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Abstract

This paper develops an M-quantile regression model for the analysis of multiple depen-
dent outcomes by introducing the notion of directional M-quantiles for multivariate responses.
In order to incorporate the correlation structure of the data into the estimation framework,
we propose a robust marginal M-quantile model extending the well-known generalized esti-
mating equations approach to the case of regression M-quantiles with Huber’s loss function.
We discuss the estimation of the model and derive the asymptotic properties of estimators.
In addition, we introduce the idea of M-quantile contours that can be used to describe the
dependence between the response variables and to investigate the effect of covariates on the
location, spread and shape of the distribution of the responses. To examine their variability,
we build confidence envelopes via nonparametric bootstrap. The validity of the proposed
methodology is explored both by means of simulation studies and through an application to
educational data.

Keywords: Asymptotic properties, Correlated data, Directional M-quantile, Generalized
M-Quantile Estimating Equations, M-quantile contour

1 Introduction

Quantile regression has attracted considerable interest in many empirical studies since its
introduction in the seminal paper of Koenker & Bassett Jr (1978). It provides a way to model
the conditional quantiles of a response as a function of explanatory variables in order to have
a more complete picture of the entire conditional distribution compared to the classical mean
regression. For this reason quantile regression methods have become widely used in the litera-
ture especially in those situations where skewness, heavy-tails, outliers, truncation, censoring
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and heteroscedasticity arise. For a detailed review and list of references, Koenker (2005) and
Koenker et al. (2017) provide an overview of the most used quantile regression techniques.
In real data applications, observations are often correlated with each other across time, space,
or other dimensions, like groups, and their analysis requires specific data analysis tools which
have received considerable attention over the years (Diggle et al. 2002, Molenberghs & Ver-
beke 2006, Fitzmaurice et al. 2012, Goldstein 2011). In particular, dependency of observations
may be seen as a clustering effect (Bergsma et al. 2009) which arises in a number of sampling
designs, including clustered, multilevel, spatial, and repeated measures (Heagerty et al. 2000,
Bergsma et al. 2009, Geraci & Bottai 2014). In this context, quantile methods for modeling
dependent-type data have been considered in a wide range of different applications spanning
from medicine (Smith et al. 2015, Farcomeni 2012, Alfò et al. 2017, Marino et al. 2018, Merlo,
Maruotti & Petrella 2021), social inequality (Heise & Kotsadam 2015), economics (Bassett &
Chen 2002, Kozumi & Kobayashi 2011, Bernardi et al. 2015, 2018, Giovannetti et al. 2018,
Merlo, Petrella & Raponi 2021), environmental modeling (Hendricks & Koenker 1992, Pandey
& Nguyen 1999, Reich et al. 2011) and education (Kelcey et al. 2019).
When the interest of the research is on the entire conditional distribution, in addition to the
classical quantile regression, a possible alternative approach is to consider the M-quantile re-
gression proposed by Breckling & Chambers (1988). This method provides a “quantile-like”
generalization of the mean regression based on influence functions, combining in a common
framework the robustness and efficiency properties of quantiles and expectiles (Newey & Pow-
ell 1987), respectively. In fact, M-quantiles extend the ideas of M-estimation of Huber (1964)
and Huber & Ronchetti (2009) by introducing a class of asymmetric influence functions to
model the entire conditional distribution of the response given the covariates. Depending
on the type of influence function used, M-quantiles may reduce to standard quantiles or ex-
pectiles. Although M-quantiles have a less intuitive interpretation than standard quantiles
(Jones 1994), they offer additional substantial benefits. More precisely, they allow for robust
estimation in the presence of influential data and they can trade robustness for efficiency.
From a computational perspective M-quantile regression ensures uniqueness of the Maximum
Likelihood solutions, and it offers greater stability as a wide range of continuous influence
functions can be employed (see Tzavidis et al. 2016 and Bianchi et al. 2018). The most fre-
quently used function is the popular Huber loss (Huber 1964) which utilises a tuning constant
that can adjust the robustness of the estimator in the presence of outliers and it is, henceforth,
assumed throughout our paper.
In the literature, M-quantiles have been implemented in a broad range of disciplines spanning
from multilevel modeling (Tzavidis et al. 2016, Alfò et al. 2017), small area estimation (Cham-
bers & Tzavidis 2006, Chambers et al. 2014, Salvati et al. 2021), poverty mapping (Tzavidis
et al. 2008) and longitudinal studies (Alfò et al. 2017, Borgoni et al. 2018, Alfò et al. 2021).
Most of those proposals are, however, designed for a univariate framework. When the purpose
of the matter being investigated lies in describing the distribution of a multivariate response,
since there does not exist a natural ordering in a p-dimensional space, p > 1, the univari-
ate notion of M-quantile does not straightforwardly extend to higher dimensions. Originally,
Breckling & Chambers (1988) addressed the problem of defining a multivariate M-quantile by
introducing a direction vector in the Euclidean p-dimensional space to establish a suitable or-
dering procedure for multivariate observations. The multivariate M-quantile along a specified
direction is then obtained by minimizing a multidimensional Huber loss function (Huber &
Ronchetti 1981). Subsequently, Kokic et al. (2002) generalized their definition by introducing
a class of multivariate M-quantiles based on weighted estimating equations. More recently,
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Alfò et al. (2021) proposed an M-quantile regression for multivariate longitudinal data where,
however, they sidestep the problem of defining a multivariate M-quantile. The authors con-
sider, in fact, univariate M-quantile regression models with specific random effects for each
outcome and dependence between outcomes is introduced by assuming that the random effects
in the univariate models are dependent.

In the present paper we approach the problem of M-quantile regression for the analysis
of multivariate dependent structured data. We rely on the notion of directional quantile pro-
posed by Kong & Mizera (2012) which consider the quantiles of projections of random vectors
onto unit norm directions. We extend their approach to the M-quantile framework by using
the Huber’s influence function in Huber (1964). In this context, directional M-quantiles, ob-
tained from the projection of the original data onto the real line along a specified direction,
inherit robustness properties of standard univariate M-quantiles where the corresponding di-
rection assigns a relative weight to each marginal of the response involved in the regression
problem. The main advantage of the projection-based definition is that it allows for a so-
lution to an easier problem than the multivariate one but, at the same time, it condenses
valuable information about the dependence embedded in multivariate data. The validity of
this directional approach is also proven by the continuously growing literature on the subject
(see Hallin et al. 2010, Paindaveine & Šiman 2011, Kong & Mizera 2012, Geraci et al. 2020,
Farcomeni et al. 2020 and Cascos & Ochoa 2021).

In order to estimate directional M-quantiles as function of the covariates while capturing
within cluster correlations, we develop a Marginal M-quantile (MMQ) model. The marginal
approach refers to a general class of statistical methods that are used to model dependent
data where observations within a cluster are correlated with each other (Liang & Zeger 1986,
Lindsey 1999, Heagerty et al. 2000, Diggle et al. 2002, Goldstein 2011). When fitting marginal
models, the interest focuses on the relationship between the response and explanatory vari-
ables while, at the same time, acknowledging dependencies in the data. A popular estima-
tion procedure for estimating the marginal model parameters is the Generalized Estimating
Equations (GEE) approach introduced by Liang & Zeger (1986) and Zeger & Liang (1986).
Because the true correlation structure is unknown, the GEE formulates a “working covariance
matrix” to capture the dependence between observations and incorporate that structure into
the model. This method provides consistent estimates of the regression coefficients in the
presence of misspecification of the postulated correlation matrix (Zeger et al. 1988) and has
been adapted to quantile regression by Fu & Wang (2012) and Lu & Fan (2015). Related
literature on the use of quantile regression and marginal models includes Lipsitz et al. (1997),
Yang et al. (2017), Zhao et al. (2020) and Lin et al. (2020), for example.
In our paper we introduce a generalization of the GEE approach of Liang & Zeger (1986) by
using the Huber’s loss function. We define a new robust estimator based on the Generalized
M-quantile Estimating Equations (GMQEE) and establish its asymptotic properties using
the Bahadur representation (Bahadur 1966). The proposed method is robust to influential
observations in the data and improves the estimation efficiency by taking into account the
correlation between linear combinations of the outcomes within each cluster.
Moreover, when theoretically all directions are investigated simultaneously, the proposed di-
rectional M-quantiles generate centrality regions and contours which allow us to assess the
effect of covariates on the location, spread and shape of the entire distribution of the re-
sponses. In this case, M-quantile contours are represented by contour lines with constant
quantile level dividing the responses in two groups. In particular, the points that lie outside
can be classified as jointly abnormal compared to those that fall within the contour, condi-
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tional on the covariates. M-quantile contours adapt to the shape of the distribution of interest
and summarize the information carried by directional M-quantiles describing the dependence
between the responses and specific features of multivariate data. To analyse their shapes and
study the sampling variability of the M-quantile estimator of the contours, we explore the use
of a bootstrap approach to build confidence envelopes.

Using simulations, we illustrate the finite sample performance and the improvement in the
estimation efficiency under the approach introduced compared to the case where clustering is
ignored, and study the behaviour of the proposed robust estimator in the presence of outliers.
From an empirical standpoint, we exploit the proposed MMQ regression model to analyse the
Tennessee’s Student/Teacher Achievement Ratio (STAR) experiment (see Word et al. 1990
and Finn & Achilles 1990). Educational data often have a natural dependency structure,
namely pupils are nested within schools, which induces correlation between students belong-
ing to the same school. We develop a MMQ regression to jointly model students’ mathematics
and reading scores as a function of classroom size and teacher’s experience in kindergarten.
This model might be of great interest since it allows us to investigate the potentially differ-
ential impact of covariates on the joint distribution of the response variables.

