we start out with a brief discussion

about this cornerstone tool.

69



A typical Carleman estimate for a, usually linear, differential operator P looks like

el x () < CNPU (10

where X (wdz) is a weighted space with weight w which has to be chosen differently for each
operator P taken in consideration; typically, as in our case, the weight is in an exponential form,
that is w := e*?®) | for a suitable function # and a parameter «. In this situation a Carleman

estimate assumes the following form
o ||ea6(z)u||X(dx) < CHeae(x)Pu”X(dx)a

with a constant C' independent of a.

Remark 11.2. A very relevant point in the Carleman inequality is the presence of the multi-
plicative parameter o on the left-hand side. Indeed by taking « very large we can make the

term on the left-hand side as large as we need in order to absorb potential error terms.

This fact can be seen at work explicitly in the proof of Lemma I1.5 below, indeed, by virtue
of (I1.1.9), we are interested in proving a Carleman estimate in which the linear operator taken
into account is P = ¢y + 02 + 65’ + a1 (0 + 0y) + ag. Actually we will prove a Carleman inequality
for the “principal” operator P = ¢; + J2 + 62 and then, by Remark I1.2, with no effort, we will

include in the estimate lower order derivatives.

11.2.1.1. Carleman estimates

Precisely we are going to prove first the following lemma.

Lemma I1.4. Assume that ¢: [0,1] — R is a smooth function. Then, there exist two constants
¢ >0 and My = My([|¢'l|, ¢"]l..) > O such that the inequality

5 3

a2 af(zx,y, a:z afd(z,y,
ﬁ”e ( yt)0($7yat)glle(sz[OJ])+ﬁ”e ( yt)|Vg|||L2(R2><[O71])

holds, for R = 1, a such that o® = M R?, g € CP(R? x [0,1]) supported in
{(z,9,0) e R x [0,1]; )% + ap(t)f‘ >1f
P 2 - 2 2
and O(x,y,t) = }E + go(t)é‘ = (£+ )" + (% + 0(t)", with 2 = (z,y) and £ = (1,1).

Proof. From now on with an abuse of notation we will write L*(R? x [0,1]) as L%
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Cause to the difficulty to prove an exponentially weighted estimate, as usual in this context,

we reduce ourselves into proving an estimate for the conjugated operator
eae(xvy,t)(at + ai + 6’2)6_"9(9”’117”.

The main point in the proof is, roughly speaking, a “positive commutator argument” that will

0

give a lower bound for the conjugated operator e*?(d; + 02 + 62)6’0‘ once it is decomposed as

a sum of its symmetric and skew-symmetric part.
In order to do that we define f = e*?@¥! g now we want to see how (I1.2.1) can be re-written
in terms of this auxiliary function f.

Let us first consider the term
62“9\V9]2 = 620‘9[(6_‘19633]” —ad0e™ )2 + (70, f — o@ﬁe‘agf)z]
= (Ouf — ozé’fo)Q + (Oyf — Ozény)Q.

By virtue of the previous identity, instead of (I1.2.1), it is sufficient to prove

5 3 3
a o o2 o2 a2
e (@t 02+ ) Flp > S0 o+ g0 — 000 F o + Tyl —a8,65 o (1122)
A straightforward computation gives

(0 + 02+ 02)e ™ f = —adbf + of — add0f + 307(0,0)(020) f — a®(0.0)° f
— 300200, f + 30%(0,0)%0 f — 300,002 f + > f
—ady0f + 30%(0,0)(020) f — a*(0,0)° f — 3200, f
+3a2(0,0)%0,f — 3aé’y95§f + 6§’f.

As already mentioned it is customary to write the operator in the following way
e (0, + 03 + 63)6_0‘9f = Ao f + Saf,

where A, and S, are respectively skew-symmetric and symmetric operators and depend on «.

The two operators we are looking for are the following;:

Ag 1= 0r+ 0%+ 05 + 30%(0,0)%0, + 307(0,0)%0, + 3a°(0,0)(020) + 3a(0,0)(020)
S i= —300,(0,00,-) — 300,(0,00,) + (— a®(2,0)* — ad9) + (- a®(9,0)* — ad?) — ad,h.

Indeed, since the first three operators of A, are derivatives of odd order, they are skew-
symmetric, moreover, a straightforward computation shows that 3a?(0,0)20, + 3a(0,0)(020)
are also skew-symmetric and the same holds for the corresponding operators in the y variable.

With respect to S,, it is very easy to prove the symmetry of the operators —3a0,(0,00,-) —
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3ad,(0,00,-), moreover as the rest part is constituted by operators of multiplication by real-
valued functions it is symmetric.
Thus,

therefore one get

leo®= w0 (0, + 63 + 85)e ¥ f|IT, = ||(Aa + Sa) £ 72
= {(Aa + Sa)f. (Aa + Sa) )
= | Aafl72 + 1Safll32 + (Aak, Saf) + (Safs Aak)
> ([Sa Aal S, -

Remark 11.3. From now on, to save space, we abbreviate { := SSSRZX[O 1 and omit the arguments

of integrated functions.

A computation shows
{Sa, Aulf, [ =J (a&fﬁ + 2a020,0 + 60°(0,0)%0,0:0 + 2a(3§’&‘t0 + 60°(0,0)%0,0,0
— 1800,0020030 — 303(026)® — 30°(0,0)20%0 + b0 + 9a°(0,0)" %6
- 18a3ﬁy98298§’9 — 3043(859)3 - 3a3(6y9)2639 + 0@39 + 9&5(@9)4659
— 1804363239659836@9 — 9a3&§0&y98x8§0
— 90°0,0050020,0
- 18a30x96y«98§8§9 - 9a38$06§06§é’y€
— 9043(9:%0@3,9093@;9
+ 120°(0,0,0)* + 6a3(8x0)25$§29 + 2a0§620 + 18a°(0,0)(0,6)%0..0,0

+60°(0,0)%030,0) S

+ f ( — 600,040 — 60,0 + 180°(0,0)* 020 — 600,00 — 18@3(8y9)2§$8y0) (0uf)?
n f (

— 600,00 — 6000 + 180°(0,0)2020 — 60%0,0 — 18043((99,;9)2@@@,9) (0,f)?
+ f 640°0,00,00,0,0 0, f 0, f

+ f 9a0%0(* f)? + f 90a020(0; f)?

+ f 1800, 0,0(3.0, f)*.
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Now we choose

where clearly s» = (z,y) and £ = (1,1).
It is not difficult to see that the following hold:

0,0 = %(% Fot), (00 = ;2 (5 + gp(t)>2 (0.60)* = ;64 (5~ w(t)>4

=2 (Lre), @ =ag(Lrew), @ = (Lre)

020 Ri, (626) % and @0 —0, -0, F0—0.

820 = %, (020) % and %0 =0, a9=0, 0=0. (I1.2.3)
0,0,0 = 0.

20 =200 (5 +90) + (L +00)] 200 = %gp’(t), 0,0, %gp’(t).
320 = 40 + 20| (5 + ¢0) + (% + 1) |

Using (I1.2.3), adding and subtracting the terms %—i”(?xf —adOf|3. + g—iH(?yf —ad0f|%,

we get
IS Aalf, ) =g 121 + o 1211
-2 [ - = [ e I
e [(& o) @7+ S [ (%4 00) @
-2 [ 72420 [0+ 20 f (Z + o) o)
2 [ 007 v 20 [ (44 o) 02

2T ) o B[ (21t

B [ (S o) o+ B [ (4 o) s

J

a? , ol 2
+ ﬁ”aacf - aézngL? + ﬁ”ayf - O‘ay‘QfHL2

o? 9 o? 5 .
- 2ous — a0 02 — s — ad,01 3 I

Let us consider (I, + I7), for
o = |l¢'ll, R,
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it follows that

" 12« 12c¢
Ll - ﬁwuaf ﬁwuaf
12a

1w f(a e Iou f(a - (I1.2.4)

We compute (/5 + 1) using the explicit expression for 0,0 and d,0

3

bt == S @y 25 [ (

3

- @y - ' |

=&

co®) P2 (2 o) o

o) 14 20 (L o) 1o

=S IS

Now let us just consider the last terms in the first and the second rows of the previous identity,
using the classical Young inequality

alP b
ab< —+ —

1 1
, , , -+ -=1, (I1.2.5)
P q P oq

we obtain

%‘f (5 + () fouf + ‘%: f (2 - so(t))f@ f

R
f] @mmaﬂ—ﬁfﬂﬁ+¢@MM@ﬂ
2 [ (o) -2 (@
2 (L) - 2 jwf>

Since |£ + ¢(t)¢| = 1, then one obtains

bt s =S (|54 ete - 2 [ -2 [y
> - (|5 + et ﬂf— - [
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Gathering altogether we get

(S Alf. 1) =g N2 I +

B [ - B [y b+ I3

o )
2 [ [ o [ (5 + o)

2 [ 72420 [0 v 20 [ (% + o) 0s?

4803 [ 2, 48a3 Y N
o | (Frew) vor T [ (L+ew) vor
288a° [ /x 4, 288’ [y 4, .
+ e J <E + ¢(t)> Jo+ 6 J <§ + @(ﬂ) f I3+ I3
OZB 2 043 )
b SNon — a2,0f B + 10,5 — ad I

[

We consider (I + 1), using again that }}—’fi + go(t)&’ > 1, we obtain

18«
|!<92fHL2 L+ I7

Btz - 50 [ (L4 o) @ - B (L olt)) (0217

~—

=:1

jlf%‘f J (o) @y —1;‘1‘3 | (o) @

-~

=11

First let us observe that, making use of integrazion by parts, I can be re-written as

I= +1;i‘3 f (% + cp(t))Qfagf. (IL.2.6)

Now we want to rebuild some “positivity” from I; + I + I3, using (I1.2.6), observing that
18 = 47 + 2 and that 288 = 9 + 279 we have
5

et = [ (G e [ (o) s + [ 155 (4 o) o]

LAT gy +279R—56 (%+s&(t)>4f2
—“§Eagf 4+ 3 (R +so(t))2f]2+§%f(0§f>2
5

+ 279% (% + go(t)>4f2.
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Proceeding in the same way for I} + I1 + I3 we get

N as [ 212 47 « > x 4
Q+H+Q>Jb§@ﬁ+%§ﬁfw®)ﬂ—%iﬁ @ﬁ4ﬂmﬁ;(ﬁ+ﬂwj?

