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Preface

The bulk of this thesis focuses on two fields that are being deeply investigated both by the
mathematical and physical community, namely spectral theory and unique continuation. Both
these theories are extremely rich and nowadays represent inclusive terms covering a wide variety
of branches of physics and mathematics. More precisely, the first one, in its general meaning,
includes theories which extend the eigenvalues analysis for square matrices to a much broader
class of mathematical characters, for instance, due to their relevance in quantum interpretation,
to unbounded operators in Hilbert space. The second one is concerned with the search for classes
of functions for which the vanishing in a region ensures the vanishing in a larger one, roughly
speaking it is the issue to find the correct analogue of harmonic functions for which the Liouville
theorem guarantees the stated rigidity.

The structure of this document is roughly the following. The main body of work of this thesis
is contained in the first two parts, in which the aforementioned themes are analyzed, specifically
spectral properties for the non self-adjoint perturbed Lamé operator of elasticity and unique
continuation for Zakharov-Kuznetzov dispersive equation are objects of our investigation. Each
part contains an introductory chapter which endeavors to give an overview of the problem in
exam and to clarify why it is worthy of attention. Moreover a time-based analysis, involving
also the recent developments of these matters, is provided in the same chapters. At times
the discussion is chosen to be informal in order to convey the basic underlying ideas. The
concise statements together with their proofs, employing the necessary rigor lacking in the
introductions, are given in the following chapters.

The third part is slightly different, it is not concerned with achieved results but it involves
a future possible project that we would like to deepen. More precisely the prospect presented
takes place in the field of inverse problems in elasticity. The possibility to re-adapt some useful
tools earned to address the problems described in the first two parts has played a relevant role
to motivate solidly this future investigation.
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Part I

Spectral Theory for Complex Perturbed Lamé
Operators

We will turn to the first part of this thesis. It is devoted to the analysis of spectral properties
connected with the Lamé operator of elasticity once it is perturbed by a potential which,
possibly, is assumed to be complex-valued, this will lead our way off the well beaten path of
self-adjoint operators.

In particular we focus on two distinct but intimately related problems that will be treated
separately:

PROBLEM 1. Verify whether the stability of the spectrum, or part of it, occurs
under suitable small perturbations.

and

PROBLEM 2. Produce bounds on the distribution of eigenvalues in the complex
plane, roughly speaking, obtain the correct analogue to Lieb-Thirring inequalities in
a complex setting.

All the results presented are mainly motivated by the deep connection between the Laplace
and Lamé operator that we will clarify later on by means of Helmholtz decomposition.

The results in this part couldn’t have been achieved without useful and encouraging con-
versations with Luca Fanelli.
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I.1.| Introduction

This part is concerned with spectral analysis of operators of the form

´∆˚
` V pxq

acting on the Hilbert space rL2pRdqsd that is the Hilbert space of vector fields with components
in L2pRdq.
´∆˚ denotes the Lamé operator of elasticity which rules the behavior of solid bodies, or

better their reversible deformation, once they are subjected to excitations of various physical
natures.
´∆˚ is a linear symmetric differential operator of second order that acts on smooth L2

vector fields u on Rd, for example rC8c pRdqsd, in this way:

´∆˚u :“ ´µp∆u1,∆u2, . . . ,∆udq ´ pλ` µq∇ divpu1, u2, . . . , udq, (I.1.1)

where λ and µ are the so called Lamé’s coefficients.
V pxq is a notation for the multiplication operator by the complex -valued potential V pxq,

this means that the context we are working in is a non self-adjoint setting.

Notations: In this part the following notations are used:

• Depending on our potential perturbation V be a scalar V : Rd Ñ C or matrix-valued
V : Rd ÑMdˆdpCq function, the notation |V pxq| would represent the standard absolute

value for a complex number or the matrix norm |V pxq| :“
´

řd
i“1

řd
j“1 |Vijpxq|

2
¯

1
2
.

• Since the operator we are dealing with acts on vector-valued functions, we will use
the following for the Lp norm of a vector field u : Rd Ñ Rd: ‖u‖p :“ ‖u‖

rLppRdqsd “
`
řd
j“1‖uj‖

p
LppRdq

˘
1
p , for all 1 ă p ă 8.

• Since treating the first problem only the L2 norm is needed, we will skip the index 2 in
‖‖2 writing just ‖‖. The tradition notation will appear working on the second problem.

• In this part weighted estimates will appear, we will use the notation Lppw dxq for the Lp´
space on Rd with measure wpxq dx, under suitable assumptions about w.

The results involved in this part can be thought to belong to the very relevant domain usually
put under the “umbrella name” of theory of perturbations.

In general all the disciplines called theory of perturbations are based on the idea of
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studying a system deviating possibly slightly from a simple ideal system for which
the complete solution of the problem under consideration is known.

According to this general notion, the ideology under the classical theory of perturbation for
linear operators is as follows.

Let H0 be a self-adjoint operator on a Hilbert space H, then suppose to perturb it,
that is to consider the new operator

H :“ H0 ` V,

with V still a self-adjoint operator.

The main task of the theory is to deduce information about properties of H from the
knowledge of those of H0.

In general there is no reason to expect that H preserves properties of the unperturbed
operator H0, but it is more reasonable to believe that one can manage changes of
these characters if the perturbations are “small” if compared to H0.

Clearly, a first non trivial issue is how to define properly and reasonably a “small”
perturbation.

For our aims, the characters attached to the operator we are interested in are mainly spectral
properties.

We would like to start out with a brief and not comprehensive description on the motivations
that pushed mathematical and physical community to get involved into spectral analysis. In
order to do that we need first to recall some very classical facts arising from quantum mechanics.

According to the postulate of quantum mechanics the state of a physical system is described
by a state vector in a certain Hilbert space which changes depending on the physical system we
are trying to describe. Moreover we recall that if the initial state, namely state at time t “ 0,

of a general system is represented by a reasonable vector ψ0, then at any time t ą 0 the system
is represented by a vector

ψptq “ e´iHtψ0,

where H represents the self-adjoint, time-independent energy operator in the Hilbert space
which is chosen to describe our physical system. Moreover, the state ψptq so defined solves the
Cauchy problem associated to the Schrödinger equation

iBtψ “ Hψ.

The self-adjointness of the energy operator H ensure the well-posedness of the initial value
problem attached with the equation above.
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Just to have in mind a particular but relevant situation suppose we want to describe a
single particle state of mass m “ 1

2
, it is very well known that this is governed by a complex-

valued function of position and time ψpx, tq, x P Rd, t P R, the so-called wave function, which
is a vector of the Hilbert space L2pRdq. Moreover, suppose that the particle moves under the
force generated by a potential function V then the energy operator, appointed to describe its
evolution, is the differential operator

H :“ H0 ` V,

where, in this particular situation, H0 is represented by the Laplacian ´∆.

It is worthy to underline that according to the interpretation of quantum mechanics, the
position of a particle cannot be determined as a definite point x P Rd, in fact with the aid of the
wave function ψ we can just obtain information about its probable location. To be more precise
the quantity |ψpx, tq|2 dx is treated as a probability measure and specifically, it provides the
probability of finding a particle in any space region Ω Ă Rd at time t through the computation
ş

Ω
|ψpx, tq|2 dx. Therefore, the following normalization is required:

ş

Rd |ψpx, tq|
2 dx “ 1.

Of a particular importance are the states described by eigenvectors of the energy operator
H, namely those vector functions ψ0 such that there exists E P R for which the following

Hψ0 “ Eψ0

holds true then, clearly, it follows that the evolved state ψptq “ e´iEtψ0. Since ψ differs from
ψ0 just by a phase factor, it describes the same state of the particle indeed, by virtue of
the postulate of quantum physics, the only relevant quantity attached to the description of
a particle’s evolution is represented by the density of probability |ψpx, tq|2 which does not
distinguish between ψ and ψ multiplied by a phase factor. In other words, if the state of the
particle is represented by an eigenvector of H, then it is time-independent. In particular, the
probability

ş

Ω
|ψpx, yq|2 dx to find the particle in some region Ω Ď Rd is then constant in time.

Therefore, a particle in such a state is said to be localized.
It is thus important to know whether there exist real numbers E for which Hψ0 “ Eψ0 holds

and, if so, how many of such numbers there are, how large they are, where they are located, etc.
This yields the aforementioned interest in spectral analysis and in particular, since several

quantum mechanical systems are described by Hamiltonian of that form, in spectral analysis
of operators of type ´∆` V. Clearly depending on the concrete physical problem at hand, the
Laplacian may need to be replaced by a more general differential operator H0.

Spectral analysis for self-adjoints operators has been intensively studied for several decades.
Unfortunately the generalization of the achieved results in this topic to the non self-adjoint
framework seems to be not that straightforward. Indeed, the lack of spectral theorem and of
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a variational characterization of eigenvalues, among other tools, makes the theory of non self-
adjoint operators more challenging and therefore very much less unified that the self-adjoint
one. On the other hand, recently, there has been a growing interest in this subject, mainly
motivated by the surfacing of increasing number of problems in physics requiring the analysis
of non self-adjoint operators. We refer to [21] and references therein for an overview of different
sources of such problems and in general for a description of methods that have been used to
analyze the spectrum of non self-adjoint operators.

Even though the interest in this field is quite recent, the study of spectral properties of
non self-adjoint operators already has a bibliography especially in the context of Schrödinger
operators and it was precisely the presence of these results for Schrödinger operators that mainly
motivates our work. A deeper understanding of the action of Lamé operator on smooth vector
fields can explain this sentence. Using the Helmholtz decomposition, which is a standard way
to decompose smooth vector fields into a sum of a divergence free vector field and a gradient,
we can see that, for any u “ uP ` uS, the operator ´∆˚ acts on u in this way:

´∆˚u “ ´µ∆uS ´ pλ` 2µq∆uP ,

where the component uS is the divergence free vector field and the component uP is the gradient.
In other words, Lamé operator, up to multiplicative constants, is nothing but the sum of two
Laplacian acting on distinct components of the Helmholtz decomposition. This means that
there is a deep link between Lamé and Laplace operator and therefore, at least at first sight,
this fact augurs well for the possibility that results which can be seen as the proper counterpart
of ones already gotten for Schrödinger could be still meaningful if concern Lamé operator.

With respect to the existing result in the non self-adjoint landscape, since our aim is con-
cerned mainly with two topics, the stability of the spectrum and bounds of eigenvalues, we
limit ourselves to quoting just results regarding these two themes and that moreover were the
main source of inspiration for ours. Let us start with state of the art in the first theme.

PROBLEM 1

Fanelli, Krejčiřík and Vega, in a very recent work [38] improved the state of the art in
the picture of the stability of spectral properties for non self-adjoint Schrödinger operators,
namely H :“ ´∆` V in Rd, with V : Rd Ñ Cd complex-valued potential perturbation.

It is common knowledge that the spectrum of the Laplace operator is purely continuous
and coincides with the non negative semi-axis, in particular, by virtue of the disjoint par-
tition of the spectrum (see Appendix C), this means there are no eigenvalues. For d ě 3
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in [38] it was proved that, assuming for the complex-valued potential a suitable smallness
condition, the point spectrum of Schrödinger operator remains empty.

Our goal has been to obtain a result that represents the analogue for Lamé of the one
Fanelli, Krečiřík and Vega proved in the aforementioned work [38]. In other words, since
also for free Lamé operator the spectrum results to be purely continuos and coinciding with
the positive real line, we want to prove that, under suitable conditions about the potential,
this property is preserved, at least in part, in the perturbed setting, specifically it is proved
that no eigenvalues can occur. The formal statement is the following:
Theorem I.1. Let d ě 3. Assume that λ, µ P R satisfy

µ ą 0, λ ą ´
2

d
µ (I.1.2)

and that V : Rd ÑMdˆdpCq is such that

@u P rH1
pRd
qs
d,

ż

Rd
|x|2|V |2|u|2 ď Λ2

ż

Rd
|∇u|2, (I.1.3)

where Λ satisfies

Λ

mintµ, λ` 2µu

4p2d´ 3q

d´ 2
pC ` 1q `

Λ
3
2

mintµ, λ` 2µu
3
2

4
?

2
?
d´ 2

pC ` 1q
3
2 ă 1, (I.1.4)

and where C ą 0 is a suitable constant. Then σpp´∆˚ ` V q “ ∅.

As a further application of the multipliers technique we have developed to prove Theo-
rem I.1, we are also able to perform uniform resolvent estimates for our operator ´∆˚`V,

which generalize the ones obtained, for the Helmholtz equation, by Barceló, Vega and
Zubeldia in [6].

Precisely, in this regard we consider the resolvent equation

∆˚u´ V u` ku “ f, (I.1.5)

where k “ k1 ` ik2 is any complex constant, with k1 :“ <k and k2 :“ =k, and f : Rd Ñ Cd

is a measurable function and we will prove, for solution of (I.1.5), the following result:
Theorem I.2. Let d ě 3, ‖| ¨ |f‖ ă 8 and assume that V satisfies (I.1.3). Then, there exist
c ą 0 independent of k and f such that for any solution u P rH1pRdqsd of the equation (I.1.5)
one has

‖|x|´1u‖ ď c‖|x|f‖. (I.1.6)

Remark I.1. We remark that the estimate (I.1.6) for the perturbed Lamé operator was
already proved in [4]. On the other hand our integral-smallness assumption on the potential
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is weaker than the one required in that work. Indeed, to be more precise, assuming that
‖|x|2V ‖L8 ă 8, the authors provided the uniform resolvent estimate (I.1.6) for the equation

∆˚u´ δV u` ku “ f,

using a purely perturbative argument, that is, roughly speaking, taking δ as small as needs
in order to treat the term ´δV u as a mere correction.

Actually, in order to prove Theorem I.2 we establish the following stronger result, which
shows that a priori estimates for solutions of (I.1.5) hold.
Theorem I.3. Let d ě 3, ‖| ¨ |f‖ ă 8 and assume that V satisfies (I.1.3). Then, there exist
c ą 0 independent of k and f such that for any solution u P rH1pRdqsd of the equation (I.1.5)
one has

• for |k2| ď k1

‖∇u´S ‖ ď c‖|x|f‖, and ‖∇u´P‖ ď c‖|x|f‖, (I.1.7)

where the vector fields u´S and u´P will be defined in (I.4.10) and (I.4.12) respectively.

• for |k2| ą k1

‖∇u‖ ď c‖|x|f‖. (I.1.8)

From this theorem, as a straightforward corollary, we easily obtain Theorem I.2.

PROBLEM 2

With respect to the second topic, namely finding quantitative estimates regarding the
location in the complex plane of eigenvalues, among others, as it primarily motivated
our result, it is worthy to mention the recent work by Frank [40]. In this paper he was
concerned with the situation of a non self-adjoint Schrödinger operator H “ ´∆ ` V in
Rd, with V : Rd Ñ Cd which is assumed to decay at infinity (at least in some averaged
sense). As in the self-adjoint case, this entails, by mean of a proper generalization of
Weyl’s theorem in the non self-adjoint situation, that the essential spectrum remains stable,
therefore coincides with r0,8q. In a compact form, we say that the following chain of
identities holds: σessp´∆`V q “ σessp´∆q “ r0,8q.We underline that even if the “behavior”
of the essential spectrum does not change replacing real-valued potentials with complex
ones; the discrete spectrum represents more subtle issue, indeed unlike the self-adjoint
situation, in which we have just 0 as a possible accumulation point, in the non self-adjoint
context, since the spectrum is no more necessarily real, we might have positive accumulation
points and this fact makes the analysis of the discrete spectrum less manageable then the
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self-adjoint situation.
In this direction in [40] it was improved the knowledge about the location of those eigen-

values, particularly it was shown that the absolute value of non positive eigenvalues for these
operators can be bounded in terms of Lp´ norms of the potential, in other words a weaker
form of classical Lieb-Thirring inequalities is provided also in a non self-adjoint context.
This and several other previous results in the same spirit share, as starting point in their
proof, the use of the very well known Birman-Schwinger principle which, roughly speak-
ing, permits to re-phrase conveniently the eigenvalue problem for the Schrödinger operator
in order to exploit compactness properties that were missing in the original formulation.
Coming up the classical formulation of this principle.
Proposition I.1 (Birman-Schwinger principle). Let z R σpH0q. Then

z P σppH0 ` V q ðñ ´1 P σppKzq,

where Kz :“ V 1
2
pH0 ´ zq

´1|V |
1
2 , with V 1

2
:“ |V |

1
2 sgnpV q.

Remark I.2. Clearly, in the context of Schrödinger operators, H0 is replaced by ´∆ and
the assumption about z is z P Czr0,8q.
Remark I.3. Let us observe that, since p´∆´ zq´1 is an integral operator for z P Czr0,8q
with explicit integral kernel for all dimensions d ě 1, this formulation has the additional
advantage to enable us to treat integral equations instead of the (less easy to handle) partial
differential equations.

Our original contribution in the setting of quantitative estimate for the spectrum of
´∆˚ ` V, was to obtain similar bounds to the ones shown in [40].

Since we want to use the same powerful approach, that is the Birman-Schwinger prin-
ciple, we need first to get an explicit expression for the resolvent operator associated with
´∆˚. In order to do that Helmholtz’s decomposition again plays a relevant role, indeed,
making use of this tool, precisely writing g “ gS ` gP where gS is the divergence free
vector field and gP is the gradient, it turns out, as we will see in more details below, that
p´∆˚ ´ zq´1 has a favorable form

p´∆˚
´ zq´1g “

1

µ

`

´∆´ z
µ

˘´1
gS `

1

λ` 2µ

`

´∆´ z
λ`2µ

˘´1
gP .

From the previous identity, the action of the resolvent of the Lamé operator on a sufficiently
smooth vector field g can be seen to be nothing but a sum of two resolvent operators
associated with the Laplacian for each component of g. This fact was responsible in laying
solid motivations to the possible success of our project. In fact the following were obtained:
Theorem I.4. Let d ě 2 and 0 ă γ ď 1

2
. Then any eigenvalue z P Czr0,8q of the perturbed
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Lamé operator ´∆˚ ` V satisfies

|z|γ ď Dγ,d,λ,µ

ż

Rd
|V pxq|γ`

d
2 dx, (I.1.9)

with a constant Dγ,d,λ,µ independent of V.
Theorem I.5. Let d ě 2, 0 ă γ ď 1

2
and pd´ 1qp2γ ` dq{2pd´ 2γq ă p ď γ ` d

2
. Then any

eigenvalue z P Czr0,8q of the perturbed Lamé operator ´∆˚ ` V satisfies

|z|γ ď Dγ,d,p,λ,µ sup
x,r

rd
´

r´d
ż

Brpxq

|V pyq|pdy
¯

2γ`d
2p
. (I.1.10)

Theorem I.6. Let d ě 2 and α ą 1
2
. Then any eigenvalue z P Czr0,8q of the perturbed

Lamé operator ´∆˚ ` V satisfies

|z|
1
2 ď Cd,α,λ,µ sup

xPRd
p1` |x|2qα|V pxq|.

Using similar arguments as in the previous results and making use of interpolation
theory, the following theorem was also proved.
Theorem I.7. Let d ě 2, γ ą 1

2
and α ą γ ´ 1

2
. Then any eigenvalue z P Czr0,8q of the

perturbed Lamé operator ´∆˚ ` V satisfies

|z|γ ď Cd,γ,α,λ,µ

ż

Rd
|V pxq|2γ`

pd´1q
2 p1` |x|2qα dx.

The previous four theorems match properly ones proved by Frank in [40].

We want to emphasize that even if the generalization to our context of the proofs by Fanelli,
Krečiřík and Vega and Frank seems to be quite natural, mainly looking at the explicit expression
of the Lamé operator and its resolvent after the Helmholtz decomposition, this is not entirely
obvious. Indeed, as we will see a little further on in more details, the exploitation, at the very
beginning, of the Helmholtz decomposition as a fundamental tool to address the problems, gives
rise to new highly non-trivial difficulties.

I.2.| The perturbation theory in the self-adjoint

case

Even if, since we are working in a non self-adjoint setting, the majority of results in classical
theory of perturbation which give precise information about whether or not (and if negative
also how the changes occur) the preservation of the spectrum, or part of it, occurs cannot be
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used, we want to dedicate few rows to the description of some useful results that hold in the self-
adjoint context. The reason for discussing this more investigated case is twofold. In first place,
the theory of perturbation for self-adjoint operator, though classical, is not trivial. Secondly, it
essentially embodies certain features of perturbation theory that may arise also in the general
case. Moreover, since in this section we are not attempting to be exhaustive, the vast majority
of details will be given for the Schrödinger operator (see [58] for a more comprehensive analysis
on this topic).

Among several cornerstone results which take part to the classical theory of perturbations
for self-adjoint linear operators, we must mention the Weyl’s Theorem. In its general form
it ensures that the essential spectrum of a self-adjoint operator turns out to be stable under
relatively compact perturbations. In the particular situation in which the operator into account
is represented by the self-adjoint Schrödinger operator H “ ´∆ ` V, this result has a more
handle form, indeed it ensures that if the potential V decays sufficiently fast at infinity then
the essential spectrum is preserved and in particular the following holds: σessp´∆ ` V q “

σessp´∆q “ r0,8q. This means that sufficiently decaying potentials do not change the essential
spectrum, but may create discrete eigenvalues below it. Hence, in this framework, since the
essential spectrum is easily determined, we are led to focus on the more particular issue to
understand how potential perturbations influence and change the discrete spectrum.

Our problem can be re-phrase in this way:

QUESTION. Which kind of assumptions about the potential perturbation ensures
that

inf σp´∆` V q “ inf σp´∆q “ 0?

In the event of affirmative answer then we would say that the discrete spectrum is also stable,
therefore no negative eigenvalues can occur.

Let us start considering potential with definite sign. Clearly if V ě 0 then, as ´∆ is a
non-negative operator (in sense of quadratic form, namely xψ,´∆ψy ě 0 for all ψ P Dp´∆q),
H “ ´∆`V ě 0. Therefore, as a consequence of the mini/max principle which, we recall, gives
a variational characterization of the eigenvalues below the bottom of the essential spectrum of an
operatorH in terms of the minimization problem for the functional xψ,Hψy, inf σp´∆`V q ě 0,

this means that no negative eigenvalues arise.

Let us continue to consider the simpler case of definite sign potentials, namely V ď 0. Since
´∆`V ď ´∆, exploiting again mini/max principle we can say that inf σp´∆`V q ď inf σp´∆q,

but in general there is no reason for the inequality being strict.
It turns out that the fact the inequality is strict or not strongly depends on the dimension

of the Euclidean space Rd.
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We consider first the dimension d ě 3. As we will see, the discriminating factor is whether
or not a Hardy-type inequality exists. A general Hardy-type inequality for functions in H1pRdq

displays this form
ż

Rd
|∇ψ|2 dx ě

ż

Rd
ρ|ψ|2 dx, ρ ě 0, (I.2.1)

where ρ is called Hardy weight.
We recall that in d ě 3 the following inequality holds true:

ż

Rd
|∇ψ|2 dx ě pd´ 2q2

4

ż

Rd

|ψ|2

|x|2
dx, @ψ P H1

pRd
q,

clearly, this is a particular case of the previous one in which we pick ρ “ pd´2q2

4
1

|x|2 From the
previous it follows that

´∆´
pd´ 2q2

4

1

|x|2
ě 0,

again in sense of quadratic forms. This entails that if our potential decays at least as fast as |x|2

at infinity and it is sufficiently small then the spectrum of the so perturbed Laplace operator
remains empty. We attempt to be more precise: considering the operator

H “ ´∆` εV,

with α to be defined, we have

´∆` αV “ ´∆´
pd´ 2q2

4

1

|x|2
loooooooooomoooooooooon

ě0
by Hardy-ineq.

`
pd´ 2q2

4

1

|x|2
´ ε|V |

looooooooooomooooooooooon

ě0
ifV decays at least as |x|´2

and
α sufficiently small

.

Hardy inequality shows that the kinetic term ´∆ dominate at infinity if we consider a potential
V that behaves at infinity as V pxq “ ε|x|´β with β ą 2, or if β “ 2 and ε ă d´2

2
. In d ě 3, this

fact put ´∆, in the class of the so-called subcritical operators, where we recall that

H is subcritical if for all V there exists ε0 ą 0 such that for all ε P r0, ε0s,

inf σpH ` εV q “ inf σpHq.

In low dimensions, namely d “ 1, 2 the situation is completely different, indeed it can be
proved that an arbitrarily small perturbation V always generates negative eigenvalue. This fact
is mainly due to the lack of existence of a Hardy-type inequality. It is not difficult to see that
if one assumes (I.2.1) to hold, then a proper choice of a sequence of test functions shows that
ρ is forced to be identically equal to zero. Now we want to give a rough and quick idea on how
to prove the so-called criticality of the operator ´∆ in low dimensions, where we recall that

11



H is critical if for all V and for all ε ą 0,

inf σpH ` εV q ă inf σpHq.

Substantially, using again mini/max principle, we want to prove that ´∆` εV is negative for
arbitrarily small ε. It is sufficient to build a test function ψ, such that ‖∇ψ‖2

` εxψ, V ψy ă 0.

The rigorous way to proceed would be to find a trial function ψ which resemble the constant
function ψ ” 1, indeed with this choice ∇1 “ 0 and ε

ş

Rd V pxq dx ă 0.

Summing up, we have showed, if not in a rigorous way at least giving the main ideas, that
the the following equivalence is valid:

´∆ is subcritical ðñ DHardy inequality for ´∆.

I.3.| Preliminaries: Helmholtz decomposition and

its consequences

This preliminary section is devoted to a deeper analysis of what has represented a fundamental
tool for our scopes: the Helmholtz decomposition. As it is well known this is a standard way
to decompose a vector field into a sum of a gradient and a divergence free vector field. To be
more precise, we have that every smooth vector field u sufficiently rapidly decaying at infinity,
can be uniquely decomposed as

u “ uS ` uP ,

where div uS “ 0 and uP “ ∇ϕ, for some smooth scalar function ϕ.

A very useful property of the two components of the Helmholtz decomposition is summarized
in the following lemma.

Lemma I.1. Let u be a smooth vector field sufficiently rapidly decaying at infinity. Let uS and
uP be the two components of the Helmholtz decomposition. Then

• uS and uP are L2´orthogonal.

• uS and uP are H1´orthogonal.

Proof. The proof of both the sentences makes use of an integration by part argument. The first
one immediately follows from the assumption about uS and uP .
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Let us now consider the second sentence. In order to simplify the notation we call F :“ uS

and G :“ uP , thus F is the divergence free vector field and G is the gradient.

x∇F,∇Gy “
ż

Rd
∇F ¨∇G “

d
ÿ

j“1

ż

Rd
∇F j ¨∇Gj “ ´

d
ÿ

j“1

ż

Rd
F j∆Gj “ ´

d
ÿ

j“1

ż

Rd
F j∆pBjϕq

“

d
ÿ

j“1

ż

Rd
BjF j∆ϕ “

ż

Rd
divF ∆ϕ “ 0.

Using the Helmholtz decomposition, a straightforward computation shows that for any
u “ uS ` uP , the operator ´∆˚ acts on u in this way

´∆˚u “ ´µ∆uS ´ pλ` 2µq∆uP . (I.3.1)

This makes evident the similarity between Lamé and Laplace operator, which primarily moti-
vates our work.

As already said one of our main character in this part will be the resolvent operator asso-
ciated to ´∆˚, namely p´∆˚ ´ zq´1, for any z R σp´∆˚q “ r0,8q.

The following lemma let to a better understanding of this operator.

Lemma I.2. Let z P Czr0,8q and g P rL2pRdqsd, assume that λ and µ satisfy µ ą 0, λ`2µ ą 0.

Then the following identity holds:

p´∆˚
´ zq´1g “

1

µ

`

´∆´ z
µ

˘´1
gS `

1

λ` 2µ

`

´∆´ z
λ`2µ

˘´1
gP , (I.3.2)

where

p´∆´ zq´1g “
`

p´∆´ zq´1g1, p´∆´ zq´1g2, . . . , p´∆´ zq´1gd
˘

.

Proof. Given g P rL2pRdqsd, we want to obtain an explicit expression of the vector field f, where

f “ p´∆˚
´ zq´1g. (I.3.3)

Let us observe that, since z R σp´∆˚q “ r0,8q, the previous is equivalent to

p´∆˚
´ zqf “ g.

Now, writing f “ fS ` fP and g “ gS ` gP and using (I.3.1), we obtain that the previous can
be re-written as

´µ∆fS ´ pλ` 2µq∆fP ´ zfS ´ zfP “ gS ` gP .
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The H1´ orthogonality of the two components of the decomposition enables us to split this
intertwining equation for both the two components into a system of two decoupled equations,
i.e

#

´µ∆fS ´ zfS “ gS,

´pλ` 2µq∆fP ´ zfP “ gP .

The prior system can be written in an equivalent form as
#

µ
`

´∆´ z
µ

˘

fS “ gS,

pλ` 2µq
`

´∆´ z
λ`2µ

˘

fP “ gP .

From the previous identities, since by our hypotheses about Lamé’s parameters z
µ
, z
λ`2µ

R

σp´∆q, we get

fS “
1

µ

`

´∆´ z
µ

˘´1
gS, fP “

1

λ` 2µ

`

´∆´ z
λ`2µ

˘´1
gP .

Making use of this explicit expressions in f “ fS ` fP and of (I.3.3) we obtain (I.3.2). This
concludes the proof of the lemma.

I.4.| Problem 1

The discussion in this chapter is mainly taken from [19] and more precisely it is concerned with
the proof of Theorem I.1 and Theorem I.1.6.

I.4.1. Absence of eigenvalues: proof of Theorem I.1

We devote this section to the proof of Theorem I.1 we stated in the introduction.
We recall that our strategy wants to be built in analogy to that one in the recent work [38]

of Fanelli, Krejčiříc and Vega, who established the analogous result for the Laplace operator.

First of all, to this end, starting from the eigenvalue equation associated with the perturbed
Laplacian, they provided three integral identities which had a crucial role in the proof of their
main result; in order to do that they re-adapted to a non self-adjoint setting the standard tech-
nique of Morawetz multipliers. This tool was introduced in [71] for the Klein-Gordon equation
and then it was developed in several other contexts. For example, with respect to the Helmholtz
equation’s framework, let us mention the seminal works of Perthame and Vega [77], [78] which
are concerned with the purely electric case and then [39, 37, 92, 3, 6, 93], which extend the tech-
nique in an electromagnetic setting. We should also quote [15] for an adaptation of multipliers
method on exterior domains.
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Now we are in position to begin the proof of our result.
The eigenvalue problem for the perturbed Lamé operator is

∆˚u` ku “ V u, (I.4.1)

where k is any complex constant (throughout the paper we will denote by k1 “ <k and by
k2 “ =k).

Just to simplify the notations, we start assuming that u is a solution of this more general
problem

∆˚u` ku “ f, (I.4.2)

where f : Rd Ñ Cd is a measurable function.
Clearly, we can identify the problem (I.4.2) with (I.4.1) by setting f “ V u.

As we said above, the Helmholtz decomposition has been a fundamental tool for our pur-
poses, according to this, writing u “ uS ` uP and f “ fS ` fP , the resolvent equation (I.4.2)
associated to the Lamé operator can be re-written as

µ∆uS ` pλ` 2µq∆uP ` kuS ` kuP “ fS ` fP , (I.4.3)

where, again, the S component is the divergence free vector field and the P component is the
gradient.

Let us observe that the equation written in this form is very far to be easy to handle,
indeed the two components has the same frequency of oscillation k but different speed of
propagation µ and λ` 2µ respectively, and therefore the first attempt one would like to try is
splitting the previous equation into a system of two decoupled equations involving separately
the two components uS and uP . This attempt is going to work indeed, as a consequence of
Lemma I.1 which guarantees the L2´orthogonality of the S and P components of the Helmholtz
decomposition and of their gradients, we are allowed to reduce our “intertwining” equation into
a system of two decoupled equations, precisely one has the following result:

Lemma I.3. Let u “ uS `uP be a solution to equation (I.4.3), then the two components of the
Helmholtz decomposition, uS and uP respectively, satisfies this two unrelated problems

#

µ∆uS ` kuS “ fS

pλ` 2µq∆uP ` kuP “ fP .
(I.4.4)

Proof. As we have already said we basically are going to use the L2 and H1´orthogonality of
uS and uP .

Since u is a solution to (I.4.3), clearly we have

‖µ∆uS ` pλ` 2µq∆uP ` kuS ` kuP ´ fS ´ fP‖2
“ 0,

15



or more explicitly
ż

Rd
pµ∆uS ` pλ` 2µq∆uP ` kuS ` kuP ´ fS ´ fP q

¨ pµ∆uS ` pλ` 2µq∆uP ` kuS ` kuP ´ fS ´ fP q “ 0.

A straightforward computation allows us to write the previous as

‖µ∆uS ` kuS ´ fS‖2
` ‖pλ` 2µq∆uP ` kuP ´ fP‖2

` 2<
ż

pµ∆uS ` kuS ´ fSq ¨ ppλ` 2µq∆uP ` kuP ´ fP q “ 0.

In order to obtain the thesis is just needed to show that the third term is zero. Let us consider

I :“

ż

pµ∆uS ` kuS ´ fSq ¨ ppλ` 2µq∆uP ` kuP ´ fP q ,

we can write this explicitly and we have

I “ µpλ` 2µq

ż

Rd
∆uS ¨∆uP ` µ k

ż

Rd
∆uS ¨ uP ´ µ

ż

Rd
∆uSfP ` pλ` 2µq k

ż

Rd
uS ¨∆uP

` |k|2
ż

Rd
uS ¨ uP ´ k

ż

Rd
uS ¨ fP ´ pλ` 2µq

ż

Rd
fS ¨∆uP ´ k

ż

Rd
fS ¨ uP `

ż

Rd
fS ¨ fP .

