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Abstract. In many engineering applications it is often necessary to determine the flow of shear 

stresses in the cross-sections of beam-like bodies. Taking a cue from Jourawski's well-known formula, 

several scholars have proposed expressions for evaluating the shear stresses in non-prismatic linear 

elastic beams, where longitudinal variations in the size and shape of the cross-sections produces com-

plex stress fields. In the present paper, a new shear formula, derived using a mechanical model devel-

oped in a previous work, is presented for tapered beams subject to even large displacements and small 

strains. Numerical examples and comparisons with results obtained using other formulas in the litera-

ture and non-linear 3D-FEM simulations show how the new formula constitutes an important gener-

alization of the previous ones and is able to provide particularly accurate results. 
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1 INTRODUCTION 

Performing structural analyses of beamlike elements often involves using approximate re-

lations for the stress and strain fields to deal with their torsion and flexure. This is because it 

is quite difficult to find closed-form analytical solutions to the Saint-Venant problems of tor-

sion and flexure for beam shapes of practical interest [1-4]. In particular, as far as application-

oriented formulas for shear stresses are concerned, it is usual to adopt the approximate closed-

form expression for the shear flow based on the formula introduced by Jourawski in 1856 [5]. 

However, Jourawski’s formula only holds for prismatic beams and linear kinematics. No 

general closed-form expressions for the shear flow are available for non-prismatic beams with 
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non-linear kinematics: in tapered or pre-twisted beams couplings appear among bending, 

twisting and traction that are instead uncoupled in prismatic isotropic beams [6-8], and large 

displacements further complicate the derivation of closed-form formulas. 

Several attempts to find Jourawski-like solutions for non-prismatic beams undergoing 

small displacements started in the early 20
th

 century: see for example the studies by Slocum 

[9], Bleich [10], Pugsley and Weatherhead [11], and Saksena [12], in the first half of the 20
th

 

century, and, subsequently, those by Krahula [13], Russo and Garic [14], Cortinez [15], 

Taglialegne [16], Bertolini et al. [17], and Balduzzi et al. [18], among others (a short review 

of contributions of this kind will be presented in the following section).  

Apart from the works proposing a shear formula, tapered elements were studied via other 

approaches as well. Hodges et al. [19-20], for instance, exploited Berdichevsky’s variational 

asymptotic method (VAM) [21] to study thin tapered elements in plane stress and compared 

their results with those of the well-known linear elastic solutions of the infinite wedge [4,13]. 

Zappino et al. [22] used the Carrera Unified Formulation (CUF) to describe the behaviour of 

tapered box-beams for aerospace engineering applications and compared their results with 

those of commercial FEM tools. Other investigators used 1D or 3D finite element methods to 

study non-prismatic beamlike bodies, e.g. [23-25]. However, approaches of this kind are not 

discussed further in this paper (details can be found in the reviews by Paglietti and Carta [26-

27], and Balduzzi et al. [6,28]), as our goal here is to propose an analytical shear formula that 

generalizes Jourawski’s for non-prismatic beams. 

In all the studies available in the literature, to the best of our knowledge, small displace-

ments are assumed, the equilibrium of tapered beams with symmetric cross-sections is im-

posed in the reference configuration, and Navier’s formula is assumed to hold for the normal 

stresses. The main novelty in the present contribution consists in abandoning all such assump-

tions: we study bi-tapered beams with fully deformable transverse cross-sections, susceptible 

to large displacements and small strains. 

The paper is organised as follows. In section 2 we briefly review the main contributions 

addressing a shear formula for tapered beams. The main features of the adopted beam model 

are sketched out in section 3. The new shear formula we propose for bi-tapered beams, gener-

alizing Jourawski’s in the non-linear setting mentioned in the foregoing, is presented in sec-

tion 4. Finally, numerical examples and comparisons with the results of nonlinear 3D-FEM 

simulations are shown in section 5. 
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2 A SHORT SURVEY OF SHEAR FORMULAS AFTER JOURAWSKI 

Non-prismatic beamlike elements are widespread in engineering applications as they allow 

optimizing strength, stiffness, materials, and costs. Therefore, it is not surprising that several 

studies over the last century have addressed the development of engineering methods and 

formulas for their analysis and design. In particular, the difficulty of addressing flexure via 

closed-form solutions and the need for application-oriented formulas for predicting shear flow 

led to the adoption of approximate methods, as Jourawski did for the prismatic case.  

As is well-known, Jourawski derived his formula as a tool for the design of bridges while 

he was engaged in the construction of the St. Petersburg-Moscow railroad (1844-1850). The 

bridges involved wooden beams of great depth, for which the assessment of shear stresses 

was of key importance. He successfully determined an average measure of the shear stresses 

by imposing equilibrium with the normal stresses due to the bending moment as given by Na-

vier’s formula [5], for cantilever beams with rectangular cross-sections loaded at the free-end 

and undergoing infinitesimal displacements.  

Since the early 20
th

 century many investigators have exploited a similar approach to derive 

a shear formula for evaluating the shear stresses in tapered beams; a scheme typical of the lit-

erature is shown in Figure 1. 

