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Artificial Intelligence in Classical and Quantum Photonics

Federico Vernuccio, Arianna Bresci, Valeria Cimini, Alessandro Giuseppi, Giulio Cerullo,
Dario Polli,* and Carlo Michele Valensise*

The last decades saw a huge rise of artificial intelligence (AI) as a powerful
tool to boost industrial and scientific research in a broad range of fields. AI
and photonics are developing a promising two-way synergy: on the one hand,
AI approaches can be used to control a number of complex linear and
nonlinear photonic processes, both in the classical and quantum regimes; on
the other hand, photonics can pave the way for a new class of platforms to
accelerate AI-tasks. This review provides the reader with the fundamental
notions of machine learning (ML) and neural networks (NNs) and presents
the main AI applications in the fields of spectroscopy and chemometrics,
computational imaging (CI), wavefront shaping and quantum optics. The
review concludes with an overview of future developments of the promising
synergy between AI and photonics.

1. Introduction

Artificial Intelligence (AI) is undoubtedly one of most active
research fields of the recent years, able to gather unprece-
dented investments and generate large economic impacts.[1]

The definition of AI is very broad, just as is the definition of
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intelligence, and surprisingly it is still
an open point of discussion among
experts.[2] The general consensus defines
AI as the science that studies artifi-
cial systems/machines that imitate hu-
man/intelligent behavior. Among the var-
ious branches of AI, the one that had the
most impact on several different scien-
tific and engineering fields is machine
learning (ML), the science that stud-
ies how computers can be automatically
trained to solve complex tasks starting
from the analysis of data. The recent
rise in popularity of ML is related to
the new opportunities opened by deep
learning (DL), a methodology that ex-
ploits the advancements in computing
power to solve highly complex tasks,

such as computer vision, speech recognition, and self-driving
cars, and that aims to approximate nonlinear transfer functions,
leveraging their data-driven nature.
Photonics is among the most active and promising fields in

science, technology and engineering. The combination of AI
techniques and photonics has led to groundbreaking develop-
ments in many applications and provides huge opportunities
for both fields. Indeed, on the one hand photonics can be used
to generate rich data sets for ML computational tasks, on the
other hand photonic systems are an interesting platform for AI
implementations.[3,4] In this context, two of themost investigated
fields have been fiber optics communications and image process-
ing for medical diagnosis.
Several AI-based techniques have been developed with the pur-

pose of improving the performances of optical communication
systems, mainly focused on the control and management of pho-
tonic devices. Many research articles and reviews have been pub-
lished on this topic.[5–10] Mata et al.[5] reviewed different AI im-
plementations in optical networks communication. Some tech-
niques can help improving the configuration and operation of
network devices, others are used for optical performance mon-
itoring, modulation format recognition or fiber nonlinearities
mitigation and quality of transmission estimation. As for the
equalization of nonlinear wavefront distortion in optical com-
munications, a relevant contribution has been provided by the
works of the Nakamura group. They proposed a neural network
(NN) model featuring a sole hidden layer to compensate for self-
phasemodulation distortions in optical multi-level signals.[11] In-
terestingly, they investigated the effect of the hidden layer size
on the nonlinear equalization task. As the input power increases
and the self-phase modulation effect distorts the transmitted sig-
nals more severely, a higher number of hidden layer neurons is
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required for an efficient compensation of the optical communi-
cation. Their further studies demonstrated how a four-layer NN
nonlinear equalizer is more overfitting-prone then a three-layer
NN model[12] and how multi-level 4-ary pulse-amplitude modu-
lation signals strongly limit the NN equalizer overfitting that typ-
ically occurred in the case of pseudo-random binary signals.[13] Ji
et al.[6] proposed a novel multi-tasking architecture able to han-
dle several aspects of optical networks management, leveraging
AI techniques to produce self-adaptive and self-managed opera-
tions. Optical networks feature huge dynamicity, complexity and
heterogeneity due to the use of advanced coherent techniques,
so that AI proved a fundamental tool for their management.
Wang and Zang[7] focused on state-of-the-art DL algorithms and
highlighted the contributions of DL to optical communications.
In particular, they reviewed multiple DL applications in optical
communications, such as convolutional neural networks (CNNs)
for image reconstruction and recurrent neural networks (RNNs)
for sequential data analysis. Moreover, they introduced a data-
driven channel modeling method to replace the conventional
block-based approach and improve the end-to-end learning per-
formance and a generative adversarial network (GAN) for data
augmentation (DA). Eventually, they described a deep reinforce-
ment learning (DRL) algorithm used for network automation.
Artificial intelligence has also played a crucial role in medi-