Summing up, neglecting the two squares of binomial, that clearly are non negative, one has

47 « 47 «
L1211 +

T | (G et @+ R [ (5 + o) @
2;?3 ij 2 J(w'(t)f)Q + 204J (% + <p(t))<,0”(t)f2 L+ 1+ I

3
o | Pen ot | (fre0)eor menes

480° [/ x 2 o 279a° (/x 4,
o | (Frew) or+ 25 [ (5+e0) s It

4803 1y 2 o 2790 [y 4, P
o | (B o) o+ T8 [ (R+ew) s i+

053 2 053 2
0t — 001 + oS — 0,01

- 6&65 ﬂ% + 90(15)15‘4]"2

Now we compute I + I5 + I + I} + I5 + I#, using that (a* + b?) > 3(a + b)? for all a,b > 0
and that % = 144 — 2 we have

([Ses Al f: [ =—

L+ +1,+1I;+ I+ I

4
24&1“0 2+ 8a

x wf‘ 22?;]\ + o] £

)’ 5 [+ wtoe 1

:J<2a;<p(t)+12—‘R )f

Since we are assuming o? > ||¢'[| ,R* and since |% + ¢(¢)¢| > 1, therefore

5
202

1
202/ (t) = — s

This gives

N N . . 100a® [ 4
L+ L+ [+ L+ 1> — ﬂﬁ f2—§ﬁﬂ (t)g’ 2.

With regards to I3 + I3, assuming
2 " % 3
o = |l¢"|[ LR,
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and recalling that |% + o(t)¢| = 1, we have

LIz 20 [ [| 5+ o]+ % + o) Il >
2R (1 et 1

A (1

Moreover

4804 48a
Il +]ik == R6 J /

Putting everything together and neglecting pos1t1ve terms, we obtain the following estimate for

the quantity {[Sa, Au]f, ) :

47 «

[Sas a1, 00 = s [(@27 + 5 [(@2ry

B (e o e 2 (3
+ (100 — g —2v/2— 48— 6) ﬂ}—% + so(t)ﬁrfz

Rspg‘

0[3 2 043 2
+ ﬁ”axf — ad O f||72 + ﬁ”ayf — adyff|7-
83 a® (| 4,
> [ J— J—
(5 Qﬁ)RGﬂRﬂLw(t)f’ f
o o’
+ gilloef = adubflls + 7rlouf — ad0f Iz
Gathering the above information we conclude that
€892, + 63 + e f 2,
a® (| 4 o’ ol
o [ |5+ o] 72+ et — adub s + S0 - ad,07

holds. Then a straightforward computation shows that this easily gives (I1.2.1) in terms of g
with ¢ = /3. O

Remark 11.4. We would like to spend few words on the costants in the Carleman estimate (11.2.1).
5

The constants % and ?‘%2,

the 0 and first order derivatives, are of crucial importance and come out precisely from the

which appear respectively as coefficients of the L?— norm involving

structure of the equation we are working with, indeed also doing not too much effort as the
one spent in the proof of the previous lemma, we can bet that the higher power of o that can
shows up is really a3, We will attempt to clarify this fact considering just the one dimensional
case.

The estimate requires the computation of the quantity ||e=*(d, + 83)e®? f||7, (actually the

exponentials are in the reverse form but with the aim of merely try to fix some ideas, it is easier
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to have this form instead of the other one, otherwise we would have had to take care of minus
signs.

The only possibility for a to appear is after derivatives with respect to the x variable of *?,
for this reason we will consider just e=*?0%(e?? f). We recall that from the proof above we have
seen that, writing e=d3e®?f = (S + A)f, the relevant contributions for the estimate to be
achieved come from the commutator [S, A|f := SAf — ASf. Therefore, roughly speaking, we
need to find the way to obtain the highest power of a applying, one after the other, a symmetric
and then a skew-symmetric operator or the reverse. Clearly the best we can do by the action of
a first operator comes from picking e=?93(e??) f and to choose always (three times) to derive
e getting the following starting contribution e=*a3e®?(0,0)2 f = a®(0,0)3f.

Summing up, the contribution for the largest power of a from the application of a first
operator arises from the action of the operator a®(0,0)® that, as a multiplication operator, is
clearly symmetric. Now, since the only possibility is then to apply a skew-symmetric operator,
we need to understand which part of 92(e®?f) once it is explicitly computed, or better of its
skew-symmetric part, would give the highest power of a once applied to a3(0,0)3f and would
involve first derivative with respect to x. Since we need a skew-symmetric operator, we cannot
proceed as before to obtain again a term like o, our hope is to find a way to obtain at least
o?. This means that we want something like e=*?02(e2?)d,- and choose to make derivatives just
of the term e?; this leads to the operator a?(0,0)%0, - .

So at the end we have o*(0,0)?0,[a?(0,0)3 f] which, up to constants, gives a’(0,0)*0%0 that,
after plugging the explicit expression for 6, yields the predicted constant j’é—z.

Clearly provided suitable changes, proceeding in a similar way we can understand which
kind of parts of the operator we are dealing with we have to involve in order to obtain j‘é—i as a

coefficient in front of the first derivative-dependent term. We will skip details in this case.

As already mentioned, our work is concerned with the proof of a uniqueness result, therefore
we are interested in the difference of two solutions of (I1.1.2), precisely, considering v := uj —us,
where u; and uy are solutions of (II.1.2), it is not difficult to see that v satisfies the following
equation:

o + (0 + 0)v + 4’%u1(0x + 0y)v + 4’%((390 + 0y)ugv = 0. (I1.2.7)

This can be seen as a particular case of the following equation
o + (83 + 6’2)2; + a1 (2, y,t)(0x + 0y)v + ap(z, y,t)v = 0.
This means that the linear operator we are interested in is
P =0+ (03 +3) + ar(w,y, 1) (0 + 0y) + aolx,y,t), (I1.2.8)
where ag, a; € L*(R?).

78



Next, we shall extend the result of I1.4 to operators of the form (I1.2.8). Precisely we prove

Lemma II.5. Assume that ¢: [0,1] — R is a smooth function. Then, there exists ¢ > 0,
Ro = Bo(lle' .0, 19"l ol laall,e) > 1 and My = Myl I"]l,c) > O such that the
mequality

3

aex t Q= 046(]}, 7t
W )e(x’y’t)g”LQ(]RQX[O,l]) + ﬁ”e vt)

Rs||€ IValll 22 o,

< Cﬂeae(x’y’t)(at +0p + ﬁs +ar(@,y,t) (0 + 0y) + ao(z, y, t))QHL?(R?x[o,l]) (11.2.9)
holds for R > Ry, « such that o* > M1 R*, g € CP(R? x [0,1]) supported in
{(:v,y,t) e R?* x [0,1]: )% + go(t)f‘ > 1}

and 6(z,y,t) = }% + go(t){‘z = (% + go(t))2 + (% + go(t))z, with » = (x,y) and & = (1,1).

Proof. First of all let us say that we are going to hide the dependence of our functions on x,y
and t.

From the estimate (I1.2.1) of Lemma I1.4, adding and subtracting what is missing, it follows
that

5

5 lle0gll,. + —Heaerwmp
< cl[e®® (0, + 3 + gl 1
< clle® (@ + 02 + 03 + a1(0y + 0y) + a0)gll 2 + clle*®(a1(0z + 0y) + ao)g 1
< clle® (0 + 03 + 03 + a1(0x + 0y) + ao)gll 2 + V2¢| eIV gl 2 llaall 1

+ clle**0gll 2 llaoll -,

where the last inequality follows from the assumption ‘}—}% + ()€ { >1

In order to hide the last two terms on the right-hand side by the ones on the left-hand side it
is necessary first to be handling finite quantities, but this is ensured by our strong assumptions
about g. Moreover, as anticipated in our previous treatise about Carleman estimates, the con-
stants in front of terms in the left-hand side should be sufﬁciently large to allow absorptions of
eventual correction terms. Let us observe that to let ratios R2 and & 2 grow as at least positive
R4 > M, R¢ for some ¢ > 0, that is o® > M;R**¢. We observe
that taking ¢ = 5 we find o? > M, R3, that is our hypothesis, therefore the last two terms can
be absorbed on the left-hand side, yielding the desired result.

power of R, we need to require

Remark 11.5. Our hypothe31s about o, namely a? > M; R3, turns out to be fundamental mainly

to obtain that the term OI‘%Q

without the presence of [|e®?|Vg]||;», we would have had to choose « just in such a way to

grows as a positive fractional power of R. Indeed we observe that
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5

obtain that %—z grows as a positive fractional power of R. In this case, for instance, it would
3

a2

ﬁ.

This means that we could have put weaker hypothesis about the decay of the solution in two
15

distinct times, that is u1(0) — ug(0); ug(1) — ug(1) € L2(e@*+9°)2 T dady).