The rest of the paper is organized as follows. In Section 2 we introduce the main nota-
tion and briefly review the M-quantile regression model. Section 3 describes the proposed
methodology and Section 4 discusses the estimation procedure and develops the asymptotic
theory. Section 5 presents the simulation study and the results. The application is presented
in Section 6 and Section 7 presents some concluding remarks.

2 Preliminaries on M-quantile regression

M-quantile regression is a “quantile-like” generalization of regression based on influence func-
tions. It extends the ideas of M-regression (Huber 1964) to model the relationship between
the dependent variable and its predictors at different parts of the conditional distribution. In
particular, this method provides a procedure which can be varied smoothly so as to capture
the effect of explanatory variables on the response either in the center of the sample or in the
tails by using continuous influence functions (Breckling & Chambers 1988).

Formally, the M-quantile of order τ ∈ (0, 1) of a continuous scalar response Y given the
k-dimensional vector of covariates X = x, is defined as the solution θx(τ) of the following
estimating equation: ∫

ψτ (y − θx(τ))dFY |X(y | x) = 0, (1)

where FY |X(· | x) is the conditional distribution function of Y , ψτ (u) =| τ − 1(u<0) | ψ(u/στ )
with ψ(·) being the first derivative of a convex loss function ρ(·) and στ is a suitable scale
parameter.

In a regression framework, for a given τ and ψ(·), a linear M-quantile regression model is
defined as follows:

θx(τ) = x′β(τ), (2)

where β(τ) is the k-dimensional regression parameter vector.
In this work, the influence function ψ(·) in (1) is chosen to be the well-known Huber

influence function (Huber 1964):

ψ(u) = u1(|u|≤c) + c sign(u)1(|u|>c), (3)

4



where c denotes a tuning constant bounded away from zero. The function in (3) down weights
residuals exceeding the selected value of c and remains bounded to ensure that θx(τ) will not
be distorted by arbitrarily large observations. The use of the Huber influence function is
chosen for several reasons. The tuning constant c can be used to trade robustness for effi-
ciency with increasing robustness when c is chosen to be positive and close to 0 and increasing
efficiency when c is chosen to be large and positive. If c → 0, ψ(u) = sign(u), one obtains
the quantile regression (Koenker & Bassett Jr 1978); on the other hand, if c→∞, ψ(u) = u,
M-quantile regression reduces to expectile regression (Newey & Powell 1987). Secondly, as
described in Street et al. (1988), the regression parameters β(τ) in (2) can be estimated by It-
erative Reweighted Least Squares (IRLS) or using the Newton-Raphson algorithm developed
in Bianchi et al. (2018). In contrast to algorithms used for fitting quantile regression models,
the use of a continuous monotone influence function, as it is the case for the Huber func-
tion, guarantees convergence to a unique solution (Kokic et al. 1997). Proofs of consistency,
asymptotic normality and estimators of the variance of the M-quantile regression coefficients
are established in Bianchi & Salvati (2015). These properties make the M-quantile regression
versatile and computationally appealing.

When it comes to a multivariate adaption of univariate M-quantiles, the main difficulty is
that there does not exist a natural ordering in p dimensions, p > 1 (Breckling & Chambers
1988). The papers by Breckling & Chambers (1988) and Kokic et al. (2002) addressed this
problem by introducing a direction vector in the Euclidean p-dimensional space to establish
a suitable ordering procedure for multivariate observations. In both the univariate and mul-
tivariate cases, the available definitions of M-quantile assume independent observations and
do not allow for the analysis of dependent data. In the next section we will consider a differ-
ent approach to multivariate M-quantiles based on directional M-quantiles accounting for the
possible correlation between observations that belong to the same cluster.

3 Marginal M-quantile model for multivariate de-

pendent data

In this section we introduce a new definition of multivariate M-quantiles based on directional
M-quantiles by extending the idea of Kong & Mizera (2012). In order to account for depen-
dencies in the data, we develop a Marginal M-quantile (MMQ) regression model for directional
M-quantiles, which incorporates a correlation matrix to handle within-cluster correlation. We
then summarize the information contained in directional M-quantiles by describing the depen-
dence between the outcome variables, and the location, shape and spread of the distribution
of the responses conditional on different values of the covariates.

Suppose we have data on an absolutely continuous p-variate response variable Yij =

(Y
(1)
ij , . . . , Y

(p)
ij )′ with yij being the corresponding observed value and let Xij = (X

(1)
ij , . . . , X

(k)
ij )

be a k-dimensional vector of explanatory variables recorded for the i-th unit in the j-th cluster
of size nj , for j = 1, ..., d and i = 1, ..., nj with n =

∑d
j=1 nj . To simplify the notation, we

stack up the projected responses on u to the nj dimensional vector Ỹj = (u′Y1j , . . . ,u
′Ynjj)

′,
while Xj = (Xij , . . . ,Xnjj) is a nj × k matrix collecting the covariates for group j.

Definition 1. Let Y be a continuous p-dimensional random vector with absolutely continuous
distribution function and let ψ(·) denote the Huber influence function in (3). For any τ ∈ (0, 1)
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and direction u ∈ Sp−1, the directional M-quantile of order τ , in the direction u, θu(τ), is the
τ -th M-quantile of the corresponding projection of the distribution of Y.

The proposed directional M-quantile is real-valued and it corresponds to the univariate
τ -th M-quantile of the distribution of u′Y, where the direction u can be interpreted as a
weight vector for each marginal distribution of Y involved in the regression problem. In addi-
tion, directional M-quantiles inherit the computational advantages, robustness and efficiency
properties of standard univariate M-quantiles described in Section 2. Specifically, by varying
the tuning constant c in (3), directional M-quantiles reduce to directional quantiles of Kong
& Mizera (2012) when c→ 0 and reduce to directional expectiles for c large. Clearly, Defini-
tion 1 includes the traditional notion of univariate M-quantile. For p = 1, indeed, S0 simply
reduces to two end-points, {−1, 1}, and θu(τ) to the classical univariate M-quantile. The
direction u is often selected depending on the empirical problem in order to produce mean-
ingful results (see Paindaveine & Šiman 2011, Kong & Mizera 2012, Geraci et al. 2020 and
Farcomeni et al. 2020). A further possibility is to use the principal component of a Principal
Component Analysis by maximizing the variance of the projected data u′Y as discussed in
Korhonen & Siljamäki (1998) and in Geraci et al. (2020).

In the regression context, the proposed definition can be easily extended to conditional dis-
tributions when covariates are available. For a given τ ∈ (0, 1) and u ∈ Sp−1, the conditional
directional M-quantile is defined as:

θu,x(τ) = x′ijβ(τ), i = 1, ..., nj and j = 1, ..., d, (4)

where xij is the covariates vector for the i-th subject in the j-th group and β(τ) is the k-
dimensional vector of regression coefficients.

In the literature there have been numerous approaches proposed to account for the depen-
dence structure of the data (see for instance Liang & Zeger 1986, Heagerty et al. 2000, Diggle
et al. 2002, Goldstein 2011 and the references therein). One possible solution is to consider the
so called marginal modeling framework (see Liang & Zeger 1986, Lindsey 1999, Heagerty et al.
2000, Bergsma et al. 2009) and estimate the parameters using the GEE approach of Liang &
Zeger (1986). To account for the dependence structure which arises because of the clustered
observations, we introduce a suitable correlation matrix Cj(rj) of size nj indexed by the sj-
dimensional vector rj which fully characterizes the correlation between groups, j = 1, ..., d.
This “working” correlation matrix Cj(rj) is able to capture within group dependence and
enhance the efficiency of the regression coefficients estimator (see also Liang & Zeger 1986,
Zeger & Liang 1986 and Zeger et al. 1988).

Following Sinha & Rao (2009) and Liang & Zeger (1986), for a given τ and direction u,
we define the estimator β̂MMQ(τ) as the solution of the following Generalized M-quantile
Estimating Equations (GMQEE):

U(β(τ)) =
d∑
j=1

Uj(β(τ)) =
d∑
j=1

X′jΣ
−1
j (rj)V

1
2
j ψτ (zj) = 0, (5)

where zj = V
− 1

2
j (Ỹj −Xjβ(τ)) denotes the nj-dimensional vector of standardized residuals,

Vj is the diagonal matrix of size nj which contains the scale parameter σ2τ for the residuals’
distribution Ỹj −Xjβ(τ), ψτ (·) is the influence function in (3) and

Σj(rj) = V
1
2
j Cj(rj)V

1
2
j , (6)
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is the “working” covariance matrix. Several remarks are noteworthy regarding the method-
ology introduced above. First, when Cj(rj) = Inj , with Inj being the identity matrix of size
nj , (5) reduces to:

UI(β(τ)) =

d∑
j=1

X′jV
− 1

2
j ψτ (zj) = 0, (7)

where independence between clustered observations is assumed. In this case, we denote β̂I(τ)
the estimator of β(τ) as the solution of (7). Second, contrary to the well known GEE esti-
mator of Liang & Zeger (1986), using the Huber’s function ensures that β̂MMQ(τ) behaves
robustly against outliers for finite values of c. Furthermore, by focusing on linear combina-
tions of Y, inference on βMMQ(τ) accounts for the possible correlation between the outcomes
through the working correlation structure in (6). Finally, it should also be pointed out that,
when the p directions forming the standard basis of Rp are considered, our methodology re-
duces to p component-wise univariate MMQ regressions as a by-product. To the best of our
knowledge, this is the first time a marginal M-quantile regression model is being introduced
in the literature.