(I.4.5)

The L2´orthogonality of the S component and P component gives immediately that the first
two and the last two integrals in the second row of (I.4.5) vanish. Thus one gets

I “ µpλ` 2µq

ż

Rd
∆uS ¨∆uP

looooooomooooooon

I1

`µ k

ż

Rd
∆uS ¨ uP

loooooomoooooon

I2

´µ

ż

Rd
∆uSfP

looooomooooon

I3

` pλ` 2µq k

ż

Rd
uS ¨∆uP

loooooomoooooon

I4

´pλ` 2µq

ż

Rd
fS ¨∆uP

loooooomoooooon

I5

.

We are going to consider the five integrals separately. In order to simplify the details, again we
use the notation adopted in Lemma I.1, that is F :“ uS and G :“ uP , thus F is the divergence
free vector field and G is the gradient.

I1 “

ż

Rd
∆F ¨∆G “

d
ÿ

j“1

ż

Rd
∆F j ∆Gj “

d
ÿ

j“1

ż

Rd
∆F j ∆Bjϕ “ ´

ż

Rd
∆ divF ∆ϕ “ 0.

Now we see I2, we omit the details for I3, I4 and I5, indeed they could be handle in the same
manner.

I2 “

ż

Rd
∆F ¨G “

d
ÿ

j“1

ż

Rd
∆F j Gj “ ´

d
ÿ

j“1

ż

Rd
∇F j ¨∇Gj “ p∇F,∇Gq “ 0.
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Putting the previous altogether we obtain that I “ 0 and consequently we have

‖µ∆uS ` kuS ´ fS‖2
` ‖pλ` 2µq∆uP ` kuP ´ fP‖2

“ 0

which obviously implies (I.4.4).

As a starting point for the proof of Theorem I.1, we consider the weak formulation of (I.4.4)

@ v P rH1
pRd
qs
d,

#

´µp∇v,∇uSq ` kpv, uSq “ pv, fSq
´pλ` 2µqp∇v,∇uP q ` kpv, uP q “ pv, fP q.

(I.4.6)

Following [6] we divide the proof of our result into two cases depending on the relation between
real and imaginary part of the eigenvalue k: |k2| ď k1 and |k2| ą k1.

Let us start by the more technical case |k2| ď k1.

Case |k2| ď k1. For the purpose of letting the proof more understandable, we will point out
in the following lemma what Fanelli, Krejčiříc and Vega have proved in their paper [38] as the
main tool to guarantee the absence of eigenvalues for the perturbed Laplace operator.

Lemma I.4. Let u : Rd Ñ C be a solution to

∆u` ku “ f,

where k is any complex constants, we write k1 “ <k and k2 “ =k and f : Rd Ñ C is a
measurable function. If one sets

u´pxq :“ e´i sgnpk2qk
1
2
1 |x| upxq

the following estimate holds

‖∇u´‖2
`
d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´|2 ď 2p2d´ 3q

d´ 2
‖|x|f‖‖∇u´‖`

?
2

?
d´ 2

‖|x|f‖
3
2‖∇u´‖

1
2 . (I.4.7)

Proof. As we have already mentioned in the introduction, this result is based on an appropriate
use of the multipliers technique and we refer to [38] for the details of the proof.

Remark I.4. Let us just underline that the main tool of the proof is an integration by parts
argument, therefore in order to make the calculations rigorous they need to assume u and f

sufficiently smooth and then the result will be obtained by a standard density argument.

At this point, the next step is, in some sense, obliged. Indeed the most natural way to proceed
is to use directly the estimate which appears in Lemma I.4.7 for our two decoupled equa-
tions (I.4.4).

17



In order to do that we have to make the two equations independent of Lamé’s coefficients,
for this purpose we need to re-define appropriately k and f (differently in each equations).
Precisely calling

kS :“
k

µ
, gS :“

fS
µ

(I.4.8)

and on the counterpart

kP :“
k

λ` 2µ
, gP :“

fP
λ` 2µ

, (I.4.9)

we have that uS and uP satisfies
#

∆uS ` kS uS “ gS

∆uP ` kP uP “ gP ,

that written in components clearly are
#

∆puSqj ` kS puSqj “ pgSqj

∆puP qj ` kP puP qj “ pgP qj,

for all j “ 1, . . . , d.

First let us handle the equation for uS.

Setting

u´S pxq “ e´i sgnpkS,2qk
1
2
S,1|x|uSpxq, (I.4.10)

where kS,1 :“ <pkSq and kS,2 “ =pkSq and exploiting Lemma I.4.7, we have that

‖∇pu´S qj‖
2
`
d´ 3

d´ 1

|kS,2|

k
1
2
S,1

ż

Rd
|x||∇pu´S qj|

2
ď

2p2d´ 3q

d´ 2
‖|x|pgSqj‖‖∇pu´S qj‖

`

?
2

?
d´ 2

‖|x|pgSqj‖
3
2‖∇pu´S qj‖

1
2 .

Summing on j “ 1, . . . , d and using Cauchy-Schwartz and Hölder inequalities for descrete
measures in the last two terms respectively, we get

‖∇u´S ‖
2
`
d´ 3

d´ 1

|kS,2|

k
1
2
S,1

ż

Rd
|x||∇u´S |

2
ď

2p2d´ 3q

d´ 2
‖|x|gS‖‖∇u´S ‖`

?
2

?
d´ 2

‖|x|gS‖
3
2‖∇u´S ‖

1
2 .

Going back to our old notation, i.e. recalling (I.4.8), it is easy to obtain

‖∇u´S ‖
2
`

1
?
µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´S |

2
ď

1

µ

2p2d´ 3q

d´ 2
‖|x|fS‖‖∇u´S ‖

`
1

µ
3
2

?
2

?
d´ 2

‖|x|fS‖
3
2‖∇u´S ‖

1
2 .

(I.4.11)
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Now we can provide the same estimate for the P component. Clearly, we mostly omit the
details in fact these are the same we have already shown for the divergence free vector field uS.

We define u´P in the same way as u´S , precisely

u´P pxq :“ e´i sgnpkP,2qk
1
2
P,1|x| uP pxq, (I.4.12)

where kP,1 :“ <pkP q and kp,2 “ =pkP q.

Now proceeding in the same way as the previous case we get

‖∇u´P‖
2
`

1
?
λ` 2µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´P |

2
ď

1

λ` 2µ

2p2d´ 3q

d´ 2
‖|x|fP‖‖∇u´P‖

`
1

pλ` 2µq
3
2

?
2

?
d´ 2

‖|x|fP‖
3
2‖∇u´P‖

1
2 .

(I.4.13)

In order to complete the argument and to obtain the thesis, the following elliptic regularity
lemma will be useful in the immediate sequel.

Lemma I.5. Let f P rC8c pRdqsd be a smooth-compactly supported vector field in Rd, and let
ψ : Rd Ñ C be a smooth solution to

∆ψ “ div f. (I.4.14)

Then for any s P p´d, dq the following estimate holds

‖|x|s∇ψ‖ ď cQ2p|x|sq2‖|x|sf‖,

for some constant c ą 0 only depending on the dimension d and Q2p|x|sq the A2´characteristic
of the weight |x|s whose definition is recalled below.

Proof. The proof of this result basically relies on the very well known theorem about Calderón-
Zygmund operator, which ensures that if T is an operator of Calderón-Zygmund type, which,
roughly speaking, is a class of integral operator whose kernel has a singularity of the size |x´y|´d

asymptotically as |x´ y| goes to zero, then for any weight w in the Ap´class, with 1 ă p ă 8,

T is bounded on the weighted space Lppw dxq (see for example [25], Thm. 7.11). Actually we
are interested on a particular Calderón-Zygmund operator, i.e. the well known Riesz transform
defined for any f P L2pRdq, via Fourier transform, by

yRjfpξq “ ´i
ξj
|ξ|
f̂pξq, @ j “ 1, 2, . . . , d. (I.4.15)

In particular we will use the following result of Petermichl which is concerned with the sharp
bound for the operator norm of the Riesz transform in L2pwq. He proved [79] that for all
j “ 1, 2, . . . d, if w P A2 then

‖Rjf‖L2pwq ď cQ2pwq‖f‖L2pwq, (I.4.16)
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where Q2pwq is the A2´characteristic of the weight w defined as

Q2pwq :“ sup
Q

´ 1

|Q|

ż

Q

w
¯´ 1

|Q|

ż

Q

w´1
¯

,

with Q any cube in Rd and c a constant only depending upon the dimension.

We are interested in the weighted boundedness of the Riesz transform because our operator
T pfq :“ ∇ψ, with ψ a solution to (I.4.14), can be written in terms of Riesz transform in this
way: for all j “ 1, 2, . . . , d

Bjψ “ ´pd´ 2q
d
ÿ

k“1

RjRkFk. (I.4.17)

Indeed, using the fundamental solution of ´∆ in Rd, we can write

ψ “ p´∆q´1 divF “ ´
1

ωd
|x|´pd´2q

˚ divF “ ´
1

ωd

d
ÿ

k“1

Bk|x|´pd´2q
˚ Fk,

where ωd is the surface area of the d-dimensional unit sphere, precisely, making use of the
gamma function, it is ωd :“ 2πd{2

Γ
`

d
2

˘ . We are interested in the partial derivatives of ψ, that is

Bjψpxq “ ´
1

ωd

d
ÿ

k“1

BjBk|x|´pd´2q
˚ Fkpxq.

Consequently, using that the Fourier transform of the homogeneous function |x|´α is z|x|´αpξq :“

cd,α|ξ|α´d, with cd,α :“
2
d
2
´α

Γ
`

d´α
2

˘

Γ
`

α
2

˘ and that zf ˚ g “ p2πqd{2f̂ ĝ, we get

yBjψpξq “
p2πqd{2cd,d´2

ωd

d
ÿ

k“1

ξjξk|ξ|´2F̂kpξq.

From the definition of the Riesz transform (I.4.15), given in terms of Fourier transform, it is
straightforward to see that, for all j, k “ 1, 2 . . . , d

{RjRkfpξq “ ´
ξjξk

|ξ|2
f̂pξq,

this clearly means that

yBjψpξq “ ´
p2πqd{2cd,d´2

ωd

d
ÿ

k“1

{RjRkFkpξq.

Now, using the linearity of the Fourier transform, antitrasforming the previous identity and
making explicit the constants, we obtain our claim.

Moreover it can be proved that if ´d ă s ă d then |x|s belongs to A2´class. Calling w :“ |x|s,
the statement of our lemma is equivalent to find a constant C such that

‖∇ψ‖
rL2pRdqpwqsd ď C‖F‖

rL2pRdqpwqsd .

20



Putting all the previous facts together we get

‖∇ψ‖
rL2pRdqpwqsd :“

´

d
ÿ

j“1

‖Bjψ‖2
L2pRdqpwq

¯
1
2
ď dpd´ 2q

´

d
ÿ

j,k“1

‖RjRkFk‖2
L2pRdqpwq

¯
1
2

ď d
?
dpd´ 2qc2Q2pwq

2
´

d
ÿ

k“1

‖Fk‖2
L2pRdqpwq

¯
1
2

“ d
?
dpd´ 2qc2Q2pwq

2‖F‖
rL2pRdqpwqsd .

This concludes the proof.

Remark I.5. Let’s underline that the constant c that appears in the previous equation is the
one stated in the Petermichl result.

Let us introduce a trivial decomposition of our f :

f “ f ´∇ψ `∇ψ,

where ψ is the unique solution of (I.4.14); as a consequence we have divpf ´∇ψq “ 0. By the
uniqueness of the Helmholtz decomposition, it follows that fS “ f´∇ψ, fP “ ∇ψ. Substituting
these in (I.4.11) and (I.4.13) respectively, one gets the two following estimates

‖∇u´S ‖
2
`

1
?
µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´S |

2
ď

1

µ

2p2d´ 3q

d´ 2
p‖|x|f‖` ‖|x|∇ψ‖q‖∇u´S ‖

`
1

µ
3
2

?
2

?
d´ 2

p‖|x|f‖` ‖|x|∇ψ‖q
3
2‖∇u´S ‖

1
2 ;

and

‖∇u´P‖
2
`

1
?
λ` 2µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´P |

2
ď

1

λ` 2µ

2p2d´ 3q

d´ 2
‖|x|∇ψ‖‖∇u´P‖

`
1

pλ` 2µq
3
2

?
2

?
d´ 2

‖|x|∇ψ‖
3
2‖∇u´P‖

1
2 .

Using the elliptic regularity result I.5 we obtain respectively

‖∇u´S ‖
2
`

1
?
µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´S |

2
ď

1

µ

2p2d´ 3q

d´ 2
pC ` 1q‖|x|f‖‖∇u´S ‖

`
1

µ
3
2

?
2

?
d´ 2

pC ` 1q
3
2‖|x|f‖

3
2‖∇u´S ‖

1
2 ;

and

‖∇u´P‖
2
`

1
?
λ` 2µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´P |

2
ď

1

λ` 2µ

2p2d´ 3q

d´ 2
C‖|x|f‖‖∇u´P‖

`
1

pλ` 2µq
3
2

?
2

?
d´ 2

C
3
2‖|x|f‖

3
2‖∇u´P‖

1
2 .

21



Recalling that, at the beginning, f “ V u and using (I.1.3) one has

‖|x|f‖ “ ‖|x|V u‖ ď ‖|x|V uS‖` ‖|x|V uP‖ ď Λ‖∇u´S ‖` Λ‖∇u´P‖.

By virtue of the previous inequality and using the convexity of the function gpxq “ |x|p for
p ě 1 (in the inequality for the S component), we have

‖∇u´S ‖
2
`

1
?
µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´S |

2

ď
Λ

µ

2p2d´ 3q

d´ 2
pC ` 1q‖∇u´S ‖

2
`

Λ
3
2

µ
3
2

2
?
d´ 2

pC ` 1q
3
2‖∇u´S ‖

2

`
Λ

µ

2p2d´ 3q

d´ 2
pC ` 1q‖∇u´S ‖‖∇u´P‖`

Λ
3
2

µ
3
2

2
?
d´ 2

pC ` 1q
3
2‖∇u´S ‖

1
2‖∇u´P‖

3
2 ;

and

‖∇u´P‖
2
`

1
?
λ` 2µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´P |

2

ď
Λ

λ` 2µ

2p2d´ 3q

d´ 2
C‖∇u´P‖

2
`

Λ
3
2

pλ` 2µq
3
2

2
?
d´ 2

C
3
2‖∇u´P‖

2

`
Λ

λ` 2µ

2p2d´ 3q

d´ 2
C‖∇u´S ‖‖∇u´P‖`

Λ
3
2

pλ` 2µq
3
2

2
?
d´ 2

C
3
2‖∇u´S ‖

3
2‖∇u´P‖

1
2 .

Summing these two inequality together and majoring C with C ` 1, we obtain

‖∇u´S ‖
2
` ‖∇u´P‖

2
`

1
?
µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´S |

2
`

1
?
λ` 2µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´P |

2

ď
Λ

µ

2p2d´ 3q

d´ 2
pC ` 1q‖∇u´S ‖

2
`

Λ

λ` 2µ

2p2d´ 3q

d´ 2
pC ` 1q‖∇u´P‖

2

`
Λ

3
2

µ
3
2

2
?
d´ 2

pC ` 1q
3
2‖∇u´S ‖

2
`

Λ
3
2

pλ` 2µq
3
2

2
?
d´ 2

pC ` 1q
3
2‖∇u´P‖

2

`
Λ

µ

2p2d´ 3q

d´ 2
pC ` 1q‖∇u´S ‖‖∇u´P‖`

Λ

λ` 2µ

2p2d´ 3q

d´ 2
pC ` 1q‖∇u´S ‖‖∇u´P‖

`
Λ

3
2

µ
3
2

2
?
d´ 2

pC ` 1q
3
2‖∇u´S ‖

1
2‖∇u´P‖

3
2 `

Λ
3
2

pλ` 2µq
3
2

2
?
d´ 2

pC ` 1q
3
2‖∇u´S ‖

3
2‖∇u´P‖

1
2 .

Making use of the Young’s inequality, which state that for all non-negative real numbers a and
b holds

ab ď
ap

p
`
bq

q
,

where p, q are determined by
1

p
`

1

q
“ 1, one gets

‖∇u´S ‖‖∇u´P‖ ď
1

2
‖∇u´S ‖

2
`

1

2
‖∇u´P‖

2,
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‖∇u´S ‖
1
2‖∇u´P‖

3
2 ď

1

4
‖∇u´S ‖

2
`

3

4
‖∇u´P‖

2 and ‖∇u´S ‖
3
2‖∇u´P‖

1
2 ď

3

4
‖∇u´S ‖

2
`

1

4
‖∇u´P‖

2.

Using the latter in the former and the fact that µ, λ` 2µ ě mintµ, λ` 2µu, we have
˜

1´
Λ

mintµ, λ` 2µu

4p2d´ 3q

d´ 2
pC ` 1q ´

Λ
3
2

mintµ, λ` 2µu
3
2

4
?
d´ 2

pC ` 1q
3
2

¸

p‖∇u´S ‖
2
` ‖∇u´P ‖

2
q

`
1
?
µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´S |

2
`

1
?
λ` 2µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´P |

2
ď 0.

Since the two term in the second row are positive, the last inequality becomes
˜

1´
Λ

mintµ, λ` 2µu

4p2d´ 3q

d´ 2
pC ` 1q ´

Λ
3
2

mintµ, λ` 2µu
3
2

4
?
d´ 2

pC ` 1q
3
2

¸

p‖∇u´S ‖
2
`‖∇u´P ‖

2
q ď 0.

Clearly, by virtue of (I.1.4), the term in parenthesis is strictly positive, then it follows that
u´S , u

´
P and thus uS, uP are identically equal to zero and, as a consequence of the Helmholtz

decomposition, u is identically equal to zero as well.

We treat now the simpler case |k2| ą k1.

Case |k2| ą k1 let u P rH1pRdqsd be a solution of (I.4.2), i.e. a solution of (I.4.6). Choosing
v :“ ˘uS in the first of (I.4.6) and v :“ ˘uP in the second of (I.4.6), taking real and imaginary
parts of the resulting identities and summing these two identities, we obtain respectively for
uS and uP

pk1 ˘ k2q

ż

Rd
|uS|2 “ µ

ż

Rd
|∇uS|2 ` <

ż

Rd
uS ¨ fS ˘ =

ż

Rd
uS ¨ fS,

and

pk1 ˘ k2q

ż

Rd
|uP |2 “ pλ` 2µq

ż

Rd
|∇uP |2 ` <

ż

Rd
uP ¨ fP ˘ =

ż

Rd
uP ¨ fP .

Taking the sum of the previous and making use of the H1- orthogonality of uS and uP , one has

pk1 ˘ k2q

ż

Rd
|u|2 “ µ

ż

Rd
|∇u|2 ` pλ` µq

ż

Rd
|∇uP |2 ` <

ż

Rd
u ¨ f ˘ =

ż

Rd
u ¨ f. (I.4.18)

Now we want to estimate the last two terms on the right hand side of (I.4.18), in order to
obtain the bound we are going to make use only of the Schwarz’s inequality, the classical
Hardy’s inequality that reads

@ψ P H1
pRd
q,

ż

Rd

|ψpxq|2

|x|2
dx ď

4

pd´ 2q2

ż

Rd
|∇ψ|2, (I.4.19)

and the assumption (I.1.3). Indeed, recalling that f :“ V u, one has
ż

Rd
|u||f | ď 2

d´ 2
Λ‖∇u‖2,
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using the following trivial chains of inequalities

<
ż

Rd
u ¨ f ě ´

∣∣∣∣ż
Rd
u ¨ f

∣∣∣∣ ě ´ ż

Rd
|u||f |, and ˘ =

ż

Rd
u ¨ f ě ´

∣∣∣∣ż
Rd
u ¨ f

∣∣∣∣ ě ´ ż

Rd
|u||f |,

we easily obtain

pk1 ˘ k2q

ż

Rd
|u|2 ě

ˆ

µ´
4

d´ 2
Λ

˙

‖∇u‖2
` pλ` µq‖∇uP‖2.

Let us recall that, to make the quadratic form associated to the Lamé operator positive, we
have assumed for the Lamé coefficients the condition (I.1.2); under this hypothesis immediately
follows that λ` µ ą 0 thus we obtain

pk1 ˘ k2q

ż

Rd
|u|2 ě

ˆ

µ´
4

d´ 2
Λ

˙

‖∇u‖2.

It’s easy to see that any Λ verifying (I.1.4), necessarily satisfies 4
d´2

Λ ă µ, therefore one gets

pk1 ˘ k2q

ż

Rd
|u|2 ě 0.

Thus from the last inequality follows that k1 ˘ k2 ě 0, unless u is identically equal to zero.

It is a straightforward exercise to prove that, under conditions (I.1.3) and (I.1.4), the possible
eigenvalues of ´∆˚`V have to be included in the right complex plane, that is k1 ą 0. Noticing
that we are assuming |k2| ą k1 ą 0, which implies that the inequality k1 ˘ k2 ě 0 cannot hold,
we obtain u “ 0.

This concludes the proof of Theorem I.1.

I.4.2. Uniform resolvent estimate

The aim of this section is to investigate about uniform resolvent estimate for the solution
u : Rd Ñ Cd of (I.1.5).

Just to quote a pair of papers on this topic, in a context of Helmholtz equation, we recall
Burq, Planchon, Stalker and Tahvildar-Zadeh [11, 12] and later the work of Barceló, Vega and
Zubeldia [6] which generalizes the previous to electromagnetic Hamiltonians. Whereas, for this
kind of estimate in an elasticity setting, we can cite [5].

As we have already mentioned in the introduction, as a starting point we are going to prove
a stronger result than Theorem I.2, which establishes the validity of a priori estimates, then
our theorem will follows as a corollary making use of Hardy’s inequality only.

In view of the previous comment, we can now start with the proof of Theorem I.3
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I.4.2.1. Proof of Theorem I.3

Since the estimates we want to prove are different according to the relation between the real
and imaginary part of the frequency, that is when |k2| ď k1 or the contrary, we treat the two
cases separately.

As a starting point, we will easily show that this kind of estimates holds in the free frame-
work, that is in the setting in which V “ 0. Secondly we prove the estimates in the perturbed
case, assuming about V the same integral-smallness condition of Theorem I.1.

Case |k2| ď k1 We consider the case V “ 0. In this framework our equation (I.1.5) reduces to
the one we considered in Theorem I.1, precisely (I.4.2). Throughout the proof of Theorem I.1,
taking into account the Helmholtz decomposition, we proved for this equation the two esti-
mates (I.4.11) and (I.4.13) respectively for the S and P component of the solution u of (I.4.2)
that we are going to rewrite in order to clarify our argument. One had

‖∇u´S ‖
2
`

1
?
µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´S |

2

ď
1

µ

2p2d´ 3q

d´ 2
‖|x|fS‖‖∇u´S ‖`

1

µ
3
2

?
2

?
d´ 2

‖|x|fS‖
3
2‖∇u´S ‖

1
2 , (I.4.20)

and

‖∇u´P‖
2
`

1
?
λ` 2µ

d´ 3

d´ 1

|k2|

k
1
2
1

ż

Rd
|x||∇u´P |

2
ď

1

pλ` 2µq

2p2d´ 3q

d´ 2
‖|x|fP‖‖∇u´P‖

`
1

pλ` 2µq
3
2

?
2

?
d´ 2

‖|x|fP‖
3
2‖∇u´P‖

1
2 .

Let us consider the first inequality only, the details for the second one will be similar.

We want to estimate the right hand side of the inequality, to this end, let ε, δ ą 0, making use
of the Young’s inequality one has

‖|x|fS‖‖∇u´S ‖ ď
1

2ε2
‖|x|fS‖2

`
ε2

2
‖∇u´S ‖

2 and ‖|x|fS‖
3
2‖∇u´S ‖

1
2 ď

3

4δ
4
3

‖|x|fS‖2
`
δ4

4
‖∇u´S ‖

2.

Putting this two in (I.4.20) and observing that the quantity 1
?
µ
|k2|

k
1
2
1

d´3
d´1

ş

Rd|x||∇u
´
S |

2 is positive,

we get

‖∇u´S ‖
2
ď

1

µ

1

ε2

2d´ 3

d´ 2
‖|x|fS‖2

` ε2 1

µ

2d´ 3

d´ 2
‖∇u´S ‖

2
`

3

4δ
4
3

1

µ
3
2

?
2

?
d´ 2

‖|x|fS‖2

`
δ4

4

1

µ
3
2

?
2

?
d´ 2

‖∇u´S ‖
2.
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Thus it may be concluded that
ˆ

1´ ε2 1

µ

2d´ 3

d´ 2
´
δ4

4

1

µ
3
2

?
2

?
d´ 2

˙

‖∇u´S ‖
2
ď

ˆ

1

µ

1

ε2

2d´ 3

d´ 2
`

3

4δ
4
3

1

µ
3
2

?
2

?
d´ 2

˙

‖|x|fS‖2.

The same calculations done for the P component give
˜

1´ ε2 1

λ` 2µ

2d´ 3

d´ 2
´
δ4

4

1

pλ` 2µq
3
2

?
2

?
d´ 2

¸

‖∇u´P‖
2

ď

˜

1

λ` 2µ

1

ε2

2d´ 3

d´ 2
`

3

4δ
4
3

1

pλ` 2µq
3
2

?
2

?
d´ 2

¸

‖|x|fP‖2.

Now, since µ, λ` 2µ ě mintµ, λ` 2µu and choosing ε, δ small enough, one can write

‖∇u´S ‖ ď Dε,δ‖|x|fS‖,

and
‖∇u´P‖ ď Dε,δ‖|x|fP‖,

where

Dε,δ “

¨

˝

1
mintµ,λ`2µu

1
ε2

2d´3
d´2 `

3

4δ
4
3

1

mintµ,λ`2µu
3
2

?
2?
d´2

1´ ε2 1
mintµ,λ`2µu

2d´3
d´2 ´

δ4

4
1

mintµ,λ`2µu
3
2

?
2?
d´2

˛

‚

1
2

.

At the end, using the trivial Helmholtz decomposition of f “ f ´ ∇ψ ` ∇ψ and the elliptic
regularity Lemma I.5, one easily concludes

‖∇u´S ‖ ď c‖|x|f‖ and ‖∇u´P‖ ď c‖|x|f‖,

where c :“ pC ` 1qDε,δ.

Let us remark that c ą 0 does not depend on the frequency k and on f.

Now we can prove our result in the perturbed setting, namely V ‰ 0.

First of all we define g :“ V u and h :“ f ` g. Thus, with this notation, u solves the following
equation

∆˚u` ku “ h; (I.4.21)

again we have these estimates for the two components of the solution:

‖∇u´S ‖
2
ď

1

µ

2p2d´ 3q

d´ 2
‖|x|hS‖‖∇u´S ‖`

1

µ
3
2

?
2

?
d´ 2

‖|x|hS‖
3
2‖∇u´S ‖

1
2 ,

and

‖∇u´P‖
2
ď

1

λ` 2µ

2p2d´ 3q

d´ 2
‖|x|hP‖‖∇u´P‖`

1

pλ` 2µq
3
2

?
2

?
d´ 2

‖|x|hP‖
3
2‖∇u´P‖

1
2 .
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We only consider the first one. Clearly, since hS “ fS ` gS, it can be rewritten as

‖∇u´S ‖
2
ď

1

µ

2p2d´ 3q

d´ 2
‖|x|fS‖‖∇u´S ‖`

1

µ
3
2

2
?
d´ 2

‖|x|fS‖
3
2‖∇u´S ‖

1
2

`
1

µ

2p2d´ 3q

d´ 2
‖|x|gS‖‖∇u´S ‖`

1

µ
3
2

2
?
d´ 2

‖|x|gS‖
3
2‖∇u´S ‖

1
2 .

Since in the free case we have already bounded the terms in which f appears, now let us only
consider the terms involving g.

We introduce the trivial decomposition of g “ g ´∇φ `∇φ, where, as usual, φ is the unique
solution of the elliptic problem ∆φ “ div g. Following the strategy in Theorem I.1 about
the absence of eigenvalues and, in particular, recalling that formerly g “ V u and that V
satisfies (I.1.3), one can show

‖∇u´S ‖
2
ď

1

µ

2p2d´ 3q

d´ 2
‖|x|fS‖‖∇u´S ‖`

1

µ
3
2

2
?
d´ 2

‖|x|fS‖
3
2‖∇u´S ‖

1
2

`
Λ

µ

2p2d´ 3q

d´ 2
pC ` 1q‖∇u´S ‖

2
`

Λ
3
2

µ
3
2

2
?

2
?
d´ 2

pC ` 1q
3
2‖∇u´S ‖

2

`
Λ

µ

2p2d´ 3q

d´ 2
pC ` 1q‖∇u´S ‖‖∇u´P‖`

Λ
3
2

µ
3
2

2
?

2
?
d´ 2

pC ` 1q
3
2‖∇u´S ‖

1
2‖∇u´P‖

3
2 .

For the P component we have the following analogue estimate

‖∇u´P‖
2
ď

1

λ` 2µ

2p2d´ 3q

d´ 2
‖|x|fP‖‖∇u´P‖`

1

pλ` 2µq
3
2

2
?
d´ 2

‖|x|fP‖
3
2‖∇u´P‖

1
2

`
Λ

λ` 2µ

2p2d´ 3q

d´ 2
C‖∇u´P‖

2
`

Λ
3
2

pλ` 2µq
3
2

2
?

2
?
d´ 2

C
3
2‖∇u´P‖

2

`
Λ

λ` 2µ

2p2d´ 3q

d´ 2
C‖∇u´S ‖‖∇u´P‖`

Λ
3
2

pλ` 2µq
3
2

2
?

2
?
d´ 2

C
3
2‖∇u´S ‖

3
2‖∇u´P‖

1
2 .

Now estimating the terms involving f as in the free case, summing these inequalities, and using
the Young’s inequality, we obtain

˜

1´
Λ

mintµ, λ` 2µu

4p2d´ 3q

d´ 2
pC ` 1q ´

Λ
3
2

mintµ, λ` 2µu
3
2

4
?

2
?
d´ 2

pC ` 1q
3
2

´ε2 1

mintµ, λ` 2µu

2d´ 3

d´ 2
´
δ4

2

1

mintµ, λ` 2µu
3
2

1
?
d´ 2

¸

p‖∇u´S ‖
2
` ‖∇u´P‖

2
q

ď

˜

1

mintµ, λ` 2µu

1

ε2

2d´ 3

d´ 2
`

3

2δ
4
3

1

mintµ, λ` 2µu
3
2

1
?
d´ 2

¸

p‖|x|fS‖2
` ‖|x|fP‖2

q

Since V satisfies (I.1.3) and assuming ε, δ sufficiently small, the constant in the left hand side
of the previous inequality is positive, thus we can write

p‖∇u´S ‖
2
` ‖∇u´P‖

2
q ď D2

ε,δp‖|x|fS‖
2
` ‖|x|fP‖2

q,
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where, obviously, D2
ε,δ is the ratio between the two constants which respectively appear on the

right and on the left hand side of the last but one inequality.

Using now the trivial Helmholtz decomposition of f “ f ´∇ψ`∇ψ and the elliptic regularity
Lemma I.5, one easily has

‖∇u´S ‖
2
` ‖∇u´P‖

2
ď c2‖|x|f‖2,

where
c2 :“ 2pC ` 1q2D2

ε,δ

does not depend on the frequency k and on f. Moreover, it is clear that the following hold

‖∇u´S ‖ ď c‖|x|f‖ and ‖∇u´P‖ ď c‖|x|f‖.

Now we can treat the less technical case.

Case |k2| ą k1.

First we consider the free setting. As the previous case, our equation (I.1.5) becomes the one
we have considered in Theorem I.1, precisely (I.4.2). Choosing v “ uS in the first of (I.4.6) and
v “ uP in the second and taking the real part of the resulting identity one obtains respectively

k1

ż

Rd
|uS|2 ´ µ

ż

Rd
|∇uS|2 “ <

ż

Rd
uS ¨ fS

and
k1

ż

Rd
|uP |2 ´ pλ` 2µq

ż

Rd
|∇uP |2 “ <

ż

Rd
uP ¨ fP .

Taking the sum of the previous and making use of the L2 and H1´orthogonality of uS and uP ,
one has

k1

ż

Rd
|u|2 ´ µ

ż

Rd
|∇u|2 ´ pλ` µq

ż

Rd
|∇uP |2 “ <

ż

Rd
u ¨ f.

Starting again from the weak formulation (I.4.6), choosing v “ k2
|k2|uS in the first and v “ k2

|k2|uP

in the second, taking the imaginary part and then summing the resulting identities, one obtains

|k2|
ż

Rd
|u|2 ď

ż

Rd
|u||f |.

Using the latter in the former (here we need the assumption |k2| ą k1) and observing the
positivity of the term pλ` µq

ş

Rd |∇uP |
2, we have

µ

ż

Rd
|∇u|2 ď 2

ż

Rd
|u||f |.

From the Cauchy Schwarz and Hardy’s inequalities follows

µ‖∇u‖2
ď

4

d´ 2
‖|x|f‖‖∇u‖.
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Thus, it may be concluded that

‖∇u‖ ă 1

µ

4

d´ 2
‖|x|f‖.