 

 

Figure 2: Lateral view of a tapered beamlike element (left) and its transverse cross-section (right) 

In 1911, Slocum derived a shear formula for beams of arbitrary cross-sections [9], assum-

ing Navier’s formula for the normal stresses and accounting for the spanwise variation of the 

cross-sectional inertia. However, his formula yields zero shear stresses at the cross-section 

boundary (e.g. τ32 in Figure 2), hence making it impossible to fulfil the boundary condition on 

the lateral surface of non-prismatic beams in case of nil surface loads. 



G. Migliaccio et al. 

In 1932, Bleich followed a correct approach for beams of variable depth [10] to determine 

the mean shear stress τm (the subscript stands for mittelwert, i.e., ‘mean value’ in German) on 

any given cross-sectional chord, correctly accounting for the effects of transverse force, bend-

ing moment and axial force. However, he wrongly labelled as “max τm” the value of τm at the 

cross-section centroid, without considering that in the case of beams of variable depth τm may 

attain its maximum elsewhere. This fact caused improper uses of Bleich’s formula in subse-

quent years, as also pointed out by Paglietti and Carta [26-27]. 

In the field of aerospace engineering, once again limiting their analysis to elements under-

going small displacements, Pugsley and Weatherhead in 1938 [11] investigated the failures of 

tail-plane spars in highly tapered regions. They focused on the errors arising from applying 

the conventional design methods of prismatic beams to tapered elements and, following 

Jourawski, proposed a shear formula for tapered beams that accounts for the bending moment 

and transverse force. In 1944, Saksena [12] used a similar approach to evaluate the shear 

stresses in elements for aerospace applications and provided examples for rectangular, circu-

lar and I-shaped cross-sections. Many other works in the second half of the 20
th

 century ad-

dressed the problem via similar approaches [13-18, 28-33]. Krahula [13] compared the results 

of Singer’s formula [32] with those of the linear elastic solutions for the infinite wedge [7]. In 

1992, Russo and Garic [14] proposed a shear formula accounting for the effects of axial force, 

bending moment and transverse force, limiting their analysis to tapered beams with rectangu-

lar cross-sections in a linear setting. In 1994, Cortinez [15] discussed the study of Russo and 

Garic [14] and extended it to generic symmetric cross-sections. Recently, Taglialegne [16] 

and Bertolini et al. [17] proposed a similar formula for tapered beams with doubly symmetric 

cross-sections via the balance of a beam slice, assuming Navier’s formula. The shear stresses 

in tapered thin-walled beams with symmetric cross-sections were evaluated via a Jourawski-

like approach by Balduzzi et al. [18] as well. Further details on critical issues, deficiencies of 

engineering methods, and accuracy of approaches developed so far for tapered thin-walled 

beams can be found in the reviews by Balduzzi et al. [6,28] and Mercuri et al. [33]. 

As is apparent from the literature, the flow of tangential stresses in tapered beams is com-

monly determined on the basis of pure equilibrium considerations, assuming that the normal 

stresses follow Navier's formula and all displacements are so small that the equilibrium con-

figuration coincides, for equilibrium purposes, with the initial configuration. The new shear 

formula proposed in this work is, as will be shown, more general, since it does not adopt any 

of these assumptions, which, incidentally, may not be satisfied in many applications. 
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3 THE BEAMLIKE SOLID MECHANICAL MODEL 

The mechanical model used to derive the new shear formula proposed in section 4 is de-

scribed in details in [8,34]. Here we briefly recall the model’s main features, limiting the in-

formation to that needed to derive the new shear formula. 

The beam is considered as a 3D body made of a collection of plane figures (corresponding 

to the transverse cross-sections) attached at a 3D curve (the beam centre-line, or axis). Each 

cross-section follows the beam axis, which may undergo large displacements. Moreover, in 

each cross-section an additional small displacement field is added, both in and out of plane, 

referred to here as 3D warping displacement (as specified below). Figure 1 shows a schematic 

of the beam reference and current states.  

Two local triads of orthogonal unit vectors are introduced in Figure 1: bi=bi(s) depends on 

the reference arc-length s, with b1 tangential to the reference centre-line; ai=ai(s,t) is the im-

age of bi in the current state and depends on s and the evolution parameter t. A third triad, ci, 

pertains to a fixed Cartesian frame with origin chosen at will. The ranges of Greek and Latin 

indices are {2,3} and {1,2,3}, respectively; henceforth, the summation convention holds and 

the dependence on s and t is understood, hence omitted as long as no confusion arises. 

 

Figure 1: Reference (left) and current (right) states in terms of axes, cross-sections, local and global triads 

The position of the beam points in the reference and current states are given by two map-

ping functions, RB and RA. The reference mapping function, RB, is 

0 1 1( ) ( ) ( ) ( )B i B iR z R z x z b z       (1) 
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where R0B identifies the position of the reference axis, xα denotes the coordinates of the cross-

section points relative to such axis, and zi are three time-independent mathematical variables, 

such that z1=s and zα span a two-dimensional domain representing the prototype transverse 

cross-section. Specifically, for the tapered beams addressed in this work, we consider xi=Λijzj, 

with Λ11=1, Λ22=Λ2(z1), Λ33=Λ3(z1), and the other coefficients Λij=0 identically. 

The current mapping function is instead given by 

0 1 1 1( , ) ( , ) ( ) ( , ) ( , ) ( , )A i A i k i kR z t R z t x z a z t w z t a z t      (2) 

where wk are the 3D warping displacement components relative to the local triad ak. 