cal diagnostic practices thanks to its ability to restrict the im-
pact of human bias and increase the diagnosis reliability and
accuracy.[14,15] Rather than replacing the role of medical doctors,
AI algorithms proved to be very powerful in supporting them,
providing image preselection, preprocessing, and classification
while increasing time-effectiveness with low cost.[16–22] Moreover,
optical data may reach high levels of complexity and dimension-
ality, leading to error-prone interpretations even in the case of
experienced operators. In such cases, the employment of AI en-
gines for optical data decoding is fundamental.[15] CNN models
have been used to increase the quality of medical images, thus
enhancing the accuracy of further traditional classification pro-
cedures and limiting the occurrence of incorrect diagnoses.[23]

DL algorithms of this fashion turned out to be pivotal in diag-
nostics when imaging methods featuring a high signal-to-noise
ratio or a complex data structure were involved, such as func-
tional magnetic resonance imaging.[24] In particular, deep learn-
ing has played a key role in one of the most widely employed
diagnostic tools: X-ray computed tomography (CT). Since X-ray-
related radiation risk is a concern, the use of a low X-ray tube
current would be preferable but it would lead to poor image qual-
ity, thus preventing its routine application. CNN algorithms were
employed to filter and reconstruct low-dose CT images, coupling
diagnosis accuracy with a less invasive approach.[25,26] Alongside
CNNs, RNNs have been used for image diagnostics combining
multiple techniques (e.g., magnetic resonance imaging coupled
with positron emission tomography), thus revealing the power
of such models in extracting valuable information from multi-
modal medical data.[27]

Despite these promising results, the full benefits of the combi-
nation between AI and photonics have not yet been reaped. This
is partly due to the lack of a deep understanding of AI method-
ologies by photonics researchers. This paper aims to fill this gap
by providing a basic introduction to AI and reviewing the most
significant contributions of AI and ML to classical and quantum

photonics. In particular, Section 2 provides an overview on the
problems studied in AI and ML, giving the theoretical founda-
tions of the algorithms employed to learn from data and envi-
ronment: supervised, unsupervised and reinforcement learning.
Section 3 provides the readers with the mathematical and sta-
tistical fundamentals of the most popular NN models encoun-
tered in photonics, thus introducing the basic tools required to
understand the applications reviewed in the following sections.
Section 4 explores DL applications in spectroscopy as powerful
tools for denoising, artifact removal and spectral chemometrics.
Section 5 details how AI can assist wavefront shaping when light
propagates in media as well as computational imaging. In the
same section, control of light propagation in multi-modal fibers
(MMFs) is discussed, presenting some recent main applications
related to the field. Section 6 deals with AI applied to quantum
optics. It reviews the use of ML techniques for the generation of
quantum states of light, their application in the field ofmetrology
and sensing and the automated classification and characteriza-
tion of optical quantum states. Eventually, Section 7 provides an
overview on photonic computing, showing how photonic could
play a major role in future developments of AI.

2. Machine Learning Fundamentals

A ML algorithm is able to learn information from data.[28] De-
pending on the kind of data available, ML tasks are divided in the
following macro-areas.

• Supervised learning, where the ML model is provided with a
dataset containing input–output pairs. The output data, or la-
bels, enable the evaluation of the model performance during
the training. Supervised learning can be exploited to approx-
imate the complex or unknown function mapping the input
data to the output. Supervised learning tasks are further di-
vided into regression tasks, where the model is required to
predict some numerical output values starting from the input,
and classification tasks, where the model is asked to specify
which class/category the given input belongs to. Some super-
vised learning techniques have been used to estimate the qual-
ity of transmission of an optical communication system or for
resource allocation in data centers.[5]

• Unsupervised learning, where ML models deal with the ex-
traction of information from the data without any target value
or label available. Unsupervised learning tasks range from
clustering[29] to anomaly detection and feature learning.[30–32]

For instance, methods which belong to this type of learning
have been used for optical performance monitoring, modula-
tion format recognition and impairment mitigation.[5]