We now proceed to show the a-priori estimates in the perturbed context. Exploiting the same
notation we have used in the case |k2| ď k1, again u solves the equation (I.4.21). As a con-
sequence of the estimates we have just proved for the free case, recalling that h “ f ` g, one
easily obtains

‖∇u‖ ă 1

µ

4

d´ 2
‖|x|h‖ ď 1

µ

4

d´ 2
‖|x|f‖` 1

µ

4

d´ 2
‖|x|g‖.

Writing now explicitly g as V u, by assumption (I.1.3) we have

‖∇u‖ ă 1

µ

4

d´ 2
‖|x|f‖` Λ

µ

4

d´ 2
‖∇u‖

or, more explicitly
ˆ

1´
Λ

µ

4

d´ 2

˙

‖∇u‖ ă 1

µ

4

d´ 2
‖|x|f‖.

The condition (I.1.4) about Λ guarantees the positivity of the parenthesis of the left hand side
and then the theorem is proved.

Finally, we are in position to prove the uniform resolvent estimate we are looking for.

I.4.2.2. Proof of Theorem I.2

First of all, we consider the case |k2| ď k1, as a consequence of (I.1.7), making use of the
Hardy’s inequality, it is not difficult to show that the following chain of inequalities holds

‖|x|´1u‖ ď ‖|x|´1u´S ‖` ‖|x|
´1u´P‖ ď

2

d´ 2
p‖∇u´S ‖` ‖∇u´P‖q

ď
4c

d´ 2
‖|x|f‖.

Assuming |k2| ą k1, using (I.1.8) and again the Hardy’s inequality, we have

‖|x|´1u‖ ď 2c

d´ 2
‖|x|f‖.

I.5.| Problem 2

This chapter is devoted to the proof of the Theorem I.4 -Theorem I.7.
Before moving on in the proof of our results, we would like to give a (not comprehensive)

overview concerning the issue of spectral bounds.
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As one can see, we will outline the main results obtained in this topic over the years but
just for the Schrödinger operators. Indeed, if the literature in the context of spectral bounds
for Schrödinger is more than abundant, the one for the perturbed Lamé operator is almost
absent. Nevertheless by virtue of the likeness of the two operators highlighted by Helmholtz
decomposition, also the only state of the art for Schrödinger is worthy to be recalled.

I.5.1. Historical Background

In this section we will treat separately the state of the art for self-adjoint situation and the less
developed non self-adjoint one, in that order.

We will focus our attention in considering some fundamental inequalities in this topic that
go under the “umbrella” name of Lieb-Thirring inequalities, providing their classical statement
and the successive generalizations.

The standard Lieb-Thirring inequalities, named after E.H. Lieb and W.E. Thirring, give
an upper bound on the sums of powers of the absolute value of the negative eigenvalues of a
Schrödinger operators in terms of integrals of the potential, that, in the original formulation,
is assumed to be real-valued. This sets a self-adjoint framework. More precisely, considering
H “ ´∆`V pxq on L2pRdq, d ě 1 and denoting with e1 ď e2 ď ¨ ¨ ¨ ă 0 the negative eigenvalues
of H (if any), the Lieb-Thirring inequalities state that for suitable constants Lγ,d the following
holds:

ÿ

jě1

|ej|γ ď Lγ,d

ż

Rd
V´pxq

γ` d
2 dx, (I.5.1)

with V´pxq :“ maxt´V pxq, 0u, for any γ satisfying

γ ě
1

2
if d “ 1,

γ ą 0 if d “ 2,

γ ě 0 if d ě 3.

The proof of the previous inequalities in the cases γ ą 1
2
, d “ 1 and γ ą 0, d ě 2 were

covered by E.H. Lieb and W.E. Thirring in [64] in connection with their proof of stability of
matter. The case γ “ 1

2
, d “ 1 was established by T. Weidl in [89]. The further endpoint case

γ “ 0, d ě 3 was independently obtained by Rozenblyum [82, 83], Cwikel [20] and Lieb [63] by
different methods and is usually referred to as the Rozenblyum-Cwikel-Lieb inequality.

Some comments on the previous inequality follow.

Remark I.6. The relevance of this kind of spectral bounds, at least at the birth, comes from
physics and, in particular, from quantum mechanics. A sizable role among the estimates (I.5.1)
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is played by the case γ “ 1. With this choice an upper bound for the sum of the absolute
value of negative eigenvalues, that is a lower bound on the sum of negative eigenvalues, namely
ř

jě1 ej, is given. This was one of the essential ingredients in Lieb’s and Thirring’s proof of the
stability of matter: indeed since the energy of the ground state of a system of N interacting
fermions is

ř

jě1 ej, from the previous estimate turns out that this quantity can be estimated
from below by the integral of the negative part of the potential to the power 1` d

2
, guaranteeing

the stability.

Remark I.7. Let us notice that only the negative part of V, namely V´, plays a role in the Lieb-
Thirring inequalities. Of course, since ´∆ is a non-negative operator, if V is also non-negative
then ´∆ ` V ě 0 and therefore no negative eigenvalues can occur. If V change its sign, that
is if both the positive and negative part of V “ V` ´ V´ are non-trivial, clearly both parts
influence negative eigenvalues. On the other hand, one can observe that, since V ě ´V´, in
particular ´∆ ` V ě ´∆ ´ V´ and by virtue of the mini/max principle an upper estimate
for the sum of a suitable power of the absolute values of the negative eigenvalues of ´∆ ´ V´

provides automatically the same upper estimate for the negative eigenvalues of the complete
hamiltonian ´∆ ` V, indeed the effect of V` on the negative eigenvalues is only to increase
their size.

Remark I.8. It is not difficult to see that if e is an eigenvalue of ´∆` V pxq with eigenfunction
ψ, then φλp¨q :“ ψpλ ¨q is an eigenfunction of ´∆`Vλpxq where Vλp¨q “ λ2V pλ ¨q with eigenvalue
λ2e. By a simple scaling this gives that p “ γ ` d

2
is the only possible exponent for which a

inequality of the following type

ÿ

jě1

|ej|γ ď Lγ,d

ż

Rd
V´pxq

p dx

can hold.

Remark I.9. Let us underline that there are “natural” constraints on the soundness of inequal-
ities of type (I.5.1). We emphasize a pathological behavior in dimension d “ 1, 2. First of all,
regardless of the dimension, since we are assuming V to vanish at infinity, σessp´∆` V pxqq “

σessp´∆q “ r0,8q. In some sense this means that the non-negative spectrum is easily deter-
mined. Therefore the question is deflected to a deeper analysis of the negative part. It is well
known (look at chapter I.2) that from the criticality of ´∆ or, in other words, due to the lack
of a Hardy-type inequality in low dimension, namely d “ 1, 2, for any attractive potentials V,
that is V non-trivial and V ď 0 (beyond the request to vanish at infinity), negative bound
states always exists (actually the assumption V to be attractive can be weakened requiring V
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to be just “attractive in the mean”, that is
ş

Rd V pxq dx ă 0). On the other hand if an inequality
of the form (I.5.1) with γ “ 0 holds, we would have that the left-hand side turns out to be the
counting function of negative eigenvalues and therefore is a positive integer for any such poten-
tial. On the contrary, the right-hand side can be made arbitrarily small, indeed is sufficient to
assume

ş

Rd V´pxq
d
2 dx ă L´1

0,d to obtain an evident contradiction.

Remark I.10. Even if common knowledge, we want to show, at least in two very simple cases,
the important and deep relation between the possibility to obtain bounds for eigenvalues of the
Schrödinger operators and the validity of Sobolev inequality

ż

Rd
|∇u|2 dx ě Sd

´

ż

Rd
|u|q

¯
2
q
, q “

2d

d´ 2
, d ě 3, (I.5.2)

in the self-adjoint context.

• We consider first the Rozenblyum-Cwikel-Lieb inequality, that is (I.5.1) with γ “ 0. This
can be explicitly written as

N´p´∆` V q ď L0,d

ż

Rd
V´pxq

d
2 dx, (I.5.3)

where N´p´∆ ` V q is a notation for the number of negative eigenvalues (if any) of the
operator ´∆` V.

Even if this inequality was first discovered by Rozenblum, Cwikel and Lieb, afterwards
other proofs of (I.5.3) were given. It is worth mentioning the proof of Li and Yau [69],
indeed it relies only upon the Sobolev inequality and the positivity of the heat kernel.
Then Levin and Solomyak [62] generalized the strategy in the aforementioned work in
order to obtain, under suitable Markov condition, the equivalence between R-C-L and
the Sobolev inequality.

Now we use partial tools from [62] in order to make less theoretical the relation between
the two inequalities. More precisely we will see first that Sobolev inequality provides a
condition for the absence of negative eigenvalues of ´∆ ` V in d ě 3. After that we
will show that the absence of eigenvalues follows, “sub conditionem”, from the R-C-L.
This means that, in essence, we would have performed an equivalence between Sobolev
inequality and a weaker form of R-C-L.

Proposition I.2. Let d ě 3, q “ 2d
d´2

and assume V “ ´V´ such that ‖V´‖ d
2
ď Sd, then

ż

Rd
|∇u|2 dx ě Sd

´

ż

Rd
|u|q

¯
2
q

ðñ there are no negative eigenvalues for ´∆´ V´.

Proof. The proof proceeds with the following steps:

32



1. We will prove that
ż

Rd
|∇u|2 dx ě Sd

´

ż

Rd
|u|q

¯
2
q

ðñ

ż

Rd
V´|u|2 dx ď

ż

Rd
|∇u|2

2. We notice that
ż

Rd
V´|u|2 dx ď

ż

Rd
|∇u|2 ðñ ´∆´ V´ ě 0.

3. By virtue of the min/max principle

´∆´ V´ ě 0 ðñ there are no negative eigenvalues for ´∆´ V´.

The only part which requires more clarifications is p1q. We will explicitly prove this
equivalence in the Appendix D.

We observe that if ‖V´‖
d
2
d
2

ă L´1
0,d then R-C-L inequality implies that N´p´∆ ´ V´q “ 0

that is no negative eigenvalues can occur. In this sence we say that the absence of
eigenvalues is a weaker form of R-C-L.

• Now we will see that if one is interested in a weaker result about the bound of a single
eigenvalue of ´∆ ` V , assuming V to be real-valued (so that possible discrete eigenval-
ues are negative), such a bound will follow again as an easy application of the Sobolev
inequality.

Theorem I.8. Let V be real-valued, if d “ 1 and γ ě 1
2
or if d ě 2 and γ ą 0, then any

non-negative eigenvalue λ of the Schrödinger operator ´∆` V satisfies

|λ|γ ď Lγ,d

ż

Rd
|V pxq|γ`

d
2 dx,

with a constant independent of V.

Proof. To avoid technical computations, we will prove the result just for γ “ 1. Without
loss of generality we assume V “ ´V´. Let us define H :“ ´∆ ´ V´, by the variational
characterization of the eigenvalues one has

inf σpHq “ inf
‖u‖2“1

xu,Huy.

It follows by integration by parts that

xu,Huy “

ż

Rd
|∇u|2 ´

ż

Rd
V´|u|2.
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Defining ρ :“ |u|2, making use of Hölder and of the inequality ab ď ap

p
` bq

q
which holds

for all positive a, b and 1
p
` 1

q
“ 1, we get

ż

Rd
V´ ρ ď ‖V´‖1` d

2
‖ρ‖ d`2

d
ď

1

δ1` d
2

2

d` 2
‖V´‖

1` d
2

1` d
2

` δ
d`2
d

d

d` 2
‖ρ‖

d`2
d
d`2
d

. (I.5.4)

The Sobolev inequality gives
ż

Rd
|∇u|2 ě Sd‖ρ‖ q

2
, q “

2d

d´ 2
.

Using again Hölder and the assumption ‖ρ‖1 :“ ‖u‖2
2 “ 1 we have

‖ρ‖
d`2
d
d`2
d

“

ż

Rd
ρ

2
dρ ď ‖ρ‖

2
d
1 ‖ρ‖ q

2
“ ‖ρ‖ q

2
.

From this we conclude that
ż

Rd
|∇u|2 ě Sd‖ρ‖

d`2
2
d`2
2

. (I.5.5)

Using (I.5.4) and (I.5.5) together we obtain the following lower bound

xu,Huy ě
´

Sd ´ δ
d`2
d

d

d` 2

¯

‖ρ‖
d`2
d
d`2
d

´
1

δ1` d
2

2

d` 2
‖V´‖

1` d
2

1` d
2

. (I.5.6)

Choosing suitably δ, one has

xu,Huy ě ´L0,d

ż

Rd
V

1` d
2

´ pxq dx.

Now let λ any negative eigenvalue, we get

λ ě inf σpHq ě ´L0,d

ż

Rd
V

1` d
2

´ pxq dx,

which is the thesis.

Let us observe that until now, in the whole dissertation, the potential V was assumed to be
real-valued, leading to a self-adjoint context. Now we are interested in consider the complex-
valued frame. As already mentioned in the introduction, the generalization of the spectral
results from the self-adjoint to the non self-adjoint picture is very far to be easy. This can
be already justified by the previous remark. As it shown, spectral bounds in the “self-adjoint
paradise” make strongly use of variational characterizations of eigenvalues which do not hold in
the non self-adjoint context; moreover another fundamental tool is Sobolev inequality which,
as showed in Frank [40], does not suffice to prove similar bound than Theorem I.8 which may
cover complex-valued potentials, indeed more subtle estimates are needed.

We conclude this historical section with a short overview of what is known for the location
of discrete eigenvalues for non self-adjoint Schrödinger operators. In order to do that we need
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to come back to the work by Abramov, Aslanyan and Davies [1], in this paper was proved that
in dimension d “ 1 every eigenvalues λ P Czr0,8q of d2

dx2
` V satisfies

|λ|
1
2 ď

1

2

ż

R
|V pxq| dx. (I.5.7)

The numerous paper after [1] were primarily motivated by a question posed by E. B. Davies
about the possibility to extend the previous estimate to dimension d ě 2. In [41] Frank, Laptev,
Lieb and Seiringer extended the previous result to higher dimensions and to Lp norm of the
potential with p ‰ 1, finding the non self-adjoint counterpart of the Lieb-Thirring inequality
for the eigenvalue power sums. However in this work they were able to prove the bound just
for eigenvalues lying sufficiently far from the positive real axis. In [61] Laptev and Safronov
overcame this constraint, obtaining a result which covers eigenvalues possibly close to the essen-
tial spectrum. In the same work, Laptev and Safronov conjectured the natural generalization
of (I.5.7), this reads as

|λ|γ ď Dγ,d

ż

Rd
|V pxq|γ`

d
2 dx (I.5.8)

for d ě 2 and 0 ă γ ď d
2
. This remained a conjecture since 2011 when Frank [40] proved

that (I.5.8) holds for d ě 2 and 0 ă γ ď 1
2
. After, Frank and Simon [42] proved the conjecture

for radial potentials for d ě 2 and 1
2
ă γ ă d

2
and “disprove” it in the general case.

Now we are in position to prove our results.

I.5.2. Proofs

Proof of Theorem I.4 As already mentioned in the introduction, several works which treat
spectral analysis use as a starting point the Birman-Schwinger principle. In our case
this state that if z P Czr0,8q is an eigenvalue of ´∆˚ ` V then ´1 is an eigenvalue of
Kz :“ V 1

2
p´∆˚ ´ zq´1|V |

1
2 and vice-versa, where we defined V 1

2
“ |V |

1
2 sgnpV q. It is clear

that if ´1 is an eigenvalue of Kz then the norm of Kz is at least 1. Therefore in order to
obtain the thesis of our result, it is sufficient to prove that the following holds

‖V 1
2
p´∆˚

´ zq´1|V |
1
2‖γ`

d
2 ď Dγ,d |z|´γ

ż

Rd
|V pxq|γ`

d
2 dx. (I.5.9)

As we have already seen in Chapter I.3, which is devoted to highlight some useful conse-
quence of the Helmholtz decomposition, the resolvent of Lamé operator has a favorable
form in terms of resolvents of the Laplace operator, precisely p´∆˚´ zq´1 can be written
as in (I.3.2) (see Lemma I.2 for further details).

In view of this remark now we are in position to compute explicitly the operator norm of
Kz :“ V 1

2
p´∆˚ ´ zq´1|V |

1
2 , in order to do that, for any f, g P rL2pRdqsd, we estimate the
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quantity |xf,Kzgy|. We have

|xf,Kzgy| ď
1

µ

∣∣∣xf, V 1
2

`

´∆´ z
µ

˘´1
p|V |

1
2 gqSy

∣∣∣` 1

λ` 2µ

∣∣∣xf, V 1
2

`

´∆´ z
λ`2µ

˘´1
p|V |

1
2 gqP y

∣∣∣.
To simplify the notations from now on we will write G “ |V |

1
2 g and GS “ p|V |

1
2 gqS and

GP “ p|V |
1
2 gqP the respective components of the Helmholtz decomposition. Therefore

the previous inequality can be re-written as

|xf,Kzgy| ď
1

µ

∣∣∣xf, V 1
2

`

´∆´ z
µ

˘´1
GSy

∣∣∣` 1

λ` 2µ

∣∣∣xf, V 1
2

`

´∆´ z
λ`2µ

yq
´1GP

˘

∣∣∣. (I.5.10)

As a starting estimate we consider the first term, we recall that we are dealing with
vector-valued function, this will involve the necessity to obtain estimates for components.
Using Hölder inequality, with p and p1 such that 1

p
` 1

p1
“ 1 and its version for discrete

measures, we have

|xf, V 1
2
p´∆´ z

µ
q
´1GSy| ď

d
ÿ

j“1

ż

Rd
|fj||V |

1
2 |p´∆´ z

µ
q
´1Gj

S|

ď

d
ÿ

j“1

‖fj|V |
1
2‖p‖p´∆´ z

µ
q
´1Gj

S‖p1

ď

´

d
ÿ

j“1

‖fj|V |
1
2‖pp

¯
1
p
´

d
ÿ

j“1

‖p´∆´ z
µ
q
´1Gj

S‖
p1

p1

¯
1
p1

“ ‖f |V |
1
2‖p

´

d
ÿ

j“1

‖p´∆´ z
µ
q
´1Gj

S‖
p1

p1

¯
1
p1

.

Proceeding as in [40] we will strongly use the “uniform Sobolev inequality” by Kenig, Ruiz
and Sogge [57], which adfirms that

‖p´∆´ zq´1‖pÑp1 ď Cp,d |z|´
d`2
2
` d
p , (I.5.11)

for 2d
d`2

ď p ď 2pd`1q
d`3

if d ě 3 and for 1 ă p ď 6
5
if d “ 2.

From (I.5.11) it follows

‖p´∆´ z
µ
q
´1Gj

S‖p1 ď
Cp,d

µ´
d`2
2
` d
p

|z|´
d`2
2
` d
p‖Gj

S‖p.

This, along with the superadditivity of the convex function |x|p, namely
`
řd
j“1 a

p
j

˘
1
p ď

řd
j“1 aj, which holds for all non-negative aj, and p ě 1 and the Hölder inequality for
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sums, gives

´

d
ÿ

j“1

‖p´∆´ z
µ
q
´1Gj

S‖
p1

p1

¯
1
p1

ď
Cp,d

µ´
d`2
2
` d
p

|z|´
d`2
2
` d
p

´

d
ÿ

j“1

‖Gj
S‖

p1

p

¯
1
p1

ď
Cp,d

µ´
d`2
2
` d
p

|z|´
d`2
2
` d
p

d
ÿ

j“1

‖Gj
S‖p

ď
Cp,d

µ´
d`2
2
` d
p

|z|´
d`2
2
` d
pd

1
p1

´

d
ÿ

j“1

‖Gj
S‖

p
p

¯
1
p

“
Cp,d

µ´
d`2
2
` d
p

|z|´
d`2
2
` d
pd

1
p1 ‖GS‖p.

At the end we get

|xf, V 1
2
p´∆´ z

µ
q
´1GSy| ď

Cp,d

µ´
d`2
2
` d
p

|z|´
d`2
2
` d
pd

1
p1 ‖f |V |

1
2‖p ‖GS‖p,

performing the same computation for the second term in (I.5.10) we have

|xf, V 1
2
p´∆´ z

λ`2µ
q
´1GP y| ď

Cp,d

pλ` 2µq´
d`2
2
` d
p

|z|´
d`2
2
` d
pd

1
p1 ‖f |V |

1
2‖p ‖GP‖p.

Plugging the previous two together in (I.5.10) one obtains

|xf, V 1
2
p´∆˚

´ zq´1Gy| ď Cp,d,λ,µ|z|´
d`2
2
` d
p‖f |V |

1
2‖p

`

‖GS‖p ` ‖GP‖p
˘

,

where Cp,d,λ,µ :“ Cp,d d
1
p1 max

!

µ
d
2
´ d
p , pλ`2µq

d
2
´ d
p

)

. In order to conclude we need to obtain
a bound for the sum of the Lp norm of the S and P component of G in terms of the Lp

norm of the whole function G. Following a strategy similar to the one used in [19] and
set out in the previous chapter I.4, we write this trivial decomposition for G :

G “ G´∇ψ `∇ψ

and we assume that ψ is a solution of the elliptic problem

∆ψ “ divG. (I.5.12)

Since ψ is a solution of (I.5.12) then it is clear that divpG ´ ∇ψq “ 0. By uniqueness
of the Helmholtz decomposition it follows that GS “ G ´∇ψ and GP “ ∇ψ. From this
explicit form for the components we obtain

‖GS‖p ` ‖GP‖p ď ‖G‖p ` 2‖∇ψ‖p.

It remains to obtain an estimate for ‖∇ψ‖p, more precisely we want to obtain from this
norm another contribution of ‖G‖p.
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Let us define the operator T such that T pGq :“ ∇ψ, where ψ is the unique solution
of (I.5.12), in [19] and also recalled above, following a previous insight in [4], was proved
that this operator T is noting but a composition of the Riesz transforms, more precisely,
for all j “ 1, 2, . . . , d

Bjψ “ cd

d
ÿ

k“1

RjRkGk.

This addressed our interest toward finding boundedness result for the Riesz transform.
Will be a fundamental tool for our aim the following result by Iwaniec and Martin [51]
and Bañuelos and Wang [2]. They assert that for all j “ 1, 2, . . . , d

‖Rj‖pÑp “ cot
´ π

2p˚

¯

“: cp, 1 ă p ă 8, p˚ “ maxtp, p1u. (I.5.13)

Using (I.5.13) and the Hölder inequality for discrete measures, we obtain

‖∇ψ‖p :“
´

d
ÿ

j“1

‖Bjψ‖pp
¯

1
p
ď cd

˜

d
ÿ

j“1

´

d
ÿ

k“1

‖RjRkGk‖p
¯p

¸
1
p

ď cd c
2
p d

1
p

d
ÿ

k“1

‖Gk‖p

ď cd c
2
p d

1
pd

1
p1 ‖G‖p “ cd c

2
p d ‖G‖p.

Summing up, recalling that at the very beginning G “ |V |
1
2 g, we have

|xf, V 1
2
p´∆˚

´ zq´1|V |
1
2 gy| ď rCd,p,λ,µ|z|´

d`2
2
` d
p‖f |V |

1
2‖p ‖|V |

1
2 g‖p.

Let’s see ‖f |V |
1
2‖p. Using again the discrete Hölder inequality we get

‖f |V |
1
2‖p “

´

d
ÿ

j“1

‖fj|V |
1
2‖pp

¯
1
p
ď

´

d
ÿ

j“1

‖fj‖p2‖V ‖
p
2
p

2´p

¯
1
p
ď ‖V ‖

1
2
p

2´p

d
ÿ

j“1

‖fj‖2

ď d
1
2‖V ‖

1
2
p

2´p
‖f‖2.

Performing the same computations for ‖|V |
1
2 g‖p one has

|xf, V 1
2
p´∆˚

´ zq´1|V |
1
2 gy| ď r

rCd,p,λ,µ|z|´
d`2
2
` d
p‖f‖2‖g‖2‖V ‖ p

2´p
.

Now for 0 ă γ ď 1
2
(as for γ “ 0 in d ě 3) we can choose p “ 2p2γ`dq

2γ`d`2
, indeed this

restriction on γ guarantees that p, chosen as above, satisfies the hypotheses requested in
the estimate of Kenig, Ruiz and Sogge. Taking the supremum over all f and g P rL2pRdqsd

with norm less than or equal to one we obtain (I.5.9). This concludes the the proof of
Theorem I.4.

Proof of Theorem I.5 Now we are in position to prove Theorem I.5. We underline that this
is a stronger result than Theorem I.4. Indeed as already pointed out in [40] with respect
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to eigenvalues’ bounds for Schrödinger operators, it turns out that the control of the
size of the potential in terms of its Morrey-Campanato norm is a sufficient condition in
order to obtain a similar bound for the eigenvalues than the one obtained in Theorem I.4.
Before turning to the core part of the proof, we recall the standard definition of Morrey-
Campanato’s norm is given:

‖V ‖Lα,p :“ sup
x,r

rα
´

r´d
ż

Brpxq

|V pyq|p dy
¯

1
p
.

This assumption about the perturbation V allows us to treat potentials with local stronger
singularities then the ones covered by the previous result Theorem I.4, in which the
potentials were required to belong to a suitable Lp space.

As we will see in a moment we need to replace the uniform Sobolev estimate by Kenig,
Ruiz and Sogge, with L2´ weighted estimates. More precisely we will use the following
result, a proof of which can be found in [40].

Lemma I.6. Let 4
3
ă α ă 2 if d “ 2, 2d

d`1
ă α ď 2 if d ě 3 and let d´1

2pα´1q
ă p ď d

α
. Then

for all 0 ă w P Lα,ppRdq,

‖p´∆´ zq´1‖L2pw´1 dxqÑL2pw dxq ď Cd,α,p‖w‖Lα,p|z|
´1`α

2 . (I.5.14)

As in the previous result, the explicit expression (I.3.2) of the resolvent for the Lamé
operators in terms of the resolvents of the Laplacian will be of great relevance . Let’s
start with (I.5.10) and again with the first term in there.

Proceeding in analogy with the work by Frank, we pick a strictly positive function φ P

Lα,p and we define a strictly positive approximation of our potential, that is Vεpxq :“

supxPRdt|V pxq|, εφpxqu.

Using Cauchy-Schwartz and Hölder inequalities we have

|xf, V 1
2
p´∆´ z

µ
q
´1GSy| ď

d
ÿ

j“1

‖fj|V |
1
2V

´ 1
2

ε ‖2‖p´∆´ z
µ
q
´1Gj

S‖L2pVε dxq

ď

´

d
ÿ

j“1

‖fj
a

|V |{Vε‖2
2

¯
1
2
´

d
ÿ

j“1

‖p´∆´ z
µ
q
´1Gj

S‖
2
L2pVε dxq

¯
1
2
.

Making use of (I.5.14) one obtains

‖p´∆´ z
µ
q
´1Gj

S‖L2pVε dxq
ď

Cd,α,p

µ´1`α
2

|z|´1`α
2 ‖Vε‖Lα,p‖V

´ 1
2

ε Gj
S‖2.

This gives

|xf, V 1
2
p´∆´ z

µ
q
´1GSy| ď

Cd,α,p

µ´1`α
2

|z|´1`α
2 ‖Vε‖Lα,p‖f

a

|V |{Vε‖2 ‖V
´ 1

2
ε GS‖2,
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performing the same computation for the second term in (I.5.10) we have

|xf, V 1
2
p´∆´ z

λ`2µ
q
´1GP y| ď

Cd,α,p

pλ` 2µq´1`α
2

|z|´1`α
2 ‖Vε‖Lα,p‖f

a

|V |{Vε‖2 ‖V
´ 1

2
ε GP‖2.

Plugging the previous two together in (I.5.10) one obtains

|xf, V 1
2
p´∆˚

´zq´1Gy| ď Cd,α,p,λ,µ|z|´1`α
2 ‖Vε‖Lα,p‖f

a

|V |{Vε‖2

`

‖V ´
1
2

ε GS‖2`‖V
´ 1

2
ε GP‖2

˘

,

where Cd,α,p,λ,µ :“ Cd,α,p max
 

µ´
α
2 , pλ` 2µq´

α
2

(

“ µ´
α
2Cd,α,p.

Again we write the trivial decomposition for G :

G “ G´∇ψ `∇ψ

and we assume that ψ is a solution of the elliptic problem (I.5.12), namely ∆ψ “ divG.

Since ψ is a solution of the mentioned equation, then divpG´∇ψq “ 0 and by uniqueness
of the Helmholtz decomposition it follows that GS “ G ´∇ψ and GP “ ∇ψ. From this
explicit form for the components we obtain

‖V ´
1
2

ε GS‖2 ` ‖V
´ 1

2
ε GP‖2 ď ‖V

´ 1
2

ε G‖2 ` 2‖V ´
1
2

ε ∇ψ‖2.

In order to conclude we need to obtain an estimate for the last term of the previous
inequality. For this aim the following lemma, which is a generalization of Lemma I.5, will
be useful.

Lemma I.7. Let G P rC8c pRdqsd be a smooth-compactly supported vector field in Rd, and
let ψ : Rd Ñ C be a smooth solution to

∆ψ “ divG.

Then for any w belonging to the Ap´class, 1 ă p ă 8 the following estimate holds

‖∇ψ‖Lppw dxq ď c‖G‖Lppw dxq,

for some constant c ą 0 independent on G.

The proof of this result basically follows from the weighted Lp´boundednees of Calderón-
Zygmund operator when the weights belong to the Ap´class.

Now if V ´1
ε is assumed to belong to the A2´class then

‖V ´
1
2

ε ∇ψ‖2 ď c‖V ´
1
2

ε G‖2.
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Summing up, recalling that at the very beginning G “ |V |
1
2 g, we have

|xf, V 1
2
p´∆˚

´ zq´1|V |
1
2 y| ď rCd,α,p,λ,µ|z|´1`α

2 ‖Vε‖Lα,p‖f
a

|V |{Vε‖2 ‖g
a

|V |{Vε‖2

ď rCd,α,p,λ,µ|z|´1`α
2 ‖Vε‖Lα,p‖f‖2 ‖g‖2.

Therefore the theorem is proved once ε goes to zero, taking the supremum over all f, g P
rL2pRdqsd with norm less than or equal to one and by choosing α “ 2d

2γ`d
.

Proof of Theorem I.6 As Frank himself underlined for his Schrödinger counterpart’s result,
the previous theorem is not fully satisfactory because, in essence, is required to the po-
tential to decay as |x|´ρ with ρ ą 2d

d`1
, this means that slowly decaying potentials, that is

potentials which decay just as |x|´ρ with ρ ą 1, are not included. For this reason, in the
same paper, Frank proved a similar result which allows to consider this decay rate, and
we do the same with providing Theorem I.6.

Let us start, as in the previous results, with the inequality (I.5.10) and in particular with
the first term in it.

From now on we will use the following notation xxy :“ p1` |x|2q 12 .

|xf, V 1
2
p´∆´ z

µ
q
´1GSy| ď

d
ÿ

j“1

|xfj, V 1
2
xxyαxxy´αp´∆´ z

µ
q
´1Gj

Sy|

ď

d
ÿ

j“1

‖fj|V |
1
2 xxyα‖2‖xxy

´α
p´∆´ z

µ
q
´1Gj

S‖2

ď
`

d
ÿ

j“1

‖fj|V |
1
2 xxyα‖2

2

˘
1
2
`

d
ÿ

j“1

‖xxy´αp´∆´ z
µ
q
´1Gj

S‖
2
2

˘
1
2 .

Now we need the following resolvent estimate

‖p´∆´ zq´1‖L2pxxy2αdxqÑL2pxxy´2αdxq ď Cd,α|z|´
1
2 , α ą

1

2
. (I.5.15)

Using (I.5.15) we have

‖xxy´αp´∆´ z
µ
q
´1Gj

S‖2 ď
Cd,α

µ´
1
2

|z|´
1
2‖xxyαGj

S‖2.

Summing up we obtained

|xf, V 1
2
p´∆´ z

µ
q
´1GSy| ď

Cd,α

µ´
1
2

|z|´
1
2‖f |V |

1
2 xxyα‖2‖xxy

αGS‖2.

Performing the same computation for the second term in (I.5.10) we have

|xf, V 1
2
p´∆´ z

λ`2µ
q
´1GP y| ď

Cd,α

pλ` 2µq´
1
2

|z|´
1
2‖f |V |

1
2 xxyα‖2‖xxy

αGP‖2.
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Putting the two estimates together in (I.5.10) one has

|xf, V 1
2
p´∆˚

´ zq´1Gy| ď Cd,α,λ,µ|z|´
1
2‖f |V |

1
2 xxyα‖2p‖xxy

αGS‖2 ` ‖xxy
αGP‖2q,

where Cd,α,λ,µ :“ Cd,α maxtµ´
1
2 , pλ` 2µq´

1
2 u “ µ´

1
2Cd,α.

Again we write the trivial decomposition for G :

G “ G´∇ψ `∇ψ,

where ψ is a solution of the elliptic problem (I.5.12). As in the previous cases it turns out
that GS and GP , the components of the Helmholtz decomposition, have to be respectively
equal to G´∇ψ and ∇ψ. This gives

‖xxyαGS‖2 ` ‖xxy
αGP‖2 ď ‖xxy

αG‖2 ` 2‖xxyα∇ψ‖2.

This means that again we need an estimate involving the Calderón-Zygmund operator
∇ψ.

Since xxys belongs to the A2´class for all s P R, in particular this is true for s “ 2α with
α ą 1

2
, this guarantees from Lemma I.7 that

‖xxyα∇ψ‖2 ď c‖xxyαG‖2.