Now we introduce the vector and tensor fields that describe the state of deformation of our 

body. The change in the beam’s curvature between current and reference states, k, and that of 

the centre-line tangent between current and reference states, γ, are defined as follows: 

0 0

T

A B

T

A B

k T k k

T R R

 

  
     (3) 

where tensor i iT a b  ,   is the usual tensor (or dyadic) product, prime denotes the deriva-

tive with respect to s, and vectors kA and kB describe the beam’s curvatures in the current and 

reference states, respectively (details are in [34]). Vectors γ and k are referred to here as 1D 

strain measures. The 3D strain measure considered here is the Green-Lagrange strain tensor E, 

which is written in a form based on the assumptions of small strain and warping fields consid-

ered in this work (as in [8,34]). Specifically, we consider that the reference dimension of the 

cross-section, h, is much smaller than the reference length, L, of the centre-line; the beam’s 

curvatures are much smaller than 1/h; the warping fields, wk, are small in the sense that their 

maximum order of magnitude is hε, while the order of their derivative with respect to z1 is at 

most εh/L (ε<<1 is a non-dimensional parameter). In general, all strain components are small 

in the sense their order of magnitude is at most ε. The strain tensor E is then expressed as 

2

T TT H H T
E I




 

    (4) 

where H is the gradient of transformation between the reference and current states, i.e. the de-

rivative of the current map RA with respect to the reference one RB (as in [8,34]). 

The stress is determined by assuming that the material composing the present beam be-

haves according to a linear elastic isotropic homogeneous constitutive relation; specifically, 
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we assume that the second (symmetric) Piola-Kirchhoff stress tensor, S, depends on the 

Green-Lagrange strain tensor, E, as follows: 

2S E trE I  

 

    (5) 

where μ and λ are two known material parameters and I is the identity tensor [35].  

The stress resultants over the cross-section reference domain Σ are expressed in terms of 

the first Piola-Kirchhoff stress tensor P as: 

1

1

i i

i i

F P a

M x P a a 







 




 

    (6) 

where F and M are the force and moment resultants, respectively. 

By applying the principle of the expended power to this 3D hyper-elastic beamlike body, 

the balance equations are obtained as in [8,34]. For example, equations for determining the 

warping fields wk, in the case of vanishing volume and surface actions on the beam’s lateral 

surface, can be derived via the following variational condition: 

0
V

  

 

     (7) 

where Φ = S∙E/2 and the symbol δ denotes the variation of the integral with respect to the 

warping fields wk. Note that warping fields satisfying (7) can be obtained via the correspond-

ing Euler-Lagrange equations [37,38]. In the general case, numerical methods are needed, but 

in some cases closed-form solutions can be found (see, e.g., [8,34]). 

Omitting the details (available in [8,34]), and limiting to the case of non-prismatic beams 

with bi-tapered cross-sections (other effects, e.g. pre-twist, axial curvature, and material non-

homogeneity, will be addressed in subsequent works), we now report the expressions for the 

strain fields E11, E21, and E3, which describe the out-of-plane distortion of the cross-sections 

and will be necessary in section 4. They are expressed in the form: 

11 2 3 3 2 1 1,1

1

21 1,2 1 3 2 3 3 2 1 2 2 2 2

1

31 1,3 1 2 2 3 3 2 1 3 3 3 3

2 2(1 )( )

2 2(1 )( )

E k x k x e

E e k x k x k x x e

E e k x k x k x x e



 

 





   

        

        
 

 (8) 

where
ij i jE E b b   , υ is Poisson’s ratio, commas indicate derivation with respect to xi, and 

the scalar fields e1, e2, e3, are solutions to the PDEs problem: 
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1,22 1,33

2,2 3,3

3,2 2,3

1,2 1 3 2 1,3 1 2 3

2 2 3 3

0

( ) ( ) 0

0

e e in

e e f in

e e g in

e k x n e k x n on

e n e n on

  

  

  

    

  
 

  (9) 

In (9), nα are the components of the outward unit normal on ∂Σ, while functions f and g are 

defined as follows: 

3 32 2
2 3 2 3 3 2 3 2

3 2 2 3

32
2 2 2 2 3 3 3 3

2 3

22
2(1 )

2 (1 ) (1 )

f x k x k x k x k

g x k x k x k x k



   

        
           

       

  
        

    

 (10) 

For completeness, we also report the expressions for the components of the force and mo-

ment resultants, Fi and Mi, in the current local triad ai: 

1 1 1 1 1 1

2 3 3 23 2 3 3 23 2

3 2 2 23 3 2 2 23 3

1 1 1 1 1 2 2 3 3 2 2 3 3

2 2 2 23 3 2 1 2 1

3 3 3 23 2 3 1 3 1

F YA Y k YX k

F YJ k YJ k YJ k YJ k

F YJ k YJ k YJ k YJ k

M GJ k YV YV k YV k Y k Y k

M YJ k YJ k Y k YX k

M YJ k YJ k Y k YX k

 

  





  

       

      

      

   

   

  (11) 

where Y and G are the Young and shear moduli of the material, while the coefficients multi-

plying the 1D strain measures and their s-derivatives can be expressed as follows: 

1A


 

 

      (12) 

2 2

0 2 3J x x


 

 