• Reinforcement learning (RL) is a specialized ML area that
deals with the control of a dynamical system,[33] where the
model is trained to find a control law for the system so that
some objective is optimized. RL, and in particular its variant
that employs deep neural networks (DNNs), deep RL, finds
application in various complex tasks, such as robotics[34] and
autonomous driving.[35] For instance, Q-learning, which is a
reinforcement learning technique that aims to find the opti-
mal quality value (Q-value) of an action selection policy, has
been used for path and wavelength selection in the context of
optical burst-switched networks.[5]
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The power of ML solutions is their capability to generalize the
information they inferred from the available data over previously
unseen data, functionally solving the considered task for arbi-
trary inputs. Over the years, differentML algorithms,models and
methodologies were proposed[36] to solve tasks from almost ev-
ery scientific domain, but the recent and unprecedented rise in
popularity that ML has experienced is mostly due to the results
that DNNs, sometimes also referred as Artificial Neural Networks
(ANNs), were able to attain in solving new and complex prob-
lems. In the following we describe the basics of ML tools and
DNNs. The description will cover all the relevant aspects keeping
apart the more formal ones. Nevertheless, the reader is referred
to a detailed literature along the discussion. An excellent resource
in this respect is ref. [37], offering also real code examples. The
goal is to give the optics practitioner a background about ML, be-
fore describing the main applications demonstrated in recent lit-
erature.
The basis of every ML problem is a dataset with N entries

 = (X, y) = {(xi, yi), i = 1…N}, where X is a matrix whose rows
correspond to data instances, whereas the columns are the fea-
tures of the dataset, namely the variables or attributes of the in-
stances. On the other hand, yi is the corresponding ground-truth
vector, representing the ideal output of the model. The features
of X can be numerical and/or categorical (i.e., input attributes
encoded in the form of discrete numerical values) depending on
the context, and constitute the independent variables. The goal of
ML algorithms is to approximate the map f : xi → yi, acting on a
set of parameters 𝜃. For a single training example, the error be-
tween the prediction and the ground truth is quantified bymeans
of the loss function i(f (xi, 𝜃), yi). The parameters of the NN are
adjusted in order to minimize the cost function (f (X, 𝜃), y) (or
(𝜃)), which is the average of the loss functionsi(f (xi, 𝜃), yi) over
the overall training dataset. In formulae

(f (X, 𝜃), y) = 1
Ntrain

Ntrain∑
i=0

i(f (xi, 𝜃), yi) (1)

where Ntrain is the total amount of instances in the training set.
Indeed, the training of ML models requires the dataset to be par-
titioned in two independent sets  = train ∪test, respectively
the training set and test set. The former is used to optimize the
set of parameters 𝜃, while the second is used to evaluate the per-
formances of the model on new, unseen data. A typical training-
test split is ≈80/20%. In addition, a portion of the training set
(e.g., 20%) is used as validation set, meaning that it is used for
an unbiased evaluation of the model during training and for fine
tuning of the model hyperparameters, which are the untrainable
parameters that define the topology of the network.
These procedures are crucial to assess the model perfor-

mances and the overall goodness of fitting the data. In this
respect the relevant quantities are the training error Etrain =
(Xtrain, ytrain) and the test error Etest = (Xtest, ytest). A good ML
model is the one that enables one to perform a reliable predic-
tion on previously unseen data. Model performances depend on
a number of factors, among which the amount of data available
(the cardinality of the training set), the number of parameters
available to the model (the model complexity) and the number of
optimization iterations carried out. In order to obtain good pre-

dictions from the data, both Etrain and Etest should be monitored.
In fact, while the minimization of Etrain ensures that the model is
learning themapping f , the ability to performwell on new data is
expressed by Etest. Typically Etrain results slightly lower than Etest.
Nevertheless if Etest ≫ Etrain the model is overfitting the training
set, that is, the model is using its representation power to store
information related to fluctuations of the training set. Overfit sig-
nificantly limits the predictive power of a model, and therefore
has to be avoided. To mitigate overfitting one may increase the
number of data points available to train the model, or reduce the
model complexity by reducing the number of parameters, or ap-
plying regularization techniques (e.g., L1, Lasso regularization,
and L2, Ridge regularization

[38]). This crucial aspect of ML is usu-
ally referred as bias-variance trade-off.
The goal of the model is to find a set of parameters that mini-

mizes (𝜃), thusmaximizing themodel performance accuracy by
leading to a minimum average error between ideal and predicted
outputs. Gradient descent (GD) is the typical procedure used to
compute 𝜃. The concept of this technique is that for every iter-
ation we compute the cost function (𝜃). As an example, if the
chosen loss function is the mean squared error (MSE) we have