Using the previous estimate and recalling that at first G “ |V |
1
2 g, we have

|xf, V 1
2
p´∆˚

´ zq´1|V |
1
2 gy| ď rCd,α,λ,µ|z|´

1
2‖f |V |

1
2 xxyα‖2‖xxy

α|V |
1
2 g‖2

ď rCd,α,µ,λ|z|´
1
2 sup
xPRd

p1` |x|2qα|V pxq|‖f‖2‖g‖2.

Taking the supremum over all f, g P rL2pRdqsd with norm less then or equal to one we get
the desired result.

Proof of Theorem I.7 As a byproduct, in his work Frank performed the following resolvent
estimate for the Laplace operator:

‖xxy´θαp´∆´ zq´1
xxy´θα‖LqÑLq1 ď Cd,q,α|z|´

p1´θq
d`1

´ θ
2 , α ą

1

2
, (I.5.16)

where 1
q
“ 1´θ

pd
` θ

2
and pd “ 2pd`1q

d`3
.

Starting again from (I.5.10), or better from the term involving the S-component, we have

|xf, V 1
2
p´∆´ z

µ
q
´1GSy| ď

d
ÿ

j“1

|xfj, V 1
2
xxyθαxxy´θαp´∆´ z

µ
q
´1Gj

Sy|

ď

d
ÿ

j“1

‖fj|V |
1
2 xxyθα‖q‖xxy

´θα
p´∆´ z

µ
q
´1Gj

S‖q1

ď

´

d
ÿ

j“1

‖fj|V |
1
2 xxyθα‖qq

¯
1
q
´

d
ÿ

j“1

‖xxy´θαp´∆´ z
µ
q
´1Gj

S‖
q1

q1

¯
1
q1

.
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Making use of (I.5.16), similarly as our first result, we obtain

´

d
ÿ

j“1

‖xxy´θαp´∆´ z
µ
q
´1Gj

S‖
q1

q1

¯
1
q1

ď
Cd,q,α

µ´
1´θ
d`1

´ θ
2

|z|´
1´θ
d`1

´ θ
2

´

d
ÿ

j“1

‖xxyθαGj
S‖

q1

q

¯
1
q1

ď
Cd,q,α

µ´
1´θ
d`1

´ θ
2

|z|´
1´θ
d`1

´ θ
2

d
ÿ

j“1

‖xxyθαGj
S‖q

ď
Cd,q,α

µ´
1´θ
d`1

´ θ
2

|z|´
1´θ
d`1

´ θ
2d

1
q1

´

d
ÿ

j“1

‖xxyθαGj
S‖

q
q

¯
1
q

“
Cd,q,α

µ´
1´θ
d`1

´ θ
2

|z|´
1´θ
d`1

´ θ
2d

1
q1 ‖xxyθαGS‖q.

This gives

|xf, V 1
2
p´∆´ z

µ
q
´1GSy| ď

Cd,q,α

µ´
1´θ
d`1

´ θ
2

d
1
q1 |z|´

1´θ
d`1

´ θ
2‖f |V |

1
2 xxyθα‖q‖xxy

θαGS‖q,

performing the same computations for the term involving the P component, one gets

|xf, V 1
2
p´∆´ z

λ`2µ
q
´1GP y| ď

Cd,q,α

pλ` 2µq´
1´θ
d`1

´ θ
2

d
1
q1 |z|´

1´θ
d`1

´ θ
2‖f |V |

1
2 xxyθα‖q‖xxy

θαGP‖q.

Putting the two previous estimate together in (I.5.10) one has

|xf, V 1
2
p´∆˚

´ zq´1Gy| ď Cd,q,α,λ,µ|z|´
1´θ
d`1

´ θ
2‖f |V |

1
2 xxyθα‖qp‖xxy

θαGS‖q ` ‖xxy
θαGP‖qq,

where Cd,q,α,λ,µ “ Cd,q,αd
1
q1 maxtµ

1´θ
d`1

` θ
2
´1, pλ` 2µq

1´θ
d`1

` θ
2
´1
u “ Cd,q,αd

1
q1 µ

1´θ
d`1

` θ
2
´1.

Again we write the trivial decomposition for G :

G “ G´∇ψ `∇ψ,

where ψ is a solution of the elliptic problem (I.5.12). Arguing as above, the next inequality
easily follows:

‖xxyθαGS‖q ` ‖xxy
θαGP‖q ď ‖xxy

θαG‖q ` 2‖xxyθα∇ψ‖q.

Since xxys belongs to the Aq´class, using again Lemma I.7 we get

‖xxyθα∇ψ‖q ď c‖xxyθαG‖q.

Using this estimate and the fact that at the very beginning G :“ |V |
1
2 g, we obtain

|xf, V 1
2
p´∆˚

´ zq´1|V |
1
2 gy| ď rCd,p,α,λ,µ|z|´

1´θ
d`1

´ θ
2‖f |V |

1
2 xxyθα‖q‖xxy

θα|V |
1
2 g‖q.
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Let’s see ‖f |V |
1
2 xxyθα‖q.

‖f |V |
1
2 xxyθα‖q “

´

d
ÿ

j“1

‖fj|V |
1
2 xxyθα‖qq

¯
1
q
ď

´

d
ÿ

j“1

‖fj‖q2‖|V |xxy
2θα‖

q
2
q

2´q

¯
1
q
ď ‖|V |xxy2θα‖

1
2
q

2´q

d
ÿ

j“1

‖fj‖2.

Performing the same computations for ‖xxyθα|V |
1
2 g‖q one gets

|xf, V 1
2
p´∆˚

´ zq´1|V |
1
2 gy| ď r

rCd,p,α,λ,µ|z|´
1´θ
d`1

´ θ
2‖|V |xxy2θα‖ q

2´q
‖f‖2‖g‖2.

Taking the supremum over all f and g P rL2pRdqsd with norm less than or equal to one
we obtain

‖V 1
2
p´∆˚

´ zq´1|V |
1
2‖

q
2´q

L2ÑL2 ď
r

rCd,p,α,λ,µ|z|r´
1´θ
d`1

´ θ
2 s

q
2´q ‖|V |xxy2αθ‖

q
2´q
q

2´q
.

Calling

γ :“

„

1´ θ

d` 1
`
θ

2



q

2´ q
,

this clearly gives q
2´q

“ 2γ d`1
2´θ`dθ

, since we also have 1
q
“ 1´θ

pd
` θ

2
where pd “ 2pd`1q

d`3
,

this provides a constraint in the choice of θ, precisely θ “ 1´ d`1
4γ`d´1

. Using this explicit
expression for θ and the fact that, by virtue of Birman-Schwinger principle, ´1 is an
eigenvalue of our operator V 1

2
p´∆˚ ´ zq´1|V |

1
2 , one has

|z|γ ď r

rCd,p,α,λ,µ

ż

Rd
|V |2γ`

d´1
2 p1` |x|2qαp2γ´1q.

Renaming αp2γ ´ 1q “ α we obtain the aforementioned result.
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A.| Self-adjointness

First of all we want to give a rigorous meaning to the free Lamé operator as a self-adjoint
operator, i.e. we want to build the self-adjoint extension of the operator ´∆˚; in order to
do that we proceed using a quadratic form approach. After that we will treat the perturbed
setting, distinguishing the case of real-valued perturbation from complex-valued one.

Let us introduce the quadratic form associated with the operator ´∆˚,

Q0rus “

ż

Rd
q0rus dx,

where

q0rus “ λ

∣∣∣∣∣ d
ÿ

j“1

Buj
Bxj

∣∣∣∣∣
2

`
µ

2

d
ÿ

j,k“1

∣∣∣∣BujBxk
`
Buk
Bxj

∣∣∣∣2, u P rC8c pRd
qs
d.

Remark I.11. Since a complex setting will be needed once the perturbation V will come into
play, from now on we assume u to be complex-valued; although this assumption is not yet
necessary in the free framework, namely V “ 0.

A straightforward computation, made explicit in Appendix B shows that under the physical
assumption (I.1.2) the quadratic form q0rus, and thus ´∆˚, is positive.

Remark I.12. The quadratic form clearly remains positive under the stronger condition λ, µ ą 0.

We recall that, since our form Q0 is associated with a densely defined positive and symmetric
operator, this form is closable.

Let Q0 be the closure of our form. Even though completely standard, for reason of com-
pleteness, we will show the closedness of our form Q0 with form domain the Sobolev space of
H1- vector fields. In order to do that we need to prove that rH1pRdqsd equipped with the norm

‖u‖Q0
:“

`

Q0rus ` ‖u‖
2
rL2pRdqsd

˘
1
2

is complete. For this purpose we just have to prove that ‖u‖Q0
is equivalent to ‖u‖

rH1pRdqsd :“
`

‖u‖2
rL2pRdqsd`‖∇u‖

2
rL2pRdqsd

˘
1
2 .We need the following trivial chain of inequalities, for every dˆd

matrix ξ
1
d
|Trpξq|2 ď

∣∣1
2
pξ ` ξT q

∣∣2 ď |ξ|2. (A.1)

Calling ξ the Jacobian matrix, ξji :“ Bui
Bxj

we can rewrite Q0 in terms of ξ in this way:

Q0rus :“ 2µ

ż

Rd

∣∣1
2
pξ ` ξT q

∣∣2 ` λ ż
Rd
|Trpξq|2.

Assuming λ and µ to satisfy (I.1.2) and using (A.1), we get

Q0rus ď 2µ

ż

Rd

∣∣1
2
pξ ` ξT q

∣∣2`p2µ`λdq ż
Rd

1
d
|Trpξq|2 ď p4µ`λdq

ż

Rd
|ξ|2 “ p4µ`λdq‖∇u‖2

rL2pRdqsd .
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Summing up we proved that

‖u‖2
Q0
ď p4µ` λdq‖∇u‖2

rL2pRdqsd ` ‖u‖
2
rL2pRdqsd ď maxt4µ` λd, 1u‖u‖2

rH1pRdqsd . (A.2)

As a starting point for proving the opposite inequality, we show that there exists c ą 0 such
that

Q0rus ě c

ż

Rd

∣∣1
2
pξ ` ξT q

∣∣2 “ c
d
ÿ

j,k“1

ż

Rd
|1
2

`

Buj
Bxk
`
Buk
Bxj

˘

|2. (A.3)

Since the Lamé parameters have to satisfy (I.1.2), there exists c ą 0 such that 2µ ě c and
2µ` λd ě c, using this fact we obtain

Q0rus ´ c

ż

Rd

∣∣1
2
pξ ` ξT q

∣∣2 ě p2µ´ cq ż
Rd

”∣∣1
2
pξ ` ξT q

∣∣2 ´ 1
d
|Trpξq|2

ı

ě 0,

and this clearly gives the claim. In order to conclude we make use of the Korn’s inequality that
reads

‖u‖2
rH1pRdqsd ď c̃

´

d
ÿ

j“1

ż

Rd
|uj|2 `

d
ÿ

j,k“1

ż

Rd

∣∣∣1
2

`

Buj
Bxk
`
Buk
Bxj

˘

∣∣∣2¯, (A.4)

for some constant c̃ ě 0.

Exploiting (A.3) and (A.4) we easily obtain

‖u‖2
Q0
ě c

d
ÿ

j,k“1

ż

Rd

∣∣∣1
2

`

Buj
Bxk
`
Buk
Bxj

˘

∣∣∣2 ` d
ÿ

j“1

ż

Rd
|uj|2 ě mintc,1u

c̃
‖u‖2

rH1pRdqsd . (A.5)

Observe that from (A.2) and (A.5) we have the anticipated equivalence, that is Q0 is closed.
Therefore, as Q0 is a densely defined lower semi-bounded (actually positive) closed form

on an Hilbert space, then there is a canonical way to build from it a distinguished self-adjoint
extension, called Friedrichs extension, of the symmetric operator ´∆˚, that is the self-adjoint
operator we are looking for and that, with abuse of notation, we again write as ´∆˚.

In order to handle the perturbed operator, we want to use the operator written after the
use of the Helmholtz decomposizion:

´∆˚u “ ´µ∆uS ´ pλ` 2µquP .

The quadratic form associated with the operator ´∆˚, explicitly written in the previous
form, is

Q0rus “

ż

Rd
q0rus dx,

with
q0rus “ µ|∇uS|2 ` pλ` 2µq|∇uP |2 and DpQ0q “ rH

1
pRd
qs
d,

where |∇v|2, when v “ pv1, v2, . . . , vdq is a vector field, denotes
řd
j“1|∇vj|

2.
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We observe that here, with an abuse of notation, we have used the same symbol Q0 for
the quadratic form associated with ´∆˚, both when its action is written explicitly using the
Helmholtz decomposition and when the operator is defined in its classical way.

Now we are in position to consider the perturbed operator

´∆˚
` V,

where V : Rd ÑMdˆdpCq is the perturbation term.

Clearly, in the Helmholtz decomposition, this operator acts on a smooth vector fields u in
this way

p´∆˚
` V qu “ ´µ∆uS ´ pλ` 2µq∆uP ` V u.

The corresponding perturbed quadratic form associated with this operator is

Qpertrus “ Q0rus `QV rus “ Q0rus `

ż

Rd
qV rus dx,

where

qV rus “ V u ¨ u and DpQV q “

"

u P rL2
pRd
qs
d :

ż

Rd
|V ||u|2 ă 8

*

.

Let us suppose now to assume the following smallness condition about V :

D a ă mintµ, λ` 2µu, @u P rH1
pRd
qs
d,

ż

Rd
|V ||u|2 ď a

ż

Rd
|∇u|2. (A.6)

It’s not difficult to see that, as a consequence of the constrictions on a, QV is relatively bounded
with respect to Q0 with bound less than one.

Let us suppose, for a moment, that our potential V is real-valued. As a consequence, the
sesquilinear form, associated with the quadratic form QV , is symmetric. By virtue of these
remarks, we are able to build from Qpert an associated self-adjoint operator on rL2pRdqsd ex-
ploiting the well known forms counterpart of the Kato-Rellich perturbation result for operators,
namely the KLMN theorem (see for example [80], Thm X.17, or [85], Thm 10.21).

If one is dealing with complex-valued potentials, as our setting, instead of real-valued ones,
the scenario turns out to be quite different. In fact, assuming now that V is a complex-valued
potential, the sesquilinear form QV is no more symmetric and, as a consequence, we clearly
cannot expect to be able to build from Qpert a self-adjoint extension of ´∆˚`V . Nevertheless,
even though we are dealing with non symmetric forms, we can obtain useful information about
the operator ´∆˚`V by exploiting the theory about sectorial forms (resp. operators). Precisely
we can use the representation theorem (see [52], Thm. VI.2.1) to build an m-sectorial operator
from a densely defined, sectorial and closed form.
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B.| Ellipticity properties

The aim of this section is to point out how the notion of ellipticity has been generalized for
systems, in particular for systems of second order differential operators. Let’s consider the
system of second order constant coefficients operator L acting on u : Rn Ñ Cm and defined as

Lu :“ ´
n
ÿ

α“1

n
ÿ

β“1

AαβBαBβu; (B.1)

more precisely the j-th component of Lu is

rLus1ďjďm :“ ´
n
ÿ

α“1

n
ÿ

β“1

m
ÿ

k“1

Aαβjk BαBβuk,

where A “
`

Aαβjk
˘

1ďα,βďn

1ďj,kďm

is the coefficient tensor associated with L. Via Fourier transformation

we associate to L its principal symbol ppξq that is an mˆm matrix of this form

ppξq :“
n
ÿ

α“1

n
ÿ

β“1

Aαβξαξβ.

By virtue of the previous definition, the classical notion of ellipticity for operators is naturally
generalized to systems as the condition of invertibility of the symbol ppξq.

Now we introduce a stronger notion of ellipticity. An operator as in (B.1) is strongly elliptic
if satisfies the so called Legendre-Hadamard condition, that is, if there exists c ą 0 such that

<
´

n
ÿ

α,β“1

m
ÿ

j,k“1

Aαβjk ξαξβηjηk

¯

ě c|ξ|2Rn|η|
2
Cm @ ξ P Rn, η P Cm. (B.2)

To conclude our survey about elliptic properties for systems of constant coefficients second
order operators, we state the notion of very strong ellipticity: an operator as in (B.1) is very
strongly elliptic if satisfies the Legendre condition, that is, if there exists c ą 0 such that

<
´

n
ÿ

α,β“1

m
ÿ

j,k“1

Aαβjk τ
k
β τ

j
α

¯

ě c|τ |2Cnˆm @ τ P Cnˆm.

Remark I.13. However for many applications the Legendre condition is too strong. This comes
from the fact that the tensor A usually, for example in elasticity theory and in compressible
fluids, has symmetries like

Aαβjk “ Ajkαβ “ Aαkjβ “ Ajβαk. (B.3)

These symmetries are called hyperelastic and mean that A only acts on the symmetric part
of a matrix and yields again a symmetric matrix. For this situation the appropriate condition
reads

<
´

n
ÿ

α,β“1

m
ÿ

j,k“1

Aαβjk σ
k
βσ

j
α

¯

ě c|σ|2Cmˆm @σ P SympCmˆm
q, (B.4)

for some c ą 0, where SympCmˆmq is the space of symmetric matrices.
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Now we are in position to consider our Lamé system ´∆˚. We want to write ´∆˚ in the
form of a general system of d second order constant coefficients operator, precisely we want to
rewrite ´∆˚ as in (B.1). Let’s underline that two different coefficient tensors A may have the
same associated operator L, indeed, it’s easy to see that both the tensors

Aαβjk :“ pλ` µqδjαδkβ ` µδαβδjk

and
Aαβjk :“ µpδαβδjk ` δαkδβjq ` λδαjδβk

give the Lamé operator of elasticity (here we used the δ-Kronecker formalism).
The rest of the section will be used to highlight under which conditions about Lamé param-

eters λ and µ, our operator is elliptic (in sense of the three definitions stated above).
First of all we want to point out that the characteristic matrix (or principal symbol) of

´∆˚ is invertible. This guarantees the ellipticity of the operator in the most classical sense. A
straightforward computation shows that the principal symbol of ´∆˚, is a matrix of this form:

ppξq :“ µ|ξ|2I ` pλ` µqξ b ξ, @ ξ P Rd;

where ξ b ξ is the dyadic product of ξ and ξ that is defined as pv b wqjk “ vjwk for all
v “ pv1, v2, . . . , vdq and w “ pw1, w2, . . . , wdq, and I denotes the dˆ d identity matrix. For our
convenience we rewrite ppξq in this way:

ppξq “ µ|ξ|2
ˆ

I `
λ` µ

µ
lpξq

˙

,

now the matrix lpξq :“ ξ
|ξ| b

ξ
|ξ| is idempotent, i.e l2pξq “ lpξq, and therefore ppξq is invertible

and it is quite easy to find its inverse, that is

p´1
pξq :“

1

µ|ξ|2

ˆ

I ´
λ` µ

λ` 2µ
lpξq

˙

.

Remark I.14. Let’s underline that everything makes sense if µ, λ` 2µ ‰ 0, however our condi-
tion (I.1.2) guarantees that the previous assumption is fulfilled.

Now let’s see that assuming µ ą 0 and λ`2µ ą 0, the operator ´∆˚ satisfies the Legendre-
Hadamard condition(B.2). Using one of the two possible definitions of the tensor associated
with the Lamé operator, we easily have

d
ÿ

α,β“1

d
ÿ

j,k“1

Aαβjk ξαξβηjηk “
d
ÿ

α,β“1

pλ` µq ξαηαξβηβ `
d
ÿ

α,j“1

µ ξ2
α|ηj|

2
“ pλ` µq|ξ ¨ η|2 ` µ|ξ|2|η|2.

At this point, we just need to prove that there exists a constant c ą 0 such that

pλ` µq|ξ ¨ η|2 ` µ|ξ|2|η|2 ě c |ξ|2|η|2.
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It’s not difficult to see ( [70] Lemma 3.1) that the previous is equivalent to

mintµ, λ` 2µu ą 0,

which proves the claim.

Remark I.15. We observe that the Legendre-Hadamard condition can be reformulated in terms
of the characteristic matrix saying that our operator is strongly elliptic if the symbol ppξq is a
positive defined matrix, that is, if there exists c ą 0 such that

pppξqη, ηq “ µ|ξ|2|η|2 ` pλ` µq|ξ ¨ η|2 ě c|ξ|2|η|2.

Now we analyze the very strong ellipticity. Considering the second form of the tensor A,
one can observe that the hyperelasticity condition (B.3) holds. This means that we just need
to prove that ´∆˚ satisfies (B.4).

Considering the second form of the tensor A, assuming µ ą 0 and 2µ` dλ ą 0, by the same
argument exploited in the previous section for proving the closedness of the quadratic form Q0,

it is easy to see the validity of the condition (B.4), indeed for all σ P SympCdˆdq, we have

d
ÿ

α,β“1

d
ÿ

j,k“1

Aαβjk σ
k
βσ

j
α “ 2µ

d
ÿ

α,j“1

|σjα|
2
` λ|

d
ÿ

α“1

σαα|
2
“ 2µ|σ|2 ` λ|Trpσq|2 ě c|σ|2.

Remark I.16. Note that if one assume A to satisfy (B.4), that is if ´∆˚ is very strongly elliptic,
immediately follows the positivity of the quadratic form Q0 associated with the operator. Let’s
consider our quadratic form Q0, we want to write Q0 in terms of the simmetric matrix σ “
pσkj q1ďj,kďd :“ 1

2

`

Buj
Bxk
`
Buk
Bxj

˘

. A straightforward computation gives

Q0rus “ λ

ż

Rd
|
d
ÿ

j“1

1

2

´

Buj
Bxj

`
Buj
Bxj

¯

|2 ` 2µ
d
ÿ

j,k“1

ż

Rd
|1
2

´

Buj
Bxk

`
Buk
Bxj

¯

|2 “ 2µ

ż

Rd
|σ|2 ` λ

ż

Rd
|Trpσq|2,

since σ P SympCdˆdq and ´∆˚ satisfies (B.4), we conclude that Q0rus ě c
ş

Rd |σ|
2 which, in

particular, gives the positivity. Summing up, if ´∆˚ is very strongly elliptic, that is if µ ą 0

and 2µ` dλ ą 0, our quadratic form is positive.

Remark I.17. Let’s underline that if one assume for the Lamé operator just to be strongly
elliptic, the quadratic form associated with the operator is still positive under weaker conditions
about the Lamé parameters. Indeed by Plancherel theorem we can see that

Q0rus :“ λ‖
d
ÿ

j“1

Buj
Bxj
‖2
L2 `

µ

2

d
ÿ

j,k“1

‖Buj
Bxk

`
Buk
Bxj
‖2
L2 “ λ‖

d
ÿ

j“1

ξjûj‖2
L2 `

µ

2

d
ÿ

j,k“1

‖ξkûj ` ξjûk‖2
L2

“ λ

ż

Rd
|
d
ÿ

j“1

ξjûj|2 ` µ
d
ÿ

j,k“1

ż

Rd
ξ2
k|ûj|

2
` µ

ż

Rd
|ξ ¨ û|2 “ pλ` µq

ż

Rd
|ξ ¨ û|2 ` µ

ż

Rd
|ξ|2|û|2.

50



Now, if µ ą 0 and λ ` 2µ ą 0, the Lamé operator satisfies (B.2), therefore there exists c ą 0

such that
pλ` µq

ż

Rd
|ξ ¨ û|2 ` µ

ż

Rd
|ξ|2|û|2 ě c

ż

Rd
|ξ|2|û|2,

and clearly this provides the positivity of the quadratic form.

C.| Spectrum of closed linear operator

We want to recall, although totally classical, the definition of the spectrum of a closed linear
operator H on a Hilbert space H and of its usual partitions.

First of all we give the notion of resolvent of H : a complex number z belongs to the
resolvent set ρpHq of H if the operator H ´ zI has a bounded everywhere on H defined inverse
pH ´ zIq´1, called the resolvent of H.

Let us observe that since H is assumed to be close, then the requirement that the in-
verse pH ´ zIq´1 is bounded can be omitted (this readily follows from closed graph Theorem).
Therefore we can give the following definition for the resolvent of a closed linear operator H :

ρpHq :“ tz P C| H ´ zI : DpHq Ñ H is bijective u.

Here, as usual H is a notation for the domain of the closed operator H. Its complement

σpHq :“ CzρpHq

is called the spectrum of H and denoted by σpHq. In other words the spectrum of a closed
operator H in a complex Hilbert space H is determined by the set of points z P C for which
H ´ zI : DpHq Ñ H is not bijective.

It is customary to have the following partition of the spectrum by means of three disjoint
subsets of σpHq which saturate the spectrum itself: they are respectively point spectrum that
is the set of all eigenvalues of H

σppHq :“ tz P C| H ´ zI is not injective u,

the continuous spectrum

σcpHq :“ tz P σpHqzσppHq| RpH ´ zIq “ Hu,

and the residual spectrum

σrpHq :“ tz P σpHqzσppHq| RpH ´ zIq ‰ Hu.

51



The following relation holds true

σpHq “ σppHq Y σcpHq Y σrpHq.

We notice that for self-adjoint operators H, σpHq Ă R and σrpHq “ H.
We add a last remark: for a self-adjoint operators a different disjoint partition can be given:

σpHq “ σdiscpHq Y σesspHq.

σdiscpHq is the so called discrete spectrum and it is the set of isolated eigenvalues of H which
have finite multiplicity. Its complement σesspHq, called essential spectrum consists of either
accumulation points of σpHq or isolated eigenvalues of H which have infinite multiplicity.

D.| An equivalent formulation for Sobolev inequal-

ity

In this appendix we will prove the following equivalence:

Lemma I.8. Let d ě 3 and let rV be such that ‖rV ‖ d
2
ď Sd, then the Sobolev inequality

ż

Rd
|∇u|2 dx ě Sd

´

|u|q
¯

2
q
, q “

2d

d´ 2
(D.1)

is equivalent to
ż

Rd
rV ´ |u|2 dx ď

ż

Rd
|∇u|2 dx. (D.2)

Proof. (D.1) ñ (D.2) By Hölder inequality and our hypotheses we easily obtain
ż

Rd
rV |u|2 dx ď ‖rV ‖ d

2

´

ż

Rd
|u|q dx

¯
2
q
dx ď Sd

´

ż

Rd
|u|q dx

¯
2
q
ď

ż

Rd
|∇u|2 dx.

(D.2)ñ (D.1) For any V P L
d
2 pRdq, by virtue of our hypothesis we have∣∣∣∣ż

Rd
V |u|2 dx

∣∣∣∣ “ ‖V ‖ d2Sd

ż

Rd
rV |u|2 dx ď 1

Sd
‖V ‖ d

2

ż

Rd
|∇u|2 dx,

where we defined rV :“ Sd
‖V ‖ d

2

V in order to use (D.2).

The last inequality shows that for any u P H1pRdq the integral
ş

Rd
V |u|2 dx is a linear

functional on L
d
2 pRdq, with norm less then or equal to 1

Sd

ş

Rd |∇u|
2 dx. Then, using the Riesz

representation theorem, we conclude that |u|2 P L q
2 pRdq, with q as in the statement and that

´

ż

Rd
|u|q dx

¯
2
q
“ ‖u2‖ q

2
“ ‖Tu‖`

L
d
2

˘˚ ď
1

Sd

ż

Rd
|∇u|2 dx,

where TupV q :“
ş

Rd V |u|
2 dx.
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Part II

Unique Continuation for ZK Equation

We we will turn to the second and deeper part of this thesis, namely the study of unique
continuation’s properties connected with the Zakharov-Kuznetsov (ZK) equation arises from
plasma physics. The discussion in this part is the fruit of a collaboration with Felipe Linares.

II.1.| Introduction

In the present work, we shall provide a result in matter of unique continuation for the so called
Zakharov-Kuznetsov equation

Btu` B
3
xu` BxB

2
yu` uBxu “ 0, px, yq P R2, t P r0, 1s. (II.1.1)

Actually our designs concern the analysis of unique continuation properties attached to a sym-
metric version of the previous, more precisely

Btu` pB
3
x ` B

3
yqu` 4´

1
3upBx ` Byqu “ 0, px, yq P R2, t P r0, 1s. (II.1.2)

Here will be treated the most recent notion of unique continuation, in other words we crave
to give an answer to the following question:

QUESTION. Let u1 and u2 be two solutions of (II.1.2) which kind of assumptions
for the behavior of their difference u1´ u2 at two distinct times we need in order to
ensure the uniqueness u1 ” u2?
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Before stating our main theorem which contains the answer to the above question, we want
to make a quick description of the equation we are dealing with. Equation (II.1.1) is one of
the variants of the p2` 1q-dimensional generalization of the Korteweg-de Vries (KdV) equation
that reads

Btu` B
3
xu` uBxu “ 0, x P R, t P r0, 1s. (II.1.3)

The equation (II.1.1) was introduced in the context of plasma physic by Zakharov and Kuznetsov,
indeed in [90] they formally deduced that the propagation of nonlinear ion-acoustic waves in
magnetized plasma is governed by this mathematical model. Further, this equation became
known as the Zakharov-Kuznetsov equation.

The problem of local and global well-posedness for the Cauchy problem associated to (II.1.1)
has extensively been studied in the literature. In [35] Faminskii showed local and global well-
posedness for initial data in HmpR2q, m ě 1, integer. His method of proof was inspired by the
argument developed by Kenig, Ponce and Vega [53] to prove local well-posedness for the initial
value problem associated to the KdV equation. Indeed he proved the local smoothing effect,
a maximal function estimate as well as a Strichartz type inequality for the linear equation to
obtain local well-posedness by the contraction mapping principle. Then, as usual, the global
result follows as a consequence of the presence of L2 and H1 conserved quantities for solutions
of (II.1.1). In [66] Linares and Pastor established the local well-posedness for initial data
in HspR2q, s ą 3

4
. Moreover, even though it can be shown, performing a scaling argument,

that the critical space for this equation is L2pR2q, they also proved that well-posedness is not
possible in such space. Last but not least it is worthy to be mentioned the work by Grünrock
and Herr [43] in which an improvement of the latest threshold was given. Precisely they proved
the local well-posedness for in HspR2q with s ą 1

2
. Without attempting to be complete we

refer to [7, 66, 68, 67] and references therein for other result of this type and several additional
remarks concerning with properties of this equation.

Now we want to give mention to the motivations which primarily are under our intent. In
order to do that we shall comment on a previous related result. For the case of the original ZK
equation (II.1.1) in a recent work [14] Bustamante, Isaza and Mejía proved the following result:

Theorem II.1. Suppose that for some small ε ą 0

u1, u2 P C
`

r0, 1s;H4
pR2
q X L2

pp1` x2
` y2

q
4
3
`ε dxdyq

˘

X C1
`

r0, 1s;L2
pR2
q
˘

,

are solutions of (II.1.1). Then there exists a universal constant a0 ą 0, such that if for some
a ą a0

u1p0q ´ u2p0q, u1p1q ´ u2p1q P L
2
peapx

2`y2q
3
4 dxdyq,

then u1 ” u2.
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This result was obtained following the scheme in [29], that is by applying two types of
estimates: a lower estimate which follows after performing a suitable Carleman estimate and
an upper bound for the L2´ norm of the solution and its derivatives.

This result, as the authors themselves pointed out, can’t be optimal, indeed the symmetric
character in x and y of the decay assumption does not reflect the non symmetric form of the
equation (II.1.1). To justify this sentence we want to come back to discuss the structure of the
ZK equation, or better the structure of the associated linear problem

Btu` B
3
xu` BxB

2
yu “ 0. (II.1.4)

Looking at the structure of the equation (II.1.4) that, roughly speaking, resembles a KdV
equation in the x variable and a parabolic equation in y, the result that should naively be
expected as optimal is that one in which the decay assumed is of the form e´ax

3
2´by2 , i.e. a

no more symmetric decay in the two variables. Indeed the exponent 3
2
in the x variable would

reflect the decay of the fundamental solution to the linearized KdV (the Airy function) and in
the y variable we would suppose to have a gaussian decay which comes out from the parabolic
heritage.

This uncertainty about the right decay of the fundamental solution of the linearized ZK
comes out from the fact that, contrary to KdV equation, ZK was very much less investigated.
Recently Faminskii and Antonova in [36] cleared up any confusion: indeed in this quoted work
they proved that actually the fundamental solution to the operator Bt ` B3

x ` BxB
2
y still displays

an exponential decay but just in the x variable. Let us consider the initial value problem
#

Btu` B
3
xu` BxB

2
yu “ 0,

upx, y, 0q “ u0px, yq,

it is easy to see that the solution of this linear problem is given by

upx, y, tq “
θptq

t
2
3

S

ˆ

x

t
1
3

,
y

t
1
3

˙

˚ u0px, yq,

where

Spx, yq :“
1

2π
F´1

“

pξ, ηq ÞÑ eipξ
3`ξη2q

‰

“
1

4π2

ż

R2

eiξx`iηyeipξ
3`ξη2q dξdη, (II.1.5)

θ is the Heaviside function and F´1 represents the inverse Fourier transform. The rigorous
result in [36] (Lemma 7) in which the correct decay of the fundamental solution turns out is
the following:

Lemma II.1. Let Spx, yq be as in (II.1.5), for any x P R and integer k ě 0 the derivative
BkxSpx, yq belongs to the Schwartz space SpRq with respect to y and there exists a constant
c0 ą 0 such that for any x0 P R, integer m ě 0 and multi-index ν

p1` |y|qm|DνSpx, yq| ď cpm, |ν|, x0qe
´c0px´x0q

3
2
@x ě x0, @ y P R. (II.1.6)
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Motivated by this deeper knowledge of the ZK equation, our first attempt was to draw
inspiration from the strategy in [14] and, as a starting point, try to perform a Carleman
estimate of this form

‖eαθpx,y,tqg‖X ď cpαq‖eαθpx,y,tqpBt ` B3
x ` BxB

2
yqg‖X .

where eαθ, clearly, must remind the right exponential decay of the fundamental solution asso-
ciated with the operator Bt`B3

x`BxB
2
y that first came to light in the aforementioned work [36].