     (13) 

1 12 2

1 1,3 2 1,2 3( ) ( )
k k

J e x e x


   

 

   (14) 

2

2 3J x


 

 

      (15) 

2

3 2J x


 

 

      (16) 

23 2 3J x x


 

 

      (17) 



G. Migliaccio et al. 

 

1

1 1

k
X e


 

 

      (18) 

1

1 1,1

k
e


 

 

      (19) 

1

2 3 1

k
X x e


 

     

  (20) 

1

2 3 1,1

k
x e


 

  

     (21) 

1

3 2 1

k
X x e


 

 

      (22) 

1

3 2 1,1

k
x e


         (23) 

1

1 2 3V x x  


 

 

     (24) 

2 21 2

2 2 3 2 3 3 2

k k
V x x x e x e  

 
   

  

  (25) 

3 31 2

3 3 2 3 2 2 3

k k
V x x x e x e  

 
   

  

  (26) 

2 2

2 2 3 3 2

k k
x e x e

 


 

  

    (27) 

3 3

3 3 2 2 3

k k
x e x e

 


 

 

     (28) 

The geometric parameters A, J0, J1, Jα, J23 are the beam’s cross-sectional area, polar mo-

ment of inertia, Saint-Venant’s torsion inertia, second moments of inertia, and mixed moment 

of inertia, respectively. The other coefficients (18)-(28), multiplying the 1D strain measures 

and their s-derivatives, depend solely on the geometric characteristics of the body through the 

shape of the cross-sectional domain Σ and the taper coefficients Λα. In particular, ρ=Λ3/Λ2, 

while quantities ik

je and ik

je

are the values obtained by solving the PDEs (9)-(10) for 

je when 

one superscript (e.g. 2k ) is unitary and all others vanish. As an example, 2

2

ke  is the solution to 

the PDEs (9)-(10) when 2k =1, 2k =0, 3k =0, 3k =0. Details can be found in [8]. 

4 SHEAR FORMULA FOR BI-TAPERED BEAMS 

In the previous section it has been shown that the scalar fields ek are needed to determine the 

strain and stress fields. Equations (9)-(10) can generally be solved numerically, while an ana-

lytical solution can be found in only a few cases. However, apart from the direct determina-
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tion of ek, we can obtain analytical, closed-form expressions for the shear flow through the 

chords of the transverse cross-sections (e.g., AB in Figure 2) of our beamlike body. This in 

turn provides the mean shear stress over such chords, which is interesting from an engineering 

standpoint, as it can represent a good estimate of the shear stress at the points of the chords if 

their length is small enough. 

 

      

Figure 2: Transverse cross-sections, solid (left) and hollow (right) 

With this aim, we introduce some notation. Figure 2 shows a solid (left) and a hollow 

(right) cross-section, split in two: the dashed sub-domain is called Σq; its boundary (moving 

counter-clockwise) consists of internal lines ∂Σi (contained in the cross-section) and external 

lines ∂Σe. The total shear flow q through the entire set of internal lines is  

i

1q C n 



 

 

    (29) 

In the case of the hollow cross-section in Figure 2 (right), for instance, equation (29) provides 

the sum of the shear flows through AB and CD. The partition of the domain and its bounda-

ries, plus the definition of the shear flow (29), also apply to multi-connected cross-sections, 

although they are not shown in Figure 2. Equation (29), plus (8)-(10) and standard integration 

techniques based on Green’s formulas, yield 

2 2 3 3 2 2 3 3 1 1q YS k YS k YZ k YZ k Y       

 

  (30) 

where the coefficients Sα and Zi are given by the following surface and line integrals 
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2 3

3 2

1 1

2 3 2 2 2 2 3 3 3 3

1 1

3 2 2 2 2 2 3 3 3 3

1 1

1 2 2 2 2 3 3 3 3

( )

( )

q

q

e

e

i

S x

S x

Z x x n x n

Z x x n x n

Z x n x n





 



 



 







     

     

     











 

 (31) 

Equation (30) is the new closed-form formula for the shear flow in bi-tapered beams suscepti-

ble to large deflections, which extends Jourawski’s formula (valid only for prismatic beams in 

a linear setting). The first two terms in (30) account for the spanwise variation of the bending 

curvatures (i.e., their s-derivative) via their product with the first moments of area of the 

dashed domain. The third and fourth addends are directly proportional to the bending curva-

tures, and explicitly account for the taper via a kind of second moments of inertia of the cross-

section boundary; the last term depends on the axial elongation γ1 via a kind of first moment 

of inertia of the cross-section boundary. Note also that the latter three addends, proportional to 

Zi, vanish identically if the beam is not tapered (in fact, for prismatic beams Λʹα=0). Moreover, 

for prismatic beams in a linear setting the shear formula (30) reduces exactly to Jourawski’s, 

as the s-derivative of the bending curvatures turn out to be directly proportional to the shear 

forces in the beam reference state. 