As stated in Liang & Zeger (1986) and Zeger et al. (1988), (5) gives consistent estimates
of the regression parameters and of their variances, and when the correlation structure of the
data is appropriately incorporated, it improves the efficiency of parameter estimation relative
to β̂I(τ) (Liang & Zeger 1986, Crowder 1995, Wang & Carey 2003, 2004 and Hin & Wang
2009). We present the asymptotic properties of the proposed estimator β̂MMQ(τ) in Section
4.1.

Several choices for Cj(rj) have been proposed in the related literature, such as the ex-
changeable correlation structure [Cj(rj)]ik = r for all units i and k, i 6= k, in the j-th group, or
the AR1 structure [Cj(rj)]ik = r|i−k| where the correlation decreases geometrically with sepa-
ration as in autoregressive schemes; or the totally unspecified structure [Cj(rj)]ik = rik, where
[Cj(rj)]ik denotes the (i, k)-th element of Cj(rj). Their specification and the parameters in-
terpretation depend on the application under investigation. For example, the exchangeable
correlation structure occurs in clustered data while the AR1 structure can be a suitable choice
to take into account time dependence among repeated measurements in longitudinal data.

3.1 M-quantile regions and contours

In the previous sections we described the MMQ regression model when a fixed direction in
Sp−1 is considered. To provide a full description of the dependence of the responses Y on
the regressors X, we investigate how directional M-quantiles can provide a summary when,
theoretically, all directions over the (p − 1)-dimensional unit sphere Sp−1 are investigated
simultaneously, for fixed τ .

Let y denote the realization of the random vector Y. For a given τ ∈ (0, 1) and u ∈ Sp−1,
we first define the τ -th directional M-quantile regression hyperplane:

πu,x(τ) = {y ∈ Rp : u′y = θu,x(τ)}, (8)

where θu,x(τ) is defined in (4). For example, when p = 2, the hyperplanes in (8) amount to
lines which indicate how directional M-quantiles divide the data. Each hyperplane πu,x(τ)
characterizes a lower (open) and an upper (closed) M-quantile regression halfspace H−u,x(τ) =
{y ∈ Rp : u′y < θu,x(τ)} and H+

u,x(τ) = {y ∈ Rp : u′y ≥ θu,x(τ)}, respectively. M-quantile

7



centrality regions and contours of order τ are obtained by taking the “upper envelope” of
the τ -th directional M-quantile hyperplanes in (8). If the distribution of Y is absolutely
continuous, we may restrict to τ ∈ (0, 12 ] and define the τ -th M-quantile region conditional on
X = x, Rx(τ) ⊂ Rp, as:

Rx(τ) =
⋂

u∈Sp−1

H+
u,x(τ). (9)

The region defined in (9) is convex, compact and bounded (Hallin et al. 2010, Kong & Mizera
2012), and the corresponding conditional M-quantile contour of order τ is defined as the
boundary ∂Rx(τ) of Rx(τ). Such quantities are of crucial interest as they are able to detect
covariate-dependent features of the distribution of the responses given X, while ensuring
robustness to outlying data. Specifically, for fixed τ , when the tuning constant of the Huber
loss function c in (3) goes to zero, M-quantile contours reduce to directional quantile envelopes
illustrated in Kong & Mizera (2012); on the other hand, when c→∞ our methodology allows
us to introduce the definition of expectile contours as a particular case. Meanwhile, for a
given c, the contours are nested as τ increases. As τ → 0, the M-quantile contour of order
τ approaches the convex hull of the sample data providing valuable information about the
extent of extremeness of the points.

4 Estimation and inference

In this section we provide the algorithm to compute an estimate of the robust estimator
β̂MMQ(τ) in (5), for fixed τ and u. Then, holding τ fixed, when u ranges over a subset
of Sp−1 we present the estimation procedure to obtain ∂Rx(τ) and construct confidence en-
velopes. We conclude this section by deriving the asymptotic properties of β̂MMQ(τ).

In order to estimate β̂MMQ(τ) and the corresponding covariance matrix Ω(β̂MMQ(τ))
we propose to use the iterative Newton-Raphson algorithm to solve the GMQEE in (5). The
elements rj of the correlation matrix Cj(rj), j = 1, ..., d are obtained by exploiting the method
of moments (see Liang & Zeger 1986, Fu & Wang 2012, Marino & Farcomeni 2015, Lu & Fan
2015 and Barry et al. 2018). As mentioned before, the choice of Cj(rj) depends on the
empirical problem at hand. If, for example, we assume an exchangeable structure, we have
that the correlation parameter rj = r can be computed by using the following formula:

r =

∑d
j=1

∑nj
i<i′ ψτ (zij)ψτ (zi′j)

φ(
∑d

j=1
1
2nj(nj − 1)− k)

Exchangeable, (10)

while, for the first-order autoregressive working strucutre, r can be estimated by:

r =

∑d
j=1

∑nj−1
i=1 ψτ (zij)ψτ (zi+1j)

φ(
∑d

j=1 nj(nj − 1)− k)
Autoregressive. (11)

Alternatively, when a completely general correlation matrix is considered, we have the un-
structured case, i.e.:

rii′ =

∑d
j=1 ψτ (zij)ψτ (zi′j)

φ(d− k)
, i 6= i′ Unstructured, (12)
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where φ = 1
n−k

∑d
j=1

∑nj
i=1 ψτ (zij)

2. In what follows, we report all the steps of the algorithm

to estimate β̂MMQ(τ) and Ω(β̂MMQ(τ)).

Algorithm The GMQEE algorithm

1 Let β̂
(0)

(τ) = β̂I(τ) and Ω(β̂
(0)

(τ)) = 1
dIk denote the starting values for the algorithm.

2 Given β̂
(b)

(τ) at the b-th iteration, set ε̂
(b+1)
ij = ỹij − x′ijβ̂

(b)
(τ) and compute στ , zij and φ as:

σ̂(b+1)
τ =

Med{| ε̂(b+1)
ij −Med{ε̂(b+1)

ij } |}
0.6745

,

ẑ
(b+1)
ij =

ỹij − x′ijβ̂
(b)

(τ)

σ̂
(b+1)
τ

,

φ̂(b+1) =
1

n− k

d∑
j=1

nj∑
i=1

ψτ (ẑ
(b+1)
ij )2,

with ỹij being the i-th element of the vector ỹj defined in Section 3.

3 Depending upon the choice of Cj(rj), update the correlation parameters r̂
(b+1)
j using ẑ

(b+1)
ij and φ̂(b+1).

4 Given r̂
(b+1)
j , update β̂

(b)
(τ) and Ω(β̂

(b)
(τ)) by:

β̂
(b+1)

(τ) = β̂
(b)

(τ) +

[
− ∂U(β(τ))

∂β(τ)

]−1
β̂
(b)

(τ)

[
U(β(τ))

]
β̂
(b)

(τ)

,

Ω(β̂
(b+1)

(τ)) =

[
− ∂U(β(τ))

∂β(τ)

]−1
β̂
(b)

(τ)

[
Cov(U(β(τ)))

]
β̂
(b)

(τ)

[
− ∂U(β(τ))

∂β(τ)

]−1
β̂
(b)

(τ)

,

where

∂U(β(τ))

∂β(τ)
= −

d∑
j=1

X′jΣ
−1
j (rj)DjXj

and

Cov(U(β(τ))) =
d∑
j=1

X′jΣ
−1
j (rj)V

1
2
j ψτ (zj)ψ

′
τ (zj)V

1
2
j Σ−1j (rj)Xj ,

with Dj being the diagonal matrix with i-th element [D]ij =
∂ψτ (zij)
∂zij

.

5 Repeat 2-4, until convergence. In this work, convergence is achieved when the difference between the
estimated model parameters obtained from two successive iterations is less than 10−8.

At the end of the procedure, we compute the estimate π̂u,x(τ) and Ĥ+
u,x(τ) in (8) and

(9). Keeping τ fixed, we repeat the algorithm by varying the direction u over a finite subset
Sp−1B ⊂ Sp−1 of all possible directions, B ∈ N. For each u ∈ Sp−1B , the model is re-estimated

and the corresponding π̂u,x(τ) and Ĥ+
u,x(τ) are recorded. In this way, we obtain a sequence
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{Ĥ+
u,x(τ),u ∈ Sp−1B } which allows us to compute the estimate R̂x(τ) of Rx(τ) as:

R̂x(τ) =
⋂

u∈Sp−1
B

{Ĥ+
u,x(τ)}. (13)

We then estimate the contour ∂R̂x(τ) from (13).

To analyse the shape of ∂R̂x(τ) and provide a simple representation of its variability,
we construct confidence regions for ∂R̂x(τ). Following Molchanov (2005) and Molchanov &
Molinari (2018) let us denote by Haus(A,B) the Hausdorff distance between two sets, say A
and B. Our objective is to construct an asymptotically valid confidence set, Cd,1−α, such that:

Pr(∂Rx(τ) ⊂ Cd,1−α) = 1− α, (14)

as d→∞. Let W = Haus(∂R̂x(τ), ∂Rx(τ)) and define:

w1−α = F−1W (1− α). (15)

Then, it is easy to see that:

Pr(∂Rx(τ) ⊂ ∂R̂x(τ)⊕ w1−α) ≥ 1− α. (16)

To approximate the distribution of W following Chen et al. (2017) and Molchanov & Moli-
nari (2018), we adopt a nonparametric block bootstrap approach which preserves the group
dependencies. Let ((Y?