In [14] the estimate above was proved by taking as θ the following function

θpx, y, tq “
´ x

R
` φptq

¯2

`
y

R

2

,

and requiring for α to equal (up to a multiplicative constant) the quantity R
3
2 . But clearly, by

virtue of the previous remarks, with this choice no optimal result can occur.

Therefore our attempt was to choose as θ the function

θpx, y, tq “ θpx, tq “
´ x

R
` φptq

¯2

in order to let appear the decay just in the x coordinate.

Unfortunately it turns out that the absence of the y component in our choice of θ, or better
of a nonlinear dependance of θ by y, does not let the argument work, in other word we are
not able to obtain the desired Carleman estimate. This means that new ideas to tackle this
problem have still to be found and this will be matter of future investigations.

All these facts brought us to a slightly alternative analysis which find its source of inspiration,
at least at the beginning, in already quoted work of Grünrock and Herr [43]. Even if the problem
addressed therein relates to a different topic then one we aim to solve, namely the local well-
posedness for the Cauchy problem associated to the ZK equation, there it was shown that
making use of a very simple tool that is a linear change of variable, essentially a rotation,
equation (II.1.1) can be written in a symmetric form, precisely (II.1.2).

It is worthy to be underlined that for an equation of this form it is reasonable to believe
that the correct and optimal decay to possibly guarantee the unique continuation principle
should be exactly the one that appears in the paper [14], that is rpx2`y2q

1
2 s

3
2 . Indeed in (II.1.2)

we can recognize the structure of a two dimensional KdV equation and the decay r
3
2 , with

r :“ px2 ` y2q
1
2 , resembles the asymptotic behavior of the Airy function, the fundamental

solution of the linearized KdV.

Encouraged by the previous fact we proved the following result which sharpness follows
analogously to [29] where the construction of local solutions with the estimated decay for 1-
dimensional KdV is provided.
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Theorem II.2. Suppose that for some ε ą 0,

u1, u2 P C
`

r0, 1s;H4
pR2
q X L2

pp1` x2
` y2

q
4
3
`ε dxdyq

˘

X C1
pr0, 1s;L2

pR2
qq, (II.1.7)

are solutions of the equation (II.1.2).

Then there exists a universal constant a0, such that if for some a ą a0

u1p0q ´ u2p0q, u1p1q ´ u2p1q P L
2
`

eapx
2`y2q

3
4 dxdy

˘

, (II.1.8)

then u1 ” u2.

As it is customary in these contexts, we will see that our nonlinear result, Theorem II.2,
will be a consequence of the following linear result:

Theorem II.3. Suppose that for some ε ą 0,

v P C
`

r0, 1s;H3
pR2
q X L2

pp1` x2
` y2

q
4
3
`ε dxdyq

˘

X C1
pr0, 1s;L2

pR2
qq,

is a solution of

Btv ` pB
3
x ` B

3
yqv ` a1px, y, tqpBx ` Byqv ` a0px, y, tqv “ 0, (II.1.9)

where a0 P L
8 X L2

xL
8
y,t and a1 P L

8 X L2
xL

8
yt X L

1
xL

8
yt.

Then there exists a universal constant a0 ą 0 such that if for some a ą a0

vp0q, vp1q P L2
peapx

2`y2q
3
4 dxdyq, (II.1.10)

then v ” 0.

Remark II.1. The linear equation (II.1.9) comes out from the fact that we are interested in
a result involving the difference of two solutions u1 and u2 of (II.1.2). It is easy to see that
defining v :“ u1 ´ u2 this satisfies

Btv ` pB
3
x ` B

3
yqv ` 4´

1
3u1pBx ` Byqv ` 4´

1
3 pBx ` Byqu2v “ 0,

that clearly is a particular case of (II.1.9) choosing a0 “ 4´
1
3 pBx ` Byqu2 and a1 “ 4´

1
3u1.

Before moving on in outlining the main steps in the proof of our result, as an matter of
keen interest for the mathematical community, we want to devoted the coming section to give
an overview, from its birth to the more recent developments, of the main issues and results in
unique continuation.
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II.1.1. Unique continuation

Now we are in position to discuss in greater depth the notion of unique continuation.

It is well known that a real analytic function has the property that if it vanishes sufficiently
fast at a point then it is vanishing all over its definition domain. This property is called unique
continuation property of real analytic functions.

The following question comes naturally: which other classes of functions enjoy this property?

A first further example of such a class of functions is represented by the harmonic functions,
indeed it is common knowledge that harmonic functions are real analytic and therefore they
still display the unique continuation property.

Actually, it was shown, see for instance the classical Holmgren’s theorem, that this property
is shared by solutions of more general elliptic partial differential equations, more precisely if
P px,Dq is an elliptic differential operator with real analytic coefficients and P px,Dqu “ 0 in a
bounded open connected set, then u is real analytic and again we can conclude that the unique
continuation property holds.

Therefore, now, when one is dealing with a unique continuation result it is customary to
refer to any statement of the following type:

Let Ω Ă Rd be a bounded connected open set. Given a linear partial differential
operator P, if a solution u to Pu “ 0 in the region Ω satisfies that u vanishes to
infinite order at x0 P Ω, in the sense that

lim
rÑ0

1

rN

ż

Bpx0,rq

|u|2 dx “ 0, for all N ě 0,

then u “ 0 in Ω.

The previous statement is known as Strong Unique Continuation Principle.

Enlarging the point x0 to an open set B we can get the same conclusion if we assume
the vanishing of the solution in that region B. This provides a weaker version of the unique
continuation principle stated above:

Let Ω Ă Rd be a bounded connected open set. Given a linear partial differential
operator P, if a solution u to Pu “ 0 in the region Ω satisfies that u “ 0 in some
ball B contained in Ω, then u “ 0 in Ω.

Namely the solution u is uniquely determined in the larger set Ω by its behavior in
the smaller region B.

This version is known as Weak Unique Continuation Principle.
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A naive explanation of why the name “unique continuation” is used can be easily given. In
this regard one can just observe that since the operator P is linear, the unique continuation
principles, as stated above, ensure that any two solutions u1 and u2 must coincide in the whole
domain Ω once they coincide in a smaller region.

In other words this means that the unique continuation principle guarantees the problem
to have a unique solution.

From the cornerstone work by Hadamard [44] in which the notion of well-posed Cauchy
problems was coined, it took three decades to realize that it would be desirable, for example
for the applications to nonlinear problems, to establish the unique continuation property for
operator for which is not required a strong analyticity structure as, instead, was done so far.

The first results in establishing the strong unique continuation property for elliptic operators
whose coefficients are not necessarily real analytic, are to be found in the pioneering work [17]
by Torsten Carleman dating back to 1939. Here he proved the strong unique continuation
property for

P px,Dq “ ∆` V pxq, with V P L8locpR2
q.

To avoid analyticity conditions, Carleman introduced the type of estimates that bear his
name and that have permeated essentially all the subsequent works in the subject. Roughly
speaking these are weighted estimates in which weights are chosen to be extremely concentrated
in certain parts of the underlying domain and it is precisely for this reason that they represent
a successful tool in proving uniqueness’ results, indeed concentrations can be created close to
points at which informations of the function under consideration are given.

Carleman’s method was improved and extended beyond the elliptic operators to address
the unique continuation principle for several other equations, even for evolution equations such
as parabolic and dispersive equations.

Even though in this work we are mainly interested in dispersive equations, we are going to
mention briefly how the unique continuation results can be phrased for parabolic equations,
greater attention to the dispersive equation will be devoted later on.

II.1.1.1. Unique continuation for parabolic equations

As already pointed out by Escauriaza in [26], for second order linear parabolic operators with
time-independent coefficients, such as

Btu´∆u` V pxqu “ 0, (II.1.11)

the strong unique continuation property is reduced to the previously established elliptic coun-
terparts as shown in [65]. This reduction in essence relies on a representation formula for
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solutions of parabolic equations in terms of eigenfunctions of the corresponding elliptic opera-
tor. This clearly means that this technique cannot be applied to more general equations with
time-dependent coefficients. Therefore in order to accomplish our aim that, roughly speaking, is
to find sufficient conditions for a solution of a parabolic equation to vanish, we need to examine
the structure of the equation thoroughly. As a first sight we consider the prototypical example
of parabolic PDE, the heat equation

Btu´∆u “ f, (II.1.12)

in Rd ˆ p0, 1s,

As it is well-known the following uniqueness for the heat equation holds:

If |upx, tq| ď Ceλ|x|
2

for all t P p0, 1s and upx, 0q ” 0, then u ” 0 in Rd ˆ r0, 1s.

This kind of forward in time uniqueness for the heat equation is quite classical and easily
follows by an application of the maximum principle for unbounded domains (see [34]). A rather
more subtle question, due to the lack of time-reversal symmetry for the heat equation which
describes irreversible processes or, in other words, phenomena with a preferential direction of
time, concerns uniqueness backward in time. Although unexpected, a backward uniqueness
result still holds for the heat equation. We will present the statement for the more general
parabolic equation with time-dependent coefficients

Btu´∆u`W px, tq ¨∇u` V px, tqu “ 0, (II.1.13)

in Rd ˆ p0, 1s, with |W | ď N, |V | ďM.

Let u be a solution of (II.1.13) such that |upx, tq| ď C0 and upx, 1q ” 0, then u ” 0

in Rd ˆ r0, 1s

(see [60]). This result has been extended by Escauriaza, Kenig, Ponce and Vega in [27] in
which they proved that the backward uniqueness still holds if, instead of assuming at t “ 1

that upx, 1q ” 0, one assumes that |upx, 1q| ď Ce´C|x|2`ε , for some ε ą 0. The proof of this
result, as in the elliptic setting, makes use of the parabolic version of Carleman estimates.

Now we are in position to treat in greater details dispersive equations, making a deeper
analysis of how to rephrase the unique continuation principle in this setting. Moreover the
historical developments and the achieved results in matter of unique continuation for this kind
of equations will be resumed.
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II.1.1.2. Unique continuation for dispersive equations

As already mentioned, particular attention has been paid to the unique continuation results
for nonlinear dispersive equations, especially for Schrödinger and KdV equations. This two
equations, together with most dispersive models, enjoy a time-reversal symmetry. Roughly
speaking, this means that every solution to these equations comes with a counterpart which
evolves backward in time if compared to the original solution, this entails that the forward
behavior of solutions is typically very similar to the backward one. The time-reversibility
represents the first obstacle into understanding what is the analog of the parabolic unique
continuation results for dispersive equations, indeed, clearly, backward in time does not make
any sense in this context. Let us start considering linear Schrödinger equation of the form

iBtu`∆u` V px, tqu “ 0, (II.1.14)

in Rd ˆ r0, 1s. Then, choosing V px, tq “ F pupx, tq, upx, tqq we are allowed to consider nonlinear
equations of the type

iBtu`∆u` F pu, uq “ 0. (II.1.15)

In order to understand how to formulate unique continuation results in this setting and which
kind of assumptions about the solution has to be made in order to get those results, particular
relevance can be attributed to the Heisenberg uncertainty principle and its connection with the
so-called Fourier uncertainty.

The Heisenberg uncertainty principle represents one of the fundamental implications of
quantum theory. Vaguely speaking it states that certain pairs of physical quantities cannot
be measured simultaneously with arbitrary accuracy. Before moving on in giving the precise
mathematical statement of Heisenberg uncertainty principle, we would like to recall some very
basic facts from quantum mechanics.

Let us turn our attention to observables. Generally speaking an observable is a quantity
that can be experimentally measured in a given physical framework. The interpretive rules in
quantum mechanics dictate that a physical observable a (position, momentum, energy etc.) has
a quantum mechanics counterpart that is a self-adjoint operator A on the state space L2pRdq.

For our aims, as we will see in a moment, it is interesting to see how quantum mechanics
predicts mean value, or expectation, xayψ and variance Varpaqψ of a physical observable a
prepared in the state ψ in terms of analogue quantities involving the associated self-adjoint
operator A. We recall that in a probability setting the mean value of a certain non deterministic
quantity a is the best guess of the value of the quantity, strictly connected to expectation is
the notion of variance, which quantifies the uncertainty on the quantity for which a guess of its
“real” value is given.
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Quantum theory gives precise rules in order to predict those quantities:

• xayψ “ xAyψ :“ xψ,Aψy,

• Varpaqψ “ xpA´ xAyψ1q
2yψ :“ xψ, pA´ xAyψ1q

2ψy “ ‖pA´ xAyψ1qψ‖2
L2pRdq,

where, also in this part, the brackets x¨, ¨y is the notation used to indicate the inner product of
L2pRdq.

Now we are in position to state the Heisenberg uncertainty principle of quantum mechanics.

Let A,B be two densely defined self-adjoint operators on L2pRdq. Suppose that there
exists a linear, dense subspace S Ă L2pRdq invariant for both A and B, therefore

VarpAqψ VarpBqψ ě
1

4
|xψ, rA,Bsψy|2,

or, what is equivalent

σψpAqσψpBq ě
1

2
|xψ, rA,Bsψy|, (II.1.16)

where σψ represents the standard deviation, namely the square root of the variance.

Recalling that the standard deviation quantifies the precision of an observable’s measure-
ment (the smaller it is, the more precise is the measurement), the previous statement says that
the possibility to measure simultaneously two observables with arbitrary precision is strictly
connected with the commutation relations between the two corresponding self-adjoint opera-
tors. More precisely, if the operators which theoretically represent the physical observables we
are focusing on have non-vanishing commutator, this yields a non trivial lower bound for the
product of the precisions of the observables’ measurements, so the more certain we are about
the measurement of one of the observable, the less certain we can be about the other one.

For our purpose we are mainly interested in two observables: momentum and position
or better in the jth component of them j “ 1, 2, . . . , d. Quantum theory represents the two
observables respectively by the operator A “ Pj :“ ´i B

Bxj
and by B “ Xj the multiplication

operator by the jth´coordinate xj. More precisely the action of the two operators is as follows:

Pj : ψpxq ÞÑ ´i
B

Bxj
ψpxq,

Xj : ψpxq ÞÑ xjψpxq.

A straightforward computation gives the that the commutator of these two operators is

rA,Bs :“ rPj, Xls “ ´iδj,l1,

where δj,l is the kronecker symbol, defined as it is usual.
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By virtue of Heisenberg uncertainty principle as stated in (II.1.16) we can conclude

σψpPjqσψpXlq ě
1

2
δj,l,

roughly speaking, this means that if we want to measure position and momentum in the same
direction, namely j “ l, we have a non-trivial lower bound for the precision of their simultaneous
measurements. In particular the following lower bound

σψpPjqσψpXjq ě
1

2
(II.1.17)

holds.
In order to see explicitly the deep attachment between the uncertainty principle of quantum

mechanics and the not yet stated Fourier uncertainty, we want to compute explicitly σψpPjq
and σψpXjq making use of the interpretative rules which appear above.

In order to do that we formerly compute VarpPjqψ and VarpXjqψ. Using Plancherel theorem
for the operator Pj and simply the definition of variance for Xj we have

VarpPjq :“ ‖P 2
j ψ‖

2
L2pRdq “ ‖{pPjq2ψ‖

2
L2pRdq “

ż

Rd
pξj ´ ξ̄jq

2 | pψpξq|2 dξ “: Varp pψq,

VarpXjq :“ ‖X2
jψ‖

2
L2pRdq “

ż

Rd
pxj ´ x̄jq

2 |ψpxq|2 dx “: Varpψq,

where here we used the following notation ξ̄j “ xPjyψ and x̄j “ xXjyψ.

From the previous identities we can infer that the variance of the observable momentum for
a particle in the state ψ is the same as the variance of the observable position for a particle in
the state pψ.

Notice that if ψ is highly concentrated near the mean value x̄j, by virtue of our interpretation
of the wave function ψ, this means that there is a high probability that the location of the
jth´ coordinate xj of the particle is near x̄j and so we expect the uncertainty to be small.
This is precisely what happens, indeed looking at the quantity

ş

Rdpxj ´ x̄jq
2 |ψpxq|2 dx which

represents the variance, in other words the uncertainty, this quantity is small because most of
the contribution to the integral arises from values of xj near to x̄j. Clearly, the same reasoning
can be done for the momentum.

Now plugging these two quantities in (II.1.17) or better in the square of the quoted identity
we get

ˆ
ż

Rd
pxj ´ x̄jq

2|ψpxq|2 dx
˙ˆ

ż

Rd
pξj ´ ξ̄jq

2| pψpξq|2 dξ
˙

ě
1

4
. (II.1.18)

The previous represents the rigorous statement of the Fourier uncertainty. Indeed, by virtue
of the lower bound (II.1.18), if the first term in the product on the left-hand side is small and
this can occur making ψ more concentrated near x̄j, therefore the second term in the product
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cannot be small as well and this forces pψ to be sufficiently spread. We can re-phrase the previous
result in this way: a function and its Fourier transform cannot both be essentially localized.

Now we are interested into see what inequality (II.1.18) says if our particle is described
by a function ψ which resembles a gaussian. First of all for notational simplicity we assume
ξ̄j :“ xPjyψ “ 0 and that x̄j :“ xXjyψ “ 0.

Let us consider an L2´ normalized gaussian function, that is ψσpxq “ cσe
´ x2

4σ2 , with cσ such
that ‖ψ‖L2pRdq “ 1. A straightforward computation gives Varpψσq as defined above is related to
the parameter σ, more precisely equals σ2.

Now, without attempting to be rigorous, assuming our particle described by ψpxq “ Ope´
|x|2

β2 q

and that its Fourier transform pψpξq “ Ope´
4|ξ|2

α2 q, therefore we expect the following values for
their variances:

Varpψq “
β2

4
, Varp pψq “

α2

16
,

that, in particular, gives

σpψq “
β

2
, σp pψq “

α

4
.

Plugging these two explicit values of the standard deviations in (II.1.17) we get a constraint
for the parameters α and β, namely

αβ ě 4.

Also in this setting we can re-phrase the constraint above saying that if we want to peak our
“gaussian” ψ at its mean value ( the origin in this case), that is letting α become more and more
small, then this coerces β to be remarkably large, i.e the gaussian pψ has to become increasingly
flattened.

Now in view of the above, leaving aside the quantum mechanical interpretation, the following
result should appear reasonable:

If fpxq “ Ope´
|x|2

β2 q and its Fourier transform pfpξq “ Ope´
4|ξ|2

α2 q, then

• If αβ ă 4 ñ f ” 0.

• If αβ “ 4 ñ f is a constant multiple of e´
x2

β2 .

The previous is known as the Hardy uncertainty principle.

It can be seen that from the Hardy uncertainty principle one can easily obtain a PDE’s
counterpart of this. In order to do that we need to recall that the solution to the free Schrödinger
equation iBtu`∆u “ 0 with initial datum f P L2 has the following form:

upx, tq :“ eit∆fpxq “ p4πitq´
d
2

ż

Rd
e
i|x´y|2

4t fpyq dy “ p2itq´
d
2 ei

|x|2
4t Fpy ÞÑ ei

|y|2
4t fpyqq

` x

2t

˘

,
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where F represents the Fourier transform as well as the hat notation p̈. This representation
formula tells us that, in essence, up to multiplication by a phase factor, the solution upx, tq of
the free Schrödinger equation is a multiple of a rescaled Fourier transform of the initial datum
f. In view of this remark, the PDE’s counterpart of the Hardy uncertainty principle can be
stated as follows:

If upx, 0q “ Ope´
|x|2

β2 q and upx, T q :“ eiT∆upx, 0q “ Ope´
|x|2

α2 q, then

• If αβ ă 4T ñ f ” 0.

• If αβ “ 4T ñ f is a constant multiple of e´p
1
β2
` i

4T
qx2
.

Clearly, without loss of generality, we can restrict ourselves to the case T “ 1.

Thus, for time-reversible equations, the analog of backward uniqueness will be uniqueness
from behavior of the solution at two distinct times. To be more precise, we are interested in
such results with data eventually 0 or even with data which decay very fast.

Just to go off a slight but remarkable tangent, as already mentioned by Escauriaza, Kenig,
Ponce and Vega in [31], the Hardy uncertainty principle can be applied to prove unique continua-
tion for the free heat equation by only assuming the solution to satisfy at time t “ 1 a sufficiently
strong decay, together with the square-integrability of the initial datum upx, 0q. Precisely the
following sharp result holds: if upx, 1q :“ e∆upx, 0q “ Ope´

|x|2

δ2 q, with δ ď 2, then f ” 0. Indeed
let us consider fpxq :“ upx, 1q, from our hypothesis we have fpxq “ Ope´

|x|2

δ2 q, moreover it is
easy to see that pfpξq “ pupξ, 1q :“ e´|ξ|

2

pupξ, 0q “ e´
4|ξ|2

22
pupξ, 0q. That is pfpξq “ Ope´

4ξ2

22 q. The
application of Hardy uncertainty principle to f gives that if 2δ ď 4, that is if δ ď 2, then f,

and so upx, 1q,” 0. Then backward uniqueness arguments guarantee that upx, tq ” 0 for all
t P r0, 1s.

Going back to Schrödinger equation, there is a large literature concerning the uniqueness
question for data eventually zero. For the one dimensional cubic Schrödinger equation, iBtu`
B2
xu ¯ |u|

2u “ 0, in R ˆ r0, 1s, in [91] Zhang showed that if u “ 0 in p´8, aq ˆ tt0, t1u (or in
pa,8q ˆ tt0, t1u ) for some a P R, then u ” 0.

Then, the result of Zhang was extended, under more general assumption on the potential V
in (II.1.14) and on the domain where the vanishing of up0q and up1q is assumed, first by Kenig,
Ponce and Vega in [54] and then by Ionescu and Kenig in [46, 47].

As anticipated unique continuation of the kind described above has also been established for
other dispersive equations. In [84] the unique continuation principle was proved for a general
class of dispersive equations, including the KdV equation. More precisely it was proved that if

65



a sufficiently smooth solution u of

Btu` B
3
xu`

2
ÿ

j“0

rpx, tqBjxu “ 0, x P pa, bq, t P pt1, t2q

with rj P L
8
t L

2
loc, vanishes in an open set Ω of the space-time space, then u vanishes in all

horizontal components of Ω.

In [8] Bourgain proved that if a solution u of the KdV equation is supported in a compact
set on a non trivial time interval, then u must be identically zero.

In [55], Kenig, Ponce and Vega considered a solution of the generalized KdV equation

Btu` B
3
xu` u

k
Bxu “ 0, x P R, t P r0, 1s

which vanishes only in two half-line rB,`8q ˆ tt0u and rB,`8q ˆ tt1u, they proved that u
vanishes identically. A result in the same spirit but for the difference of two solutions of the
equation above was proved by the same authors in [56]. They proved that, the solutions of
the generalized KdV equation are uniquely determined by their values on a semi-line at two
different instant of times.

The historical path of unique continuation results for the bi-dimensional Z-K equation fol-
lowed the same landmarks of the KdV equation. Indeed in [79], Panthee proved that if a
solution u of this equation is supported in a set r´M,M s ˆ r´M,M s for a non trivial time
interval, then u must be identically zero. Following the method introduced for KdV equation
by Kenig,Ponce and Vega in [55], Bustamante, Isaza and Mejía in [13] showed, improving the
result in [79], that one can conclude the same even just assuming u to be compactly supported
only at two distinct times.

So far we have only mentioned uniqueness results assuming data eventually identically
zero at two distinct times. Actually, taking into account our intents, we want to employ the
remaining part of this historical background presenting the main advances in the field of unique
continuation principles for dispersive equations where, instead of requiring the solution to be
zero on large sub-domains of Rd, we just assume a sufficiently rapid decay for two distinct time.
Roughly speaking, we will show the extensions of Hardy uncertainty principle for no more free
dispersive equations.

Let us start with Schrödinger equation. In [28] Escauriaza, Kenig, Ponce and Vega proved
that if at two distinct times the solution u of the Schrödinger equation (II.1.14) and its first
spatial derivatives decay faster than any quadratic exponential, that is decay as e´a|x|

α

with
α ą 2 and a ą 0 sufficiently large and providing suitable assumptions on the potential V, then
u has to be identically equal to zero. This linear result was then applied by the same authors to
nonlinear equation of the form (II.1.15). They showed that if the difference of two sufficiently
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smooth solution u1 and u2 of (II.1.15) and the difference of their gradients have a stronger
decay than the gaussian one for two different instants of time, then the two solutions are forced
to agree in Rd in the whole time interval. Later, a deeper analysis of the solutions of (II.1.14)
displaying gaussian decay and in particular of the convexity properties of the L2´exponentially
weighted norm of those solutions, allowed Escauriaza, Kenig, Ponce and Vega in [31] to obtain an
improvement upon the results in [28], their main contribution is as follows: let u be a solution of

the linear Schrödinger equation (II.1.14), if ‖e
|¨|2

β2 up0q‖L2pRdq and ‖e
|¨|2

α2 up1q‖L2pRdq are both finite
and assuming appropriate and not too much restrictive hypothesis on the potential V, therefore
if αβ ă 2 the u ” 0. Moreover, as already done in their previous work, this result was applied
to the nonlinear equation (II.1.15), this shows that two regular solutions u1 and u2 must agree

in Rdˆ r0, 1s when one requests that ‖e
|¨|2

β2 pu1p0q´u2p0qq‖L2pRdq and ‖e
|¨|2

α2 pu1p1q´u2p1qq‖L2pRdq

are both finite. It is worth noting that this result cannot be the optimal one, indeed the decay
requested is stronger than the one that appears in Hardy uncertainty principle, in other words
this result can be considered as a weaker variant of the Hardy uncertainty principle. Only later
the same authors in [32] showed that for many general bounded potentials the optimal version
of Hardy uncertainty principle holds, that is just requiring for the decay that αβ ă 4.

For the KdV equation, in [29], Escauriaza, Kenig, Ponce and Vega, making use of suit-
able Carleman inequalities which replace the “energy” estimates that were used for the unique
continuation for Schrödinger and, as in that context, introducing lower estimates that comes
from the work of Isakov [48], proved that if the difference of two solutions of the KdV equation
decays as e´ax

3
2 for x ą 0 and a ą 0 sufficiently large for two distinct times, then the solutions

must agree.

With respect to the ZK equation, as already said in the introduction, results in this direction
were already obtained. Bustamante, Isaza and Mejía in [14] proved that if the difference of
two sufficiently smooth solutions u1 and u2 of (II.1.1) decays as e´apx2`y2q

3
4 for a large enough

a ą 0, at two distinct instant of times, the the solutions must agree.

This concludes our overview over the unique continuation results.

II.2.| The proof of Theorem II.2 and Theorem II.3

This chapter is devoted to focus on a very detailed and comprehensive discussion about the
main tools we used to achieve our result Theorem II.3 and as a consequence Theorem II.2 and
then the endgame will consist to the proof of both the theorems.

As already said we want to proceed embracing the now well rooted strategy underlying the
proof of this kind of results that, for instance, is exploited in [29] to treat unique continuation
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for KdV.

In essence those results follows by making a comparison between two estimates: a lower
bound for the L2´ norm of a solution in an annular domain, which follows after performing
a suitable Carleman estimate and an upper bound for the L2´ norm of the solution and its
derivatives up to order two.

As a starting point, for sake of completeness, we want to make explicit the computations
carried out in [43] in order to pass from ZK equation to its symmetric counterpart.

Getting down into details, for the space variables the following linear transformation was
used:

#

x1 “ µx` λy

y1 “ µx´ λy.

Let vpx1, y1q “ upx, yq, then it is easy to see that

Bxupx, yq “ µpBx1 ` By1qvpx
1, y1q

Byupx, yq “ λpBx1 ´ By1qvpx
1, y1q.

This implies

pB
3
x ` BxB

2
yqupx, yq “ µ3

pBx1 ` By1q
3vpx1, y1q ` µλ2

pBx1 ` By1qpBx1 ´ By1q
2vpx1, y1q

“ pµ3
` µλ2

qpB
3
x1 ` B

3
y1qvpx

1, y1q ` p3µ3
´ µλ2

qpB
2
x1By1 ` Bx1B

2
y1qvpx

1, y1q.

In order to symmetrize the equation, we want to make the last term of the previous equal to
zero, this leads us in choosing λ “

?
3µ, then fixing also µ “ 4´

1
3 we get

pB
3
x ` BxB

2
yqupx, yq “ pB

3
x1 ` B

3
y1qvpx

1, y1q

which implies that, without changing the well-posedness theory, we can reduce equation (II.1.1)
to the symmetric-type equation (II.1.1).

Now we are in position to perform our first crucial estimate, namely the lower bound in the
annulus domain.

II.2.1. Lower bound in the annulus domain

This section is concerned with a lower bound estimate for the L2´norm of the difference between
two solutions u1 and u2 of (II.1.2), its first order and second order space derivative in the annular
region tpx, yq : R ´ 1 ď

a

x2 ` y2 ď Ru ˆ r0, 1s with an exponential of the form e´cR
3
2 .

The result we proved has the following precise statement:
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Theorem II.4. Let v P Cpr0, 1s;H3pR2qq be a solution of (II.1.9) with a0, a1 P L
8pR3q. Assume

that
ż

R2

ż 1

0

`

|v|2 ` |∇v|2 ` |∆v|2
˘

dx dy dt ď A2.

Let δ ą 0, r P p0, 1
2
q and Q :“ tpx, y, tq :

a

x2 ` y2 ď 1, t P rr, 1 ´ rsu and suppose that
‖v‖L2pQq ě δ. Then there exist constants rR0, c0, c1 depending on A, ‖a0‖8 and ‖a1‖8, such that
for R ě rR0

ARpvq :“
´

ż 1

0

ż

R´1ď
?
x2`y2ďR

`

|v|2 ` |∇v|2 ` |∆v|2
˘

dx dy dt
¯

1
2
ě c0e

´c1R
3
2 .

The previous idea of establishing lower bounds for the asimptotic behavior of a suitable
norm of the solution in an annulus domain stems from a work by Bourgain and Kenig [9]
on a class of stationary Schrödinger operators ´∆ ` V pxq in which the property of spectral
localization, that is the phenomenon for which the point spectrum of the analyzed operator
presents exponentially decaying eigenfunctions, is studied.

In that work they needed precise quantitative information on the rate of local vanishing for
eigenfunctions, more precisely, local bounds on the eigenfunctions both from above and from
below were required. Unlike the upper bound, which just needs classical tools to be achieved,
the lower bound is a more subtle issue. The statement (Lemma 3.10 in [9]) is as follows

Lemma II.2. Let u be a bounded solution of ∆u ` V u “ 0 in R with suitable additional
assumptions about V. Let x0 P Rd, |x0| “ R ą 1. Then

max
R´1ăxăR

|upxq| ą c0e
´c1plogRqR

4
3

This was derived from the following Carleman type estimate.

Lemma II.3. There are constants C1, C2, C3, depending only on d and an increasing function
w “ wprq for 0 ă r ă 10 such that

1

C1

ă
wprq

r
ă C1

and for all f P C80 pB10zt0uq, α ą C2, we have

α3

ż

Rd
w´1´2αf 2

ď C3

ż

Rd
w2´2α

p∆fq2.

In order to obtain our lower bound Theorem II.4 we will perform a Carleman estimate as
the one stated in Lemma II.3.

Before proving in our case such a Carleman estimate, we start out with a brief discussion
about this cornerstone tool.
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A typical Carleman estimate for a, usually linear, differential operator P looks like

‖u‖Xpwdxq ď C‖Pu‖Xpwdxq,

where Xpwdxq is a weighted space with weight w which has to be chosen differently for each
operator P taken in consideration; typically, as in our case, the weight is in an exponential form,
that is w :“ eα θpxq, for a suitable function θ and a parameter α. In this situation a Carleman
estimate assumes the following form

α ‖eα θpxqu‖Xpdxq ď C‖eα θpxqPu‖Xpdxq,

with a constant C independent of α.

Remark II.2. A very relevant point in the Carleman inequality is the presence of the multi-
plicative parameter α on the left-hand side. Indeed by taking α very large we can make the
term on the left-hand side as large as we need in order to absorb potential error terms.

This fact can be seen at work explicitly in the proof of Lemma II.5 below, indeed, by virtue
of (II.1.9), we are interested in proving a Carleman estimate in which the linear operator taken
into account is P “ Bt`B3

x`B
3
y`a1pBx`Byq`a0. Actually we will prove a Carleman inequality

for the “principal” operator P “ Bt ` B3
x ` B

3
y and then, by Remark II.2, with no effort, we will

include in the estimate lower order derivatives.

II.2.1.1. Carleman estimates

Precisely we are going to prove first the following lemma.

Lemma II.4. Assume that ϕ : r0, 1s Ñ R is a smooth function. Then, there exist two constants
c ą 0 and M1 “M1p‖ϕ1‖8, ‖ϕ2‖8q ą 0 such that the inequality

α
5
2

R3

∥∥eαθpx,y,tqθpx, y, tq g∥∥
L2pR2ˆr0,1sq

`
α

3
2

R2
‖eαθpx,y,tq|∇g|‖L2pR2ˆr0,1sq

ď c‖eαθpx,y,tqpBt ` B3
x ` B

3
yqg‖L2pR2ˆr0,1sq (II.2.1)

holds, for R ě 1, α such that α2 ěM1R
3, g P C80 pR2 ˆ r0, 1sq supported in

!

px, y, tq P R2
ˆ r0, 1s :

∣∣∣κ
R
` ϕptqξ

∣∣∣ ě 1
)

and θpx, y, tq “
∣∣κ
R
` ϕptqξ

∣∣2 “ `

x
R
` ϕptq

˘2
`
`

y
R
` ϕptq

˘2
, with κ “ px, yq and ξ “ p1, 1q.