To compare the results of (30) with those of other shear formulas, it is convenient to focus 

on flexure and traction without torsion and express the shear flow in terms of stress resultants 

rather than 1D strains. By combining (11) and (30) for flexure and traction and assuming that 

x2, x3 are central and principal axes of inertia for the cross-sectional domain, (30) becomes 

3 2 2 3 3 31 1 2 2

2 3 2 3

F S F S MF Z M
q

J J A J J


     

 

  (32) 

In (32), Πα are geometric functions of Zα, Sα and Λα, as follows 

1 1

2 2 2 2 2 3 33

1 1

3 3 3 3 3 2 2

( 3 )

( 3 )

Z S

Z S

 

 

        

        

   

(33) 

F1, Fα, Mα are the components of the force and moment resultants with respect to the current 

local triad ai, and A and Jα are the cross-sectional area and second moments of inertia. 
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Note that the first two terms in (32) are similar to those of the linear theory of prismatic 

beams; however, the transverse forces Fα are along the current unit vectors aα (not the refer-

ence ones), and Jα depend on s. The last three terms of (32) are proportional to the current 

bending moments Mα and axial force F1, which are absent in the linear theory of prismatic 

beams and explicitly depend on the taper coefficients Λα and their s-derivative. However, if 

the current and reference states of the beam are indistinguishable (i.e., in a linear setting) and 

the beam is prismatic (i.e., Λα'=0), Jourawski’s formula is clearly re-obtained. 

We now show how the shear formula (30), (32) can furnish results of engineering interest. 

4.1 Bi-tapered rectangular cross-sections 

Consider a beam with rectangular cross-sections of width 2h2 and height 2h3, bi-tapered 

from the root to the tip as shown in Figure 3, and loaded by a flap-wise dead force F at the tip. 

 

 

Figure 3: Beam with linearly bi-tapered rectangular cross-sections (left) and its taper coefficients (right) 

The considered loading condition induces a deflection such that k3=0; then, in this case, the 

shear formula (30) yields 

2 2 2 2 1 1q ES k EZ k E    

 

    (34) 

Moreover, for the present geometry, the coefficients S2, Z2, Z1 are given by the relations 
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2 2 1 2 1
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Z h x

 



 

       

  
 

   (35) 

which, in turn, enable writing equation (34) in the form 

 
2 2

1 1 2 13 3
2 2 2 2 2 3 3 3 1 3 3 3

22 2

x hq
Ek Ek Ek h E x

h
  

             

 

(36) 

Equation (36) explicitly shows how q/2h2, i.e., the mean shear stress over a chord parallel 

to the width of the cross-section, depends on the 1D strains and geometric characteristics (ta-

per included) of the bi-tapered beam. We can also express (36) in terms of stress resultants, 

rather than 1D strains, to compare its results with those of other formulas. We obtain 

1 2 2
1 1 23 2 3 3 3 3 1 2

3 3 3 3 3 3

2 2 2

3

2 2

F M x h F Mq
x h

h J A J


    

        

 

(37) 

where F1, F3, M2 are axial and transverse forces and bending moment along the current local 

triad ai; A, J2 are the cross-sectional area and second moment of inertia with respect to x2. 

We also report (37) in terms of stress resultants with respect to the reference local triad bi, 

which is consistent with the Cartesian frame X,Y,Z in Figure 3. To this end, if θ is the angle 

of rotation of the current local triad ai with respect to the reference one about b2≡Y, we obtain 

22
T Z N X M Y

q
F F M

h
    

  

  (38) 

where FX, FZ, MY are respectively the axial and transverse forces and bending moment along 

the reference triad bi. The geometric quantities ηT, ηN, ηM weight the contribution of the refer-

ence stress resultants to the mean shear stress q/2h2 and are given by 

2 2 1

3 3 3 3 3

2

1 2 2

3 3 3 3 3

2

1 2 2

3 3 3 3

2

( ) cos sin

2

cos ( )sin

2

(3 )
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M

h x x

J A

x h x

A J

x h

J

 


 










  
 

  
 

  


 

  (39) 

It is now evident how (37) extends Jourawski’s formula. The mean shear stress over a 

chord parallel to the width of the cross-section (Figure 3) consists of a first term proportional 

to the transverse force F3, similar to that of the linear theory of prismatic beams [5]. We recall 
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that F3 is the shearing force along the current unit vector a3, and that large displacements and 

rotations may separate the current beam state and local triad from the reference ones; more-

over, the moment of inertia J2 depends on s. The right side of (37) contains terms proportional 

to the current bending moment M2 and axial force F1, which are absent in the linear theory of 

prismatic beams and explicitly depend on the taper coefficient Λ3 and its s-derivative. If the 

current and reference states of the beam are adjacent (i.e., for small displacements and rota-

tions), the shear flow (37) coincides with that given by Bleich [10], Cortinez [15] and Tagli-

alegne [16], among others (see appendix). Furthermore, if the beam is prismatic (i.e., A and J2 

do not depend on s, and the s-derivatives of the taper coefficients vanish), we re-obtain the 

well-known Jourawski’s solution [5]. 

4.2 Bi-tapered elliptical cross-sections 

Consider a bi-tapered beam with elliptic cross-sections of major semi-axes h2 (edgewise) 

and h3 (flapwise), bi-tapered from root to tip according to the taper coefficients in Figure 4. 