1,X
?
1), ..., (Y

?
d? ,X

?
d?)) be a bootstrap sample and let ∂R̂?x(τ) denote

the corresponding estimate of the order-τ M-quantile regression contour. We define W ? =
Haus(∂R̂?x(τ), ∂R̂x(τ)) and define the bootstrap estimate of w1−α as:

ŵ1−α = F−1W ?(1− α). (17)

Then the bootstrap confidence set for ∂Rx(τ) is ∂R̂x(τ) ⊕ ŵ1−α. In particular, this proce-
dure allows us to construct asymptotically valid confidence envelopes for ∂Rx(τ) (see Chen
et al. 2017 and Molchanov & Molinari 2018) and identify potential influential observations
depending on whether they fall inside or outside the estimated envelope.

4.1 Asymptotic properties

This section presents the asymptotic properties of the GMQEE estimator. Specifically, we
derive the Bahadur-type (Bahadur 1966) representation, consistency and asymptotic normal-
ity for β̂MMQ(τ) for fixed τ and u. Throughout this section, let Σj = Σj(rj), j = 1, ..., d.

Consider the following assumptions:

(i) The distribution of the random vector Y is absolutely continuous with respect to the
Lebesgue measure on Rp, with density that has connected support, and admits finite
first-order moments.

(ii) (Yj ,Xj), j = 1, ..., d is an i.i.d. sample from (Y,X).

(iii) The function ρ(·) related to (1) is continuous and strictly monotonic.
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(iv) The function ψ(·) in (3) is bounded, non-decreasing and is twice differentiable at β̂MMQ(τ),
with the convention ψ(0) = 0.

(v) E[|| U(β(τ)) ||2] <∞, ∀β(τ) ∈ Rk.

(vi) Let H denote the k × k matrix:

H =
1

d

d∑
j=1

X′jΣ
−1
j E[Dj ]Xj , (18)

with H being positive definite.

Theorem 1. Let assumptions (i)-(vi) hold. Then,

√
d(β̂MMQ(τ)− β(τ)) =

1√
d
H−1

d∑
j=1

Uj(β(τ)) + o(1) (19)

and √
d(β̂MMQ(τ)− β(τ))

p→ N (0,H−1BH−1) as d→∞, (20)

with B being

B =
1

d

d∑
j=1

X′jΣ
−1
j V

1
2
j E[ψτ (zj)ψ

′
τ (zj)]V

1
2
j Σ−1j Xj . (21)

Proof. By assumptions (iii)-(iv), the Huber loss function ρ(·) with constant c bounded away
from zero is continuous, differentiable and convex, thus the estimating equation U(β(τ)) in
(5) is continuous in β(τ). Furthermore, H is positive definite by assumption (v) (see Bianchi
& Salvati 2015). Then, Theorem 4 of Niemiro et al. (1992) applies which establishes the
Bahadur representation in (19). Subsequently, (20) follows from (19) by the multivariate
Central Limit Theorem and the Slutsky’s Theorem.

It is worth noting that assumptions (i)-(vi) are quite mild and standard in robust esti-
mation theory. For example, assumption (i) holds when Y is multivariate Gaussian or mul-
tivariate Student t distribution with ν > 2 degrees of freedom; assumption (iii) is a technical
moment condition required for the asymptotic representation of β(τ) while assumption (iv) is
an identifiability condition. In assumption (iv) instead, the existence and positive-definiteness
ensure the invertibility of H needed for the Bahadur representation.

In order to use Theorem 1 to build confidence intervals and hypothesis tests for β̂MMQ(τ),
a consistent estimator of the asymptotic covariance matrix H−1BH−1 in (20) is needed. We
estimate H and B using a generalization of the robust estimator in White (1980) based on
the well known sandwich approach, i.e.:

Ĥ =
1

d

d∑
j=1

X′jΣ̂
−1
j D̂jXj , (22)

B̂ =
1

d

d∑
j=1

X′jΣ̂
−1
j V

1
2
j ψτ (ẑj)ψ

′
τ (ẑj)V

1
2
j Σ̂−1j Xj , (23)

with D̂j =
∂ψτ (ẑij)
∂zij

and Σ̂j = Σj(r̂j).

We now show that the covariance matrix estimator Ĥ−1B̂Ĥ−1 is consistent.
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Theorem 2. Let assumptions (i)-(vi) hold. Then,

Ĥ−1B̂Ĥ−1 −H−1BH−1
p→ 0, (24)

where the notation is understood to indicate convergence of the matrices element by element.

Proof. To prove consistency of Ĥ−1B̂Ĥ−1, it suffices to apply Theorem 5 in Bianchi & Salvati
(2015).

Finally, following Prentice & Zhao (1991) and Yan & Fine (2004), the robust covariance
estimator for the correlation parameter rj is:

Ω(r̂j) =
( d∑
j=1

K′jKj

)−1( d∑
j=1

K′jCov(ŝj)Kj

)( d∑
j=1

K′jKj

)−1
, (25)

where Kj = ∂αj/∂rj , αj and ŝj are the nj(nj−1)/2 vectors of pairwise correlations in Cj(rj)
and of upper triangular elements of the matrix ψτ (ẑj)ψ

′
τ (ẑj) in vector form, respectively.

5 Simulation study

In this section we conduct a simulation study to evaluate the finite sample properties of the
proposed method. We address the following issues. First, we consider a subset of directions
in Sp−1 to study: (i) the efficiency of the MMQ model with respect to the independence
assumption case and (ii) its robustness to outlying values and misspecification of the true
correlation structure for different distributional choices of the error term and degrees of de-
pendence among clustered units. Second, we provide a visual representation of the dependence
between the Y’s, and location and shape of M-quantile contours conditional on the covariates
under different data generating mechanisms.

The observations are generated from the following bivariate, p = 2, regression model:

Yij = X′ijB + εij , i = 1, ..., nj and j = 1, ..., d, (26)

where nj = 7 for j = 1, ..., d with d = 120 and Xij = (1, X
(1)
ij )′. The explanatory variable

is generated from a standard Normal distribution and B =
(
100 110
2 1

)
. Following Cho (2016),

two error distributions are considered for εj = (ε1j , ..., εnjj)
′:

(N ): multivariate Normal distribution with mean 0, marginal variance 1 and an ex-
changeable correlation structure with a correlation coefficient r;

(T ): multivariate Student t distribution with 3 degrees of freedom, non centrality param-
eter equal to 0 and an exchangeable correlation structure with a correlation coefficient
r.

This enables us to set both the correlation coefficient within the observations in the j-th group
and the one between different response variables k = 1, ..., p over the same i-th unit to be
r, i.e. Cor(Yijk, Yi′jk) = Cor(Yijk, Yijk′) = r with i 6= i′ and k 6= k′. Similarly to Lu & Fan
(2015), Fu & Wang (2012) and Lin et al. (2020), we consider errors with low (r = 0.3) and high
(r = 0.8) correlation. To investigate the robustness of the proposed method to the presence
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of outliers, in the N -scenario we contaminate the responses by using Yij +δijN2(0,Σ), where
δij ∼ Ber(α), with α = Pr(δij = 1), and where Σ is a p×p diagonal variance-covariance matrix
with marginal variances equal to 100 and 150. The proportion of contaminated observations
α is chosen to be 10%. Naturally, when α = 0 there is no contamination and errors follow a
Normal distribution, whereas the other setting corresponds to clear deviations from normality
to more heavy-tailed distributions.

For each simulation configuration, we select three quantile levels τ = (0.1, 0.5, 0.9) and
three directions, namely u1 = (1, 0),u2 = (13 ,

2
3) and u3 = (0, 1), where the first and last

vectors points vertically in the Y (1) and Y (2) direction, respectively. For u1 and u3, our MMQ
model reduces to two component-wise univariate regressions where each marginal of Y is
regressed onto the covariates X, while the second direction weights equally Y (1) and Y (2). We
first project Y onto each direction u and then regress u′Y on the explanatory variables X using
the MMQ model. For a given τ and u, the true vector of the MMQ model parameters β(τ) =
(β0(τ), β1(τ)) can be computed as β(τ) = Bu, where the intercept β0(τ) has been corrected to
ensure that the conditional τ -th M-quantile of u′Y is equal to X′β(τ). To evaluate the impact
of misspecifying the working correlation structure on inference, we fit the MMQ model using
the Exchangeable (E), Autoregressive of order one (AR1) and Unstructured (U) correlation
matrices, and compare the results with the simplifying Independence (I) hypothesis which
explicitly disregards the dependency between clustered observations. The tuning constant c
in (3) has been set to 1.345 which gives reasonably efficiency under normality and protects
against outliers (Huber & Ronchetti 2009).

We carry out H = 1000 Monte Carlo replications and we calculate the Average Relative
Bias (ARB) defined as:

ARB(θ̂τ ) =
1

H

H∑
h=1

(θ̂
(h)
τ − θτ )

θτ
× 100, (27)

where θ̂
(h)
τ is the estimated parameter at quantile level τ for the h-th replication and θτ is the

corresponding “true” value of the parameter. To evaluate the efficiency of β̂MMQ(τ) w.r.t.

β̂I(τ), we compute the Relative Efficiency (REF) measure defined as:

REF(β̂(τ)) =
S2(β̂MMQ(τ))

S2(β̂I(τ))
, (28)

where S2(β̂(τ)) = 1
H

∑H
h=1(β̂(τ)(h) − β̄(τ))2 and β̄(τ) = 1

H

∑H
h=1 β̂(τ)(h). The REF defined

in (28) measures the efficiency gain of the estimates of β(τ) using the proposed directional
M-quantile regression method, β̂MMQ(τ), over the independence assumption, β̂I(τ). When

REF(β̂(τ)) is less than one, this indicates that β̂MMQ(τ) is preferable. Tables 1-2 show

the ARB and REF measures of the proposed estimators β̂MMQ(τ) for each component of
the parameter vector β(τ) under the considered working correlation structures. As can be
noted, when there are no outliers in the data, the proposed model under the Gaussian and
the Student t error distributions is able to recover the regression coefficients for both low
(Table 1) and high (Table 2) degree of dependence. Not surprisingly, the bias effect is quite
small when we analyze the median levels. As the τ levels become more extreme, the ARB
increases because of the reduced amount of information in the tails of the distribution but
it remains reasonably small. In the presence of outliers, the proposed method still provides
uniformly good results even when the working correlation matrix is incorrectly specified, as
large residuals are down-weighted by the constant c of the Huber functions and do not produce
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much larger biases. The results with α = 5% and α = 20% confirm these findings and are
available from the authors.