Proof. From now on with an abuse of notation we will write L2pR2 ˆ r0, 1sq as L2.
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Cause to the difficulty to prove an exponentially weighted estimate, as usual in this context,
we reduce ourselves into proving an estimate for the conjugated operator

eαθpx,y,tqpBt ` B
3
x ` B

3
yqe

´αθpx,y,tq.

The main point in the proof is, roughly speaking, a “positive commutator argument” that will
give a lower bound for the conjugated operator eαθpBt ` B3

x ` B
3
yqe

´αθ once it is decomposed as
a sum of its symmetric and skew-symmetric part.

In order to do that we define f “ eαθpx,y,tqg, now we want to see how (II.2.1) can be re-written
in terms of this auxiliary function f.

Let us first consider the term

e2αθ|∇g|2 “ e2αθ
“

pe´αθBxf ´ αBxθe
´αθfq2 ` pe´αθByf ´ αByθe

´αθfq2
‰

“ pBxf ´ αBxθfq
2
` pByf ´ αByθfq

2.

By virtue of the previous identity, instead of (II.2.1), it is sufficient to prove

c‖eαθpBt`B3
x`B

3
yqe

´αθf‖L2 ě
α

5
2

R3
‖θf‖L2`

α
3
2

R2
‖Bxf ´αBxθf‖L2`

α
3
2

R2
‖Byf ´αByθf‖L2 . (II.2.2)

A straightforward computation gives

eαθpBt ` B
3
x ` B

3
yqe

´αθf “´ αBtθf ` Btf ´ αB
3
xθf ` 3α2

pBxθqpB
2
xθqf ´ α

3
pBxθq

3f

´ 3αB2
xθBxf ` 3α2

pBxθq
2
Bxf ´ 3αBxθB

2
xf ` B

3
xf

´ αB3
yθf ` 3α2

pByθqpB
2
yθqf ´ α

3
pByθq

3f ´ 3αB2
yθByf

` 3α2
pByθq

2
Byf ´ 3αByθB

2
yf ` B

3
yf.

As already mentioned it is customary to write the operator in the following way

eαθpBt ` B
3
x ` B

3
yqe

´αθf “ Aαf ` Sαf,

where Aα and Sα are respectively skew-symmetric and symmetric operators and depend on α.

The two operators we are looking for are the following:

Aα :“ Bt ` B
3
x ` B

3
y ` 3α2

pBxθq
2
Bx ` 3α2

pByθq
2
By ` 3α2

pBxθqpB
2
xθq ` 3α2

pByθqpB
2
yθq

Sα :“ ´3αBxpBxθBx¨q ´ 3αBypByθBy¨q `
`

´ α3
pBxθq

3
´ αB3

xθ
˘

`
`

´ α3
pByθq

3
´ αB3

yθ
˘

´ αBtθ.

Indeed, since the first three operators of Aα are derivatives of odd order, they are skew-
symmetric, moreover, a straightforward computation shows that 3α2pBxθq

2Bx ` 3α2pBxθqpB
2
xθq

are also skew-symmetric and the same holds for the corresponding operators in the y variable.
With respect to Sα, it is very easy to prove the symmetry of the operators ´3αBxpBxθBx¨q ´
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3αBypByθBy¨q, moreover as the rest part is constituted by operators of multiplication by real-
valued functions it is symmetric.

Thus,
A˚α “ ´Aα, S˚α “ Sα,

therefore one get

‖eαθpx,y,tqpBt ` B3
x ` B

3
yqe

´αθpx,y,tqf‖2
L2 “ ‖pAα ` Sαqf‖2

L2

“ xpAα ` Sαqf, pAα ` Sαqfy

“ ‖Aαf‖2
L2 ` ‖Sαf‖2

L2 ` xAαf, Sαfy ` xSαf, Aαfy

ě xrSα, Aαsf, fy.

Remark II.3. From now on, to save space, we abbreviate
ş

:“
ţ

R2ˆr0,1s
and omit the arguments

of integrated functions.

A computation shows

xrSα, Aαsf, fy “

ż

´

αB2
t θ ` 2αB3

xBtθ ` 6α3
pBxθq

2
BxBtθ ` 2αB3

yBtθ ` 6α3
pByθq

2
ByBtθ

´ 18α3
BxθB

2
xθB

3
xθ ´ 3α3

pB
2
xθq

3
´ 3α3

pBxθq
2
B

4
xθ ` αB

6
xθ ` 9α5

pBxθq
4
B

2
xθ

´ 18α3
ByθB

2
yθB

3
yθ ´ 3α3

pB
2
yθq

3
´ 3α3

pByθq
2
B

4
yθ ` αB

6
yθ ` 9α5

pByθq
4
B

2
yθ

´ 18α3
B

2
xθB

2
yθBxByθ ´ 9α3

B
2
xθByθBxB

2
yθ

´ 9α3
BxθB

2
yθB

2
xByθ

´ 18α3
BxθByθB

2
xB

2
yθ ´ 9α3

BxθB
2
yθB

2
xByθ

´ 9α3
B

2
xθByθBxB

2
yθ

` 12α3
pBxByθq

3
` 6α3

pBxθq
2
BxB

3
yθ ` 2αB3

xB
3
yθ ` 18α5

pBxθq
2
pByθq

2
BxByθ

` 6α3
pByθq

2
B

3
xByθ

¯

f 2

`

ż

´

´ 6αBxBtθ ´ 6αB4
xθ ` 18α3

pBxθq
2
B

2
xθ ´ 6αBxB

3
yθ ´ 18α3

pByθq
2
BxByθ

¯

pBxfq
2

`

ż

´

´ 6αByBtθ ´ 6αB4
yθ ` 18α3

pByθq
2
B

2
yθ ´ 6αB3

xByθ ´ 18α3
pBxθq

2
BxByθ

¯

pByfq
2

`

ż

64α3
BxθByθBxByθ Bxf Byf

`

ż

9αB2
xθpB

2
xfq

2
`

ż

9αB2
yθpB

2
yfq

2

`

ż

18αBxByθpBxByfq
2.
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Now we choose

θpx, y, tq “
∣∣∣κ
R
` ϕptqξ

∣∣∣2 “ ´ x

R
` ϕptq

¯2

`

´ y

R
` ϕptq

¯2

,

where clearly κ “ px, yq and ξ “ p1, 1q.
It is not difficult to see that the following hold:

Bxθ “
2

R

´ x

R
` ϕptq

¯

, pBxθq
2
“

4

R2

´ x

R
` ϕptq

¯2

, pBxθq
4
“

16

R4

´ x

R
` ϕptq

¯4

.

Byθ “
2

R

´ y

R
` ϕptq

¯

, pByθq
2
“

4

R2

´ y

R
` ϕptq

¯2

, pByθq
4
“

16

R4

´ y

R
` ϕptq

¯4

.

B
2
xθ “

2

R2
, pB

2
xθq

3
“

8

R6
and B

3
xθ “ 0, B

4
xθ “ 0, B

6
xθ “ 0.

B
2
yθ “

2

R2
, pB

2
yθq

3
“

8

R6
and B

3
yθ “ 0, B

4
yθ “ 0, B

6
yθ “ 0.

BxByθ “ 0.

Btθ “ 2ϕ1ptq
”´ x

R
` ϕptq

¯

`

´ y

R
` ϕptq

¯ı

, BxBtθ “
2

R
ϕ1ptq, ByBtθ “

2

R
ϕ1ptq.

B
2
t θ “ 4pϕ1ptqq2 ` 2ϕ2ptq

”´ x

R
` ϕptq

¯

`

´ y

R
` ϕptq

¯ı

.

(II.2.3)

Using (II.2.3), adding and subtracting the terms α3

R4‖Bxf ´ αBxθf‖2
L2 `

α3

R4‖Byf ´ αByθf‖2
L2 ,

we get

xrSα, Aαsf, fy “
18α

R2
‖B2

xf‖
2
L2 `

18α

R2
‖B2

yf‖
2
L2

´
12α

R

ż

ϕ1ptqpBxfq
2
´

12α

R

ż

ϕ1ptqpByfq
2 I1 ` I

˚
1

`
144α3

R4

ż

´ x

R
` ϕptq

¯2

pBxfq
2
`

144α3

R4

ż

´ y

R
` ϕptq

¯2

pByfq
2

´
24α3

R6

ż

f 2
` 2α

ż

pϕ1ptqfq2 ` 2α

ż

´ x

R
` ϕptq

¯

ϕ2ptqf 2

´
24α3

R6

ż

f 2
` 2α

ż

pϕ1ptqfq2 ` 2α

ż

´ y

R
` ϕptq

¯

ϕ2ptqf 2

`
48α3

R3

ż

´ x

R
` ϕptq

¯2

ϕ1ptqf 2
`

288α5

R6

ż

´ x

R
` ϕptq

¯4

f 2

`
48α3

R3

ż

´ y

R
` ϕptq

¯2

ϕ1ptqf 2
`

288α5

R6

ż

´ y

R
` ϕptq

¯4

f 2

`
α3

R4
‖Bxf ´ αBxθf‖2

L2 `
α3

R4
‖Byf ´ αByθf‖2

L2

´
α3

R4
‖Bxf ´ αBxθf‖2

L2 ´
α3

R4
‖Byf ´ αByθf‖2

L2 . I2 ` I
˚
2

Let us consider (I1 ` I
˚
1 ), for

α2
ě ‖ϕ1‖

8
R3,
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it follows that

I1 ` I
˚
1 ě ´

12α

R

ż

‖ϕ1‖
8
pBxfq

2
´

12α

R

ż

‖ϕ1‖
8
pByfq

2

ě ´
12α3

R4

ż

pBxfq
2
´

12α3

R4

ż

pByfq
2.

(II.2.4)

We compute (I2 ` I
˚
2 ) using the explicit expression for Bxθ and Byθ :

I2 ` I
˚
2 “´

α3

R4

ż

pBxfq
2
´

4α5

R6

ż

´ x

R
` ϕptq

¯2

f 2
`

4α4

R5

ż

´ x

R
` ϕptq

¯

fBxf

´
α3

R4

ż

pByfq
2
´

4α5

R6

ż

´ y

R
` ϕptq

¯2

f 2
`

4α4

R5

ż

´ y

R
` ϕptq

¯

fByf.

Now let us just consider the last terms in the first and the second rows of the previous identity,
using the classical Young inequality

a b ď
ap

p
`
bq

q
, a, b ą 0,

1

p
`

1

q
“ 1, (II.2.5)

we obtain

4α4

R5

ż

´ x

R
` ϕptq

¯

fBxf `
4α4

R5

ż

´ y

R
` ϕptq

¯

fByf

ě ´
4α4

R5

ż ∣∣∣ x
R
` ϕptq

∣∣∣|f ||Bxf |´ 4α4

R5

ż ∣∣∣ y
R
` ϕptq

∣∣∣|f ||Byf |
ě ´

2α5

R6

ż

´ x

R
` ϕptq

¯2

f 2
´

2α3

R4

ż

pBxfq
2

´
2α5

R6

ż

´ y

R
` ϕptq

¯2

f 2
´

2α3

R4

ż

pByfq
2.

Since
∣∣κ
R
` ϕptqξ

∣∣ ě 1, then one obtains

I2 ` I
˚
2 ě ´

6α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣2f 2
´

3α3

R4

ż

pBxfq
2
´

3α3

R4

ż

pByfq
2

ě ´
6α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2
´

3α3

R4

ż

pBxfq
2
´

3α3

R4

ż

pByfq
2.
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Gathering altogether we get

xrSα, Aαsf, fy “
18α

R2
‖B2

xf‖
2
L2 `

18α

R2
‖B2

yf‖
2
L2 I1 ` I

˚
1

´
15α3

R4

ż

pBxfq
2
´

15α3

R4

ż

pByfq
2 I2 ` I

˚
2

`
144α3

R4

ż

´ x

R
` ϕptq

¯2

pBxfq
2
`

144α3

R4

ż

´ y

R
` ϕptq

¯2

pByfq
2

´
24α3

R6

ż

f 2
` 2α

ż

pϕ1ptqfq2 ` 2α

ż

´ x

R
` ϕptq

¯

ϕ2ptqf 2

´
24α3

R6

ż

f 2
` 2α

ż

pϕ1ptqfq2 ` 2α

ż

´ y

R
` ϕptq

¯

ϕ2ptqf 2

`
48α3

R3

ż

´ x

R
` ϕptq

¯2

ϕ1ptqf 2
`

48α3

R3

ż

´ y

R
` ϕptq

¯2

ϕ1ptqf 2

`
288α5

R6

ż

´ x

R
` ϕptq

¯4

f 2
`

288α5

R6

ż

´ y

R
` ϕptq

¯4

f 2 I3 ` I
˚
3

`
α3

R4
‖Bxf ´ αBxθf‖2

L2 `
α3

R4
‖Byf ´ αByθf‖2

L2

´
6α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2.

We consider (I2 ` I
˚
2 ), using again that

∣∣κ
R
` ϕptqξ

∣∣ ě 1, we obtain

I2 ` I
˚
2 ě´

15α3

R4

ż

´ x

R
` ϕptq

¯2

pBxfq
2
´

15α3

R4

ż

´ y

R
` ϕptq

¯2

pBxfq
2

looooooooooooooooomooooooooooooooooon

“:I

´
15α3

R4

ż

´ x

R
` ϕptq

¯2

pByfq
2

looooooooooooooooomooooooooooooooooon

“:II

´
15α3

R4

ż

´ y

R
` ϕptq

¯2

pByfq
2.

First let us observe that, making use of integrazion by parts, I can be re-written as

I “ `
15α3

R4

ż

´ y

R
` ϕptq

¯2

fB2
xf. (II.2.6)

Now we want to rebuild some “positivity” from I1 ` I ` I˚3 , using (II.2.6), observing that
18 “ 47

4
` 25

4
and that 288 “ 9` 279 we have

I1 ` I ` I
˚
3 “

ż

´5

2

α
1
2

R
B

2
xf
¯2

` 2

ż

15

2

α3

R4

´ y

R
` ϕptq

¯2

fB2
xf `

ż

”

3
α

5
2

R3

´ y

R
` ϕptq

¯2

f
ı2

`
47

4

α

R2

ż

pB
2
xfq

2
` 279

α5

R6

ż

´ y

R
` ϕptq

¯4

f 2

“

ż

”5

2

α
1
2

R
B

2
xf ` 3

α
5
2

R3

´ y

R
` ϕptq

¯2

f
ı2

`
47

4

α

R2

ż

pB
2
xfq

2

` 279
α5

R6

ż

´ y

R
` ϕptq

¯4

f 2.
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Proceeding in the same way for I˚1 ` II ` I3 we get

I˚1 ` II ` I3 ě

ż

”5

2

α
1
2

R
B

2
yf ` 3

α
5
2

R3

´ x

R
` ϕptq

¯2

f
ı2

`
47

4

α

R2

ż

pB
2
yfq

2
` 279

α5

R6

ż

´ x

R
` ϕptq

¯4

f 2.

Summing up, neglecting the two squares of binomial, that clearly are non negative, one has

xrSα, Aαsf, fy “
47

4

α

R2
‖B2

xf‖
2
L2 `

47

4

α

R2
‖B2

yf‖
2
L2

129α3

R4

ż

´ x

R
` ϕptq

¯2

pBxfq
2
`

129α3

R4

ż

´ y

R
` ϕptq

¯2

pByfq
2

´
24α3

R6

ż

f 2
` 2α

ż

pϕ1ptqfq2 ` 2α

ż

´ x

R
` ϕptq

¯

ϕ2ptqf 2 I1 ` I2 ` I3

´
24α3

R6

ż

f 2
` 2α

ż

pϕ1ptqfq2 ` 2α

ż

´ y

R
` ϕptq

¯

ϕ2ptqf 2 I˚1 ` I
˚
2 ` I

˚
3

`
48α3

R3

ż

´ x

R
` ϕptq

¯2

ϕ1ptqf 2
`

279α5

R6

ż

´ x

R
` ϕptq

¯4

f 2 I4 ` I5

`
48α3

R3

ż

´ y

R
` ϕptq

¯2

ϕ1ptqf 2
`

279α5

R6

ż

´ y

R
` ϕptq

¯4

f 2 I˚4 ` I
˚
5

`
α3

R4
‖Bxf ´ αBxθf‖2

L2 `
α3

R4
‖Byf ´ αByθf‖2

L2

´
6α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2.

Now we compute I2 ` I˚2 ` I4 ` I˚4 ` I5 ` I˚5 , using that pa2 ` b2q ě 1
2
pa ` bq2 for all a, b ą 0

and that 279
2
“ 144´ 9

2
we have

I2 ` I
˚
2 ` I4 ` I

˚
4 ` I5 ` I

˚
5

ě 4α

ż

pϕ1ptqfq2 `
48α3

R3

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣2ϕ1ptqf 2
`

279

2

α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2

“

ż

´

2α
1
2ϕ1ptq ` 12

α
5
2

R3

∣∣∣κ
R
` ϕptqξ

∣∣∣2¯2

f 2
´

9

2

α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2.

Since we are assuming α2 ě ‖ϕ1‖
8
R3 and since

∣∣κ
R
` ϕptqξ

∣∣ ě 1, therefore

2α
1
2ϕ1ptq ě ´

2α
5
2

R3
ě ´

2α
5
2

R3

∣∣∣κ
R
` ϕptqξ

∣∣∣2.
This gives

I2 ` I
˚
2 ` I4 ` I

˚
4 ` I5 ` I

˚
5 ě

100α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2
´

9

2

α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2.

With regards to I3 ` I
˚
3 , assuming

α2
ě ‖ϕ2‖

1
2
8
R3,
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and recalling that |κ
R
` ϕptqξ| ě 1, we have

I3 ` I
˚
3 ě ´2α

ż

”
∣∣∣ x
R
` ϕptq

∣∣∣` ∣∣∣ y
R
` ϕptq

∣∣∣ı‖ϕ2‖8f 2
ě ´

2
?

2α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣f 2

ě ´
2
?

2α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2.

Moreover
I1 ` I

˚
1 “ ´

48α3

R6

ż

f 2
ě ´

48α3

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2.

Putting everything together and neglecting positive terms, we obtain the following estimate for
the quantity xrSα, Aαsf, fy :

xrSα, Aαsf, fy ě
47

4

α

R2

ż

pB
2
xfq

2
`

47

4

ż

pB
2
yfq

2

`
129α3

R4

ż

´ x

R
` ϕptq

¯2

pBxfq
2
`

129α3

R4

ż

´ y

R
` ϕptq

¯2

pByfq
2

`
`

100´
9

2
´ 2
?

2´ 48´ 6
˘

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2

`
α3

R4
‖Bxf ´ αBxθf‖2

L2 `
α3

R4
‖Byf ´ αByθf‖2

L2

ě
`83

2
´ 2
?

2
˘α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2

`
α3

R4
‖Bxf ´ αBxθf‖2

L2 `
α3

R4
‖Byf ´ αByθf‖2

L2 .

Gathering the above information we conclude that

‖eαθpx,y,tqpBt ` B3
x ` B

3
yqe

´αθpx,y,tqf‖2
L2

ě
α5

R6

ż ∣∣∣κ
R
` ϕptqξ

∣∣∣4f 2
`
α3

R4
‖Bxf ´ αBxθf‖2

L2 `
α3

R4
‖Byf ´ αByθf‖2

L2

holds. Then a straightforward computation shows that this easily gives (II.2.1) in terms of g
with c “

?
3.

Remark II.4. We would like to spend few words on the costants in the Carleman estimate (II.2.1).
The constants α

5
2

R3 and α
3
2

R2 , which appear respectively as coefficients of the L2´ norm involving
the 0 and first order derivatives, are of crucial importance and come out precisely from the
structure of the equation we are working with, indeed also doing not too much effort as the
one spent in the proof of the previous lemma, we can bet that the higher power of α that can
shows up is really α

5
2 . We will attempt to clarify this fact considering just the one dimensional

case.
The estimate requires the computation of the quantity ‖e´αθpBt ` B3

xqe
αθf‖2

L2 (actually the
exponentials are in the reverse form but with the aim of merely try to fix some ideas, it is easier
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to have this form instead of the other one, otherwise we would have had to take care of minus
signs.

The only possibility for α to appear is after derivatives with respect to the x variable of eαθ,
for this reason we will consider just e´αθB3

xpe
αθfq. We recall that from the proof above we have

seen that, writing e´αθB3
xe
αθf “ pS ` Aqf, the relevant contributions for the estimate to be

achieved come from the commutator rS,Asf :“ SAf ´ASf. Therefore, roughly speaking, we
need to find the way to obtain the highest power of α applying, one after the other, a symmetric
and then a skew-symmetric operator or the reverse. Clearly the best we can do by the action of
a first operator comes from picking e´αθB3

xpe
αθqf and to choose always (three times) to derive

eαθ getting the following starting contribution e´αθα3eαθpBxθq
3f “ α3pBxθq

3f.

Summing up, the contribution for the largest power of α from the application of a first
operator arises from the action of the operator α3pBxθq

3 that, as a multiplication operator, is
clearly symmetric. Now, since the only possibility is then to apply a skew-symmetric operator,
we need to understand which part of B3

xpe
αθfq once it is explicitly computed, or better of its

skew-symmetric part, would give the highest power of α once applied to α3pBxθq
3f and would

involve first derivative with respect to x. Since we need a skew-symmetric operator, we cannot
proceed as before to obtain again a term like α3, our hope is to find a way to obtain at least
α2. This means that we want something like e´αθB2

xpe
αθqBx¨ and choose to make derivatives just

of the term eαθ, this leads to the operator α2pBxθq
2Bx ¨ .

So at the end we have α2pBxθq
2Bxrα

3pBxθq
3f s which, up to constants, gives α5pBxθq

4B2
xθ that,

after plugging the explicit expression for θ, yields the predicted constant α5

R6 .

Clearly provided suitable changes, proceeding in a similar way we can understand which
kind of parts of the operator we are dealing with we have to involve in order to obtain α3

R4 as a
coefficient in front of the first derivative-dependent term. We will skip details in this case.

As already mentioned, our work is concerned with the proof of a uniqueness result, therefore
we are interested in the difference of two solutions of (II.1.2), precisely, considering v :“ u1´u2,

where u1 and u2 are solutions of (II.1.2), it is not difficult to see that v satisfies the following
equation:

Btv ` pB
3
x ` B

3
yqv ` 4´

1
3u1pBx ` Byqv ` 4´

1
3 pBx ` Byqu2v “ 0. (II.2.7)

This can be seen as a particular case of the following equation

Btv ` pB
3
x ` B

3
yqv ` a1px, y, tqpBx ` Byqv ` a0px, y, tqv “ 0.

This means that the linear operator we are interested in is

P “ Bt ` pB
3
x ` B

3
yq ` a1px, y, tqpBx ` Byq ` a0px, y, tq, (II.2.8)

where a0, a1 P L
8pR3q.
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Next, we shall extend the result of II.4 to operators of the form (II.2.8). Precisely we prove

Lemma II.5. Assume that ϕ : r0, 1s Ñ R is a smooth function. Then, there exists c ą 0,

R0 “ R0p‖ϕ1‖8, ‖ϕ2‖8, ‖a0‖8, ‖a1‖8q ą 1 and M1 “ M1p‖ϕ1‖8, ‖ϕ2‖8q ą 0 such that the
inequality

α
5
2

R3

∥∥eαθpx,y,tqθpx, y, tq g∥∥
L2pR2ˆr0,1sq

`
α

3
2

R2
‖eαθpx,y,tq|∇g|‖L2pR2ˆr0,1sq

ď c‖eαθpx,y,tqpBt ` B3
x ` B

3
y ` a1px, y, tqpBx ` Byq ` a0px, y, tqqg‖L2pR2ˆr0,1sq (II.2.9)

holds for R ě R0, α such that α2 ěM1R
3, g P C80 pR2 ˆ r0, 1sq supported in

!

px, y, tq P R2
ˆ r0, 1s :

∣∣∣κ
R
` ϕptqξ

∣∣∣ ě 1
)

and θpx, y, tq “
∣∣κ
R
` ϕptqξ

∣∣2 “ `

x
R
` ϕptq

˘2
`
`

y
R
` ϕptq

˘2
, with κ “ px, yq and ξ “ p1, 1q.

Proof. First of all let us say that we are going to hide the dependence of our functions on x, y
and t.

From the estimate (II.2.1) of Lemma II.4, adding and subtracting what is missing, it follows
that

α
5
2

R3
‖eαθθg‖L2 `

α
3
2

R2
‖eαθ|∇g|‖L2

ď c‖eαθpBt ` B3
x ` B

3
yqg‖L2

ď c‖eαθpBt ` B3
x ` B

3
y ` a1pBx ` Byq ` a0qg‖L2 ` c‖eαθpa1pBx ` Byq ` a0qg‖L2

ď c‖eαθpBt ` B3
x ` B

3
y ` a1pBx ` Byq ` a0qg‖L2 `

?
2c‖eαθ|∇g|‖L2‖a1‖L8

` c‖eαθθg‖L2‖a0‖L8 ,

where the last inequality follows from the assumption
∣∣κ
R
` ϕptqξ

∣∣ ě 1.

In order to hide the last two terms on the right-hand side by the ones on the left-hand side it
is necessary first to be handling finite quantities, but this is ensured by our strong assumptions
about g. Moreover, as anticipated in our previous treatise about Carleman estimates, the con-
stants in front of terms in the left-hand side should be sufficiently large to allow absorptions of
eventual correction terms. Let us observe that to let ratios α

3
2

R2 and α
3
2

R2 grow as at least positive
power of R, we need to require α3

R 4 ě M1R
ε for some ε ą 0, that is α3 ě M1R

4`ε. We observe
that taking ε “ 1

2
we find α2 ěM1R

3, that is our hypothesis, therefore the last two terms can
be absorbed on the left-hand side, yielding the desired result.

Remark II.5. Our hypothesis about α, namely α2 ěM1R
3, turns out to be fundamental mainly

to obtain that the term α
3
2

R2 grows as a positive fractional power of R. Indeed we observe that
without the presence of ‖eαθ|∇g|‖L2 , we would have had to choose α just in such a way to
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obtain that α
5
2

R3 grows as a positive fractional power of R. In this case, for instance, it would
be sufficient to assume α4 ě M1R

5 that clearly is not enough to conclude the same for α
3
2

R2 .

This means that we could have put weaker hypothesis about the decay of the solution in two
distinct times, that is u1p0q ´ u2p0q; u1p1q ´ u2p1q P L

2peapx
2`y2q

1
2

5
4 dxdyq.

Unfortunately, the presence on the left-hand side of the term ‖eαθ|∇g|‖L2 is crucial, indeed
we want to obtain from a Carleman estimate for P “ Bt ` B

3
x ` B

3
y , a similar estimate for an

operator in which the first derivatives appear and since, in order to do that, we apply an “adding
and subtracting argument”, we have the need of a term for the gradient and this influence the
assumption about the decay of the solution. It is here that the form of the operator plays a
role in the decay necessary in the hypotheses.

Before moving on in the proof of the lower bound estimate, one of the two fundamental
groundworks for proving our unique continuation result, we want to say a few words more
about the strict link between the decay assumption necessary to let the continuation argument
work and the form of the operator taken in exam. In order to do that we give mention to the
following three works [29], [22] and [49] (in chronological order) all on unique continuation for
KdV type equations.

Since our work, in essence, represents the two-dimensional counterpart of the one by Es-
cauriaza, Kenig, Ponce and Vega [29], for their result the same observations made above for
commenting on our case hold. Therefore we shall move on the work of Liana Dawson [22].
There the following result was proved:

Theorem II.5. Let u1, u2 two sufficiently smooth solutions of

Btu` B
5
xu` 10uB3

xu` 20BxuB
2
xu` 30u2

Bxu “ 0, x P R, t P r0, 1s.

If there exists an ε ą 0 such that

u1p0q ´ u2p0q, u1p1q ´ u2p1q P H
2
peax

4
3`ε

` dxq

for a ą 0 sufficiently large, then u1 ” u2.

Actually, as it is customary, the previous comes out as a consequence of the analogue linear
result for the equation

Btv ` B
5
xv ` a4px, tqB

4
xv ` a3px, tqB

3
xv ` a2px, tqB

2
xv ` a1px, tqBxv ` a0px, tqv “ 0,

or better, since it is always possible to eliminate the fourth order term by considering wpx, tq :“

upx, yqe
1
5

şx
0 a4ps,tq ds, the attention was turned to the equation

Btv ` B
5
xv ` a3px, tqB

3
xv ` a2px, tqB

2
xv ` a1px, tqBxv ` a0px, tqv “ 0. (II.2.10)
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Going through the already paved way presented in [29], a Carleman estimate for the leading
order terms of the operator, namely Bt ` B5

x, was shown:

α
1
2

R

∥∥∥∥eα` xR`ϕptq˘2

B
4
xg

∥∥∥∥
L2

`
α

3
2

R2

∥∥∥∥eα` xR`ϕptq˘2´ x

R
` ϕptq

¯

B
3
xg

∥∥∥∥
L2

`
α

5
2

R3

∥∥∥∥eα` xR`ϕptq˘2´ x

R
` ϕptq

¯2

B
2
xg

∥∥∥∥
L2

`
α

7
2

R4

∥∥∥∥eα` xR`ϕptq˘2´ x

R
` ϕptq

¯3

Bxg

∥∥∥∥
L2

`
α

9
2

R5

∥∥∥∥eα` xR`ϕptq˘2´ x

R
` ϕptq

¯4

g

∥∥∥∥
L2

ď c‖eα
`

x
R
`ϕptq

˘2

pBt ` B
5
xqg‖L2 .

As in our case, in order to obtain a Carleman estimate for the operator involving the lower order
derivatives, that is Bt ` B5

x ` a3B
3
x ` a2B

2
x ` a1Bx ` a0, an “adding and subtracting argument” is

performed. To let this argument hold, since the first lower order than the fifth one that appears
is the third derivative, we need to put conditions on α in such a way the ratios α

3
2

R2 ,
α

5
2

R3 ,
α

7
2

R4 ,
α

9
2

R5

grow as fractional powers of R because, therefore, for R sufficiently large the “error” terms on
the right-hand side, which come out from the addiction of derivatives up to order three, can
be absorbed on the left-hand side. This entails the restriction α3 ě M1R

4`ε about α which
strongly influences the exponential decay rate assumed about data in the unique continuation
result Theorem II.5.

Let us observe that also in this fifth order setting, if one considered a differential equation
in which third and fourth derivatives do not appear

Btv ` B
5
xv ` a2px, tqB

2
xv ` a1px, tqBxv ` a0px, tqv “ 0 (II.2.11)

we need to find conditions about α just to guarantee that α
5
2

R3 ,
α

7
2

R4 ,
α

9
2

R5 grow as a fractional positive
power of R, then would be enough to assume a weaker condition about α, namely α4 ěM1R

5.

This means that in this case a stronger unique continuation result could be achieved requiring
a weaker decay rate for the solutions at two distinct times.

In [49] was proved that this fact holds for a quite general class of high order equations of
KdV type, which includes the KdV hierarchy. Precisely that work is concerned with unique
continuation results for the equation

Btv ` p´1qk`1
B
n
xv ` P pv, Bxv, . . . , B

p
xvq “ 0, x P R, t P r0, 1s, (II.2.12)

where n “ 2k ` 1, k “ 1, 2, . . . and P is a polynomial in v, Bxv, . . . , B
p
xv, with p ď n ´ 1.

Of particular interest in that work were the cases p “ n ´ 2 and p ď k with n ě 5. For
these situations it was proved that if the difference of two sufficiently smooth solutions of the
equation (II.2.12) with p “ n´2 decays as e´x

4
3`ε

` at two distinct times, then u1 ” u2.Moreover

when p ď k a similar result was got assuming the weaker decay e´ax
n
n´1
` for a ą 0 sufficiently

large.
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Let us underline that the results in [22] are a particular case of the ones in [49], indeed
equation (II.2.11) is nothing but (II.2.12) once it is assumed n “ 5 pk “ 2q, and p “ 3 pp “ n´2q,

instead equation (II.2.10) is a particular case of (II.2.12) with n “ 5 and p ď 2.

II.2.1.2. Proof of lower bound

Now we are in position to prove the lower bound.

Before doing that in a rigorous way, we would like to deserve the first part of this section
underlining, for dimension one (just for notational simplicity), that is pretending to be working
with the classical KdV equation as in [29], the main steps which lead to our lower bound.

• In this framework the equation we are delaing with is

Btv ` B
3
xv ` a1px, tqBxv ` a0px, tqv “ 0.

• Let us start from the Carleman estimate that in this simplified setting reads

α
5
2

R3

∥∥∥∥eαp xR`ϕptqq2g∥∥∥∥
L2

ď c‖eαp
x
R
`ϕptqq

2

pBt ` B
3
x ` a1Bx ` a0qg‖L2 .

Remark II.6. Let us observe that once the estimate is performed we can neglect terms
on the left-hand side depending on our interests, for this reason in the previous the term
involving the first derivative is missing.

We know that Carleman estimate holds for a sufficiently smooth function g with suitable
additional hypotheses but with no requirement about g to be solution of any equation.
Our next aim is to apply Carleman estimate to our solution v of the KdV equation,
actually to a function which resembles v but for which all the hypotheses required to
apply Carleman estimates are fulfilled.