Unfortunately, the presence on the left-hand side of the term [|e®?|Vg]||,. is crucial, indeed

be sufficient to assume a* > M;R® that clearly is not enough to conclude the same for

we want to obtain from a Carleman estimate for P = 0, + 05 + 03, a similar estimate for an
operator in which the first derivatives appear and since, in order to do that, we apply an “adding
and subtracting argument”, we have the need of a term for the gradient and this influence the
assumption about the decay of the solution. It is here that the form of the operator plays a

role in the decay necessary in the hypotheses. O

Before moving on in the proof of the lower bound estimate, one of the two fundamental
groundworks for proving our unique continuation result, we want to say a few words more
about the strict link between the decay assumption necessary to let the continuation argument
work and the form of the operator taken in exam. In order to do that we give mention to the
following three works [29], [22] and [49] (in chronological order) all on unique continuation for
KdV type equations.

Since our work, in essence, represents the two-dimensional counterpart of the one by Es-
cauriaza, Kenig, Ponce and Vega [29], for their result the same observations made above for
commenting on our case hold. Therefore we shall move on the work of Liana Dawson [22].

There the following result was proved:

Theorem I1.5. Let uy,us two sufficiently smooth solutions of
O+ PPu + 10ud®u + 200,u0*u + 30u?d,u = 0, xeR, tel0,1].

If there exists an € > 0 such that

4

u1(0) — uz(0), ur (1) —ug(l) € HQ(e“:”TE dx)
for a > 0 sufficiently large, then u; = us.

Actually, as it is customary, the previous comes out as a consequence of the analogue linear

result for the equation
O + 0%v + ag(z,t)0tv + az(x, )20 + ag(x, 1) 020 + ay (v, 1) 0,0 + ag(z, t)v = 0,

or better, since it is always possible to eliminate the fourth order term by considering w(x,t) :=

as(st)ds the attention was turned to the equation

u(w, y)es B
O + °v + az(x,t) v + ay(w, 1) 020 + ay (v, 1) 0,0 + ag(z, t)v = 0. (I1.2.10)
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Going through the already paved way presented in [29], a Carleman estimate for the leading

order terms of the operator, namely d; + 02, was shown:

1 2 3 2
2 || a(E+et) a2 |l (%) (I > 3
R a R R — t @
_R e =9 L + R2 € R + SO( ) Y L2
5 2 £ 2
I TN N I U
R — t — R - t
+R36 R+<P(> 029 L2+R46 R+¢() Ozg 2
9 2 4 2
o2 al X X al £
+—|le (F+em) (—+g0(t)> g|| <clle (+e0) (@ + )9l 2
R R 12

As in our case, in order to obtain a Carleman estimate for the operator involving the lower order
derivatives, that is d; + 02 + a3d> + a20% + a10, + ap, an “adding and subtracting argument” is

performed. To let this argument hold, since the first lower order than the fifth one that appears
af o3 ot ot
R R RURS

grow as fractional powers of R because, therefore, for R sufficiently large the “error” terms on

is the third derivative, we need to put conditions on « in such a way the ratios

the right-hand side, which come out from the addiction of derivatives up to order three, can
be absorbed on the left-hand side. This entails the restriction o® > M;R**¢ about a which
strongly influences the exponential decay rate assumed about data in the unique continuation
result Theorem I1.5.

Let us observe that also in this fifth order setting, if one considered a differential equation

in which third and fourth derivatives do not appear

O + %0 + ag(x, )20 + ay(x,1)0,v + ag(w, t)v = 0 (I1.2.11)

5 7 9
a2 aZ a2

R I
power of R, then would be enough to assume a weaker condition about «, namely o* > M; R®.

we need to find conditions about « just to guarantee that grow as a fractional positive
This means that in this case a stronger unique continuation result could be achieved requiring
a weaker decay rate for the solutions at two distinct times.

In [19] was proved that this fact holds for a quite general class of high order equations of
KdV type, which includes the KdV hierarchy. Precisely that work is concerned with unique

continuation results for the equation

o + (=)o + P(v,0,v,...,0%0) =0, xeR, tel0,1], (11.2.12)
where n = 2k + 1, k = 1,2,... and P is a polynomial in v,d,v,...,0%v, with p < n — 1.
Of particular interest in that work were the cases p = n — 2 and p < k with n > 5. For

these situations it was proved that if the difference of two sufficiently smooth solutions of the

4

3+e .. .

+ at two distinct times, then u; = uy. Moreover
n

n—1

+  for a > 0 sufficiently

equation (11.2.12) with p = n—2 decays as e
when p < k a similar result was got assuming the weaker decay e™**

large.
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Let us underline that the results in [22] are a particular case of the ones in [19], indeed
equation (I1.2.11) is nothing but (I1.2.12) once it is assumed n = 5 (k = 2), and p = 3 (p = n—2),
instead equation (I1.2.10) is a particular case of (I1.2.12) with n =5 and p < 2.

11.2.1.2. Proof of lower bound

Now we are in position to prove the lower bound.
Before doing that in a rigorous way, we would like to deserve the first part of this section
underlining, for dimension one (just for notational simplicity), that is pretending to be working

with the classical KdV equation as in [29], the main steps which lead to our lower bound.

e In this framework the equation we are delaing with is

O + v + ai(z,t)0,v + ao(x, t)v = 0.

e Let us start from the Carleman estimate that in this simplified setting reads

5
o2

R3

T 2 T 2
ea(ﬁ'ﬂp(t)) < C||€a(§+cp(t)) ((’)3,5 + 62 + alﬁw + ao)g|lL2~

L2

9

Remark 11.6. Let us observe that once the estimate is performed we can neglect terms
on the left-hand side depending on our interests, for this reason in the previous the term

involving the first derivative is missing.

We know that Carleman estimate holds for a sufficiently smooth function g with suitable
additional hypotheses but with no requirement about g to be solution of any equation.
Our next aim is to apply Carleman estimate to our solution v of the KdV equation,
actually to a function which resembles v but for which all the hypotheses required to

apply Carleman estimates are fulfilled.

e We define as our candidate g the following function

X

9(,t) = On(a) (T + () vl )

1 2<R-1 0 z<1 0 tel0,5]u1—1%1]
0 r) = ) xr) = 9 t: ' 2 27 .
i {0 r>R #le) {1 x> 2 #lt) {3 telr,1—r]

Let us observe that if for all ¢ € [0,1] ¢(t) = 0 then Og(z)u (%) = 0, indeed the two

functions would have had disjoint supports.
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With these assumptions about functions into play, g satisfies the hypothesis for the Car-

leman to be applied. It is easy to see that g satisfies

(00 + 0 + 0 + 10, + ap)g

= XBr\Br_1 x[0,1] (020 + Qv +0) + X((. K,%+@(t)|<27te[0,1]}(a§v + 0,0 + v).

Note that the characteristic functions are due to the fact that we have collected in the
first term on the right-hand side terms involving derivatives of g, which are supported
in Br\Bg-1 x [0,1], where |£ + ¢(t)| < 4 instead in the second one, terms involving
derivatives of pu (% + ¢(t)) , which are supported in {(z,t): 1 < |% + ¢(t)| <2, t € [0,1]}.
We observe also that the set Bg\Bg_1 x [0,1] will be the annular domain we want to

work in. The Carleman estimate now gives

5

2
e OV gl < e EHO) s oy (@20 + By + )10

z 2
+ 62||6a(§+@(t)) X{(z,t): 1S|%+w(t)|<2}(aiv + am'U + U)HLQ.

e On the left-hand side we would have our solution u instead of g, in this regards it is suffi-
ciently to observe that for (z,t) € (0, R—1)x[r,1—r], g(x,t) = u(x,t) and }% + gp(t)‘ > 2.

So one obtains s

a:z N -
R36 > < Eet AR (v) + St
3
where in this particular case Ag(v f J w|* + |0,0) + 020 | da.
Br\Br-1

e At the end, taking a = MlR%, assuming R sufficiently large, the lower bound readily

follows.

Now we are in position to give the precise proof of the lower bound in our more general
case, clearly we will follow the steps given above.

For R > 2 let 0 € C®(R?) with Og(v,y) = 1 if /22 +y%> < R — 1 and Op(z,y) = 0 if
V12 +y? > R

Let 1 € C*(R?) with p(z,y) = 0 if /22 +y2 < 1 and p(z,y) = 1 if \/22 +y2 > 2 and
0: R —[0,2v2], ¢ € C¥(R) with

{0 refgoh-sal
olt) = {2\@ telr,1—r],

r] and decreasing in [1 —r, 1 — Z].

: oy,
increasing in [Z 5

29
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As usual we define the auxiliary function

9(e.y.) = On(ey) p (G + (). F o+ o) vy t). (wy) R e [0,1]

It is easy to see that g satisfies

(0 + 2 + 02 + a1(0z + 0y) + ao)g

= u(% +o(b), }% + go(t)) [3@9}3&3@ + 30,0020 + 3620p0,v + 30%00,0 + 005V + 020R

+ a10,0pv + alayQRv]
+ 3R '0r0,pu 020 + 3R 0RO, 1 651}
+ 3R_1[(R_19R5§,u + 20,0R0: 1) 00 + (R_leRﬁzu + 25y6’36yu)&yv]

4 [eRaM ((p/ 4 %) + Ond,p <(p/ 4 %) + R334+ R0 + 3R 20p0,p1

+ 3R 2050, + 3R 20,0002 + 3R*2ayeRa§u]v.

Remark 11.7. Let us observe that since in the first term in the right-hand side of the previous
equation the derivatives of 0r appear, therefore this term is supported in {(z,y): R — 1 <
V72 + y? < R} x [0, 1] where |Z + o(t)€] < 5. Moreover one can observe that all the remaining
terms, sorted with respect to their dependance on the derivatives of our solution v, contain the
derivatives of p, this means that they are supported in {(z,y): 1 < |% - go(t)f‘ < 2} x [0,1].