Furthermore, the estimator of the proposed model is more efficient than the corresponding
estimator from classical M-quantile regression under the independence assumption. Exami-
nation of Table 1 shows that with a moderate correlation (r = 0.3), the relative efficiencies
of the regression estimators β̂MMQ(τ) perform slightly better when the errors follow a mul-
tivariate Normal and Student t distributions. When the correlation increases (r = 0.8), the
proposed estimator become much more efficient than the working independence estimator.
This pattern is consistent across all three examined quantile levels even under the misspeci-
fied AR1 correlation structure, indicating the robustness of the proposed method. In the case
of contamination (α = 10%), our estimator still outperforms the naive one β̂I(τ) with low
and large r. This demonstrates that the β̂MMQ(τ) estimator yields positive results in settings
with clear departures from normality as the MMQ model protects against outlying values and
accounts for the specific dependence structure embedded in the data. In addition, by focusing
on linear combinations of the responses (see Panels B in Tables 1-2), there is an even greater
improvement in the estimation efficiency compared to the independence assumption because
the working correlation matrix also accounts for the correlation between the outcomes within
each cluster.

To evaluate the performance of the estimated variances as described in (20), we report the
Coverage Probability (CP) of nominal 95% confidence intervals for β0(τ) and β1(τ) defined

by the number of times the interval θτ ±2

√
Var(θ̂τ ) contains the “true” population parameter

divided by the number of Monte Carlo replicates H. The results presented in Tables 3 and 4
indicate that under the Gaussian, contaminated Gaussian scheme and Student t scenarios, our
variance estimator leads to confidence intervals with coverage close to the theoretical value of
0.95 for all τ levels. This therefore suggests that the proposed large sample approximation is
suitable for approximate inference of the MMQ regression parameters for moderate contami-
nation levels and misspecification of the working correlation.

Finally, to get a graphical representation of how M-quantile contours behave empiri-
cally, we consider 50 equally spaced directions on the unit circle and plot ∂R̂x(τ) for τ =
(0.05, 0.1, 0.25, 0.4) with c = 1.345. Figure 1 shows the estimated contours under the four
data generating processes with a correlation coefficient of r = 0.3, conditional on the 0.05-th

(violet), 0.5-th (orange) and 0.95-th (green) empirical quantiles of X
(1)
ij . In particular, one

can see that ∂R̂x(τ) slowly ascend upward along the data cloud, demonstrating the positive
dependence with increasing values of the covariate. The most obvious features of all plots are
the fact that the enclosed area is decreasing with increasing τ , thus the contours are neatly
nested, and their behaviour under different levels of contamination by outliers. These figures
also suggest that, as the contour lines approach the convex hull of the sample data for small
values of τ , they can be employed to detect possible outliers, corresponding to extreme points
falling outside the estimated boundary.

6 Application

In this section we apply the proposed methodology to the Tennessee’s Student/Teacher
Achievement Ratio (STAR) dataset (http://fmwww.bc.edu/ec-p/data). The STAR exper-
iment (see Word et al. 1990 and Finn & Achilles 1990) is a four-year longitudinal class-size
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Model Coef 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

N N − 10% T
Panel A: u1

I
β0 0.002 (1.000) −0.011 (1.000) −0.019 (1.000) 0.005 (1.000) −0.010 (1.000) 0.006 (1.000) −0.024 (1.000) −0.023 (1.000) −0.037 (1.000)
β1 −0.009 (1.000) 0.052 (1.000) −0.064 (1.000) −0.116 (1.000) −0.171 (1.000) −0.160 (1.000) −0.025 (1.000) −0.035 (1.000) −0.111 (1.000)

E
β0 0.002 (0.985) −0.010 (1.013) −0.020 (1.002) 0.005 (1.004) −0.010 (0.981) 0.007 (0.997) −0.025 (1.002) −0.023 (1.002) −0.038 (0.982)
β1 0.000 (0.828) 0.099 (0.786) −0.090 (0.879) −0.138 (0.950) −0.064 (0.862) −0.110 (1.008) −0.124 (0.850) −0.060 (0.825) −0.049 (0.838)

AR1
β0 0.002 (0.984) −0.011 (1.019) −0.020 (0.999) 0.005 (1.001) −0.011 (0.978) 0.007 (0.999) −0.024 (1.011) −0.023 (1.018) −0.039 (0.995)
β1 −0.037 (0.946) 0.091 (0.940) −0.097 (0.972) −0.156 (0.981) −0.081 (0.968) −0.131 (1.014) −0.031 (1.003) −0.028 (0.958) −0.119 (1.002)

U
β0 0.005 (1.027) −0.011 (1.045) −0.025 (1.057) −0.000 (1.067) −0.012 (1.017) 0.011 (1.051) −0.002 (1.019) −0.024 (1.009) −0.060 (0.948)
β1 0.004 (0.874) 0.063 (0.812) −0.087 (0.939) −0.135 (1.036) −0.113 (0.912) 0.020 (1.038) 0.048 (0.830) −0.070 (0.885) 0.061 (0.880)

Panel B: u2

I
β0 0.006 (1.000) −0.007 (1.000) −0.018 (1.000) 0.008 (1.000) −0.005 (1.000) −0.005 (1.000) −0.013 (1.000) −0.018 (1.000) −0.038 (1.000)
β1 0.003 (1.000) 0.016 (1.000) −0.196 (1.000) −0.099 (1.000) −0.075 (1.000) −0.105 (1.000) −0.153 (1.000) −0.009 (1.000) −0.026 (1.000)

E
β0 0.005 (1.009) −0.007 (1.023) −0.017 (1.036) 0.008 (0.994) −0.004 (0.991) −0.005 (1.006) −0.014 (1.007) −0.018 (0.988) −0.036 (1.013)
β1 0.040 (0.718) 0.017 (0.627) −0.060 (0.817) −0.107 (0.910) 0.044 (0.730) −0.073 (0.907) −0.147 (0.714) −0.007 (0.646) −0.095 (0.648)

AR1
β0 0.005 (1.014) −0.007 (1.036) −0.017 (1.044) 0.008 (0.993) −0.004 (1.002) −0.005 (1.005) −0.013 (1.028) −0.018 (1.010) −0.036 (1.033)
β1 0.043 (0.877) 0.017 (0.877) −0.095 (0.956) −0.102 (0.967) 0.028 (0.868) −0.111 (0.939) −0.003 (0.883) 0.037 (0.859) −0.130 (0.822)

U
β0 0.011 (1.036) −0.007 (1.043) −0.022 (1.092) 0.003 (1.080) −0.005 (1.040) 0.002 (1.078) −0.004 (0.990) 0.004 (0.996) −0.017 (0.973)
β1 0.004 (0.812) 0.014 (0.712) −0.109 (0.910) −0.009 (1.014) 0.026 (0.777) −0.111 (1.034) −0.158 (0.717) −0.009 (0.674) −0.022 (0.648)

Panel C: u3

I
β0 −0.000 (1.000) −0.002 (1.000) −0.011 (1.000) 0.002 (1.000) 0.003 (1.000) 0.006 (1.000) −0.012 (1.000) −0.017 (1.000) −0.040 (1.000)
β1 −0.115 (1.000) −0.183 (1.000) −0.199 (1.000) −0.200 (1.000) 0.101 (1.000) 0.148 (1.000) 0.067 (1.000) −0.076 (1.000) −0.154 (1.000)

E
β0 −0.000 (1.005) −0.003 (1.027) −0.011 (1.015) 0.002 (0.990) 0.003 (1.006) 0.005 (0.969) −0.016 (1.018) −0.019 (1.000) −0.039 (1.026)
β1 −0.068 (0.852) −0.109 (0.825) −0.112 (0.935) −0.213 (0.986) 0.128 (0.885) 0.149 (0.961) −0.078 (0.750) −0.034 (0.775) −0.219 (0.761)

AR1
β0 0.000 (1.007) −0.002 (1.039) −0.011 (1.022) 0.002 (0.992) 0.003 (1.018) 0.005 (0.970) −0.016 (1.023) −0.019 (1.003) −0.040 (1.044)
β1 −0.070 (0.951) −0.096 (0.971) −0.175 (1.000) −0.227 (1.004) 0.111 (1.010) 0.135 (0.979) 0.047 (0.906) 0.023 (0.912) −0.186 (0.917)

U
β0 0.005 (1.085) −0.003 (1.058) −0.015 (1.085) −0.001 (1.050) 0.002 (1.067) 0.008 (1.028) 0.004 (1.031) −0.017 (1.036) −0.060 (1.036)
β1 −0.167 (0.921) −0.124 (0.869) −0.092 (0.999) −0.208 (1.061) 0.181 (0.921) 0.199 (1.068) −0.062 (0.797) −0.097 (0.814) −0.132 (0.755)

Table 1: Values of ARB (in percentage) and REF (in brackets) of β0(τ) and β1(τ) over 1000 Monte
Carlo simulations under the three data generating scenarios with low correlation (Cor(Yijk, Yi′jk) =
Cor(Yijk, Yijk′) = 0.3).