 

 

 

Figure 4: Beam with bi-tapered elliptical cross-sections (left) and its taper coefficients (right) 

Let the beam be loaded by a flapwise dead force F at the tip, which induces a deflection 

such that k3=0; then, the shear formula (30) takes the form  

2 2 2 2 1 1q ES k EZ k E    

 

    (40) 

where the coefficients S2, Z2, Z1 are now given by 
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 (41) 

and 2d2 is the length of AB (parallel to x2) in Figure 4. By combining (40)-(41), we get 

 
2 2

1 1 2 13 3
2 2 2 3 3 3 1 3 3 3

22 3

x hq
Ek Ek Ek h E x

d
    

           

 

(42) 

which can also be expressed in terms of stress resultants as follows 

1 2 2
1 1 23 2 3 3 3 3 1 2

3 3 3 3 3 3

2 2 2

4

2 3

F M x h F Mq
x h

d J A J


    

        

 

(43) 

Recall that F1, F3, M2 are components of the resultants along the current local triad ai; A, J2 

are the cross-sectional area and second moment of inertia; and ρ=Λ3/Λ2. Also in this case we 

can express q in terms of stress resultants along the reference local triad bi 

22
T Z N X M Y

q
F F M

d
    

  

  (44) 

where FX, FZ, MY are the axial and transverse forces and bending moment with respect to bi, 

while the geometric coefficients ηT, ηN, ηM are now given by 
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  (45) 

Note that also in this case we can recognize the term proportional to F3 as similar to that of 

the linear theory of prismatic beams (apart from the fact that it is parallel to the current unit 

vector a3, and J2 depends on s), along with the additional terms associated to the current 

bending moments M2 and axial force F1 (which are proportional to the taper coefficient Λ3 

and its s-derivative). Moreover, if the beam is prismatic and undergoes small displacements 

and rotations, our results reduce once again to those obtainable with Jourawski’s formula.  

Other examples will be presented in subsequent works. Here we now proceed to evaluate 

the effectiveness of the model and formulas presented so far by performing comparisons with 

the numerical results of nonlinear 3D-FEM analyses. 
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5 NUMERICAL EXAMPLES 

In this section the results furnished by the model and formulas presented in the foregoing 

are compared with those from other formulas available in the literature and nonlinear 3D-

FEM analysis, for two benchmark cases that correspond to the cases discussed analytically in 

sections 4.1 and 4.2. In particular, the model and formulas presented in sections 3 and 4 have 

been implemented in a numerical code in Matlab, henceforth referred to as 3D-BLM. The 3D-

FEM analyses have been performed in Ansys using a fine mesh of solid tetrahedral elements 

with 10 nodes [39]. The results of the nonlinear 3D-FEM analyses are taken as reference val-

ues against which all the other results will be compared.  

The two test cases mentioned above address bi-tapered beams that are fixed at the root and 

loaded at the tip by a transverse force. The two beams have different cross-sectional shapes 

and taper coefficients (see Figures 3 and 4, respectively). In both cases our results in terms of 

shear stresses are based on the shear formula (32) and on its specialized formulations for the 

rectangular (37) and elliptical (43) bi-tapered cross-sections. Such results are moreover com-

pared to corresponding results available in the literature: the formulas of Jourawski [5] and 

Bleich [10], among others, have been considered in the first case; the analytical solutions of 

Migliaccio and Ruta [8,34] in the second case. 

5.1 Test case 1 

The beam with rectangular cross-section considered here is 100 m long. The section’s dimen-

sions are 2d2 = 1 m (edgewise) and 2d3 = 5 m (flapwise) at the root and reduce linearly from 

the root to the tip, as shown in Figure 3. Young’s modulus is 70 GPa, and Poisson’s ratio is 

0.25. The beam is clamped at the root; the load at the tip is a flapwise dead force, F, inducing 

a deflection in the X-Z plane of Figure 3. 

In general, 3D-BLM can provide several meaningful information about the mechanical re-

sponse of a beam, including, for example, centre-line displacements, curvature changes, triad 

rotations, stress and strain fields, and stress resultants, as shown in previous works (e.g. 

[8,34,40,41]). In this paper the focus is on the shear formula introduced in section 4 and the 

agreement among its results with those of nonlinear 3D-FEM simulations. 

Hereafter we summarize the predictions of 3D-BLM in terms of stress fields at four refer-

ence cross-sections, whose distance from the root is equal to respectively 5%, 35%, 65%, 

95% of the overall beam length, and for two values of tip-force, namely F = 50 kN and 

F = 5000 kN. Figures 16 and 17 show the results obtained for the longitudinal normal stress 
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CXX; Figures 18 and 19 report the results for the transverse shear stress CZX, where X and Z 

are directions parallel to the axis of the Cartesian reference frame in Figure 3. 

Looking at the numerical results obtained, we note that the normal stresses follow a Na-

vier-like distribution in the transverse cross-sections (i.e., they are almost linear in x3), while 

the shear stress distributions are quite different from those predictable by the linear theory of 

prismatic beams, as the transverse shear stress at the cross-section boundary of non-prismatic 

beams does not generally vanish, and the maximum value may not occur at the point corre-

sponding to the centroid of Σ. This is confirmed, in particular, by the results reported in Fig-

ure 18: blue lines are the results of our model (label 3D-BLM); red marks denote the results 

from nonlinear 3D-FEM; yellow lines are the results obtained by Jourawski’s formula (linear 

theory of prismatic beams) for the present tapered beam as if it were a stepped beam (label J-

STEP); finally, black lines correspond to the results obtained by exploiting Bleich’s formula, 

which is still based on linear beam theory but accounts for the effects of taper as discussed in 

the introduction and in [10] (label B-ET-AL). 