(𝜃) ≡ MSE = 1
Ntrain

Ntrain∑
i=1

(f (xi, 𝜃) − yi)
2 (2)

Given the total cost for the current iteration, we can compute an
update in our parameters at iteration (t + 1) in the opposite di-
rection of the gradient (∇) of (𝜃) with respect to the parameters
at iteration t, that is, in the direction of the minimum of (𝜃). In
formulae

𝜃t+1 = 𝜃t − 𝜂∇𝜃t
(𝜃t) (3)

where 𝜂 is the learning rate of the algorithm, a hyperparameter
(i.e., a parameter that controls the learning process and is not part
of weights and biases to be optimized during learning) that con-
trols how much the parameters are updated in response to the
estimated error. This basic update rule has been widely investi-
gated, and several improvements have been introduced. In par-
ticular, to avoid the computation of the gradient over the entire
dataset that would be computationally very expensive, random
subsets of the dataset (mini-batches) can be used at each iteration.
This reduces the computational cost and introduces stochasticity
in the training, which in turn reduces overfitting. To mitigate the
risk of being trapped in local minima of the cost function, some
optimizers add “momentum” to the update rule as an exponen-
tially weighted average over the previous values of the gradient.
Among these advanced optimizers, one of themost popular is the
adaptive moment estimation optimizer (ADAM)[39]: the learning
rate is adapted based on the average first moment (the mean)
and the average second moment (the uncentered variance) of the
gradient of (𝜃). It showed promising results in terms of regular-
ization and acceleration of NNs convergence in a broad range of
applications, adapting the learning rate during the training pro-
cess. A comprehensive description of all these aspects is given in
ref. [28].
The described training procedure is valid across the entire

range of ML algorithms. A complete review of all of them is
beyond the scope of this paper, but we mention that before the
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Figure 1. a) Illustration of a neuron j at layer l; b) Plots of typical non-linear activation functions: sigmoid, tanh, ReLU; c) Scheme of a shallow NN
featuring a single hidden layer; d) Scheme of a deep NN featuring several hidden layers.

rise in popularity of DL and NNs, the standard approach to solve
complex regression and classification tasks was based on support
vector machines (SVMs).[40] SVMs popularity was mostly due to
their usage for classification tasks of a peculiar loss function, the
Hinge loss, that ensures the maximization of the geometric mar-
gin between classes, obtaining a so-called “maximal margin clas-
sifier” with unparalleled performances. Moreover, thanks to the
use of kernels[41] and the so-called “kernel-trick,” SVMs are able
to efficiently re-conduct their analysis into a higher-dimensional
feature space, where the classification task results simpler, greatly
improving their performance. In fact, kernels allow one to map
the input features into a feature space without the need to explic-
itly compute them, but rather performing the inner product be-
tween images of the input points. By means of this “trick” it has
been possible to tackle complex problems, previously intractable,
such as exploring a protein landscape.[42] In the next section we

discuss how DNNs instead are capable of defining automatically
the features required to solve the assigned task.

3. Neural Networks Fundamentals

DL is a ML methodology that employs DNNs to solve ML tasks.
Despite the name and the structure somehow recalls the brain,[36]

the similitude is actually rather poor. DNNs are a class of pow-
erful function approximators. A NN is obtained by the com-
bination of simpler objects, the neurons (see Figure 1a). Each
neuron receives a series of real numbers as input x, computes
their weighted average with a set of weights w and a bias b,
z = xTw + b, and outputs a number f (z) obtained applying a non-
linear function f , called activation function. The bias term b
is often included in the set of weights w to compact the nota-
tion, considering an extra 1 in the vector x (see Figure 1a). The
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nonlinear function is the basis of the approximation power of
NNs. Typical nonlinear activation functions, reported in Fig-
ure 1b, are the sigmoid 𝜎(z), the hyperbolic tangent tanh(z), and
the rectified linear-unit, ReLU(z). They are defined as

𝜎(z) = 1
1 + e−z

; tanh(z) = ez − e−z

ez + e−z
;

ReLU(z) = max(0, z) (4)