Figure 1: From left to right, estimated M-quantile contours under theN , N−10% and T simulation
scenarios at level τ = (0.05, 0.1, 0.25, 0.4) (from the outside inwards), conditional on the 0.05-th

(violet), 0.5-th (orange) and 0.95-th (green) empirical quantiles of X
(1)
ij .
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Model Coef 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

N N − 10% T
Panel A: u1

I
β0 0.012 (1.000) −0.012 (1.000) −0.028 (1.000) 0.015 (1.000) −0.005 (1.000) 0.000 (1.000) −0.045 (1.000) −0.030 (1.000) −0.047 (1.000)
β1 −0.050 (1.000) −0.073 (1.000) −0.118 (1.000) −0.057 (1.000) −0.058 (1.000) −0.077 (1.000) −0.046 (1.000) −0.060 (1.000) 0.001 (1.000)

E
β0 0.008 (0.998) −0.013 (0.989) −0.025 (1.007) 0.015 (1.003) −0.005 (1.006) −0.002 (0.985) −0.045 (1.032) −0.030 (0.992) −0.045 (0.986)
β1 −0.023 (0.347) −0.014 (0.271) −0.025 (0.382) 0.020 (0.857) −0.005 (0.508) 0.019 (0.894) −0.053 (0.344) −0.064 (0.301) 0.044 (0.340)

AR1
β0 0.009 (1.029) −0.013 (1.007) −0.026 (1.013) 0.016 (0.999) −0.005 (1.007) −0.002 (0.983) −0.044 (1.066) −0.031 (1.035) −0.047 (1.018)
β1 −0.033 (0.534) −0.012 (0.409) −0.041 (0.558) −0.028 (0.980) −0.037 (0.674) −0.044 (0.966) −0.030 (0.532) −0.053 (0.477) 0.007 (0.534)

U
β0 0.014 (1.013) −0.013 (0.989) −0.032 (1.102) −0.010 (1.105) −0.006 (1.044) 0.024 (1.103) −0.030 (1.051) −0.031 (0.979) −0.057 (1.007)
β1 −0.026 (0.376) −0.024 (0.284) −0.022 (0.430) 0.077 (0.961) 0.004 (0.508) −0.011 (0.976) 0.010 (0.330) −0.071 (0.307) 0.072 (0.354)

Panel B: u2

I
β0 0.014 (1.000) −0.010 (1.000) −0.027 (1.000) 0.019 (1.000) −0.006 (1.000) −0.018 (1.000) −0.034 (1.000) −0.027 (1.000) −0.052 (1.000)
β1 −0.064 (1.000) −0.105 (1.000) −0.116 (1.000) −0.076 (1.000) −0.099 (1.000) −0.096 (1.000) −0.083 (1.000) −0.067 (1.000) −0.053 (1.000)

E
β0 0.012 (0.969) −0.011 (1.026) −0.023 (1.015) 0.020 (0.978) −0.005 (0.979) −0.017 (1.011) −0.038 (1.046) −0.028 (0.992) −0.046 (1.037)
β1 0.008 (0.213) −0.021 (0.166) −0.004 (0.249) 0.036 (0.813) 0.054 (0.422) −0.030 (0.817) −0.060 (0.199) −0.029 (0.167) −0.011 (0.197)

AR1
β0 0.013 (1.002) −0.010 (1.037) −0.024 (1.018) 0.021 (0.982) −0.005 (0.998) −0.017 (1.011) −0.037 (1.085) −0.029 (1.026) −0.047 (1.087)
β1 −0.043 (0.348) −0.020 (0.267) −0.016 (0.387) 0.002 (0.945) 0.008 (0.587) −0.111 (0.949) −0.024 (0.325) −0.014 (0.290) −0.082 (0.318)

U
β0 0.015 (1.032) −0.012 (1.015) −0.026 (1.063) −0.015 (1.101) −0.005 (1.045) 0.020 (1.176) −0.028 (1.090) −0.027 (0.989) −0.054 (1.050)
β1 0.031 (0.233) −0.008 (0.178) −0.033 (0.275) 0.047 (0.914) 0.058 (0.429) 0.002 (0.935) −0.021 (0.198) −0.029 (0.174) −0.043 (0.199)

Panel C: u3

I
β0 0.013 (1.000) −0.008 (1.000) −0.028 (1.000) 0.014 (1.000) −0.004 (1.000) −0.017 (1.000) −0.027 (1.000) −0.026 (1.000) −0.054 (1.000)
β1 −0.111 (1.000) −0.243 (1.000) −0.329 (1.000) −0.189 (1.000) −0.016 (1.000) −0.086 (1.000) −0.125 (1.000) 0.019 (1.000) −0.122 (1.000)

E
β0 0.012 (0.999) −0.008 (1.005) −0.024 (1.034) 0.015 (0.977) −0.003 (1.005) −0.015 (0.997) −0.033 (1.047) −0.028 (0.993) −0.050 (1.008)
β1 0.008 (0.368) −0.062 (0.305) −0.022 (0.421) −0.109 (0.853) −0.015 (0.496) −0.036 (0.902) −0.064 (0.318) −0.006 (0.246) −0.170 (0.333)

AR1
β0 0.013 (1.018) −0.008 (1.035) −0.024 (1.059) 0.016 (0.978) −0.003 (1.039) −0.016 (1.004) −0.031 (1.084) −0.028 (1.016) −0.050 (1.045)
β1 −0.097 (0.546) −0.081 (0.473) 0.022 (0.606) −0.137 (0.977) −0.099 (0.683) −0.107 (1.051) −0.008 (0.486) 0.071 (0.404) −0.252 (0.527)

U
β0 0.019 (1.037) −0.007 (1.018) −0.029 (1.066) −0.011 (1.063) −0.003 (1.056) 0.011 (1.114) −0.018 (1.065) −0.026 (0.998) −0.063 (1.050)
β1 −0.014 (0.413) −0.082 (0.315) −0.050 (0.478) −0.353 (0.999) −0.077 (0.481) −0.126 (1.010) −0.068 (0.348) 0.043 (0.279) −0.115 (0.320)

Table 2: Values of ARB (in percentage) and REF (in brackets) of β0(τ) and β1(τ) over 1000 Monte
Carlo simulations under the three data generating scenarios with high correlation (Cor(Yijk, Yi′jk) =
Cor(Yijk, Yijk′) = 0.8).

study funded by the Tennessee General Assembly and conducted by the State Department
of Education. Over 7,000 students in 79 schools were randomly assigned into one of three
interventions: small class (13 to 17 students per teacher), regular class (22 to 25 students
per teacher), and regular-with-aide class (22 to 25 students with a full-time teacher’s aide).
Classroom teachers were also randomly assigned to the classes they would teach. The inter-
ventions were initiated as the students entered school in kindergarten and continued through
third grade. The outcome variables of interest are the scores of mathematics and reading tests
of the Stanford Achievement Test (SAT-9) which are representative of educational attainment
in young students.

Schooling systems present an obvious example of dependency between observations, with
pupils clustered within schools, which the analysis needs to take into due account in order to
avoid misleading inferences. Previous studies examine mathematics and reading test scores
independently using univariate statistical methods neglecting possible information about the
relationship between the grades of the two subjects. In addition, linear models focused on how
educational attainment is determined, on average, by various explanatory variables despite
prior research suggests that the magnitude and direction of relationships may differ across the
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Model Coef 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

N N − 10% T
Panel A: u1

E
β0 0.948 0.942 0.931 0.949 0.936 0.941 0.965 0.939 0.935
β1 0.941 0.957 0.933 0.960 0.938 0.957 0.942 0.957 0.950

AR1
β0 0.949 0.940 0.932 0.948 0.938 0.944 0.961 0.937 0.931
β1 0.948 0.961 0.943 0.957 0.941 0.956 0.956 0.945 0.949

U
β0 0.933 0.937 0.919 0.942 0.930 0.935 0.938 0.935 0.921
β1 0.929 0.948 0.917 0.941 0.927 0.940 0.915 0.941 0.931

Panel B: u2

E
β0 0.943 0.948 0.933 0.949 0.953 0.942 0.958 0.952 0.913
β1 0.945 0.948 0.939 0.961 0.942 0.949 0.954 0.964 0.961

AR1
β0 0.941 0.948 0.934 0.948 0.949 0.941 0.955 0.951 0.913
β1 0.940 0.948 0.941 0.960 0.950 0.943 0.953 0.963 0.959

U
β0 0.933 0.948 0.905 0.938 0.947 0.944 0.936 0.944 0.937
β1 0.921 0.935 0.921 0.940 0.926 0.935 0.925 0.952 0.941

Panel C: u3

E
β0 0.951 0.957 0.948 0.949 0.953 0.953 0.958 0.945 0.916
β1 0.949 0.945 0.951 0.960 0.952 0.947 0.949 0.964 0.957

AR1
β0 0.947 0.957 0.944 0.949 0.953 0.953 0.961 0.942 0.919
β1 0.956 0.956 0.951 0.953 0.950 0.945 0.957 0.958 0.957

U
β0 0.934 0.955 0.928 0.946 0.948 0.948 0.930 0.941 0.933
β1 0.919 0.937 0.931 0.947 0.932 0.929 0.925 0.954 0.937

Table 3: CP of β0(τ) and β1(τ) over 1000 Monte Carlo simulations under the three data generating
scenarios with low correlation (Cor(Yijk, Yi′jk) = Cor(Yijk, Yijk′) = 0.3).

distribution of achievement gains (Haile & Nguyen 2008, Kelcey et al. 2019). For example,
small classes are likely to be beneficial to students at risk for school failure than highly skilled
pupils hence, the effect of class size on students’ performance might be thought of as quantile-
specific. Only recently, Guggisberg (2019) jointly analyzed math and reading scores within a
Bayesian framework for estimation of directional quantiles.