The next step is to apply Lemma I1.5 to our function g. In order to do that we have to
check if the hypotheses of the lemma are fulfilled.

First of all we want to prove that g is compactly supported. Let us observe that

e if /22 + 32 > R, then we fall outside the support of f, this means that g(z,y,t) = 0.

o if \/22 +y2 < R and t € [0, gl u [l =%, 1], then g(x,y,t) = 0, indeed where ¢ € [0, 5] U
[1—%,1] then o(t) = 0, this gives ’% + go(t)f| < 1, in that case we are out of the support
of (% + ¢(t), % + ¢(t)), therefore g(z,y,t) = 0.

From the previous facts we conclude that ¢ is compactly supported.

Now we need to prove that g is supported in {(z,y,t) € R? x [0,1]: !% + gp(t)f} > 1}. This
is true simply from the definition of g, indeed if |£ + ¢(t)¢| < 1 then p(% + ¢(t), % +¢(t)) = 0
and so g(z,y,t) = 0. Summing up g can be assumed to satisfy the hypothesis of Lemma II.5.
This means that there exist ¢ > 0, Ry and M; such that

5

Qa2 « QU
cﬁ\le 99HL2(R2X[0,1]) < [e*(0, + 03 + 0, + a1(0y + ) + @0) 9|l r2m2x[0,1))- (11.2.13)
Making use of Remark I1.7 it is easy to see that
le*? (0, + 03 + 62’ +a1(0z + 0y) + a0)9ll 2 rexpor)) < 1 e Ar(v) + cp ' A. (I1.2.14)
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We observe that in @ = {(x,y,t): \/.m < 1,t € [r,1 —r]}, the product QR(x,y)u(% +
o(t), % + ¢(t)) = 1, indeed it is not difficult to see that if we are in @, since we are assuming
R > 2, then |% + <p(t)§‘ > /12 > 2 and clearly /22 + y2 < R— 1. This means that g(z,y,t) =
v(x,y,t) in Q.
Using this fact we obtain the following chain of inequalities:
5

5 5

5
Q2 o a2 a Q2 fo a
Cﬁ”‘? egHLQ(R?x[O,l]) = Cﬁ”‘? 99||L2(Q) = Cﬁ”“/’ H'UHLQ(Q) > cozet ||"U||L2(Q)- (I1.2.15)

Using (I1.2.13), (I1.2.14), (I1.2.15) and the assumption |[v[| 5, > ¢ we obtain

5
o2
0—3640‘5 < 1 €2 AR(v) + ¢y e A,

R

therefore .

c—=0 < 1 2 AR(v) + e A.
Taking a = MER% with M; as in Lemma I1.5 we obtain
% ps 21M2 RY
cMPR%6 < c1e” T Ap(v) + cA.

Now if we take R large enough, the second term on the right-hand side of the previous inequality
can be absorbed by the term on the left-hand side, so we can conclude that there exists }NQO >0
such that for R > Ry the following holds

1 3
—21M?2 RZ

Agr(v) = —e

[\

This yields the desired result. O

I1.2.2. Upper estimates

Now we will turn on the proof of the upper bound. Precisely the result that we will prove is

the following.

Theorem I1.6. Assume that the coefficients of (I1.1.9) satisfy ag € L* n L2LJ; and a; €
L® N LiLy;, n LyLy,

zHyt-

Let v e C([0,1]; HY(R?)) be a solution of (I1.1.9) satisfying that
v(0),v(1) € L2(e“(””2+y2)%d1‘dy)
for some a > 0, then there exists ¢ and Ry > 0 sufficiently large such that for R > Ry
o(%)?

kAl -
HUHLQ({R—1<4/a:2+y2<R}><[0,1]) T Z HaﬁfavaL2({R—1<«/x2+y2<R}><[0,1]) S ce

0<k+I<2
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11.2.2.1. Groundwork results

As in [14] we will prove first the following lemma

Lemma I1.6. Letw € C ([0, 1]; H*(R?))nC*([0, 1]; L*(R?)) such that for allt € [0, 1] suppw(t) S
K, where K is a compact subset of R?. Then

1. For A\ >0 and 8 > 0,

M) e 1 (g poy) <MW (0)] p2gay + MW w(L)]] o ey

(I1.2.16)
+ [leNef (0, + 0% + a;’)UJ||Lt1Lgy(R2x[o,l])-
2. There exists ¢ > 0, independent of the set K, such that for § =1 and A = 203
||e/\‘m|€6|y‘Lw||L;o L2,(R2x[0,1])
< (W4 B2 (172 (M w(0) | 2 gey + 172X M0 (1) ] 12 ge)) (112.17)

+ ||6)\|$‘6/8‘y|(at + 62 + az)wHLgchit(Rgx[oJ]),

where L denotes any operator in the set {8x,5y,5§,6§} and J is such that j?](f,n) =
(1+& +12)23(E,m).

Remark 11.8. It’s a very fundamental fact that in (I1.2.17) there is no dependance upon A and
except for the terms involving the data, indeed, as for Carleman estimates, we will need to hide
some correction terms in the right hand side; since A and § will grow as R which is supposed

to go to infinity, we cannot expect to succeed if in front of the norm involving the operator it
will be X\ or 3.

First of all we will need the subsequent notations
Hyp = e (0, + 02 + 8;’)6_)‘956_63" = [0+ (0 = N+ (0, — B)*] - (I1.2.18)

It is easy to see from the previous definition that H) g is defined through the space-time Fourier

transform by the multiplier
i + (i€ — \)? + (in — B)>.
We can define the inverse operator Ty of H) g by the symbol

1
it + (i€ — )3+ (in— )3

mo(§,n,7) = (11.2.19)

this means that

~

jﬂ = m0(€7 m, T)ha

86



where, in order to simplify the notation, we use ~ to denote the Fourier transform F in
S’'(R3). The proof of Lemma IL.6 is based on two previous lemmas, these lemmas express
respectively the boundedness of the operator Ty and (9, — \)¥(d, — 8)"Ty where k,[ are non
negative integers with 0 < k + [ < 2 (actually we need just the decoupled options, that is
(k,1) =(0,0),(1,0),(0,1),(2,0) and (0, 2)).

Lemma I1.7. Let h € L'(R3) with ”h“Lngy(R?’) < 0. Then for all (X, B) # (0,0), moh € S'(R?)

and [mo/ﬁ]vdeﬁnes a bounded function from R, with values in Liy. Besides,
||[m0h]v(t)||Lgy(R2) < ||h||L}Lgy(R3) VteR, (11‘2-20)

where ~ denotes the inverse Fourier transform in S'(R?).

Remark 11.9. Clearly the previous inequality gives the boundedness of the operator 7j indeed,
by its definition, from (I1.2.20) follows that

Proof. First of all we want to write the symbol mg(&, 7, 7) in a more useful way, precisely it is
not difficult to see that the following holds:

—1
T+ a(&,n) +1b(&,n)’

mO(ga n, 7_) =
where
aé,n) == +3EN—n* +3nB* and  b(&,n) = X2 — 3N+ 3% — 3B,

Before going any further we want to quote the subsequent fact about Fourier transform.

Remark 11.10. Our definition for the 1-dimensional Fourier transform is

~ 1 A
fir) = = [ e (112.21)
2 R
Making a straightforward computation it is not difficult to see that, defining
()= —" b0
T) =
g T+ b ’

the inverse Fourier transform of g has this form

\ 2T X(0,+00) (t)@tb b <0,
i(t) = (11.2.22)
—V2T X(=0,0) (t)etb b> 0,

where, as usual, for a set A, y4 denotes the characteristic function of A.
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Considering the translation by the real number a of g, that is defining G(7) = g(7 + a),
from (I1.2.22) and the property that the translation in the moment space is a multiplication by

a phase factor in the position space and vice-versa, in other words

gl +a)(t) = e g(1),

one has

g V2T X(0,400) (D)€ b < 0,
G(t) =
—V27 X (—op 0y (E)ePe™ b > 0.

With the previous remark in mind we can say that for a fixed pair (£,n) with b(&,n) # 0

and t € R we have

V2T X(0,+00) (£)ePEM e &M b(g ) <0
—V2T X(Co0,0) (t)ePEMem & p(g ) > 0.

Clearly the magnitude of the right-hand side is bounded by /2.
Now we need to compute the quantity [mo(é‘, , -T)?L(f’, n, -T)]VT(t).

[m0(§7 7, T)] VT(t) =

In order to do that we recall that under our definition of the Fourier transform (I1.2.21) and

its inverse, the following property holds:

ACEyAT

moreover using that h=h , one easily obtains

[mo(&,m, )R (€., )] 77 (t)
M6, )] () * sy, ) (€, )
V2or

1 o a
N \/_Q?J [m0(§777= T)] (t_8>h(‘$7'y78) y(éﬂ?) ds
$z. X(0.400) (t = 8)emWEmeili=s)al&mp (., ., 5)~ (¢, m)ds  b(E,n) <0,

= $. Xy (t = 8)elmEM e meEmp(. oy 5) (€ ) ds b(E,m) > 0.