 

 

Figure 16: Longitudinal normal stress CXX in the cross-sections at 5%, 35%, 65%, 95% span for F = 50 kN 
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Figure 17: Longitudinal normal stress CXX in the cross-sections at 5%, 35%, 65%, 95% span for F = 5000 kN 

 

Figure 18: Transverse shear stress CZX in the cross-sections at 5%, 35%, 65%, 95% span for F = 50 kN 
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Figure 19: Transverse shear stress CZX in the cross-sections at 5%, 35%, 65%, 95% span for F = 5000kN 

Figures 18 and 19 clearly show that modelling a tapered beam as a stepped beam and using 

Jourawski’s solution for each segment of the stepped beam does not provide good results, ex-

cept for a limited region close to the beam’s tip where the effects of the taper related to the 

bending moment fall to zero (label J-STEP). In addition, Jourawski’s formula does not allow 

satisfying the condition of non-vanishing transverse shear stress on the cross-section bound-

ary. Bleich’s solution does not suffer from such drawback and may provide good results for 

tapered beams undergoing small displacements and strains, provided the actual shape of the 

beam does not differ too much from the reference one. This is also confirmed by the plots in 

Figure 18, regarding the low-value tip-force (F=50kN): in such case the results of 3D-FEM, 

3D-BLM and B-ET-AL almost coincide. When the tip-force increases (see, e.g., Figure 19), 

and the beam’s actual and reference shapes become too distant, the only results very close to 

those of nonlinear 3D-FEM are those furnished by 3D-BLM. 
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5.2 Test case 2 

The bi-tapered beam considered here is 100 m long. Its cross-sections are elliptically shaped 

and are tapered from the root to the tip of the beam, as shown in Figure 4. The lengths of the 

major semi-axis at the root are d2 = 2.0 m (edgewise) and d3 = 2.0 m (flapwise). Those of the 

other cross-sections vary according to the taper coefficients in Figure 4. The material Young’s 

modulus is 70 GPa; the Poisson’s ratio is 0.25. The beam is clamped at the root and a flapwise 

dead force, F, acts at the tip and induces a deflection in the X-Z plane in Figure 4. 

Before going on to the comparison with the 3D-FEM results, we note that in this case the 

elliptical shape of the cross-section allows for analytically solving the PDEs problem (9)-(10). 

As the analytical closed-form solution to the problem is available in [8,34], it is worth check-

ing the approximations of the shear stresses obtained by the shear formula (43) by comparing 

them with the analytical solution given in [8,34]. 

Figure 20 shows the results obtained for the shear stress CZX, at four cross-sections (at 5%, 

35%, 65%, 95% span), for F = 50 kN. The curves drawn in blue, red, cyan, and magenta col-

ours are the results yielded by the analytical solution of 3D-BLM [8,34], calculated for differ-

ent values of x2 (namely: x2 = 0, x2 = 0.3h2, x2 = 0.6h2, x2 = 0.9h2); the green curve (labelled 

3D-BLM-SF) corresponds to the results of 3D-BLM based on the shear formula presented in 

section 4.2. Note that the shear stress CZX obtained with the analytical solution depends 

pointwise on both x3 and x2 coordinates, while that assessed by the shear formula (43) only 

depends on x3 and corresponds to the mean value of CZX along the chord x3 = const. Some 

error is expected when using the shear formula; however, it is worth observing that such dif-

ferences are limited to the first half of the beam, where the ratio between the major semi-axes 

h3/h2 goes to 1 at the circular root section. Toward the tip the ratio h3/h2 increases (up to 4 at 

the tip section), the dependence on x2 becomes negligible, and all aforementioned four lines 

(blue, red, cyan, magenta) nearly coincide. Accordingly, and predictably, the more we move 

toward the tip section of the present beam, the closer will the mean shear stress given by the 

shear formula be to the actual shear stress over the considered chord. 
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Figure 20: Analytical solution versus shear formula - CZX at 5%, 35%, 65%, 95% span for F = 50 kN 

Now we continue with the comparisons by also including the results of 3D-FEM. In par-

ticular, we focus on the stresses along the vertical major-axis, x3, of the cross-sectional do-

main. Figure 21 reports the shear stress CZX at the same four reference cross-sections as above 

(5 %, 35 %, 65 %, 95 % span), for F = 50 kN: blue lines are the results based on the analytical 

solution (label 3D-BLM-0); green lines correspond to the shear formula results (label 3D-

BLM-SF); red marks denote the finite element results (label 3D-FEM-0). Note that the results 

of the analytical solution almost coincide with 3D-FEM, and that the shear formula also pro-

vides a good estimation of the shear stress (which is closer to the actual shear stress the more 

we move toward the tip section). Actually, results of this kind are to be expected, as the shear 

formula can only furnish the mean value of the shear stress along the considered chords. 
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Figure 21: Transverse shear stress CZX in the cross-sections at 5%, 35%, 65%, 95% span for F = 50 kN 

For completeness, we conclude by reporting the results obtained for the shear stress CZX, 

for a larger tip-force, F = 1000 kN (Figure 22), as well as those obtained for the normal stress 