The ability of NNs to approximate complex functions is guar-
anteed by the universal approximation theorem, formulated by
George Cybenko in 1989.[43,44] This result states that a NN con-
sisting of an input layer, a single hidden layer and an output layer
can approximate any arbitrary function between its input and out-
put, provided that its hidden layer is adequately large. The prob-
lemwith the application of this theorem lies in the size of the hid-
den layer, that grows exponentially with the complexity and non-
linearity of the function, rapidly reaching unfeasibly large levels.
DNNs aim at solving this dimensional issue by stacking multiple
hidden layers, exponentially increasing the approximation capa-
bilities of each neuron of the deeper layers, hence compensating
for the limited number of neurons available on each layer.
In practice, the best performances are achieved by structur-

ing multiple layers of neurons with finite width (see Figure 1c,d)
obtaining a “deep” architecture, from which the nomenclature
“deep neural network” stems. Each neuron is linked to all the
neurons of the previous and following layer in a so-called “fully-
connected” architecture. Since the information travels in one di-
rection only, namely from the input layer to the output layer with
no backward cycles in-between, such models are often referred
to as “feed-forward” neural networks. As typical of most classi-
cal ML solutions (e.g., SVM), shallow networks, constituted by a
sole hidden layer, base their analysis on a process called “feature
extraction,” in which input data have to be significantly prepro-
cessed and transformed to extract some nontrivial information.
DNNs instead require a very limited (if any) feature extraction
pre-processing, and automatically extract and weigh the relevant
features from the input to perform the assigned task.
NNs are trained in the same way described above, that is, by

adapting the weights in order to minimize the cost function (𝜃).
However, differently from other ML techniques, NNs are char-
acterized by having a very high number of parameters; small-
sized NNs have hundreds or thousands of parameters, moder-
ately large NNs need to train a few millions of parameters, while
the largest reach hundreds of millions of parameters. Despite the
complex, interconnected structure of neurons and weights, the
differentiability of activation functions ensures that NNs can be
trained through stocastic gradient descent (SGD).[45] The back-
propagation algorithm[28] implements very efficiently the compu-
tation of the gradient of (𝜃). This algorithm leverages dynamic
programming and efficient matrix multiplication, performed on
graphical processing units (GPUs) or tensor processing units
(TPUs). At the heart of backpropagation is an expression for the
partial derivative of the cost functionwith respect to anyweight or
bias of the network. This expression gives us detailed insights on
the overall behavior of the network while changing the weights
and the biases. The typical notation to refer to all the weights in
the networks is wl

jk. It denotes the weight from the kth neuron

in the (l − 1)th layer to the jth neuron in the lth layer. A similar
notation is used for the biases and the activation functions. In-
deed, blj denotes the bias of the jth neuron in the lth layer, while

alj represents the activation of the jth neuron in the lth layer (see
Figure 1a). Using these notations, the activation of the jth neuron
in the lth layer is related to the activations in the (l − 1)th layer by
the equation

alj = f

(∑
k

wl
jka

(l−1)
k + blj

)
(5)

where the sum is over all the k neurons of the (l − 1)th layer and
f is the chosen activation function (see Equation (4)). Typically,
one may refer to the input of the activation function as zlj, that is

zlj =
∑

k w
l
jka

(l−1)
k + blj.

Defining the error introduced by the jth neuron in the lth layer
as

𝛿lj ≡
𝜕

𝜕zlj
= 𝜕

𝜕alj

𝜕alj

𝜕zlj
(6)

the backpropagation algorithm is based on four fundamental
equations. They are:

1. An equation for the error 𝛿Lj of the output layer L

𝛿Lj = 𝜕

𝜕aLj
f ′
(
zLj
)

(7)

where f ′(zLj ) = ( df
dz
)zL

j
expresses how fast the activation func-

tion is changing at zLj .

2. An equation for the error 𝛿lk of the kth neuron in the previous
layer in terms of the error 𝛿l+1j of the jth neuron in the next
layer

𝛿lk =
(
wl+1
jk 𝛿

l+1
j

)
f ′
(
zlj
)

(8)

3. An equation for the partial derivative of the cost function with
respect to any bias in the network

𝜕

𝜕blj
= 𝜕

𝜕zlj

𝜕zlj

𝜕blj
= 𝜕

𝜕zlj
⋅ 1 = 𝛿lj (9)

4. An equation for the partial derivative of the cost function with
respect to any weight in the network

𝜕

𝜕wl
jk

= 𝜕

𝜕zlj

𝜕zlj

𝜕wl
j

= 𝛿lja
l−1
k (10)

Eventually, after the input has been propagated to the network
by computing activation functions alj = f (zlj), the output error is
computed through Equation (7). Applying the chain rule of par-
tial derivatives from the output layer backward,[46] the error is
backpropagated using Equation (8). Finally, Equations (9) and
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Figure 2. LeNet architecture, featuring two sets of convolutional and subsampling layers, followed by two fully-connected layers and finally an output
layer. As highlighted in the image, convolutional filters or kernels have a local connectivity with their input, which enables feature extraction in a spatially
invariant way. Adapted with permission.[50] Copyright 2020, Springer Nature B.V.