Let us observe that for (X, 5) # (0,0) since the set {(£,1): b(&,n) = 0} represents an ellipse, it

has measure zero in R?, this gives, by applying Plancherel’s formula and Minkowski’s integral

inequality, that for all t e R
1m0l ] ™ Cas ys )l 2, r2y = [lmol] ™" (s ons )l 2 (g2 < f 175 s o $) 2 w2y
z n R, &n

= [|A (2, Y 't)HLngy(ﬂ@) < ©.
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As previously anticipated, we are going to prove the boundedness of the operator (0, —

NE(0, — B)'Ty. precisely, we will prove the following lemma

Lemma IL.8. Let h & L'(R?) with |||, 2 (R®) < co. For > 1, A > 28, k,1 € {0,1,2}, and
0<k+1<2 let

My (&,m,7) == (i€ — X)*(in — B)'mo(&,n,7),

with mo as in (11.2.19), the symbol associated with the operator (0, — \)*(d, — B)' Ty. Then
mkylﬁ € S'(R3) and

[[[ru,ih] V(t)HLgOLfy(RS) < HhHL;L;jt(RS)'

Remark 11.11. As in Lemma I1.7, from the previous inequality we can conclude the boundedness

of the operator (0, — \)*(0, — 8)'Tp, indeed it is a trivial consequence that
110 = X (@ — B) Tolhll o2 sy < CllP a2, -

Proof. We will only consider the case k = 2 and | = 0. Since the proofs of other cases are

similar, for brevity, we will omit them. First of all let us note that

—i(€ +iN)?
[(§+iA)*+ (n+iB)* — 7]

Defining v := £ + ¢\ and w := n + i we can re-write the preceding as

mao(§,n,T) =

—iv?

mao(§,n,7) = P p——

The polynomial P(v) := v® + w? — 7 has got, as a multiple root, just v = 0, but since under
our hypothesis v is always different from zero, we can assume P(v) not to have multiple roots.

This allows us to use the following decomposition in partial fractions

; 2

> > —i 1 —i
Z v—% Z 3(& — R(vy) +i[A - J(v;)]):ggﬁ%(nﬁ)“bj(nﬁ)

where v;, j = 1,2,3 are the different roots of P,a;(n,7) = —R(v;) and b;(n,7) = A — (v;).
Moving on as in Lemma I1.7, that is using the Remark 11.10, for a fixed pair (1, 7) such that

b(n,7) # 0, making use of the linearity of the inverse Fourier transform we have

V2T X (0,4 ()™ D= (0T) (1, 7) < 0,

CLYE V2 Xy (@) D) (1) > ).

[mao(-e.n,7)]7¢ (2) =

Clearly the magnitude of the right-hand side is bounded by /2.
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Let us observe that the set {(n,7): S(v;) — A = 0} has two-dimensional measure zero.
Therefore using similar computations to those performed in Lemma I1.7 we get that for all
relR

2 0h] (2, . )l 12, 22y = [[m20h] ™ (@, 0, o)l 2 ey < fR 1B (2, o) | 2 ey
= [|h(-z: -y, 't)||L;L§t(1R3) < L.
O

Now we are in position to prove Lemma I1.6. Even if the proof of this lemma is similar to

the one for the corresponding result in [14], we will provide it for sake of completeness.

Proof of Lemma II.6. The proof of (I1.2.16) follows from Lemma II.7 and the proof of the
estimate (I1.2.17) follows from Lemma I1.8. We only prove the estimate (I1.2.17) for
L= 2?2

For € € (0,1) let 7. be a function in C§°(R) of the time variable ¢ such that 7.(¢) = 1 if

t €[2e,1—2¢], suppn. < [e,1—¢€], 1. increasing in [e, 2¢]| and decreasing in [1—2¢,1—¢].
Let us define for all t € R

we(t) := n:(t)w(t),

where with an abuse of notation w represents the extension of w which is identically zero
outside [0, 1]. We define

he == e e (0, + o3+ 62)105,

then, more explicitly

he = nle*ePYw + hy, (I1.2.23)

where

ho 1= n.e e (0, + 02 + anw.
It is not difficult to see that h. can be re-written as
h. = [e“eﬁy(at + 02+ 82)6‘”6_/33/]6’\’36’891(18 = H,\”g(e’\”eﬁng).

This means that

ey, = Tyh, = [mof?a]v.
Now we consider e*®e® 02w,. It is easy to see that
PP, = (MY 02 e e ) e M eV, = (0,—N)2e eV w, = (0,—N\)*Tohe = [mgpf;]v.
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From the previous identity and (I1.2.23), one gets

Az By A2 _ R N
le**e axweHL;OLgt [[mz,0he] HL;Cth /\ A (11.2.24)
< I (o)lmao(mee™ e™w) ™7l oz + [mzoho] 7l -

First of all let us consider the second term on the right-hand side, using the hypotheses

of Lemma I1.6 we can apply Lemma I1.8 to hg, this gives
Ima0h0] "l e 12, < llholl Ly r2, - (I1.2.25)

Now we need to provide an estimate for the first term on the right-hand side of (I11.2.24).

Using our definition of my (£, n, 7) we get

”X[O,l]('t)[m2,0(nz{:e)\xeﬁyw)/\]v”LgOLgt = X, (o) [ (€ + i/\)2m0(U;€Ameﬁyw>A]VHLgpLgt

AN v

= [Ix10,11(-¢)[m09] HLgOng

where § = — (£ +i\)?(nle*ePw)”.
For a fixed pair (y,t) € R? one has

A~

X011 (&) [mog] ™" (¢, y, 1) || 2

(¢ + 0 X0 (D[mo (e e™w) 177 (¢, y, 1) | .

N

X1 [M0g] oy, )l = (11 + (£)*)

=11+ ()

N|=

Since

3
2

L+ 2 +iIA?<(1+)2(1+E+ 22 < (1+D)2(1+\2)

we obtain
Ixt0.(D)[m0g] s w5 )l gy < (1 + N2 X011 (D) [mo(nfe*e™w) 17 (9, 0)]| 2.

Remark 11.12. We emphasize that here J> denotes the operator defined through the

Fourier transform just in the x variable by
T29(6) = (1+€)23(8).

Now, using that H!(R) < L*(R) we have

A AT~

X018 [m0g] ™ (2, y, )| < ellxpo.y (O)[mog] (o, v, )l g
< c(1 + M) xq0.0 (0) [mo(nie e w) "1 (o, y, 1) 15
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Therefore, for x € R, by virtue of Lemma II.7 one obtains
X011 COlmogl™ (@, -y, o)llz2, < e+ M) TEx g (o) [mo(nle**e™w) ]| 2
13 [mo (e e w) "] || par a
101+ (o) + ()2 oo e™) Ty
L 02) oo (X)) T | g

< c(1+ M) LT (e w)l| s

< el + )2

=cC

( )
( )
<c(1+ M%)
(1+A%)
(1+X%)

(11.2.26)

Now plugging (11.2.25) and (I11.2.26) in (I1.2.24) and using the explicit definition of hy, it
follows that

|‘€M€Bya§ws||L;OL§t <c(l+ /\2)||77;J3(€/\meﬂyw)||Ltngy + [[nee e (0 + 05 + az)wHL,{,ijt'
(11.2.27)
First of all we want to prove that the left-hand side of (I1.2.27) goes to ||e** e 2w || Ler2, 3
e tends to 0F. Since by our hypotheses we are assuming w(t) to be compactly supported
without loss of generality we may suppose suppw(t) < [-M,M] x [-M, M] for all
€ [0,1]. Making use that 0?w(t) € H*(R?) — L*(R?), we get

e e 02w, — e’\zeﬂyyw”LmL?
=%mpjf e (6) = 10,y t) dy ]

< e MM Pwl| oo 132 2 ( 2M% f dt+J dt 7 ot 0.

With respect to the first term of the right-hand side of (I1.2.27) we can show that

rl
2T (e w)ll 1y 2 = )y L (O (™)) ], dt

r2e l1—e

= | (&) T (X e™w(t))l s, dt—fl ) (&) T (X e™w(t))l,, dt
r2e

:J n;(t)(HJ3(e”eﬁyw(t))HL%y — HJ3(e”eﬁyw(O))|\Lgy) dt

£

(w02,

—ﬁﬁmwmﬁwmwwmm%—w%ﬂw%umwgﬁ

—2e
+ (|72 (e e w (1))l s,
since e*efw e C([0, 1]; H3(R?)), it is easy to see that

e—0t

I T3 )y ga. = [T (O))] g, + 7™ w(1)) s,
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Now only the estimate of the second term of the right-hand side of (I1.2.27) is missing.
Taking into account that suppw < [—M, M| x [-M, M] x [0, 1] and using the dominated

convergence theorem we can conclude that

e—07T

T 1
(e = 1)eXe? (0 + 03 + F)wll a2, < (2M)ZM M| [(n = 1)(0, + 02 + F)w] 12 —— 0.
Putting all these estimates together and using 5 > 1 we obtain

HexxeﬁyangLgOth <c(\? + ﬁz)(HJg(e’\weﬁyw(O))HLz + HJS(e/\xeﬁyw(l))HL'Z) (11.2.28)
+ |le*eY (6, + &3 + 5§)w||L;L2t' B

In order to conclude the proof we need the following remark.

An equivalent way to write the estimate (I1.2.17) is the following

[l e ]| ey <e(N* + B2) (17w ()] 2 + (|7 (7w (1)) 2)

for j e {—1,1} and k e {—1,1}.

We have already proved the former estimate for j = £ = 1. Our aim is to show that the

other cases follow in a similar way and so omit them.

The first step we have to perform is to modify the definition of the multipliers mq and
my,; considering, instead of (i§ — A) and (in — (), the other three possible pairs: (i§ + \)
and (in+ ) if we want to estimate ||e*’\me*ByLw||Looth, (i€ + ) and (in—f) if we want to

estimate He‘”eﬁyLwHLmth, (<€ — A) and (in + ) for the estimate of He)‘a’e_ByLwHLszt.
z My T Ty

Since in order to prove (I1.2.28) we strongly used the estimates in Lemma I1.7 and I1.8,
we would like them to hold also for the modified versions of mg and my; written above.
But one can easily see that this is true just retracing the proof of the two lemmas with

the new definitions. This concludes the proof of our lemma.

As for the Carleman’s estimates, our next step is to extend the estimates (11.2.16) and (I1.2.17)
in Lemma I1.6 to operators of the form (II.2.8).