The aim of this analysis is to investigate how the effect of classroom size and teacher’s
experience affect differently the achievement of proficient students (high quantiles) and less
proficient students (low quantiles). We considered the subset of students in kindergarten for
a sample size of n = 3743 divided in d = 79 schools, after removing missing data and, as in
Guggisberg (2019), omitting large classrooms that had a teaching assistant. Since a pupil’s
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Model Coef 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9

N N − 10% T
Panel A: u1

E
β0 0.946 0.948 0.935 0.935 0.953 0.932 0.960 0.945 0.918
β1 0.941 0.952 0.943 0.974 0.948 0.961 0.956 0.951 0.954

AR1
β0 0.944 0.954 0.933 0.932 0.955 0.930 0.963 0.940 0.920
β1 0.937 0.949 0.937 0.970 0.958 0.958 0.954 0.945 0.954

U
β0 0.929 0.951 0.912 0.938 0.950 0.928 0.949 0.945 0.891
β1 0.909 0.936 0.910 0.964 0.935 0.950 0.908 0.936 0.915

Panel B: u2

E
β0 0.946 0.951 0.926 0.937 0.953 0.933 0.954 0.943 0.920
β1 0.942 0.944 0.945 0.965 0.953 0.967 0.964 0.967 0.966

AR1
β0 0.945 0.953 0.922 0.938 0.952 0.935 0.949 0.943 0.912
β1 0.933 0.944 0.935 0.966 0.954 0.964 0.969 0.958 0.962

U
β0 0.928 0.952 0.915 0.947 0.949 0.939 0.949 0.943 0.908
β1 0.927 0.935 0.924 0.965 0.941 0.953 0.905 0.944 0.913

Panel C: u3

E
β0 0.941 0.954 0.918 0.936 0.952 0.935 0.959 0.951 0.918
β1 0.942 0.946 0.930 0.964 0.962 0.962 0.958 0.957 0.956

AR1
β0 0.947 0.952 0.927 0.938 0.951 0.934 0.954 0.944 0.911
β1 0.932 0.930 0.934 0.963 0.958 0.957 0.952 0.958 0.957

U
β0 0.927 0.953 0.910 0.943 0.946 0.938 0.949 0.949 0.935
β1 0.916 0.932 0.919 0.950 0.949 0.945 0.929 0.943 0.916

Table 4: CP of β0(τ) and β1(τ) over 1000 Monte Carlo simulations under the three data generating
scenarios with high correlation (Cor(Yijk, Yi′jk) = Cor(Yijk, Yijk′) = 0.8).

performance is likely to depend not only on its abilities, but also on the characteristics of the
school, to handle dependence between pupils within the same school and avoid convergence
difficulties due to large sized clusters, we assume a parsimonious parametrization of the cor-
relation matrix, namely an exchangeable correlation structure. Following established custom,
the tuning constant c in (3) has been set to 1.345 which gives reasonably efficiency under
normality and protects against outliers (Huber & Ronchetti 2009).

As a preliminary step, to support the choice of using a robust approach we study the
conditional distributions of mathematics and reading scores by fitting separately two univari-
ate Marginal Mean (MM) models under an exchangeable correlation structure. The model
includes the following two predictors, namely classroom size and teacher’s experience. Figure
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2 shows the normal probability plot of the residuals for mathematics (left) and reading (right)
test scores. These reveal the presence of potentially influential observations in the data, indi-
cate severe departures from the Gaussian assumption for both outcomes and show that data
are severely skewed. For these reasons, a robust approach based on M-quantile seems to be
appropriate for these data.

Therefore, we estimate the MMQ model for mathematics and reading scores for specific
directions of interest. Then, we inspect τ -th M-quantile contours when a subset of directions
in Sp−1 is considered simultaneously and directions are aggregated together as shown in (13).
Sections 6.1 and 6.2 report the results, respectively.

Figure 2: Normal probability plots residuals from a Marginal Mean model under an exchangeable
correlation structure for mathematics (left) and reading (right) scores.

6.1 Fixed-u analysis

We fit the MMQ model for τ = (0.1, 0.25, 0.5, 0.75, 0.9) and select three different directions,
i.e., u1 = (1, 0), u2 = ( 1√

2
, 1√

2
) and u3 = (0, 1), using the same covariates as above. The

considered directions have a natural interpretation and allow us to construct linear combina-
tions of mathematics and reading scores depending on how much importance the researcher
wants to give to each subject. In the educational context, a weighted average mark is relevant
because it represents multiple cognitive domains that has improved power compared with the
most sensitive single test items (see Israel et al. 2001 and Kolen et al. 2012). Thus, u1 and
u3 reduce the multidimensional problem to two MMQ regressions on each component of the
bivariate response. On the other hand, u2 is equivalent to choosing the arithmetic mean of
the two scores.

Table 5 shows point estimates of the regression coefficients and of the correlation parame-
ter for the MMQ model at the investigated quantile levels. Statistical significance of regression
coefficients is assessed by computing asymptotic standard errors as described in Section 4.1.
Because we can investigate both mathematics and reading scores among their linear combi-
nations, we compare the proposed MMQ model with existing univariate approaches in the
literature. For each direction u, relative to the standard GEE approach we report the results
of the MM model with an exchangeable correlation matrix. In addition, we also consider the
two-level M-quantile Random Effects (MQRE) model of Tzavidis et al. (2016) and the Linear
Quantile Mixed Model (LQMM) of Geraci & Bottai (2014) with random intercepts, which
is equivalent to assuming an exchangeable correlation structure. These allow us to evaluate
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the sensitivity of our methodology when random intercepts specified at the school level are
included to account for a two level hierarchical structure in the data. Table 6 reports the
estimated parameters of the MQRE model, as well as the estimated Intraclass Correlation
Coefficient (ICC), defined as the ratio of the variance of the random intercepts to the total
variance, which measures the proportion of variance explained by clustering. Table 7 shows
the estimates of the regression coefficients and variance component (σ2school) for the two-level
LQMM. Parameter estimates are displayed in boldface when significant at the 5% level.

Firstly, we observe that the MM and MMQ models produce comparable estimates at
the center of the distribution (τ = 0.5) however the MM regression model cannot be used
to estimate the covariates’ effects in the tails of the distribution. Secondly, consistently
with the quantile regression framework, the estimated intercepts increase when moving from
lower to upper quantiles. The results show that there is evidence of a negative association
between the increase in classroom size and school performance across the examined quantiles.
In particular, the size of the estimated effect is more pronounced at the upper tail of the
distribution of each score than at the lower tail. Therefore, our results indicate that high-
performing students are more affected than low-performing ones by a larger number of students
in the classroom. On the other hand, teacher’s experience is positively associated with the
responses from the lower quantiles up to the 75-th percentile at the 10% significance level.
Such effect is more evident for u1 and u2, suggesting that teachers preparation possibly
influences students’ cognitive abilities and skills in various school subjects. As it is evident,
the estimates of the MQRE and the MMQ are similar among the three directions both in
the center and in the tails of the distributions of the responses. The major difference is
in the magnitude of the estimated regression coefficients with respect to the LQMM as the
estimate of the teacher’s experience effect is only statistically significant at the tails of the
conditional distribution of the outcome. Finally, by looking at the within-group correlations,
the estimated correlation parameters (r) of the MM and MMQ models with τ = 0.5 are similar
among the three directions. Similarly, the correlation coefficient estimates of the MMQ and
the ICC values of the MQRE models are very close at the five investigated τ levels. The
sign of the estimates indicates that pupils in the same school are more alike than students in
different schools, highlighting the importance of clustering. It is also worth noticing that the
intra-school correlation shows an inverted U-shape effect as the quantile level increases, i.e.,
the correlation between observations that belong to the same cluster is high at the center and
low at the tail of the distribution of the outcomes. Differences between schools, therefore,
seem to play a less prominent role in explaining mathematics and reading scores below- and
above-the-average students’ performance (Geraci & Bottai 2014).