(10) are used to compute the partial derivatives of the cost func-
tion with respect to any weight and bias.

3.1. Convolutional Neural Networks

CNNs are one of themost popular Network architectures utilized
in DL, and in particular in imaging-related tasks. CNNs were first
introduced in ref. [47]. Unlike standard NNs, CNNs include the
so-called convolutional layers, which may either constitute their
entire end-to-end model architecture or precede standard fully-
connected layers. Two are the distinctive features of convolutional
layers:

• Each neuron has only a local connectivity with the previous
layer, in the sense that its inputs come from a small set of
(neighboring) neurons from the previous layer.

• In every layer, all neurons share the same weights. This set of
weights takes the name of filter or “kernel,” and several dif-
ferent filters may be placed in the same convolutional layer to
operate on the same input, as in Figure 2.

The combination of these two properties, depicted in Figure 2,
allows the characterization of CNNs in terms of the number of
filters employed at each layer. Among the advantages of CNNs,
wemention that their number of weights is significantly reduced
compared to standard NNs, depicted in Figure 1c,d, allowing
much deeper and complex architectures to be deployed. Addition-
ally, the local connectivity of the neurons allows the network to
better localize features (e.g., a face) in their input, while the shar-
ing of the weights provides spatial invariance properties to their
analysis (e.g., a face is recognized independently from its location
in the input image). CNNs automatically extract features from
data in the form of the so-called feature maps (Figure 2), which
are the result of a kernel being cross-correlated to its input. It was
observed that, thanks to the local connectivity of neurons, deeper
layers tend to capture in their feature maps more complex con-
cepts (e.g., a smiling face, a particular animal) with respect to the
shallower ones that focus on basic features (e.g., a color pattern,
an edge), directly mapping the number of their layers with their
analysis capabilities.[48] A complete survey of CNNs architectures
is beyond the scope of this work (we refer the interested reader to
ref. [49]), but wemention in the following themost popular ones.
For image analytic tasks, such as image segmentation, ob-

ject detection & tracking[51,52] and complex tasks such as cell

counting,[53] encoder–decoder architectures as the one depicted
in Figure 3 proved to be among the most effective solutions. In
this classic architecture, the CNN is divided into two sections: the
first part, named encoder, reduces the dimensions of the feature
maps at each layer (in Figure 3 this is done by the “MaxPooling”
layers that in combination with convolutional layers reduce the
128 × 128 pixels input image to a mere 32 × 32 pixels image) and
increases their amount (in Figure 3 the orange blocks have 32, 64,
and 128 filters, each one generating a feature map). The second
portion of the CNN, the decoder, inverts this process by decod-
ing the information summarized in the low-dimension feature
maps to produce an output image (typically of the same size of the
input image) that contains the requested analysis (in Figure 3a
segmentation and identification of the objects at the input). The
decoder upsamples the input of its convolutional layers after an
element-by-element addition to the output of its previous layer of
the corresponded downsampled layer of the encoding path that
must have the same dimensions and the same number of fea-
tures. By training the network, the feature maps produced by the
last encoding layer must contain a synthesis of all the informa-
tion needed by the CNN to reconstruct the output image. This
means that they are produced by a complex and automatic fea-
ture extraction process that the network learned during the train-
ing, making the encoder–decoder architecture a powerful tool for
analyzing raw data of any nature.
U-Net and ResNet are two of the most important and

state-of-the-art models of CNNs for image segmentation, with
many applications in biomedical image analysis. The U-net
architecture[55] consists of a contracting path and an expansive
path. The contracting path has the typical structure of a convo-
lutional network for downsampling. The expansive path consists
of an upsampling to propagate context information to higher res-
olution layers, realized by transposed convolutional layers, and
concatenation with a cropped feature map from the contracting
path. As a consequence, the expansive path is more or less sym-
metric to the contracting path, and leads to a u-shaped archi-
tecture. Hence, the U-Net architecture can be seen as a sort of
encoder–decoder architecture, but differs in the expansive path
because of the presence of concatenations.
On the other hand, ResNet paved the way for the class of resid-