• We define as our candidate g the following function

gpx, tq :“ θRpxqµ
´ x

R
` ϕptq

¯

vpx, tq,

where

θRpxq “

#

1 x ă R ´ 1

0 x ą R
, µpxq “

#

0 x ă 1

1 x ą 2
, ϕptq “

#

0 t P
“

0, r
2

‰

Y
“

1´ r
2
, 1
‰

3 t P rr, 1´ rs
.

Let us observe that if for all t P r0, 1s ϕptq ” 0 then θRpxqµ
`

x
R

˘

” 0, indeed the two
functions would have had disjoint supports.
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With these assumptions about functions into play, g satisfies the hypothesis for the Car-
leman to be applied. It is easy to see that g satisfies

pBt ` B
3
x ` B

3
y ` a1Bx ` a0qg

“ χBRzBR´1ˆr0,1spB
2
xv ` Bxv ` vq ` χtpx,tq : 1ď| xR`ϕptq|ď2, tPr0,1supB

2
xv ` Bxv ` vq.

Note that the characteristic functions are due to the fact that we have collected in the
first term on the right-hand side terms involving derivatives of θR, which are supported
in BRzBR´1 ˆ r0, 1s, where

∣∣ x
R
` ϕptq

∣∣ ď 4 instead in the second one, terms involving
derivatives of µ

`

x
R
` ϕptq

˘

, which are supported in tpx, tq : 1 ď
∣∣ x
R
` ϕptq

∣∣ ď 2, t P r0, 1su.

We observe also that the set BRzBR´1 ˆ r0, 1s will be the annular domain we want to
work in. The Carleman estimate now gives

α
5
2

R3
‖eαp

x
R
`ϕptqq

2

g‖L2 ď c1‖eαp
x
R
`ϕptqq

2

χBRzBR´1ˆr0,1spB
2
xv ` Bxv ` vq‖L2

` c2‖eαp
x
R
`ϕptqq

2

χ
tpx,tq : 1ď| xR`ϕptq|ď2upB

2
xv ` Bxv ` vq‖L2 .

• On the left-hand side we would have our solution u instead of g, in this regards it is suffi-
ciently to observe that for px, tq P p0, R´1qˆrr, 1´rs, gpx, tq “ upx, tq and

∣∣ x
R
` ϕptq

∣∣ ě 2.

So one obtains
α

5
2

R3
e4α

ď rc1e
16αARpvq ` rc2e

4α,

where in this particular case ARpvq :“

˜

ż 1

0

ż

BRzBR´1

|v|2 ` |Bxv|2 ` |B2
xv|

2

¸
1
2

dx.

• At the end, taking α “ M1R
3
2 , assuming R sufficiently large, the lower bound readily

follows.

Now we are in position to give the precise proof of the lower bound in our more general
case, clearly we will follow the steps given above.

For R ą 2 let θR P C8pR2q with θRpx, yq “ 1 if
a

x2 ` y2 ă R ´ 1 and θRpx, yq “ 0 if
a

x2 ` y2 ą R.

Let µ P C8pR2q with µpx, yq “ 0 if
a

x2 ` y2 ă 1 and µpx, yq “ 1 if
a

x2 ` y2 ą 2 and
ϕ : RÑ r0, 2

?
2s, ϕ P C80 pRq with

ϕptq “

#

0 t P
“

0, r
2

‰

Y
“

1´ r
2
, 1
‰

,

2
?

2 t P rr, 1´ rs,

increasing in r r
2
, rs and decreasing in r1´ r, 1´ r

2
s.
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As usual we define the auxiliary function

gpx, y, tq “ θRpx, yqµ
´ x

R
` ϕptq,

y

R
` ϕptq

¯

vpx, y, tq, px, yq P R2, t P r0, 1s.

It is easy to see that g satisfies

pBt ` B
3
x ` B

3
y ` a1pBx ` Byq ` a0qg

“ µ
´ x

R
` ϕptq,

y

R
` ϕptq

¯”

3BxθRB
2
xv ` 3ByθRB

2
yv ` 3B2

xθRBxv ` 3B2
yθRByv ` B

3
xθRv ` B

3
yθRv

` a1BxθRv ` a1ByθRv
ı

` 3R´1θRBxµ B
2
xv ` 3R´1θRByµ B

2
yv

` 3R´1
“

pR´1θRB
2
xµ` 2BxθRBxµqBxv ` pR

´1θRB
2
yµ` 2ByθRByµqByv

‰

`

”

θRBxµ
´

ϕ1 `
a1

R

¯

` θRByµ
´

ϕ1 `
a1

R

¯

`R´3
B

3
xµ`R

´3
B

3
yµ` 3R´1

B
2
xθRBxµ

` 3R´1
B

2
yθRByµ` 3R´2

BxθRB
2
xµ` 3R´2

ByθRB
2
yµ
ı

v.

Remark II.7. Let us observe that since in the first term in the right-hand side of the previous
equation the derivatives of θR appear, therefore this term is supported in tpx, yq : R ´ 1 ď
a

x2 ` y2 ď Ruˆr0, 1s where
∣∣κ
R
` ϕptqξ

∣∣ ď 5. Moreover one can observe that all the remaining
terms, sorted with respect to their dependance on the derivatives of our solution v, contain the
derivatives of µ, this means that they are supported in tpx, yq : 1 ď

∣∣κ
R
` ϕptqξ

∣∣ ď 2u ˆ r0, 1s.

The next step is to apply Lemma II.5 to our function g. In order to do that we have to
check if the hypotheses of the lemma are fulfilled.

First of all we want to prove that g is compactly supported. Let us observe that

• if
a

x2 ` y2 ą R, then we fall outside the support of θR, this means that gpx, y, tq “ 0.

• if
a

x2 ` y2 ă R and t P r0, r
2
s Y r1 ´ r

2
, 1s, then gpx, y, tq “ 0, indeed where t P r0, r

2
s Y

r1´ r
2
, 1s then ϕptq “ 0, this gives

∣∣κ
R
` ϕptqξ

∣∣ ă 1, in that case we are out of the support
of µ

`

x
R
` ϕptq, y

R
` ϕptq

˘

, therefore gpx, y, tq “ 0.

From the previous facts we conclude that g is compactly supported.
Now we need to prove that g is supported in tpx, y, tq P R2 ˆ r0, 1s :

∣∣κ
R
` ϕptqξ

∣∣ ě 1u. This
is true simply from the definition of g, indeed if

∣∣κ
R
` ϕptqξ

∣∣ ă 1 then µ
`

x
R
`ϕptq, y

R
`ϕptq

˘

“ 0

and so gpx, y, tq “ 0. Summing up g can be assumed to satisfy the hypothesis of Lemma II.5.
This means that there exist c ą 0, R0 and M1 such that

c
α

5
2

R3
‖eαθg‖L2pR2ˆr0,1sq ď ‖e

αθ
pBt ` B

3
x ` B

3
y ` a1pBx ` Byq ` a0qg‖L2pR2ˆr0,1sq. (II.2.13)

Making use of Remark II.7 it is easy to see that

‖eαθpBt ` B3
x ` B

3
y ` a1pBx ` Byq ` a0qg‖L2pR2ˆr0,1sq ď c1 e

25αARpvq ` c2 e
4αA. (II.2.14)
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We observe that in Q “ tpx, y, tq :
a

x2 ` y2 ď 1, t P rr, 1 ´ rsu, the product θRpx, yqµ
`

x
R
`

ϕptq, y
R
` ϕptq

˘

“ 1, indeed it is not difficult to see that if we are in Q, since we are assuming
R ą 2, then

∣∣κ
R
` ϕptqξ

∣∣ ą ?12 ą 2 and clearly
a

x2 ` y2 ď R´1. This means that gpx, y, tq “
vpx, y, tq in Q.

Using this fact we obtain the following chain of inequalities:

c
α

5
2

R3
‖eαθg‖L2pR2ˆr0,1sq ě c

α
5
2

R3
‖eαθg‖L2pQq “ c

α
5
2

R3
‖eαθv‖L2pQq ě c

α
5
2

R3
e4α‖v‖L2pQq. (II.2.15)

Using (II.2.13), (II.2.14), (II.2.15) and the assumption ‖v‖L2pQq ą δ we obtain

c
α

5
2

R3
e4αδ ď c1 e

25αARpvq ` c2 e
4αA,

therefore

c
α

5
2

R3
δ ď c1 e

21αARpvq ` c2A.

Taking α “M
1
2

1 R
3
2 with M1 as in Lemma II.5 we obtain

cM
5
4

1 R
3
4 δ ď c1e

21M
1
2
1 R

3
2ARpvq ` c2A.

Now if we take R large enough, the second term on the right-hand side of the previous inequality
can be absorbed by the term on the left-hand side, so we can conclude that there exists rR0 ą 0

such that for R ě rR0 the following holds

ARpvq ě
c

2
e´21M

1
2
1 R

3
2 .

This yields the desired result.

II.2.2. Upper estimates

Now we will turn on the proof of the upper bound. Precisely the result that we will prove is
the following.

Theorem II.6. Assume that the coefficients of (II.1.9) satisfy a0 P L8 X L2
xL

8
yt and a1 P

L8 X L2
xL

8
yt X L

1
xL

8
yt.

Let v P Cpr0, 1s;H4pR2qq be a solution of (II.1.9) satisfying that

vp0q, vp1q P L2
peapx

2`y2q
3
4 dxdyq

for some a ą 0, then there exists c and R0 ą 0 sufficiently large such that for R ě R0

‖v‖
L2ptR´1ă

?
x2`y2ăRuˆr0,1sq

`
ÿ

0ăk`lď2

‖BkxBlyv‖L2ptR´1ă
?
x2`y2ăRuˆr0,1sq

ď ce´ap
R
36q

3
2

.
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II.2.2.1. Groundwork results

As in [14] we will prove first the following lemma

Lemma II.6. Let w P Cpr0, 1s;H4pR2qqXC1pr0, 1s;L2pR2qq such that for all t P r0, 1s suppwptq Ď

K, where K is a compact subset of R2. Then

1. For λ ą 0 and β ą 0,

‖eλ|x|eβ|y|w‖L8t L2
xypR2ˆr0,1sq ď‖e

λ|x|eβ|y|wp0q‖L2pR2q
` ‖eλ|x|eβ|y|wp1q‖L2pR2q

` ‖eλ|x|eβ|y|pBt ` B3
x ` B

3
yqw‖L1

tL
2
xypR2ˆr0,1sq.

(II.2.16)

2. There exists c ą 0, independent of the set K, such that for β ě 1 and λ ě 2β

‖eλ|x|eβ|y|Lw‖L8x L2
ytpR2ˆr0,1sq

ď c pλ2
` β2

q
`

‖J3
peλ|x|eβ|y|wp0qq‖L2pR2q

` ‖J3
peλ|x|eβ|y|wp1qq‖L2pR2q

˘

` ‖eλ|x|eβ|y|pBt ` B3
x ` B

3
yqw‖L1

xL
2
ytpR2ˆr0,1sq,

(II.2.17)

where L denotes any operator in the set tBx, By, B2
x, B

2
yu and J is such that xJgpξ, ηq :“

p1` ξ2 ` η2q
1
2
pgpξ, ηq.

Remark II.8. It’s a very fundamental fact that in (II.2.17) there is no dependance upon λ and β
except for the terms involving the data, indeed, as for Carleman estimates, we will need to hide
some correction terms in the right hand side; since λ and β will grow as R which is supposed
to go to infinity, we cannot expect to succeed if in front of the norm involving the operator it
will be λ or β.

First of all we will need the subsequent notations

Hλ,β¨ :“ eλxeβypBt ` B
3
x ` B

3
yqe

´λxe´βy¨ “
“

Bt ` pBx ´ λq
3
` pBy ´ βq

3
‰

¨ . (II.2.18)

It is easy to see from the previous definition that Hλ,β is defined through the space-time Fourier
transform by the multiplier

iτ ` piξ ´ λq3 ` piη ´ βq3.

We can define the inverse operator T0 of Hλ,β by the symbol

m0pξ, η, τq :“
1

iτ ` piξ ´ λq3 ` piη ´ βq3
, (II.2.19)

this means that
yT0 h :“ m0pξ, η, τqph,

86



where, in order to simplify the notation, we use p̈ to denote the Fourier transform F in
S 1pR3q. The proof of Lemma II.6 is based on two previous lemmas, these lemmas express
respectively the boundedness of the operator T0 and pBx ´ λqkpBy ´ βqlT0 where k, l are non
negative integers with 0 ď k ` l ď 2 (actually we need just the decoupled options, that is
pk, lq “ p0, 0q, p1, 0q, p0, 1q, p2, 0q and p0, 2q).

Lemma II.7. Let h P L1pR3q with ‖h‖L1
tL

2
xy
pR3q ă 8. Then for all pλ, βq ‰ p0, 0q, m0

ph P S 1pR3q

and rm0
phsqdefines a bounded function from Rt with values in L2

xy. Besides,

‖rm0
phsqptq‖L2

xypR2q
ď ‖h‖L1

tL
2
xypR3q

@t P R, (II.2.20)

where qdenotes the inverse Fourier transform in S 1pR3q.

Remark II.9. Clearly the previous inequality gives the boundedness of the operator T0 indeed,
by its definition, from (II.2.20) follows that

‖rT0hsptq‖L2
xypR2q

ď ‖h‖L1
tL

2
xypR3q

@t P R.

Proof. First of all we want to write the symbol m0pξ, η, τq in a more useful way, precisely it is
not difficult to see that the following holds:

m0pξ, η, τq “
´i

τ ` apξ, ηq ` ibpξ, ηq
,

where

apξ, ηq “ ´ξ3
` 3ξλ2

´ η3
` 3ηβ2 and bpξ, ηq “ λ3

´ 3ξ2λ` β3
´ 3η2β.

Before going any further we want to quote the subsequent fact about Fourier transform.

Remark II.10. Our definition for the 1-dimensional Fourier transform is

pfpτq “
1
?

2π

ż

R
e´iτtfptq dt. (II.2.21)

Making a straightforward computation it is not difficult to see that, defining

gpτq “
´i

τ ` ib
, b ‰ 0,

the inverse Fourier transform of g has this form

qgptq “

$

&

%

?
2π χp0,`8qptqe

tb b ă 0,

´
?

2π χp´8,0qptqe
tb b ą 0,

(II.2.22)

where, as usual, for a set A, χA denotes the characteristic function of A.
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Considering the translation by the real number a of g, that is defining Gpτq “ gpτ ` aq,

from (II.2.22) and the property that the translation in the moment space is a multiplication by
a phase factor in the position space and vice-versa, in other words

qgp¨ ` aqptq “ e´itaqgptq,

one has

qGptq “

$

&

%

?
2π χp0,`8qptqe

tbe´ita b ă 0,

´
?

2π χp´8,0qptqe
tbe´ita b ą 0.

With the previous remark in mind we can say that for a fixed pair pξ, ηq with bpξ, ηq ‰ 0

and t P R we have

rm0pξ, η, ¨τ qsq
τ
ptq “

$

&

%

?
2π χp0,`8qptqe

tbpξ,ηqe´itapξ,ηq bpξ, ηq ă 0,

´
?

2π χp´8,0qptqe
tbpξ,ηqe´itapξ,ηq bpξ, ηq ą 0.

Clearly the magnitude of the right-hand side is bounded by
?

2π.

Now we need to compute the quantity
“

m0pξ, η, ¨τ qphpξ, η, ¨τ q
‰

q

τ ptq.

In order to do that we recall that under our definition of the Fourier transform (II.2.21) and
its inverse, the following property holds:

|fgptq “
qfptq ˚ qgptq
?

2π
,

moreover using that ph “ hpxypτ , one easily obtains

“

m0pξ, η, ¨τ qphpξ, η, ¨τ q
‰

q

τ
ptq

“
rm0pξ, η, ¨τ qsq

τ ptq ˚ hp¨x, ¨y, tqp
xypξ, ηq

?
2π

“
1
?

2π

ż

Rs
rm0pξ, η, ¨τ qsq

τ
pt´ sqhp¨x, ¨y, sqp

xy
pξ, ηq ds

“

$

&

%

ş

Rs χp0,`8qpt´ sqe
pt´sqbpξ,ηqe´ipt´sqapξ,ηqhp¨x, ¨y, sqp

xypξ, ηq ds bpξ, ηq ă 0,

´
ş

Rs χp´8,0qpt´ sqe
pt´sqbpξ,ηqe´ipt´sqapξ,ηqhp¨x, ¨y, sqp

xypξ, ηq ds bpξ, ηq ą 0.

Let us observe that for pλ, βq ‰ p0, 0q since the set tpξ, ηq : bpξ, ηq “ 0u represents an ellipse, it
has measure zero in R2, this gives, by applying Plancherel’s formula and Minkowski’s integral
inequality, that for all t P R

‖rm0
phsqp¨x, ¨y, tq‖L2

xypR2q
“ ‖rm0

phsqτ p¨ξ, ¨η, tq‖L2
ξηpR2q

ď

ż

Rs
‖hpxyp¨ξ, ¨η, sq‖L2

ξηpR2q

“ ‖hp¨x, ¨y, ¨tq‖L1
tL

2
xypR3q

ă 8.
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As previously anticipated, we are going to prove the boundedness of the operator pBx ´
λqkpBy ´ βq

lT0. precisely, we will prove the following lemma

Lemma II.8. Let h P L1pR3q with ‖h‖L1
xL

2
yt
pR3q ă 8. For β ě 1, λ ě 2β, k, l P t0, 1, 2u, and

0 ď k ` l ď 2, let

mk,lpξ, η, τq :“ piξ ´ λqkpiη ´ βqlm0pξ, η, τq,

with m0 as in (II.2.19), the symbol associated with the operator pBx ´ λqkpBy ´ βql T0. Then
mk,l

ph P S 1pR3q and

‖rmk,l
phsqptq‖L8x L2

typR3q
ď ‖h‖L1

xL
2
ytpR3q

.

Remark II.11. As in Lemma II.7, from the previous inequality we can conclude the boundedness
of the operator pBx ´ λqkpBy ´ βqlT0, indeed it is a trivial consequence that

‖rpBx ´ λqkpBy ´ βqlT0sh‖L8x L2
typR3q

ď C‖h‖L1
xL

2
ytpR3q

.

Proof. We will only consider the case k “ 2 and l “ 0. Since the proofs of other cases are
similar, for brevity, we will omit them. First of all let us note that

m2,0pξ, η, τq “
´ipξ ` iλq2

rpξ ` iλq3 ` pη ` iβq3 ´ τ s
.

Defining v :“ ξ ` iλ and w :“ η ` iβ we can re-write the preceding as

m2,0pξ, η, τq “
´iv2

v3 ` w3 ´ τ
.

The polynomial P pvq :“ v3 ` w3 ´ τ has got, as a multiple root, just v “ 0, but since under
our hypothesis v is always different from zero, we can assume P pvq not to have multiple roots.
This allows us to use the following decomposition in partial fractions

m2,0 “

3
ÿ

j“1

´iv2
j

3pv ´ vjqv2
j

“

3
ÿ

j“1

´i

3pξ ´ <pvjq ` irλ´ =pvjqsq
“

1

3

3
ÿ

j“1

´i

ξ ` ajpη, τq ` ibjpη, τq

where vj, j “ 1, 2, 3 are the different roots of P, ajpη, τq “ ´<pvjq and bjpη, τq “ λ ´ =pvjq.
Moving on as in Lemma II.7, that is using the Remark II.10, for a fixed pair pη, τq such that
bpη, τq ‰ 0, making use of the linearity of the inverse Fourier transform we have

rm2,0p¨ξ, η, τqsq
ξ
pxq “

$

&

%

1
3

ř3
j“1

?
2π χp0,`8qpxqe

xbjpη,τqe´ixajpη,τq bjpη, τq ă 0,

´1
3

ř3
j“1

?
2π χp´8,0qpxqe

xbjpη,τqe´ixajpη,τq bjpη, τq ą 0.

Clearly the magnitude of the right-hand side is bounded by
?

2π.
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Let us observe that the set tpη, τq : =pvjq ´ λ “ 0u has two-dimensional measure zero.
Therefore using similar computations to those performed in Lemma II.7 we get that for all
x P R

‖rm2,0
phsqpx, ¨y, ¨tq‖L2

ytpR2q
“ ‖rm2,0

phsqξ px, ¨η, ¨τ q‖L2
ητ pR2q

ď

ż

Rz
‖hpyt pz, ¨η, ¨τ q‖L2

ητ pR2q

“ ‖hp¨x, ¨y, ¨tq‖L1
xL

2
ytpR3q

ă 8.

Now we are in position to prove Lemma II.6. Even if the proof of this lemma is similar to
the one for the corresponding result in [14], we will provide it for sake of completeness.

Proof of Lemma II.6. The proof of (II.2.16) follows from Lemma II.7 and the proof of the
estimate (II.2.17) follows from Lemma II.8. We only prove the estimate (II.2.17) for
L “ B2

x.

For ε P p0, 1
4
q let ηε be a function in C80 pRq of the time variable t such that ηεptq “ 1 if

t P r2ε, 1´2εs, supp ηε Ă rε, 1´εs, ηε increasing in rε, 2εs and decreasing in r1´2ε, 1´εs.

Let us define for all t P R

wεptq :“ ηεptqwptq,

where with an abuse of notation w represents the extension of w which is identically zero
outside r0, 1s. We define

hε :“ eλxeβypBt ` B
3
x ` B

3
yqwε,

then, more explicitly

hε “ η1εe
λxeβyw ` h0, (II.2.23)

where

h0 :“ ηεe
λxeβypBt ` B

3
x ` B

3
yqw.

It is not difficult to see that hε can be re-written as

hε “ re
λxeβypBt ` B

3
x ` B

3
yqe

´λxe´βyseλxeβywε “ Hλ,βpe
λxeβywεq.

This means that

eλxeβywε “ T0hε “ rm0
phεsq.

Now we consider eλxeβy B2
xwε. It is easy to see that

eλxeβyB2
xwε “ pe

λxeβy B2
x e
´λxe´βyqeλxeβywε “ pBx´λq

2eλxeβywε “ pBx´λq
2T0hε “ rm2,0

phεsq.
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From the previous identity and (II.2.23), one gets

‖eλxeβyB2
xwε‖L8x L2

yt
“ ‖rm2,0

phεsq‖L8x L2
yt

ď ‖χr0,1sp¨tqrm2,0pη
1
εe
λxeβywqpsq‖L8x L2

yt
` ‖rm2,0

ph0sq‖L8x L2
yt
.
(II.2.24)

First of all let us consider the second term on the right-hand side, using the hypotheses
of Lemma II.6 we can apply Lemma II.8 to h0, this gives

‖rm2,0
ph0sq‖L8x L2

yt
ď ‖h0‖L1

xL
2
yt
. (II.2.25)

Now we need to provide an estimate for the first term on the right-hand side of (II.2.24).
Using our definition of mk,lpξ, η, τq we get

‖χr0,1sp¨tqrm2,0pη
1
εe
λxeβywqpsq‖L8x L2

yt
“ ‖χr0,1sp¨tqr´pξ ` iλq2m0pη

1
εe
λxeβywqpsq‖L8x L2

yt

“ ‖χr0,1sp¨tqrm0pgsq‖L8x L2
yt
,

where pg “ ´pξ ` iλq2pη1εeλxeβywqp.

For a fixed pair py, tq P R2 one has

‖χr0,1sptqrm0pgsqp¨x, y, tq‖H1
x
“ ‖p1` p¨ξq2q

1
2χr0,1sptqrm0pgsq

ητ
p¨ξ, y, tq‖L2

ξ

“ ‖p1` p¨ξq2q
1
2 p¨ξ ` iλq

2χr0,1sptqrm0pη
1
εe
λxeβywqpsqητ p¨ξ, y, tq‖L2

ξ
.

Since

p1` ξ2
q
1
2 |ξ ` iλ|2 ď p1` ξ2

q
1
2 p1` ξ2

` λ2
q ď p1` ξ2

q
3
2 p1` λ2

q

we obtain

‖χr0,1sptqrm0pgsqp¨x, y, tq‖H1
x
ď p1` λ2

q‖J3
x χr0,1sptqrm0pη

1
εe
λxeβywqpsqp¨x, y, tq‖L2

x
.

Remark II.12. We emphasize that here J3
x denotes the operator defined through the

Fourier transform just in the x variable by

yJ3
xgpξq :“ p1` ξ2

q
3
2
pgpξq.

Now, using that H1
xpRq ãÑ L8x pRq we have

|χr0,1sptqrm0pgsqpx, y, tq| ď c‖χr0,1sptqrm0pgsqp¨x, y, tq‖H1
x

ď cp1` λ2
q‖J3

xχr0,1sptqrm0pη
1
εe
λxeβywqpsqp¨x, y, tq‖L2

x
.
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Therefore, for x P R, by virtue of Lemma II.7 one obtains

‖χr0,1sp¨tqrm0pgsqpx, ¨y, ¨tq‖L2
yt
ď cp1` λ2

q‖J3
xχr0,1sp¨tqrm0pη

1
εe
λxeβywqpsq‖L2

ď cp1` λ2
q‖J3

xrm0pη
1
εe
λxeβywqpsq‖L8t L2

xy

ď cp1` λ2
q‖p1` p¨ξq2 ` p¨ηq2q

3
2 rm0pη

1
εe
λxeβywqpsqτ‖L8t L2

ξη

“ cp1` λ2
q‖rm0pη

1
εJ

3
peλxeβywqqpsq‖L8t L2

xy

ď cp1` λ2
q‖η1εJ3

peλxeβywq‖L1
tL

2
xy
.

(II.2.26)

Now plugging (II.2.25) and (II.2.26) in (II.2.24) and using the explicit definition of h0, it
follows that

‖eλxeβyB2
xwε‖L8x L2

yt
ď cp1` λ2

q‖η1εJ3
peλxeβywq‖L1

tL
2
xy
` ‖ηεeλxeβypBt ` B3

x ` B
3
yqw‖L1

xL
2
yt
.

(II.2.27)
First of all we want to prove that the left-hand side of (II.2.27) goes to ‖eλxeβyB2

xw‖L8x L2
yt
as

ε tends to 0`. Since by our hypotheses we are assuming wptq to be compactly supported,
without loss of generality we may suppose suppwptq Ă r´M,M s ˆ r´M,M s for all
t P r0, 1s. Making use that B2

xwptq P H
2pR2q ãÑ L8pR2q, we get

‖eλxeβyB2
xwε ´ e

λxeβyB2
xw‖L8x L2

yt

“ ess sup
xPr´M,Ms

”

ż 1

0

ż M

´M

e2λxe2βy
pηεptq ´ 1q2pB2

xwq
2
px, y, tq dy dt

ı
1
2

ď ceλMeβM‖B2
xw‖Cpr0,1s;H2pR2qq

p2Mq
1
2

”

ż 2ε

0

dt`

ż 1

1´2ε

dt
ı

1
2 εÑ0`
ÝÝÝÑ 0.

With respect to the first term of the right-hand side of (II.2.27) we can show that

‖η1εJ3
peλxeβywq‖L1

tL
2
xy
“

ż 1

0

|η1εptq|‖J3
peλxeβywptqq‖L2

xy
dt

“

ż 2ε

ε

η1εptq‖J3
peλxeβywptqq‖L2

xy
dt´

ż 1´ε

1´2ε

η1εptq‖J3
peλxeβywptqq‖L2

xy
dt

“

ż 2ε

ε

η1εptq
`

‖J3
peλxeβywptqq‖L2

xy
´ ‖J3

peλxeβywp0qq‖L2
xy

˘

dt

` ‖J3
peλxeβywp0qq‖L2

xy

´

ż 1´ε

1´2ε

η1εptq
`

‖J3
peλxeβywptqq‖L2

xy
´ ‖J3

peλxeβywp1qq‖L2
xy

˘

dt

` ‖J3
peλxeβywp1qq‖L2

xy
,

since eλxeβyw P Cpr0, 1s;H3pR2qq, it is easy to see that

‖η1εJ3
peλxeβywq‖L1

tL
2
xy

εÑ0`
ÝÝÝÑ ‖J3

peλxeβywp0qq‖L2
xy
` ‖J3

peλxeβywp1qq‖L2
xy
.
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Now only the estimate of the second term of the right-hand side of (II.2.27) is missing.
Taking into account that suppw Ă r´M,M sˆ r´M,M sˆ r0, 1s and using the dominated
convergence theorem we can conclude that

‖pηε´ 1qeλxeβypBt`B
3
x`B

3
yqw‖L1

xL
2
yt
ď p2Mq

1
2 eλMeβM‖pηε´ 1qpBt`B

3
x`B

3
yqw‖L2

εÑ0`
ÝÝÝÑ 0.

Putting all these estimates together and using β ě 1 we obtain

‖eλxeβyB2
xw‖L8x L2

yt
ďcpλ2

` β2
q
`

‖J3
peλxeβywp0qq‖L2 ` ‖J3

peλxeβywp1qq‖L2

˘

` ‖eλxeβypBt ` B3
x ` B

3
yqw‖L1

xL
2
yt
.

(II.2.28)

In order to conclude the proof we need the following remark.

An equivalent way to write the estimate (II.2.17) is the following

‖ejλxekβyB2
xw‖L8x L2

yt
ďcpλ2

` β2
q
`

‖J3
pejλxekβywp0qq‖L2 ` ‖J3

pejλxekβywp1qq‖L2

˘

` ‖ejλxekβypBt ` B3
x ` B

3
yqw‖L1

xL
2
yt
,

for j P t´1, 1u and k P t´1, 1u.

We have already proved the former estimate for j “ k “ 1. Our aim is to show that the
other cases follow in a similar way and so omit them.

The first step we have to perform is to modify the definition of the multipliers m0 and
mk,l considering, instead of piξ ´ λq and piη ´ βq, the other three possible pairs: piξ ` λq
and piη`βq if we want to estimate ‖e´λxe´βyLw‖L8x L2

yt
, piξ`λq and piη´βq if we want to

estimate ‖e´λxeβyLw‖L8x L2
yt
, piξ ´ λq and piη ` βq for the estimate of ‖eλxe´βyLw‖L8x L2

yt
.

Since in order to prove (II.2.28) we strongly used the estimates in Lemma II.7 and II.8,
we would like them to hold also for the modified versions of m0 and mk,l written above.
But one can easily see that this is true just retracing the proof of the two lemmas with
the new definitions. This concludes the proof of our lemma.

As for the Carleman’s estimates, our next step is to extend the estimates (II.2.16) and (II.2.17)
in Lemma II.6 to operators of the form (II.2.8).

More precisely we are going to prove the following result.

Lemma II.9. Let w P Cpr0, 1s;H4pR2qq XC1pr0, 1s;L2pR2qq such that for all t suppwptq Ď K,

where K is a compact subset of R2.

Assume that a0 P L
8 X L2

xL
8
yt and a1 P L

8 X L2
xL

8
yt X L1

xL
8
yt, with small norms in these

spaces.
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Then there exists c ą 0, independent of the set K, such that for β ě 1 and λ ě 2β

‖eλ|x|eβ|y|w‖L2pR2ˆr0,1sq `
ÿ

0ăk`lď2

‖eλ|x|eβ|y|BkxBlyw‖L8x L2
ytpR2ˆr0,1sq

ď cpλ2
` β2

q
`

‖J3
peλ|x|eβ|y|wp0qq‖L2pR2q

` ‖J3
peλ|x|eβ|y|wp1qq‖L2pR2q

˘

` c‖eλ|x|eβ|y|pBt ` B3
x ` B

3
y ` a1pBx ` Byq ` a0qw‖L1

tL
2
xyXL

1
xL

2
ytpR2ˆr0,1sq (II.2.29)

holds.

Proof. From Lemma II.6 and using the fact that ‖¨‖L2pR2ˆr0,1sq ď ‖¨‖L8t L2
xypR2ˆr0,1sq, it follows

that

‖eλ|x|eβ|y|w‖L2 ď ‖eλ|x|eβ|y|wp0q‖L2 ` ‖eλ|x|eβ|y|wp1q‖L2

` ‖eλ|x|eβ|y|pBt ` B3
x ` B

3
y ` a1pBx ` Byq ` a0qw‖L1

tL
2
xy

` ‖eλ|x|eβ|y|pa1pBx ` Byq ` a0qw‖L1
tL

2
xy
, (II.2.30)

and

‖eλ|x|eβ|y|Lw‖L8x L2
yt

ď c pλ2
` β2

q
`

‖J3
peλ|x|eβ|y|wp0qq‖L2 ` ‖J3

peλ|x|eβ|y|wp1qq‖L2

˘

` ‖eλ|x|eβ|y|pBt ` B3
x ` B

3
y ` a1pBx ` Byq ` a0qw‖L1

xL
2
yt

` ‖eλ|x|eβ|y|pa1pBx ` Byq ` a0qw‖L1
xL

2
yt
. (II.2.31)

We are interested in considering the last terms in the former estimates.

We first see ‖eλ|x|eβ|y|pa1pBx ` Byq ` a0qw‖L1
tL

2
xy

using that ‖¨‖L1
tL

2
xypR2ˆr0,1sq ď ‖¨‖L2pR2ˆr0,1sq,

we easily obtain

‖eλ|x|eβ|y|pa1pBx ` Byq ` a0qw‖L1
tL

2
xy

ď ‖eλ|x|eβ|y|pa1pBx ` Byq ` a0qw‖L2

ď ‖a1‖L2
xL
8
yt
‖eλ|x|eβ|y|pBx ` Byqw‖L8x L2

yt
` ‖a0‖L8‖e

λ|x|eβ|y|w‖L2 .