More precisely we are going to prove the following result.

Lemma I1.9. Let w e C([0,1]; HY(R?)) n C'(]0, 1]; L*(R?)) such that for all t suppw(t) < K,
where K is a compact subset of R2.

Assume that ag € L® n LZLY and ay € L® n LELY n L,LY%, with small norms in these
spaces.
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Then there exists ¢ > 0, independent of the set K, such that for =1 and \ = 203

A A k Al
e lx‘emylw”LQ(RQX[O,l]) + kZz e ‘x|eﬁ|y|axayw”Lg§L§t(R2><[0,1])
0<k+I<2

< ¢\ + 82) (| PPl (0) | pogey + 172 (P w (1)) 12 g2 )
+cl| MNP0, + 03 + 03 + a1 (0, + 0,) + a0)wll iz nrir2, ey (11:2:29)

holds.

Proof. From Lemma 11.6 and using the fact that ||| j2me 1)) < [llz2 12, ®exo,1): it follows
I Ty ’
that

[N hwl] o < (NP (0)] 1 + [ (1)) 12
+ |t (0, + 03 + 03 + a1(0, + ) + ao)wl|pazs,

+ ||leMelefl(ay (0, + 0,) + ao)wl|prpz , (11.2.30)

and

Alz| Blyl
[e**le Lw”Lg@th
< (W + B (172 (e M () 12 + (|72 (M Who(1))]] )
+ ||l (o, + 3 + Oy + a1(0y + 0,) + ao)w”L&Lit
+ ||l eNelePll (ay (0, + 0,) + ao)wllp e - (11.2.31)
Ty
We are interested in considering the last terms in the former estimates.
We first see [[e*e (a1 (0, +0,) + aO)wHLngy using that ||'HLngy(R2x[0,1]) < ||'||L2(R2><[0,1])7
we easily obtain
el (a (0, + 0,) + ao)wll gz,
< [le*e (ay (0, + 0,) + ao)wll .

< Naall e 110, + 0 )wll e 2, + ol e M| .

Let us consider now ||e**efW¥!(ay (0, + 0,) + ao)wl| 1 72 , making use of the Hélder’s inequality,
zHy

one gets

Azl Bl

€412 (012,42, +a0)w 1y 2, < Nl e €M (@442, )0 2, ol s XMW .

Plugging the previous estimates into (I1.2.30) and (I1.2.31) and summing them together we

94



have

||6A|””‘eﬁ‘y|w||L2 + 2 ||e*|’”|ef’|y|8’;8;w||w 2,
O<k+I<2
< (W + B ([ w(0)] 2 + |7 (X Mw(1))]] )
+ ||eMelePl (o, + 03 + 0y + a1(0n + ) + ao)wllpypz ~p1re

Ty xyt

Nzl 61yl

+ ||CLO||LOOngL;Ot||6 w2

+ HalHLgLﬁnL;L;ot||6Mw|€5ly‘(3w + ay)w”LgOLit‘

Under our hypotheses about ay and a; we have

JXe ]+ 3 MGl b,

0<k+1<2
< c(X + 87 (72 (e Mlw(0)) ]| 2 + (1% (N e (1))]] )

4 ||e>\\x|65|y|(@t 4 é’i + 6;’ + a1(0y + 0y) + a())wHLtlL%ymLiLit

1/ i
+§<||e’\‘ MWl + Y e 'eﬂ‘y'a’;a;wuw%t). (I1.2.32)

O<k+I<2
Hence, absorbing the last term on the left-hand side, we have

He)\|x\e/3‘y|wHL2 4 Z He)‘|“|e'3|y|(9’;agl/w”Lg° L2t
0<k+I1<2 '

< (W + B (172X w(0)) | 2 + || (e (1))] 2)

+c|l el (o, + 02 + 03+ ar(0y + 0,) + aO)wHL%L%yﬁLiLit’
which yields the desired result. 0

Remark 11.13. Although we have assumed w to be compactly supported, it is clear that the
argument in Lemma I1.9 can be extended to a larger class of functions. Indeed the only we

have to ensure is the finiteness of the norm
A A k Al
||€ |x|€6|y|u’]||L2 + Z ||€ ‘xleﬁly‘axaywHLgc L%t
0<k-+1<2 )

in order to be able to perform, without contradictions, the same computations as in the es-
timate (I1.2.32). We will see in Section 5 that there exists a class of solutions w = w(x,y,t)
of (I.1.9) for which the previous norm is finite. This fact enables us to extend for this kind of

solutions the a priori estimate (11.2.29).

Now we are in position to prove the upper estimate Theorema I1.6 for solutions of (II.1.9).
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11.2.2.2. Proof of upper bound

We construct a C* truncation function pp with pg(z,y) = 0if /22 + y? < R and pg(z,y) =1

if \/22 +y?2 > —362_1.

Let us define
U)(.’L’,y,t) = HR(JUa y)?)(l’,y,t)-

Now we want to see what kind of equation is satisfied by w. It is easy to see that, since v is a
solution of (II.1.9), the following holds

(615 + ag + ag:j + &1(xay?t)(aﬂ€ + ay) + a()(xayat))w = eR(xayvt)a

where

er(x,y,t) =02 upv + 302 R0V + 30, R0V + ﬁz’,uRv + 38§u36yv + 3@,;@851}

+ a1(x,y,t) 0 v + a1 (z,y, )0y prv.

Substantially this means that our function w solves an equation like (I1.1.9) but with a correc-
tion term eg. As a next step we want to apply Lemma I1.9 to our function w. First of all we
need ag,a; to have small norms, therefore we introduce px such that g pr(z,v) = pr(x,y),
and @; := a;(z,y,t)fig with j = 0,1 have small norms in the corresponding spaces for R > R,.

Let us consider the operator
L:i=0,+0+ 0 +0,(0, + ) + o, (11.2.33)
Now we are in position to apply (I1.9) with the operator L. This gives

leXe ]+ 3 MGl g,

0<k+I<2
< (W + B (172 Mw(0)) | 2 + || 7 (e (1)) 2)

Az
+c|le \65\y|eRHLtngynLg15L§t. (I1.2.34)
Remark 11.14. With an abuse of notation we have called € as e, where €z would be

er(z,y,1) =02 urv + 302 UR0,v + 30, prd%v + 52,uRv + 36§u36yv + 3@;%651}

+ @1 (x, Y, t)Op v + a1 (2, y,t) Oy prv.

For A > 2, let

We consider the term ¢ (A2 + 82)||J3(eM*lefWlw(0))]] .
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Since w is supported in the set {(x,y,t): v/22 +y> = R, t € [0,1]} and using that the ug

and its derivatives are bounded by a constant independent of R, it follows

c (N + B w(0))]| 2 < e X (e Maraw(0)] .

0<k+I<3

<eA Y [l akalw(0)]|

0<k+I<3

<ceX Y [Pkl v(0)]|

0<k+I<3

L2(y/a?+y?>R)
22 (/2 +y=R)’

Now we want to choose \ in such a way to obtain in the right-hand side of the previous estimate
the weighted norm of v(0) with the right exponential weight. Let
)= 4aR3
S 36R—1
We will use the following inequality, the proof of which easily follows applying the classical

young inequality:

(|z] + bly]) < \/:)32 +y2V/1 + b2

1
Nl + 8yl = A (1o + 2) < avaz v gy 141

Using the explicit expression of A\ we have

4aR
Az|+ Bly| < %R 1 1+ - \/1‘2-1-3/

For R sufficiently large depending on a it can be seen that

This gives

3
ASelel+8lyl <3§;;—R21>56§51§71 V I+ A 224y Caeg (z +y2)%’ for /22 +9%2 > R.

Using the previous estimate one has

o + 8| O < o D e 0O gy

0<k+I<3

Let us recall that under our hypothesis v(0) € L2(e®**+¥°) d;z:dy) this can be rephrase saying
that

3
(2 +y?)4

v(0)]| 2 (11.2.35)

le

is finite.
Using an interpolation argument and the finiteness of (I1.2.35), it can be seen that the
a 4 . .
quantity [|e3@* ¥ okaly(0)]],. is finite .

Getting down into details, the following interpolation result can be proved.
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3
Lemma I1.10. For s > 0 and a > 0, let f € H*(R?) n L?(e*®* )7 dzdy). Then, for 6 € [0,1],
“ 3 B a(y 3
|70 E R ) o < CUT I NeE 0 e,
for C = C(a,s).

Observe that by our hypotheses v(0) € LQ(e“(’”Q*yQ)%dxdy) and v(t) € C([0,1]; H*(R?))
3
hence Lemma I1.10 with s = 4 and § = 1 ensures that ||e%(x2+y2)zi§’;§iv(0)||Lz is finite.

Using this fact we obtain
c (N + 8|13 (M ePlaw(0)) ] 12 < ca- (I1.2.36)
A similar argument shows that
c (N2 + B2 || 3 (MNPl (1))]] 12 < ca. (I1.2.37)

It remains to bound the third term in the right-hand side of (I1.2.34).
Since ep is supported in Qp := {(z,y,t): R < /2% 4+ y? < 36RT_1, t € [0, 1]}, we find that

36R—1
Heklw\eﬁ\yl e +08)

5 |lerxan HLtngyngchgt

N

eR“LtlL%ymL}cLit

36R—1
< eI (o] + 120 + 10,0] + 1020] + (020D Xel 1z, nrs i,

36R—1
8 7

< cR3eO+P)

(11.2.38)

where in the last inequality we have used Holder inequality and the fact that the area of the
region (1 is of order R.