6.2 Fixed-τ analysis

To provide a graphical representation of the effects of classroom size and teachers experience
at the tails of the distribution of test scores, we fit the MMQ model at τ = (0.005, 0.1) for
100 equispaced directions and construct M-quantile regression contours using (13). Figure
3 illustrates the estimated ∂R̂x(τ) conditional on small (red curves) and large (blue curves)
classes at the 0.01-th (top-left), 0.25-th (top-right), 0.75-th (bottom-left) and 0.99-th (bottom-
right) empirical quantiles of teacher’s experience, which correspond to 0, 4, 13 and 27 years of
experience. The shaded areas represent 95% confidence envelopes obtained through the non-
parametric bootstrap method of Section 3.1 using 1000 re-samples. For comparison purposes,
we also consider the directional quantile contours of Kong & Mizera (2012) by fitting the
proposed MMQ model with c = 0.01 under the working independence correlation structure
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u Variable MM MMQ

0.1 0.25 0.5 0.75 0.9

u1

Intercept 486.541 (3.915) 443.343 (3.086) 462.121 (3.370) 484.136 (3.921) 509.513 (4.732) 537.082 (6.078)
Class size −9.306 (2.805) −6.773 (2.505) −7.350 (2.425) −8.499 (2.716) −10.922 (3.392) −14.556 (4.442)
Teacher Experience 0.585 (0.280) 0.576 (0.207) 0.588 (0.237) 0.559 (0.280) 0.552 (0.338) 0.667 (0.483)
r 0.192 (0.028) 0.135 (0.035) 0.184 (0.040) 0.200 (0.034) 0.163 (0.026) 0.097 (0.020)

u2

Intercept 653.411 (4.236) 606.399 (3.179) 626.367 (3.598) 650.296 (4.348) 677.574 (5.433) 707.618 (6.785)
Class size −11.233 (3.023) −7.808 (2.875) −8.678 (2.660) −10.641 (2.933) −13.711 (3.696) −16.221 (4.731)
Teacher Experience 0.662 (0.305) 0.640 (0.244) 0.677 (0.257) 0.674 (0.307) 0.701 (0.391) 0.688 (0.547)
r 0.203 (0.028) 0.155 (0.041) 0.205 (0.043) 0.222 (0.034) 0.174 (0.025) 0.098 (0.019)

u3

Intercept 437.504 (2.516) 411.791 (1.541) 422.004 (1.806) 434.494 (2.454) 448.991 (3.489) 466.199 (4.693)
Class size −6.569 (1.735) −4.507 (1.467) −5.108 (1.442) −5.981 (1.651) −7.118 (2.244) −8.081 (3.081)
Teacher Experience 0.353 (0.186) 0.291 (0.135) 0.339 (0.139) 0.363 (0.185) 0.421 (0.272) 0.478 (0.363)
r 0.194 (0.026) 0.145 (0.036) 0.205 (0.038) 0.236 (0.036) 0.203 (0.043) 0.111 (0.034)

Table 5: MM and MMQ model parameter estimates at the investigated quantile levels. Boldface
denote statistical significance at the 5% level.

u Variable MQRE

0.1 0.25 0.5 0.75 0.9

u1

Intercept 443.356 (3.087) 462.128 (3.371) 484.141 (3.925) 509.519 (4.738) 537.090 (6.084)
Class size −6.776 (2.507) −7.356 (2.427) −8.510 (2.719) −10.935 (3.396) −14.566 (4.445)
Teacher Experience 0.575 (0.207) 0.587 (0.238) 0.559 (0.281) 0.552 (0.339) 0.667 (0.484)
ICC 0.139 0.197 0.219 0.176 0.102

u2

Intercept 606.406 (3.180) 626.375 (3.600) 650.308 (4.352) 677.589 (5.437) 707.654 (6.795)
Class size −7.809 (2.876) −8.683 (2.661) −10.652 (2.935) −13.723 (3.697) −16.234 (4.735)
Teacher Experience 0.640 (0.244) 0.676 (0.257) 0.673 (0.307) 0.700 (0.392) 0.685 (0.549)
ICC 0.158 0.218 0.238 0.185 0.104

u3

Intercept 411.796 (1.542) 422.011 (1.808) 434.499 (2.456) 448.999 (3.486) 466.232 (4.702)
Class size −4.507 (1.468) −5.110 (1.442) −5.984 (1.651) −7.122 (2.241) −8.091 (3.082)
Teacher Experience 0.291 (0.135) 0.338 (0.139) 0.362 (0.185) 0.420 (0.271) 0.475 (0.364)
ICC 0.149 0.214 0.246 0.210 0.118

Table 6: MQRE model parameter estimates and ICC values at the investigated quantile levels.
Boldface denote statistical significance at the 5% level.

(see Figure 4).
There are several interesting findings. The contours for smaller τ capture the effects of

students who perform exceptionally well on mathematics and reading or exceptionally poorly
on mathematics and reading. Meanwhile, the contours for larger τ capture the effects for
students at the center of the distribution i.e. those who do not stand out from their peers.
The larger contours are affected by abnormal observations while the smaller ones are less
sensitive to outliers. The elongated and positively oriented contours indicate that there is
more variability in the mathematics scores and confirm the existence of positive covariation
between reading and mathematics grades. It can also be easily seen that both M-contours
and quantile contours shift up and to the right as years of teaching experience increase which
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u Variable LQMM

0.1 0.25 0.5 0.75 0.9

u1

Intercept 455.487 (6.998) 476.333 (4.855) 484.779 (3.848) 492.306 (5.117) 501.977 (5.568)
Class size −10.799 (2.837) −9.739 (2.728) −8.500 (2.555) −6.847 (2.931) −7.416 (3.213)
Teacher Experience 0.066 (0.341) −0.000 (0.285) 0.594 (0.345) 1.081 (0.366) 1.215 (0.540)
σ2
school 23.989 18.661 17.135 20.025 29.015

u2

Intercept 589.880 (7.261) 640.025 (4.973) 651.089 (4.067) 677.652 (6.964) 687.842 (8.783)
Class size −6.204 (3.021) −10.089 (2.978) −10.114 (2.792) −12.199 (3.510) −11.411 (4.311)
Teacher Experience 0.791 (0.321) 0.296 (0.321) 0.572 (0.327) 0.886 (0.425) 0.984 (0.450)
σ2
school 16.763 20.810 20.484 25.208 37.518

u3

Intercept 420.779 (4.365) 431.182 (3.248) 432.613 (2.810) 442.018 (3.175) 455.566 (4.721)
Class size −6.854 (1.854) −6.865 (1.771) −6.338 (1.792) −5.072 (2.025) −4.573 (2.652)
Teacher Experience −0.000 (0.235) 0.237 (0.180) 0.215 (0.217) 0.482 (0.248) 0.692 (0.341)
σ2
school 14.834 11.526 12.451 13.452 20.529

Table 7: LQMM parameter estimates at the investigated quantile levels. Standard errors are
computed via block bootstrap using 500 resamples. Boldface denote statistical significance at the
5% level.

highlights the centrality of teachers’ skills and attitudes in students’ achievement. Most
importantly, the results obtained suggest that both high-performing students and those who
are at risk of failure benefit from smaller classes, as this generates substantial gains in the two
subjects (Finn & Achilles 1999, Biddle & Berliner 2002, Guggisberg 2019) at both τ = 0.005
and τ = 0.1 levels. Further, one observes that the quantile contours in Figure 4 are closer to
the convex hull of the sample data and the enclosed areas are greater than those produced
by the M-quantile contours. Finally, the presented confidence regions give an insight into
the estimation uncertainty, which is higher in sparse regions of the data as the size of these
envelopes is much larger at τ = 0.005 than τ = 0.1. Also, they are helpful to detect, possible,
conditional outliers in the multivariate space, identified as those points that fall outside the
estimated fence and are located far away from the bulk of the data.

7 Conclusions

In the univariate setting, M-quantiles (Breckling & Chambers 1988) allow to target different
parts of the distribution of the response given the covariates instead of just the expected value
of the conditional distribution of the outcome variable. The Huber M-quantiles (Huber 1964)
are very versatile because they can trade robustness for efficiency in inference by selecting
the tuning constant of the influence function and they offer computational stability because
they are based on a continuous influence function (Tzavidis et al. 2016, Bianchi et al. 2018).
Unfortunately, M-quantiles have remained relegated to univariate problems due to the lack of
a natural ordering in a p-dimensional space, p > 1. Yet, an extension to higher dimensions
could prove to be very useful role in many fields of applied statistics when the problem being
studied involves the characterization of the distribution of a multivariate response.

In the present paper we generalize univariate M-quantile regression to the multivariate
setting for the analysis of dependent data. Extending the notion of directional quantiles of
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Figure 3: Estimated M-quantile contours at τ = (0.005, 0.1) for small (red) and large (blue)
classes, conditional on the 0.01-th (top-left), 0.25-th (top-right), 0.75-th (bottom-left) and 0.99-th
(bottom-right) empirical quantiles of years of teaching experience. The shaded surfaces represent
95% confidence envelopes for M-quantile contours obtained using nonparametric bootstrap.

Kong & Mizera (2012), we introduce directional M-quantiles which are obtained as projections
of the original data on a specified unit norm direction. In order to take into consideration
the possible within cluster correlation, we develop an M-Quantile Marginal (MMQ) regression
model (Liang & Zeger 1986, Zeger & Liang 1986, Heagerty et al. 2000, Diggle et al. 2002). To
estimate the model parameters, we extend the well-known GEE approach of Liang & Zeger
(1986) and present the robust Generalized M-Quantile Estimating Equations (GMQEE). For
a fixed direction, we derive asymptotic properties for the proposed estimator and establish
consistency and asymptotic normality. When theoretically all directions are considered si-
multaneously, the proposed directional approach allows to determine M-quantile regions and
contours for a given quantile level. We propose to use M-quantile contour lines to investigate
the effect of covariates on the location, spread and shape of the distribution of the responses.
To identify potential outliers and provide a simple visual representation of the variability
of the M-quantile contours estimator, we construct confidence envelopes via nonparametric
bootstrap. Using real data, we apply the MMQ regression model to study the impact of class
size and teacher’s experience on the joint distribution of the mathematics and reading scores.
The obtained results from the fixed-u and fixed-τ analyses show that small classroom and
teacher’s experience help improve performance in both subjects.

The methodology can be further extended to take advantage of the longitudinal structure
of the STAR study and allow for school effects over time, or cross-classified models to allow
for the impact of local area. An interesting research problem would involve the estimation of
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Figure 4: Estimated quantile contours at τ = (0.005, 0.1) for small (red) and large (blue) classes,
conditional on the 0.01-th (top-left), 0.25-th (top-right), 0.75-th (bottom-left) and 0.99-th (bottom-
right) empirical quantiles of years of teaching experience.

the proposed M-quantile contours in applications to dependent data, where the contour lines
also might vary with time. Lastly, a conditional M-quantile model for robust clustering can
be developed where M-quantile contours can help us identify the existence of group structures
within the study population.
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