Let us consider now ‖eλ|x|eβ|y|pa1pBx ` Byq ` a0qw‖L1
xL

2
yt
, making use of the Hölder’s inequality,

one gets

‖eλ|x|eβ|y|pa1pBx`Byq`a0qw‖L1
xL

2
yt
ď ‖a1‖L1

xL
8
yt
‖eλ|x|eβ|y|pBx`Byqw‖L8x L2

yt
`‖a0‖L2

xL
8
yt
‖eλ|x|eβ|y|w‖L2 .

Plugging the previous estimates into (II.2.30) and (II.2.31) and summing them together we
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have

‖eλ|x|eβ|y|w‖L2 `
ÿ

0ăk`lď2

‖eλ|x|eβ|y|BkxBlyw‖L8x L2
yt

ď c pλ2
` β2

q
`

‖J3
peλ|x|eβ|y|wp0qq‖L2 ` ‖J3

peλ|x|eβ|y|wp1qq‖L2

˘

` ‖eλ|x|eβ|y|pBt ` B3
x ` B

3
y ` a1pBx ` Byq ` a0qw‖L1

tL
2
xyXL

1
xL

2
yt

` ‖a0‖L8XL2
xL
8
yt
‖eλ|x|eβ|y|w‖L2

` ‖a1‖L2
xL
8
ytXL

1
xL
8
yt
‖eλ|x|eβ|y|pBx ` Byqw‖L8x L2

yt
.

Under our hypotheses about a0 and a1 we have

‖eλ|x|eβ|y|w‖L2 `
ÿ

0ăk`lď2

‖eλ|x|eβ|y|BkxBlyw‖L8x L2
yt

ď c pλ2
` β2

q
`

‖J3
peλ|x|eβ|y|wp0qq‖L2 ` ‖J3

peλ|x|eβ|y|wp1qq‖L2

˘

` ‖eλ|x|eβ|y|pBt ` B3
x ` B

3
y ` a1pBx ` Byq ` a0qw‖L1

tL
2
xyXL

1
xL

2
yt

`
1

2

´

‖eλ|x|eβ|y|w‖L2 `
ÿ

0ăk`lď2

‖eλ|x|eβ|y|BkxBlyw‖L8x L2
yt

¯

. (II.2.32)

Hence, absorbing the last term on the left-hand side, we have

‖eλ|x|eβ|y|w‖L2 `
ÿ

0ăk`lď2

‖eλ|x|eβ|y|BkxBlyw‖L8x L2
yt

ď c pλ2
` β2

q
`

‖J3
peλ|x|eβ|y|wp0qq‖L2 ` ‖J3

peλ|x|eβ|y|wp1qq‖L2

˘

` c ‖eλ|x|eβ|y|pBt ` B3
x ` B

3
y ` a1pBx ` Byq ` a0qw‖L1

tL
2
xyXL

1
xL

2
yt
,

which yields the desired result.

Remark II.13. Although we have assumed w to be compactly supported, it is clear that the
argument in Lemma II.9 can be extended to a larger class of functions. Indeed the only we
have to ensure is the finiteness of the norm

‖eλ|x|eβ|y|w‖L2 `
ÿ

0ăk`lď2

‖eλ|x|eβ|y|BkxBlyw‖L8x L2
yt

in order to be able to perform, without contradictions, the same computations as in the es-
timate (II.2.32). We will see in Section 5 that there exists a class of solutions w “ wpx, y, tq

of (II.1.9) for which the previous norm is finite. This fact enables us to extend for this kind of
solutions the a priori estimate (II.2.29).

Now we are in position to prove the upper estimate Theorema II.6 for solutions of (II.1.9).
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II.2.2.2. Proof of upper bound

We construct a C8 truncation function µR with µRpx, yq “ 0 if
a

x2 ` y2 ď R and µRpx, yq “ 1

if
a

x2 ` y2 ě 36R´1
8

.

Let us define

wpx, y, tq :“ µRpx, yqvpx, y, tq.

Now we want to see what kind of equation is satisfied by w. It is easy to see that, since v is a
solution of (II.1.9), the following holds

`

Bt ` B
3
x ` B

3
y ` a1px, y, tqpBx ` Byq ` a0px, y, tq

˘

w “ eRpx, y, tq,

where

eRpx, y, tq “B
3
xµRv ` 3B2

xµRBxv ` 3BxµRB
2
xv ` B

3
yµRv ` 3B2

yµRByv ` 3ByµRB
2
yv

` a1px, y, tqBxµRv ` a1px, y, tqByµRv.

Substantially this means that our function w solves an equation like (II.1.9) but with a correc-
tion term eR. As a next step we want to apply Lemma II.9 to our function w. First of all we
need a0, a1 to have small norms, therefore we introduce ĂµR such that ĂµR µRpx, yq “ µRpx, yq,

and raj :“ ajpx, y, tqrµR with j “ 0, 1 have small norms in the corresponding spaces for R ě R0.

Let us consider the operator

rL :“ Bt ` B
3
x ` B

3
y ` ra1pBx ` Byq ` ra0, (II.2.33)

Now we are in position to apply (II.9) with the operator rL. This gives

‖eλ|x|eβ|y|w‖L2 `
ÿ

0ăk`lď2

‖eλ|x|eβ|y|BkxBlyw‖L8x L2
yt

ď c pλ2
` β2

q
`

‖J3
peλ|x|eβ|y|wp0qq‖L2 ` ‖J3

peλ|x|eβ|y|wp1qq‖L2

˘

` c ‖eλ|x|eβ|y|eR‖L1
tL

2
xyXL

1
xL

2
yt
. (II.2.34)

Remark II.14. With an abuse of notation we have called reR as eR, where reR would be

eRpx, y, tq “B
3
xµRv ` 3B2

xµRBxv ` 3BxµRB
2
xv ` B

3
yµRv ` 3B2

yµRByv ` 3ByµRB
2
yv

` ra1px, y, tqBxµRv ` ra1px, y, tqByµRv.

For λ ě 2, let

β :“
λ

2
ě 1.

We consider the term c pλ2 ` β2q‖J3peλ|x|eβ|y|wp0qq‖L2 .
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Since w is supported in the set tpx, y, tq :
a

x2 ` y2 ě R, t P r0, 1su and using that the µR
and its derivatives are bounded by a constant independent of R, it follows

c pλ2
` β2

q‖J3
peλ|x|eβ|y|wp0qq‖L2 ď c λ5

ÿ

0ďk`lď3

‖eλ|x|eβ|y|BkxBlywp0q‖L2

ď c λ5
ÿ

0ďk`lď3

‖eλ|x|eβ|y|BkxBlywp0q‖L2p
?
x2`y2ěR

˘

ď c λ5
ÿ

0ďk`lď3

‖eλ|x|eβ|y|BkxBlyvp0q‖L2

`?
x2`y2ěR

˘.

Now we want to choose λ in such a way to obtain in the right-hand side of the previous estimate
the weighted norm of vp0q with the right exponential weight. Let

λ “
4aR

3
2

36R ´ 1
.

We will use the following inequality, the proof of which easily follows applying the classical
young inequality:

p|x|` b|y|q ď
a

x2 ` y2
?

1` b2.

This gives

λ|x|` β|y| “ λ
´

|x|` |y|
2

¯

ď λ
a

x2 ` y2

c

1`
1

4
.

Using the explicit expression of λ we have

λ|x|` β|y| ď 4aR
3
2

36R ´ 1

c

1`
1

4

a

x2 ` y2.

For R sufficiently large depending on a it can be seen that

λ5eλ|x|`β|y| ď
´ 4aR

3
2

36R ´ 1

¯5

e
4aR

3
2

36R´1

?
1` 1

4

?
x2`y2

ď cae
a
8
px2`y2q

3
4 , for

a

x2 ` y2 ě R.

Using the previous estimate one has

cpλ2
` β2

q‖J3
peλ|x|eβ|y|wp0qq‖L2 ď ca

ÿ

0ďk`lď3

‖e
a
8
px2`y2q

3
4
B
k
xB

l
yvp0q‖L2p

?
x2`y2ěRq

.

Let us recall that under our hypothesis vp0q P L2peapx
2`y2q

3
4 dxdyq, this can be rephrase saying

that
‖e

a
2
px2`y2q

3
4 vp0q‖L2 (II.2.35)

is finite.
Using an interpolation argument and the finiteness of (II.2.35), it can be seen that the

quantity ‖ea8 px2`y2q
3
4
BkxB

l
yvp0q‖L2 is finite .

Getting down into details, the following interpolation result can be proved.
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Lemma II.10. For s ą 0 and a ą 0, let f P HspR2qXL2
`

eapx
2`y2q

3
4 dxdy

˘

. Then, for θ P r0, 1s,

‖Jsp1´θq
`

eθ
a
2
px2`y2q

3
4 f

˘

‖L2 ď C‖Jsf‖1´θ
L2 ‖e

a
2
px2`y2q

3
4 f‖θL2 ,

for C “ Cpa, sq.

Observe that by our hypotheses vp0q P L2peapx
2`y2q

3
4 dxdyq and vptq P C

`

r0, 1s;H4pR2q
˘

hence Lemma II.10 with s “ 4 and θ “ 1
4
ensures that ‖ea8 px2`y2q

3
4
BkxB

l
yvp0q‖L2 is finite.

Using this fact we obtain

c pλ2
` β2

q‖J3
peλ|x|eβ|y|wp0qq‖L2 ď ca. (II.2.36)

A similar argument shows that

c pλ2
` β2

q‖J3
peλ|x|eβ|y|wp1qq‖L2 ď ca. (II.2.37)

It remains to bound the third term in the right-hand side of (II.2.34).
Since eR is supported in ΩR :“ tpx, y, tq : R ď

a

x2 ` y2 ď 36R´1
8

, t P r0, 1su, we find that

‖eλ|x|eβ|y|eR‖L1
tL

2
xyXL

1
xL

2
yt
ď epλ`βq

36R´1
8 ‖eRχΩR‖L1

tL
2
xyXL

1
xL

2
yt

ď c epλ`βq
36R´1

8 ‖p|v|` |Bxv|` |Byv|` |B2
xv|` |B2

yv|qχΩR‖L1
tL

2
xyXL

1
xL

2
yt

ď cR
1
2 epλ`βq

36R´1
8 ,

(II.2.38)

where in the last inequality we have used Hölder inequality and the fact that the area of the
region ΩR is of order R.

Summing up, using (II.2.36),(II.2.37) and (II.2.38) we have

‖eλ|x|eβ|y|w‖L2 `
ÿ

0ăk`lď2

‖eλ|x|eβ|y|BkxBlyw‖L8x L2
yt
ď ca ` cR

1
2 epλ`βq

36R´1
8 ď caR

1
2 epλ`βq

36R´1
8 .

Defining DR :“ tp36R ´ 1 ď
a

x2 ` y2 ď 36Ru ˆ r0, 1s, we observe that DR Ă t
a

x2 ` y2 ě

Ru ˆ r0, 1s, the set in which w is supported, observing that in DR we have w “ v, one obtains

‖eλ|x|eβ|y|v‖L2pDRq
`

ÿ

0ăk`lď2

‖eλ|x|eβ|y|BkxBlyv‖L2pDRq

ď R
1
2

`

‖eλ|x|eβ|y|w‖L2 `
ÿ

0ăk`lď2

‖eλ|x|eβ|y|BkxBlyw‖L8x L2
yt

˘

ď caRe
pλ`βq 36R´1

8 .

If
a

x2 ` y2 ě 36R ´ 1, then

λ|x|` β|y| ě λ

2

a

x2 ` y2 ě λ
36R ´ 1

2
“ 2aR

3
2 .
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Moreover since λ ě 2, one gets

Repλ`βq
36R´1

8 ď epλ`β`1q 36R´1
8 ď eλp1`

1
2
` 1

2
q 36R´1

8 ď eaR
3
2 .

This means that
e2aR

3
2
`

‖v‖L2pDRq
`

ÿ

0ăk`lď2

‖BkxBlyv‖L2pDRq

˘

ď cae
aR

3
2 .

Making explicit the expression of the set DR, the previous can be written as

‖v‖
L2

`

t36R´1ď
?
x2`y2ď36Ruˆr0,1s

˘ `
ÿ

0ăk`lď2

‖BkxBlyv‖L2

`

t36R´1ď
?
x2`y2ď36Ruˆr0,1s

˘ ď cae
´aR

3
2 ,

or equivalently

‖v‖
L2

`

tR´1ď
?
x2`y2ďRuˆr0,1s

˘ `
ÿ

0ăk`lď2

‖BkxBlyv‖L2

`

tR´1ď
?
x2`y2ďRuˆr0,1s

˘ ď cae
´a
`

R
36

˘ 3
2

,

which yields the desired upper bound.

II.2.3. The persistence properties

Even if we would have all the tools to prove our result Theorem II.3 (which gives quite straight-
forwardly Theorem II.2), taking in mind Remark II.13, we actually need to clarify some more
details.

As already mentioned, in order to obtain the fundamental tool, that is Lemma II.9, for
proving the upper bound expressed in Theorem II.6, we assumed the solution to satisfy the
overabundant hypothesis of being compactly supported.

We underline again that the only hypothesis one has to assume in order to let the argument
in Lemma II.9 work is the finiteness of the norm

‖eλ|x|eβ|y|u‖L2pR2ˆr0,1sq `
ÿ

0ăk`lď2

‖eλ|x|eβ|y|BkxBlyu‖L8x L2
ytpR2ˆr0,1sq. (II.2.39)

For this purpose we will prove that a solution u of (II.1.2) satisfies a kind of persistence
property (in time) (we recall that, in general, a persistence property in the function space X
means that the solution t ÞÑ uptq describes a continuous curve on X, that is, u P Cpr0, 1s;Xq).
More precisely we will show that if a solution of the symmetrized ZK equation is such that at
two different times t “ 0 and t “ 1 has exponential decay, then the solution presents exponential
decay for every t P r0, 1s.

Getting down into details we will prove the following result

Theorem II.7. Let u P Cr0, 1s;H4pR2qqXC1pr0, 1s;L2pR2qq be a solution of the equation (II.1.2)
such that for all β ą 0, up0q, up1q P L2pe2β|x|e2β|y| dxdyq. Then u is a bounded function from
r0, 1s with values in H3pe2β|x|e2β|y| dxdyq for all β ą 0.
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Proof. First of all we recall the following useful result (see Theorem 1.3 in [13]) concerning the
decay preservation property for solutions to the ZK equation.

Theorem II.8. Let u P Cpr0, 1s;H4pR2qq X C1pr0, 1s;L2pR2qq be a solution of (II.1.1). If for
all β ą 0, up0q, up1q P L2pe2β|x|e2β|y| dxdyq. Then u is a bounded function from r0, 1s with values
in H3pe2β|x|e2β|y| dxdyq for all β ą 0.

Remark II.15. Even if our preservation property have to hold for solutions of the symmetric
version of the Zakharov-Kuznetsov equation that, roughly speaking, seems to resemble more
the behavior of the KdV equation than the ZK’ one, the aforementioned result for ZK turns out
to be worthy for our purpose if one reminds that in the way to pass from the non-symmetric
ZK to the symmetric one what we exploited was just a linear change of variables.

We will make this remark more precise in a moment.
We consider the following change of variables:

#

x1 “ µx` λy

y1 “ µx´ λy,
and its inverse

$

’

&

’

%

x “
x1 ` y1

2µ

y “
x1 ´ y1

2λ

where µ “ 4´
1
3 and λ “

?
3µ “

?
34´

1
3 .

We underline that the second one led us to pass from equation (II.1.1) to (II.1.2).
We define

rupt, x, yq :“ upt, x1, y1q “ upt, µx` λy, µx´ λyq.

A straightforward computation shows that ru solves the Z-K equation

Btru` B
3
xru` BxB

2
yru` ruBxru “ 0.

Since up0, x, yq P L2pe2β|x|e2β|y| dxdyq, then up0, µx`λy, µx´λyq P L2pe2β|µx`λy|e2β|µx´λy| dxdyq

(clearly the same holds for t “ 1 instead of t “ 0). This guarantee that

rup0, x, yq, rup1, x, yq P L2
pe2β|µx`λy|e2β|µx´λy| dxdyq.

Since we want to apply result II.8 we need to ensure that for all β ą 0, we have rup0q, rup1q P

L2pe2β|x|e2β|y| dxdyq.

Recalling the parallelogram law in an Euclidean space, that reads

|x` y|2 ` |x´ y|2 “ 2|x|2 ` 2|y|2, for all x, y P R, (II.2.40)

and making use of the following trivial inequalities

a` b ě pa2
` b2

q
1
2 , a` b ď

?
2pa2

` b2
q
1
2 , (II.2.41)
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for all a, b ě 0, it is easy to obtain

|µx1 ` λy1|` |µx1 ´ λy1| ě p|µx1 ` λy1|2 ` |µx1 ´ λy1|2q
1
2 “ p2µ2|x1|2 ` 2λ2|y1|2q

1
2

ě
?

2 mintµ, λup|x1|2 ` |y1|2q
1
2

ě mintµ, λup|x1|` |y1|q.

This guarantees that rup0q, rup1q P L2pe2γ|x|e2γ|y| dxdyq, where we defined γ “ mintµ, λuβ.

Now we can use the decay preservation property for Z-K, Theorem II.8, and obtain that t ÞÑ
ruptq is bounded from r0, 1s with values in L2pe2γ|x|e2γ|y| dxdyq. This fact re-phrased in terms of

upt, x1, y1q gives that u is a bounded function from r0, 1s with values in L2pe
2γ

∣∣∣x1`y12µ

∣∣∣
e

2γ
∣∣∣x1´y12λ

∣∣∣
dx1dy1q.

Now, using again the parallelogram law (II.2.40) and the two trivial inequalities (II.2.41), we
get∣∣∣∣x` y2µ

∣∣∣∣` ∣∣∣x´ y
2λ

∣∣∣ ě min
! 1

2µ
,

1

2λ

)

p|x` y|2 ` |x´ y|2q
1
2 “ min

! 1

2µ
,

1

2λ

)

p2|x|2 ` 2|y|2q
1
2

ě min
! 1

2µ
,

1

2λ

)

p|x|` |y|q.

From this follows that t ÞÑ uptq is bounded from r0, 1s to L2pe2γmintµ,λu|x1|e2γmin
 

1
2µ
, 1
2λ

(

|y1|dx1dy1q,

and using the explicit expressions for λ, µ and γ we obtain that the boundedness holds from
r0, 1s to L2pe2βθ|x1|e2βθ|y1|dx1dy1q, where θ “ 2

1
3

3
1
2
ă 1. Since this bound holds for each β ą 0, at

the end we can conclude that for all β ą 0, uptq is a bounded function from r0, 1s with values
in L2pe2β|x1|e2β|y1|dx1dy1q.

In order to conclude we need another interpolation’s type result.

Lemma II.11. For s ą 0 and β ą 0, let f P HspR2q X L2pe2β|x|e2β|y| dxdyq. Then for any
θ P p0, 1q,

‖Jθs
`

ep1´θqpβ|x|`β|y|qf
˘

‖L2 ď C‖Jsf‖θL2‖eβ|x|`β|y|f‖1´θ
L2 . (II.2.42)

Since the already proved boundedness holds for all β ą 0, and, on the other hand, u P
Cpr0, 1s;H4pR2qq, we can apply the interpolation inequality (II.2.42) with s “ 4, θ “ 3

4
, to con-

clude that t ÞÑ uptq is bounded from r0, 1s with values in H3pe2β|x|e2β|y| dxdyq, which completes
our proof.

As we already mentioned the proof of our main Theorem II.2 follows as a consequence of
Theorem II.3. Therefore we provide the proof of Theorem II.3 first.
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II.2.4. Proof of Theorem II.3

If v ı 0 we can assume after a possible translation, dilation and multiplication by a constant
that v satisfies the hypothesis of Theorem II.4. This means that for R sufficiently large

ARpvq ě c0e
´c1R

3
2 . (II.2.43)

Moreover applying Theorem II.6 we can say that

‖v‖
L2ptR´1ă

?
x2`y2ăRuˆr0,1sq

`
ÿ

0ăk`lď2

‖BkxBlyv‖L2ptR´1ă
?
x2`y2ăRuˆr0,1sq

ď ce´a
`

R
36

˘ 3
2

.

It is easy to see that the left-hand side of the previous expression can be bounded from below
by the quantity ARpvq, this gives

ARpvq ď ce´
a
63
R

3
2
. (II.2.44)

If one assumes a ą a0 :“ 63c1, combining (II.2.43) and (II.2.44) and making R tends to infinity
we get a contradiction.

Therefore v ” 0 and Theorem II.3 is proved.

II.2.5. Proof of Theorem II.2

In order to prove our main result, Theorem II.2, we just need to show that Theorem II.3 applies
when we consider as v the difference u1 ´ u2 of the solutions.

First of all we have already shown that if u1 and u2 are solutions of (II.1.2) then the
difference v satisfies

Btv ` pB
3
x ` B

3
yqv ` a1pBx ` Byqv ` a0v “ 0,

where
a0 “ 4´

1
3 pBx ` Byqu2 and a1 “ 4´

1
3u1. (II.2.45)

As one can see from the statement of Theorem II.3 no smallness conditions about a0 and a1

are assumed to hold. Indeed Theorem II.3, in order to be proved, needs the upper bound
presented in Theorem II.6. Retracing the proof of Theorem II.6 one can notice that the reason
for which no smallness assumptions are requested, relies on the following fact: we introduced,
in no way explicit, the auxiliary function rµR in such a way rµRaj, for j “ 0, 1 have small norms
in the corresponding spaces for R sufficiently large as requested for proving the preliminary and
fundamental estimate (II.2.29).

Now we want to make this choice more explicit, precisely defining

rµRpx, yq “ χ
tpx,yq:

?
x2`y2ěRu

px, yq,
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we will see that under this definition, rµRaj for j “ 0, 1 have small norms, where aj are as
in (II.2.45).

For this aim, proceeding as in [14], we use the following interpolation result (see [72]).

Lemma II.12. For s ą 0 and a ą 0, let f P HspR2q X L2pp1 ` x2 ` y2qa dxdyq. Then for any
θ P p0, 1q,

‖Jθs
`

p1` x2
` y2

q
p1´θqa

2 f
˘

‖L2 ď C‖Jsf‖θL2‖p1` x2
` y2

q
a
2 f‖1´θ

L2 , (II.2.46)

for C “ Cpa, sq.

Applying (II.2.46) with s “ 4, a “ 4
3
` ε and θ “ 1

4
` 3

16
ε with ε as in the statement of the

theorem, we have that

‖J1` 3
4
ε
`

p1` x2
` y2

q
1
2
p1`ε1qf

˘

‖L2 ď C‖J4f‖θL2‖p1` x2
` y2

q
1
2

`

4
3
`ε
˘

f‖1´θ
L2 , (II.2.47)

where ε1 :“ ε
2
´ 3

16
ε2 ą 0.

Applying (II.2.47) with f “ a1 “ 4´
1
3u1ptq, from our hypothesis about the solution u1 and

from the embedding H1` 3
4
εpR2q ãÑ L8pR2q X CpR2q we obtain

|u1px, y, tq| ď
c

p1` x2 ` y2q
1
2
p1`ε1q

, (II.2.48)

for all px, y, tq P R2 ˆ r0, 1s.

Since 1` 3
4
ε ą 1, the estimate (II.2.47) is also true for J1 instead of J1` 3

4
ε with f “ 4´

1
2u2,

using the product rule for the derivatives we obtain that ‖p1` x2 ` y2q
1
2
p1`ε1q4´

1
3Bxu2ptq‖L2pR2q

and ‖p1 ` x2 ` y2q
1
2
p1`ε1q4´

1
3Byu2ptq‖L2pR2q

are bounded function of t P r0, 1s. This let us ap-
ply (II.2.46) with f “ 4´

1
3Bxu2ptq and f “ 4´

1
3Byu2ptq, s “ 3, a “ 1 ` ε1 and θ “ 1

3
` ε2 with

ε2 ą 0 small to obtain

‖J1`3ε2
`

p1`x2
` y2

q
1
3 4´

1
3Bxu2ptq

˘

‖L2 ď C‖J3
p4´

1
3Bxu2ptqq‖θL2‖p1`x2

` y2
q
1`ε1

2

˘

4´
1
3Bxu2ptq‖1´θ

L2

and the same for the derivative with respect to y.
Using this estimate and again the Sobolev embeddings one has

|4´
1
3 pBx ` Byqu2ptq| ď

c

p1` x2 ` y2q
1
3

(II.2.49)

for all px, y, tq P R2 ˆ r0, 1s.

From (II.2.48) and (II.2.49) it is easy to see that the following four terms

‖a0χtpx,yq:
?
x2`y2ěRu

‖L8XL2
xL
8
yt
, ‖a1χtpx,yq:

?
x2`y2ěRu

‖L2
xL
8
ytXL

1
xL
8
yt

tends to zero as R tends to 8.
This guarantees the validity of the smallness property we need to prove.
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Part III

Future Perspectives: Inverse Problem for Lamé
Operators

Since the very beginning of my PhD’s career, I came across the mathematical research’s field
related to inverse problems. Roughly and generically speaking,

An inverse problem is the process of reconstruction from a set of observations their
causal factors that usually cannot directly be observed.

As far as we know the first formulation of a problem in this topic was posed in the context
of electricity by A.P. Calderón in 1980. More precisely, in his pioneering work, the author
introduced the problem of whether it was possible to determine the electrical conductivity of a
medium by making voltage and current measurements on its boundary.

The mathematical formulation of the Calderón problem was as follows. Let Ω be a bounded
Lipschitz domain and let γ be a sufficiently smooth and positive function describing the distri-
bution of the electric conductivity within Ω; it is well known that a voltage potential f at the
boundary BΩ induces a voltage potential u in Ω which solves the following Dirichlet problem
for the conductivity equation

#

Lγu “ 0 Ω,

u “ f BΩ;

where Lγu :“ ∇ ¨ γ∇u.
Boundary measurements are defined as the map that takes any Dirichlet boundary value f

on the boundary, i.e. the voltage distribution, to the corresponding outflowing current, that is
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to the term Λγpfq :“ γ Bu
Bν

ˇ

ˇ

BΩ
where u is the solution to the Dirichlet problem with boundary

data f . In literature this map is known as the Dirichlet to Neumann map.

By view of this we can mathematically re-phrase the Calderón problem as:

Is it possible to recover γ from the knowledge of the Dirichlet to Neumann map Λγ?

Clearly an obvious condition for this recovery to be possible is that the map γ ÞÑ Λγ is injective.
Therefore, when one is dealing with an inverse problem, the first purpose is to guarantee the
injectivity of Λγ.

The general strategy under this proposal follows the starting ideas of Sylvester and Uhlmann [88]
and can be summarized into few steps:

• Reduction to Schrödinger equation.

The inverse problem for the conductivity equation is reduced to an inverse problem for
Schrödinger equation. Precisely, if u is a solution to the equation Lγu “ 0, then v :“ γ1{2u

satisfies

p´∆` qqv “ 0, (50)

with q “ γ´1{2∆γ1{2.

The corresponding Dirichlet to Neumann map is defined by Λqpfq :“ Bv
Bν

ˇ

ˇ

BΩ
, where v is

now a solution to p´∆` qqv “ 0 with boundary data f.

It is easy to see that if γ1 and γ2 satisfy Λγ1 “ Λγ2 then, by boundary identification
result, we have Λq1 “ Λq2 for qj “ γ

´1{2
j ∆γ

1{2
j . In this way the uniqueness problem for the

conductivity equation is addressed to the same problem for the Schröedinger equation.

• Intermediate identity.

Now if uj, j “ 1, 2 are two weak solutions to the equation p´∆ ` qquj “ 0 and if we
assume that Λq1 “ Λq2 , then a simple integration by parts shows that

ż

Ω

pq1 ´ q2qu1u2 dx “ 0. (51)

It follows that one way to show that the potentials q1 and q2 coincide is to produce enough
solutions to the corresponding Schrödinger equations such that their product is dense in
some sense.

• Carleman estimates for CGO solutions.
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To this end, Sylvester and Uhlmann provided special solutions to the Schrödinger equa-
tion, known as complex geometrical optics (CGO) solutions, that have the form

uj “ eiζj ¨xp1` rjq. (52)

Here the complex vectors ζj :“ λpβj ` iαjq, with αj, βj orthogonal unit vectors in Rd and
λ a large parameter, are chosen so that ζj ¨ ζj “ 0 ( thus eiζj ¨x is harmonic) and so that
eiζ1¨xeiζ2¨x “ eik¨x for some fixed frequency k P Rd.

Now supposing to neglect the remainder’s terms rj, that is supposing to have just uj “
eiζj ¨x, from the intermediate equality (51) we would obtain

ż

Ω

pq1 ´ q2qe
ik¨x dx “ 0,

which would give the uniqueness via inverse Fourier transform.

Therefore the only part still left is to verify that (52) are solutions and prove that the
remainder’s terms rj go to zero as ζj goes to infinity and that this occurs in such a way
the previous identity is fulfilled.

The main tool used to reach this aim is a suitable Carleman estimate. By virtue of my
interests in this topic, I will treat this part more in details.

Let us observe that uj :“ eiζj ¨xp1` rjq is a solution of (50) if and only if

e´iζj ¨xp´∆` qqeiζj ¨xp1` rjq “ 0,

that is if and only if rj solves

e´iζj ¨xp´∆` qqeiζj ¨xrj “ ´q

So the problem to verify the “ansatz” (52) is diverted to find rj which solves the previous
equation.

Find such rj is nothing but proving that the operator e´iζj ¨xp´∆ ` qqeiζj ¨x¨ is surjective
or, what is the same with Hanh-Banach Theorem, the adjoint eiζj ¨xp´∆ ` qqe´iζj ¨x¨ is
injective.

In order to do that, ignoring the imaginary part of the exponent which gives rise to a
phase term that is irrelevant within an Lp-norm, we are going to prove the following
Carleman type estimate

‖r‖L2pΩq ď
C

|λ|
‖e´λα¨xp´∆` qqeλα¨xr‖L2pΩq, (53)
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indeed this can be seen as a quantitative estimate for the injectivity of the operator
e´λα¨xp´∆` qqeλα¨x ¨ .

Actually, instead of proving directly the previous estimate, one can prove a reduced version
of it:

‖r‖L2pΩq ď
C

|λ|
‖e´λα¨xp´∆qeλα¨xr‖L2pΩq, (54)

that is the estimate involving just the principal part of the operator. Then (53) is easily
obtained. This fact is mainly due to the constant C

|λ| , indeed by taking λ very large we
can make the constant C

|λ| as small as we need to absorb eventual extra-terms such as
‖q‖L8pΩq‖r‖L2pΩq.

To achieve estimates like (54), in essence, as we have already seen in Part II, the main goal
is to obtain a lower bound for the quantity ‖e´λα¨xp´∆qeλα¨xr‖2

L2pΩq, this means that we
have to be able to focus on positive and negative contributions coming from the explicit
action of the operator P :“ e´λα¨xp´∆qeλα¨x. To this end, it is customary to decompose
the operator P as a sum of its symmetric S and skew-symmetric part A. In our case we
have:

P “ S `A, S :“ ´∆´ |λ|2, A :“ ´2λα ¨∇.

Therefore, one has

‖e´λα¨xp´∆qeλα¨xr‖2
L2pΩq “ ‖Sr‖

2
L2pΩq ` ‖Ar‖

2
L2pΩq ` xrS,Asr, ryL2pΩq.

The terms ‖Sr‖2
L2pΩq and ‖Ar‖

2
L2pΩq are non-negative, this means that the only negative

contribution could come from xrS,Asr, ryL2pΩq, but, since S andA are constant coefficients
differential operator, then rS,As ” 0. At the end, by virtue of this remark, it is easy to
conclude just by means of Poincaré’s inequality.

III.1.| Research statement and proposed research

approach

One of my future prospect could be to study, in a deeper way, inverse problems related to
elasticity setting, indeed, even if a considerable interest in this topic is being developed in recent
years (see, for instance, Nakamura-Uhlmann [73, 74, 75], Eskin-Ralston [33]), the literature
concerning this field is very much less unified than the one in the electricity framework.

The most natural approach to face this problem could be to try to re-adapt the well-oiled
strategy shown above.
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First of all we need a slightly different formulation, that is we have to study the equation

p´∆˚
` qqu “ 0, (III.1.1)

instead of (50), where ´∆˚ represents the Lamé operator of elasticity (I.1.1).
At first sight, a preliminary issue to be considered could be that Lamé operators act on

vector-valued functions, so that the resulting differential models are systems. In this case, as it
is very well known, Carleman estimates are hard to be proved, mainly due to the difficulties in
finding appropriate weights. On the other hand, the Helmholtz decomposition strongly comes
into play in overcoming the problem and also in laying solid motivations to the possible success
of this project. Indeed, using this tool we have already seen that, for any u “ uP ` uS, the
operator ´∆˚ acts on u in this way:

´∆˚u “ ´µ∆uS ´ pλ` 2µq∆uP ,

where the component uS is the divergence free vector field and the component uP is the gradient.
This means that there is a deep link between Lamé and Laplace operator and therefore, beyond
technical details that could occur from the no-scalar form of the problem, the resolution should
not be too distant from the one that works for Schrödinger. Moreover, once one has this explicit
action, by virtue of the H1´ orthogonality of the two components of the decomposition, it can
be seen that the equation (III.1.1) can be decoupled into two distinct equations involving
separately the two components:

$

&

%

`

´∆`
q
µ

˘

uS “ 0
`

´∆`
q

λ`2µ

˘

uP “ 0.

This two equations strongly resemble equation (50) that, we recall, was the starting point of the
powerful machinery under the resolution of the Calderón inverse problem and this fact augur
well for the possibility to obtain meaningful results within the inverse problems’ landscape for
elasticity.
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