Summing up, using (11.2.36),(11.2.37) and (I1.2.38) we have

MWl , + Z IIeA‘x'eﬁ'y‘é’;ééwlngc 12, < Cat cR2 VAT < o R3O+H)

0<k+I<2

Defining D := {(36R — 1 < +/22 + y?> < 36R} x [0,1], we observe that Dp  {y/22 + y? >

R} x [0,1], the set in which w is supported, observing that in D we have w = v, one obtains

36R—-1
8

MWl o+ > NP AR v oy
0<k+I1<2
< R% (He)\lx‘e’g‘yleLQ + Z He/\meﬁly'aiaﬁ/wHL? L2t)
0<k+I1<2 '

36R—1
< cgReMA 5

If \/22 + y2 = 36 R — 1, then



Moreover since A > 2, one gets

36R—1 36R—1 1, 1\36R—1 2

This means that

3 3
(20R? (HUHLQ(DR) + Z Hé‘i@évHLz(DR)) < e etf?
0<k+l<2

Making explicit the expression of the set Dpg, the previous can be written as
k Al
”U“LQ ({36R—1<\/12+y2<36R}x[0,1]) T 0 ;q“aﬁyvllp ({36R—1<\/m2+y2<36R}x[0,1]) S G !
<k+l<

or equivalently

k Al
1902 (oreymrmemeton) * | 20 1500 (oreymmmamennn) <

0<k+I1<2

which yields the desired upper bound. ]

I1.2.3. The persistence properties

Even if we would have all the tools to prove our result Theorem I1.3 (which gives quite straight-
forwardly Theorem I1.2), taking in mind Remark I1.13, we actually need to clarify some more
details.

As already mentioned, in order to obtain the fundamental tool, that is Lemma I1.9, for
proving the upper bound expressed in Theorem I1.6, we assumed the solution to satisfy the
overabundant hypothesis of being compactly supported.

We underline again that the only hypothesis one has to assume in order to let the argument
in Lemma I1.9 work is the finiteness of the norm

1N e | Lo 0,17y + > ||GMI‘eﬁ‘y@ﬁ%uant(wx[o,1])- (11.2.39)
0<k+l<2

For this purpose we will prove that a solution u of (II.1.2) satisfies a kind of persistence
property (in time) (we recall that, in general, a persistence property in the function space X
means that the solution ¢ — u(t) describes a continuous curve on X, that is, u € C([0, 1]; X)).
More precisely we will show that if a solution of the symmetrized ZK equation is such that at
two different times ¢t = 0 and £ = 1 has exponential decay, then the solution presents exponential
decay for every t € [0, 1].

Getting down into details we will prove the following result

Theorem I1.7. Letu € C[0, 1]; HY(R?))nC ([0, 1]; L*(R?)) be a solution of the equation (I1.1.2)
such that for all 8 > 0, u(0),u(1) € L?(2#1#1e28W dxdy). Then u is a bounded function from
[0, 1] with values in H3(e*1*1e28W! dzdy) for all 3 > 0.
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Proof. First of all we recall the following useful result (see Theorem 1.3 in [13]) concerning the

decay preservation property for solutions to the ZK equation.

Theorem I1.8. Let u € C([0,1]; H4(R?)) n C([0, 1]; L*(R?)) be a solution of (IL.1.1). If for
all B> 0, u(0),u(1) e L?(e?*e28Wl dxdy). Then u is a bounded function from [0, 1] with values
in H3(e?P11e28W! dxdy) for all B > 0.

Remark 11.15. Even if our preservation property have to hold for solutions of the symmetric
version of the Zakharov-Kuznetsov equation that, roughly speaking, seems to resemble more
the behavior of the KAV equation than the ZK’ one, the aforementioned result for ZK turns out
to be worthy for our purpose if one reminds that in the way to pass from the non-symmetric

ZK to the symmetric one what we exploited was just a linear change of variables.

We will make this remark more precise in a moment.

We consider the following change of variables:

/ . x+y
= pr+ A =
a Y and its inverse 2
y' = pr — Ay, y=2_"Y
2\

where p = 4=5 and \ = \/§u = \/§4*%.
We underline that the second one led us to pass from equation (II.1.1) to (I1.1.2).
We define
u(t,x,y) = u(t, ', y") = ult, pz + Ay, px — \y).

A straightforward computation shows that 7 solves the Z-K equation
Outl + O30 + 6;,;65& + ud,u = 0.

Since u(0, z,y) € L?(e*1*1e28W! dxdy), then u(0, px + Ny, pux — \y) € L?(e?Plra+ vl e28lne=2l qady)
(clearly the same holds for ¢ = 1 instead of t = 0). This guarantee that

(0, z,y), (1, z,y) € L2 (2Pt wl2Blue=2vl qa.qy)).

Since we want to apply result 1.8 we need to ensure that for all 8 > 0, we have @(0),u(1) €
L2<€25|z‘e26|y‘ dxdy)

Recalling the parallelogram law in an Euclidean space, that reads
|z +y]* + |z —y> = 2z + 2y, for all z,y€R, (I1.2.40)
and making use of the following trivial inequalities
a+b>(a®+)2, a+b< V2 + b2, (11.2.41)
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for all a,b > 0, it is easy to obtain

!+ M) + = M| > (' + Mg+ e = M/ D)E = 2P + 202y ?)3
> v/2min{y, )\}(|$/|2 + |y’|2)%
> min{yu, A} (|2'] + [y']).

This guarantees that %(0),%(1) € L?(e*1*le2W! dxdy), where we defined v = min{u, A} 5.

Now we can use the decay preservation property for Z-K, Theorem I1.8, and obtain that ¢t —
i(t) is bounded from [0, 1] with values in L?(e*1*le>W¥! dzdy). This fact re-phrased in terms of
u(t,z’,y") gives that u is a bounded function from [0, 1] with values in L%ezﬂ%lezv‘%‘ dx'dy’).
Now, using again the parallelogram law (I1.2.40) and the two trivial inequalities (11.2.41), we
get

24

v y‘ R min{% %}ﬂx oyt —y)h = min{i, %}(w oyt
> min { o (o] + )

21" 2\

From this follows that ¢ — u(t) is bounded from [0, 1] to L?(e?ymintmA}z'|g2ymin {ﬁ’%}w/'d:p’dy’),
and using the explicit expressions for A, and v we obtain that the boundedness holds from
[0,1] to L?(e?1%1200Y | dg’dy), where 6 = z—i < 1. Since this bound holds for each 5 > 0, at
the end we can conclude that for all 8 > 0, u(t) is a bounded function from [0, 1] with values

in L2(e?P1¥12819' 1 da! dy').

In order to conclude we need another interpolation’s type result.

Lemma II.11. For s > 0 and 8 > 0, let f € H*(R?) n L?(e2%1#1e2W dxdy). Then for any
6e(0,1),

|79 (OO £) | o < Y| f ol f 20 (I1.2.42)
Since the already proved boundedness holds for all 5 > 0, and, on the other hand, u €
C([0,1]; H*(R?)), we can apply the interpolation inequality (I1.2.42) with s = 4,6 = 3, to con-

clude that ¢ — u(t) is bounded from [0, 1] with values in H3(e?*1*le28W! dady), which completes

our proof. O

As we already mentioned the proof of our main Theorem II.2 follows as a consequence of

Theorem I1.3. Therefore we provide the proof of Theorem II.3 first.
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11.2.4. Proof of Theorem I1.3

If v #£ 0 we can assume after a possible translation, dilation and multiplication by a constant

that v satisfies the hypothesis of Theorem I1.4. This means that for R sufficiently large
3
Ar(v) = cpe™ 2. (11.2.43)

Moreover applying Theorem I1.6 we can say that

(S

kAl o2
HUHLQ({R*1<\/W<R}X[OJ])+ Z Hazay””m({mk\/W<R}x[o,1])<06 ()

0<k+I1<2

It is easy to see that the left-hand side of the previous expression can be bounded from below

by the quantity Ag(v), this gives

a
-&R

Nl

Ag(v) <ce (I1.2.44)

If one assumes a > ag := 6%c;, combining (I1.2.43) and (11.2.44) and making R tends to infinity
we get a contradiction.

Therefore v = 0 and Theorem I1.3 is proved. O]

11.2.5. Proof of Theorem I1.2

In order to prove our main result, Theorem I1.2, we just need to show that Theorem I1.3 applies
when we consider as v the difference u; — us of the solutions.

First of all we have already shown that if u; and wus are solutions of (II.1.2) then the
difference v satisfies

Orv + (05 + 00)v + a1(0y + 0,)v + agu = 0,

where
ag = 4’%(633 + 0y )u and a; = 473w, (I1.2.45)

As one can see from the statement of Theorem II.3 no smallness conditions about ay and a;
are assumed to hold. Indeed Theorem II.3, in order to be proved, needs the upper bound
presented in Theorem I1.6. Retracing the proof of Theorem II.6 one can notice that the reason
for which no smallness assumptions are requested, relies on the following fact: we introduced,
in no way explicit, the auxiliary function /i in such a way fira;, for j = 0, 1 have small norms
in the corresponding spaces for R sufficiently large as requested for proving the preliminary and
fundamental estimate (I1.2.29).

Now we want to make this choice more explicit, precisely defining

ﬁR<$7 y) = X{(x’y):\/mzR} (ZE, y)»
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we will see that under this definition, figa; for j = 0,1 have small norms, where a; are as
in (11.2.45).

For this aim, proceeding as in [14], we use the following interpolation result (see [72]).

Lemma I1.12. For s > 0 and a > 0, let f € H*(R?) n L2((1 + 2 + y?)*dxdy). Then for any
6e(0,1),

177 (1 + 2% + )5 )l e < CIT fllza (L + 2%+ 92) 3 f2" (I1.2.46)
for C = C(a,s).