ual neural networks (ResNNs)[56] models. These algorithms are
a technological breakthrough that effectively allowed the deploy-
ment of DNNs with over 100 layers. The constituting element
of a ResNN is the residual block, reported in Figure 4, which is
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Figure 3. Example of an encoder–decoder architecture used for an image segmentation task on the data from ref. [54]. Encoder convolutional layers
make use of pooling layers to reduce the input dimensionality, whereas decoder convolutional layers upsample the input feature maps and produce
an output that contains the solution to the problem tackled. Moreover, the arrows point out a transfer of encoder information to the decoder layers by
means of concatenations. Thus, first the model retrieves and encodes the hidden patterns in the input data, then decodes these informative feature
maps to predict the final solution.

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

Layer 1

Layer 2

Layer 3

Figure 4. Illustration of a residual neural network. Each convolutional
block of the network features a skip connection between its input and its
output, resulting in the original information being passed on along with
the processed one. Hence, deeper layers have access to the unprocessed
informative content of shallower layers: the combination of shallow and
deep feature maps is crucial to achieve high performances in extremely
deep models, solving the problem of exploding and vanishing gradient
during the training procedure.

characterized by a skip connection between its input and out-
put. The presence of these connections and their combination
creates a path where the input is propagated without passing
thought any convolutional layer, hence preserving its informa-
tive content that is more easily provided to deeper layers. The

combination of higher level feature maps with the deeper level
ones proved to be a powerful tool to train extremely deep CNNs,
making the performances of ResNN unrivalled in several image-
related tasks such as computer vision. Most importantly, ResNNs
can efficiently solve the problem of vanishing and exploding gra-
dients. In fact, when extremely deep architectures are trained,
the gradient computed by backpropagation tends to shrink to
zero or become too big after several applications of the deriva-
tive chain rule. As a result, the network parameters fail to update
efficiently. The skip connections typical of ResNet allow the flow
of backpropagation directly on previous layers, which proved able
to solve the gradient degradation issue. He and colleagues[56] pre-
sented ResNet as a 34-convolutional layers network with a short-
cut connection to each pair of filters, showing how such a model
provides an effective gain in accuracy from an increased network
depth.

3.2. Recurrent Neural Networks

RNNs are a specialized class of NNs that are used to deal with
sequential data and time series.[57,58] While the NN architectures
presented above assume that inputs and outputs are independent
of each other, RNNs allow for arbitrary neuron connectivity. This
peculiarity causes the output of a RNN to be influenced not only
by its current input, but also by the previous elements of the input
sequence. Hence, the prior inputs operate as the hidden-state of
a RNN. A graphical representation of this concept is reported in
Figure 5, where a stream of outputs is produced sequentially on
the basis of the analysis of an input time series. The RNN stores
internally a “state” that encodes all the relevant information ob-
tained from the previously examined elements of the input se-
ries. For this reason, RNNs are commonly said to have a “mem-
ory” and are hence among the most suitable NN architectures to
study temporal data (e.g., sensor readings) and sequences (e.g.,
text bodies).
One of the most popular RNN architectures is the so-called

long short-term memory (LSTM) network, a solution presented
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Figure 5. Illustration of a recurrent neural network architecture. The left-hand side diagram is the “rolled” visual of the RNN which represents the whole
neural network: X is the input, h represents the hidden layers,W represents the connection between the hidden layers, O is the output. The right-hand
side diagram visualizes the ”unrolled” RNN with the individual layers, where theW connections ensure that the current output (e.g., O(t)) is influenced
not only by the current input (X(t)) but also by all the previous samples in the sequence (X(t−1),…).

in ref. [59] to better capture long-term dependencies between the
output and input values (e.g., a particularly slow dynamics may
cause a control action to affect the evolution of a system only af-
ter a long time). LSTMs introduce the concept of “memory cells”
to store and preserve portions of their internal state, demonstrat-
ing unprecedented capabilities on complex tasks such as speech
recognition[60] and epidemic forecasts.[61]