CXX, both for F = 50 kN and F = 1000 kN (Figures 23-24), which once again follow a Navier-

like distribution along the cross-sectional domain, thus confirming the result already found in 

the first test case as well as in previous works, e.g. [8,34]. 
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Figure 22: Transverse shear stress CZX in the cross-sections at 5%, 35%, 65%, 95% span for F = 1000 kN 

 

Figure 23: Longitudinal normal stress CXX in the cross-sections at 5%, 35%, 65%, 95% span for F = 50 kN 
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Figure 24: Longitudinal normal stress CXX in the cross-sections at 5%, 35%, 65%, 95% span for F = 1000 kN 

The results of the case studies addressed so far show that the model and formulas presented 

in this work are in close agreement with the results of nonlinear 3D-FEM and that they could 

be effectively used in predicting the mechanical response of bi-tapered beams even when the 

current and reference states of such beams cannot be assumed to almost coincide. 

6 CONCLUSIONS  

The stress fields in tapered beams cannot be properly predicted via the methods and formulas 

(e.g., Jourawski’s) commonly used for prismatic beams: the spanwise variation of their cross-

sections produces non-trivial stress distributions absent in prismatic elements. Additional dif-

ficulties arise in the event of large displacements, which further complicate the derivation of 

closed-form formulas for engineering applications. 

By exploiting the results of previous works, in the present paper we have proposed a new 

formula for evaluating the shear flow through the cross-sectional chords of bi-tapered beams, 

extending Jourawski’s formula to bi-tapered beamlike elements susceptible to large deflec-

tions and small strains. 
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Example applications have been presented and discussed; they address two tapered beams 

with rectangular and elliptical cross-sections and different taper coefficients. In both cases the 

results obtained for the shear stresses have been compared with those of nonlinear 3D-FEM 

simulations and with some noteworthy results available in the literature. In particular, in the 

first case the comparisons have been made with the Jourawski’s solution (applied to the ta-

pered beam as if it were a stepped beam) and Bleich’s solution, both based on the linear beam 

theory (the latter accounting for the effects of taper in variable depth beams). Specifically, we 

have shown how the proposed solution reduces to Bleich’s (amongst others) if the actual and 

reference shapes of the beam are very close each other. In addition, we have also discussed 

how Jourawski’s solution is re-obtained if the taper vanishes. In the second example an ana-

lytical solution has been used to assess the performance of the proposed shear formula. In all 

cases, the results obtained with our model (3D-BLM) and shear formula turned out to be in 

very good agreement with those of nonlinear 3D-FEM simulations. 

The results and shear formula presented in this paper neglect the effects of some geometric 

characteristics (e.g. pre-twist) and material properties (e.g. non-homogeneity). The inclusion 

of additional terms associated with such geometric and material characteristics (along with 

those already accounting for the taper) may be important to accurately predict the stress and 

strain fields and obtain a more general shear formula for pre-twisted, tapered beams. These 

are important points for further investigation and will addressed in subsequent works. 

APPENDIX  

In the case of rectangular cross-sections, equations (34)-(39) generalize the Jourawski’s solu-

tion for prismatic beams [5]. It is worth noting that if the current and reference states of the 

beam are very close and can be thought to almost coincide, such equations reduce to the for-

mulas made available in the literature by other investigators who have studied the effects pro-

duced by the taper (e.g. [10,15,16]). To prove this, it is sufficient to specialize (37) for a flap-

wise linearly tapered beam, loaded at the tip by an axial force N, transverse force T, and bend-

ing moment M, undergoing small displacements of the centre-line and small rotations of the 

local triads. Starting with (37), with θ≃0, we obtain: 

2 2 1 1 2 2

3 3 3 3 3 3 3 3 3

2 2 2

( ) (3 )

2 2 2
Z X Y

h x x x hq
F F M

h J A J

       
   .

  

(46) 
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The next step is to express coefficient Λ3 as a linear function of s: 

3

3

tan
1

R

s
h


   ,

     

(47) 

where h3R is the height of the cross-section at the root (i.e., at s = 0), and angle α denotes the 

slope of the beam extrados. Combining (46)-(47) yields 
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(48) 

The expressions for the cross-sectional area A and moment of inertia J3 for the present case 

are to be substituted into (48), as are those for the cross-section resultants FX, FZ, MY with 

those in terms of axial force N, transverse force T, and bending moment M applied at the tip 

section, i.e. FX=N, FZ=T, MY=M-T(L-s), where L is the beam length. We finally obtain 

2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 2 4

2 2 3 2 3 2 3

3( ) 3(3 )( ) tan tan 3(3 ) tan

2 8 4 8

x h h x h L s x x hq
T N M

h h h h h h h

      
   

   

(49) 

which is the expression we can find, for example, in [16]. 

A similar relation can be obtained for elliptical cross-sections. As an example, still assum-

ing small displacements, when one dimension, say h2, is kept constant and a linear taper is 

assumed for the other, h3, starting with (43), we get 

2 2 2 2 2 2

3 3 3 3 3 3 3 3

4 2 4

2 2 3 2 3 2 3

4( ) 4(4 )( ) tan tan 4(4 ) tan

2 3 3
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d h h h h h h
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  

    
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(50) 

Similar expressions can be obtained for other tapered beams, characterized by solid or hollow 

cross-sections of various shapes, and will be presented in subsequent works. 
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