Applying (I1.2.46) with s = 4,a = % +ecand 0 = i + 1%.8 with € as in the statement of the

theorem, we have that
3, 1(1te, 1(ag, _
7 (1 a2 4 g ) < OG0+ 2 3, 2

where € := § — %52 > 0.

Applying (I11.2.47) with f = a; = 4*%u1(t), from our hypothesis about the solution u; and
from the embedding H'*1%(R?) — L*(R2) n C(R?) we obtain
c
(1 4 22 + y2)2(+e)’

ur(z,y, )] < (11.2.48)

for all (z,y,t) € R? x [0, 1].

Since 1+ 3¢ > 1, the estimate (I1.2.47) is also true for J! instead of JUEE with f = 472w,
using the product rule for the derivatives we obtain that ||(1 + 22 + y2)2 (0473, uy(t) 22 (r2)
and ||(1 + 2% + yg)%(”el)éf%&y'@(t)HLQ(RQ) are bounded function of ¢ € [0, 1]. This let us ap-
ply (I1.2.46) with f = 4730,us(t) and f = 4_%(3yu2(t), s=3,a=1+¢ and 0 = 3 + &, with
g9 > 0 small to obtain
7155 (1422 42 a0 2 < O @) a0 +22 +47) ) 4 F o) 27
and the same for the derivative with respect to y.

Using this estimate and again the Sobolev embeddings one has

c

(1+a22+y2)5

1475 (0, + 0, )us(t)] < (11.2.49)

for all (x,y,t) € R? x [0, 1].
From (I1.2.48) and (II.2.49) it is easy to see that the following four terms

laoX wyryamrzsmlenzig: 10X @) e lngarg
tends to zero as R tends to co.

This guarantees the validity of the smallness property we need to prove.
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Part 111

Future Perspectives: Inverse Problem for Lamé

Operators

Since the very beginning of my PhD’s career, I came across the mathematical research’s field

related to inverse problems. Roughly and generically speaking,

An inverse problem is the process of reconstruction from a set of observations their

causal factors that usually cannot directly be observed.

As far as we know the first formulation of a problem in this topic was posed in the context
of electricity by A.P. Calder6n in 1980. More precisely, in his pioneering work, the author
introduced the problem of whether it was possible to determine the electrical conductivity of a

medium by making voltage and current measurements on its boundary.

The mathematical formulation of the Calderén problem was as follows. Let 2 be a bounded
Lipschitz domain and let v be a sufficiently smooth and positive function describing the distri-
bution of the electric conductivity within €2; it is well known that a voltage potential f at the
boundary 02 induces a voltage potential u in 2 which solves the following Dirichlet problem

for the conductivity equation

Lou=0
u=f 0%

where Lyu :=V - yVu.
Boundary measurements are defined as the map that takes any Dirichlet boundary value f

on the boundary, i.e. the voltage distribution, to the corresponding outflowing current, that is
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to the term A,(f) := ’yg—:f‘ 2o Where u is the solution to the Dirichlet problem with boundary

data f. In literature this map is known as the Dirichlet to Neumann map.

By view of this we can mathematically re-phrase the Calder6n problem as:
Is it possible to recover v from the knowledge of the Dirichlet to Neumann map A7

Clearly an obvious condition for this recovery to be possible is that the map v — A, is injective.
Therefore, when one is dealing with an inverse problem, the first purpose is to guarantee the
injectivity of A,.

The general strategy under this proposal follows the starting ideas of Sylvester and Uhlmann [88)]

and can be summarized into few steps:

e Reduction to Schridinger equation.

The inverse problem for the conductivity equation is reduced to an inverse problem for

Schrodinger equation. Precisely, if u is a solution to the equation L,u = 0, then v := 2y

satisfies

(—A +q)v =0, (50)
with ¢ = vy~ /2A~Y2.
The corresponding Dirichlet to Neumann map is defined by A,(f) := g—z‘ 2> Where v is

now a solution to (—A + ¢)v = 0 with boundary data f.

It is easy to see that if 7 and 7, satisfy A,, = A,, then, by boundary identification

result, we have A, = Ay, for ¢; = ’y;l/ QA’y; /2 Tn this way the uniqueness problem for the

conductivity equation is addressed to the same problem for the Schréedinger equation.

e [ntermediate identity.

Now if u;, j = 1,2 are two weak solutions to the equation (—A + ¢)u; = 0 and if we

assume that A, = A,,, then a simple integration by parts shows that

L(ql — @)uruz dx = 0. (51)

It follows that one way to show that the potentials ¢; and ¢, coincide is to produce enough
solutions to the corresponding Schrédinger equations such that their product is dense in
some sense.

e Carleman estimates for CGO solutions.
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To this end, Sylvester and Uhlmann provided special solutions to the Schrodinger equa-

tion, known as complex geometrical optics (CGO) solutions, that have the form
uj = (1 4 1y). (52)

Here the complex vectors (; := \(8; + ic;), with «;, 3; orthogonal unit vectors in R? and
A a large parameter, are chosen so that ¢; - ¢; = 0 ( thus ¢’ is harmonic) and so that

elCreei e — b for some fixed frequency k € RY.

Now supposing to neglect the remainder’s terms r;, that is supposing to have just u; =

% from the intermediate equality (51) we would obtain

J (1 — g2)e™  dzx = 0,
Q

which would give the uniqueness via inverse Fourier transform.

Therefore the only part still left is to verify that (52) are solutions and prove that the
remainder’s terms r; go to zero as (; goes to infinity and that this occurs in such a way

the previous identity is fulfilled.
The main tool used to reach this aim is a suitable Carleman estimate. By virtue of my
interests in this topic, I will treat this part more in details.

Let us observe that u; := €'%?(1 + r;) is a solution of (50) if and only if
eI~ A+ @)’ T(1 4+ 1;) = 0,
that is if and only if r; solves
e T~ A + q)e T = —q

So the problem to verify the “ansatz” (52) is diverted to find r; which solves the previous

equation.

Find such r; is nothing but proving that the operator e % %(—A + ¢)e’®- is surjective
or, what is the same with Hanh-Banach Theorem, the adjoint e®i®(—A + ¢)e~%i®. is
injective.

In order to do that, ignoring the imaginary part of the exponent which gives rise to a

phase term that is irrelevant within an LP-norm, we are going to prove the following

Carleman type estimate
c —Aa-z Ao-x
170l 20 < WHe (=A+ @)™ [ 20, (53)
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ITI.1.

indeed this can be seen as a quantitative estimate for the injectivity of the operator
e—Aa-x(_A + q)ez\aw .

Actually, instead of proving directly the previous estimate, one can prove a reduced version

of it: c
170l 20y < W||G_Aa'z(—A)em'z7"||L2(Q)7 (54)

that is the estimate involving just the principal part of the operator. Then (53) is easily

<
Al

as small as we need to absorb eventual extra-terms such as

obtained. This fact is mainly due to the constant indeed by taking A very large we

can make the constant ﬁ

||Q||L°O(Q)||T”L2(Q)‘

To achieve estimates like (54), in essence, as we have already seen in Part II, the main goal
is to obtain a lower bound for the quantity ||e_’\a‘x(—A)e’\a‘xrﬂig(m, this means that we
have to be able to focus on positive and negative contributions coming from the explicit
action of the operator P := e **%(—A)e**®. To this end, it is customary to decompose
the operator P as a sum of its symmetric S and skew-symmetric part A. In our case we

have:
P=S+A S:=—-A—-|A> A:=-2\-V.

Therefore, one has
—da-x a2 2 2
le= (= A)e 22 = ST 720y + 1T ([ 12(q) + [S: Alr, m)12(0).-

The terms HSrHiQ(Q) and HArHiQ(Q) are non-negative, this means that the only negative
contribution could come from {[S, A]r,r)2(q), but, since S and A are constant coefficients
differential operator, then [S, A] = 0. At the end, by virtue of this remark, it is easy to

conclude just by means of Poincaré’s inequality.

Research statement and proposed research

approach

One of my future prospect could be to study, in a deeper way, inverse problems related to

elasticity setting, indeed, even if a considerable interest in this topic is being developed in recent

years (see, for instance, Nakamura-Uhlmann |73, 74, 75|, Eskin-Ralston [33]), the literature

concerning this field is very much less unified than the one in the electricity framework.

The most natural approach to face this problem could be to try to re-adapt the well-oiled

strategy shown above.
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First of all we need a slightly different formulation, that is we have to study the equation
(=A% 4+ qu =0, (II1.1.1)

instead of (50), where —A* represents the Lamé operator of elasticity (I.1.1).

At first sight, a preliminary issue to be considered could be that Lamé operators act on
vector-valued functions, so that the resulting differential models are systems. In this case, as it
is very well known, Carleman estimates are hard to be proved, mainly due to the difficulties in
finding appropriate weights. On the other hand, the Helmholtz decomposition strongly comes
into play in overcoming the problem and also in laying solid motivations to the possible success
of this project. Indeed, using this tool we have already seen that, for any u = up + ug, the

operator —A* acts on u in this way:
—A%*u = —pAug — (A + 2u)Aup,

where the component ug is the divergence free vector field and the component up is the gradient.
This means that there is a deep link between Lamé and Laplace operator and therefore, beyond
technical details that could occur from the no-scalar form of the problem, the resolution should
not be too distant from the one that works for Schrédinger. Moreover, once one has this explicit
action, by virtue of the H'— orthogonality of the two components of the decomposition, it can
be seen that the equation (III.1.1) can be decoupled into two distinct equations involving

separately the two components:

(—A-i—l%)uS:O
(-—zﬁ'+ ! )uP = (.

A+2u

This two equations strongly resemble equation (50) that, we recall, was the starting point of the
powerful machinery under the resolution of the Calderén inverse problem and this fact augur
well for the possibility to obtain meaningful results within the inverse problems’ landscape for

elasticity.
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