4. Applications of AI to Spectroscopy

The application of AI in spectroscopy has proven powerful both
to remove noise and undesired artifacts embedding the physi-
cally relevant spectral signals and to perform an accurate and ef-
ficient chemical analysis of spectral data. DL was also employed
to overcome the instrumental calibration bias of spectrometers,
which may strongly affect the reliability of the chemical inter-
pretation. This section will first focus on AI-based spectral de-
noising applied to vibrational nonlinear spectroscopy and pump–
probe ultrafast spectroscopy. It will then describe the main draw-
backs of conventional spectral chemometric methods and DL ap-
plications aimed at overcoming such issues, providing end-to-
end approaches able to surpass the accuracy of traditional data-
processing while performing directly on raw data. In particu-
lar, we will review DL chemometric methods addressing both
1D spectra and 3D spectral images. Eventually, the final sec-
tion will review an AI-driven approach to achieve calibration-
agnostic spectrometers.
CNNs constitute the most frequently employed AI model in

spectroscopy. It is worth pointing out that, despite 2D images
constitute the main data type onto which CNNs have been ap-
plied and for which they have become popular among the sci-
entific community, the reader will see in this section how such
models operate on 1D single spectra as well. In fact, the abil-
ity of convolutional layers to extract hidden patterns from their
matrix input is a valid statement regardless of the specific di-
mensionality of such a matrix. 1D kernels convolved on 1D
inputs are a peculiar case of 2D kernels convolved on 2D in-
puts, so that the feature extraction task is carried out in a totally
analogous manner and with comparable excellent performances
with kernels sliding along a sole direction as the other one is
unitary.

4.1. Spectral Denoising

4.1.1. Denoising of Spectral Profiles

Coherent anti-stokes Raman scattering (CARS) is one of the
signals investigated within coherent Raman scattering[62] (CRS)
spectroscopy, together with stimulated Raman scattering (SRS).
In CRS, two synchronized laser pulses are used to coherently
drive and probe molecular oscillations in matter. The outcome of
the measurement is a vibrational spectrum containing informa-
tion about the chemical composition of the sample in the laser fo-
cus. The nonlinear third-order vibrational susceptibility respon-
sible for CRS can be written as the superposition of two terms

𝜒 (3)(𝜔) = 𝜒
(3)
R (𝜔) + 𝜒 (3)

NR(𝜔)

= Re
(
𝜒
(3)
R (𝜔)

)
+ i Im

(
𝜒
(3)
R (𝜔)

)
+ 𝜒 (3)

NR(𝜔) .
(11)

The resonant complex term 𝜒
(3)
R contains the chemical informa-

tion about the sample and can bemodeled as a sum of Lorentzian
peaks

𝜒
(3)
R (𝜔) =

∑
i

Ai

Ωi − 𝜔 − iΓi
(12)

where the sum runs over the vibrational resonances. The am-
plitude Ai ∝ 𝜎i Ci is proportional to the cross section (𝜎i) and
to the concentration of scatterers (Ci); Ωi is the vibrational fre-
quency, and Γi the linewidth. On the other hand, the nonreso-
nant term 𝜒

(3)
NR, also known as nonresonant background (NRB),

is generally assumed as a purely real contribution, that rules
the nonlinear interaction of excitation beams with the sample
and surrounding environment in a four-wavemixing process not
mediated by any vibration. The relevant vibrational information
is contained in Im(𝜒 (3)

R (𝜔)) and corresponds to the vibrational
information obtained through spontaneous Raman. While SRS
provides a signal directly proportional to Im(𝜒 (3)

R (𝜔)), in CARS
the measured signal is ICARS ∝ |𝜒 (3)|2 = |𝜒 (3)

R (𝜔)|2 + 𝜒 (3)
NR(𝜔)

2 +
2Re(𝜒 (3)

R (𝜔))𝜒 (3)
NR(𝜔), producing a mixing of real and imaginary

components, which introduces a relevant distortion of spectral
features, especially when 𝜒 (3)

R ≪ 𝜒
(3)
NR.
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Figure 6. Examples of AI applications in spectroscopy. a) De-noising and removal of undesired artifacts of spectral profiles. A CNN model can remove
the nonresonant background in CARS spectra, thus unveiling the Lorentzian peaks of the resonant Raman signal able to uniquely identify chemicals
under investigation.[63] b) Classification of chemical species from spectroscopy signals can be carried out via DL, by means of an end-to-end approach
operating directly on raw spectral data, thus avoiding human-biased preprocessing. [66] c) DL models can efficiently and accurately perform chemical
segmentation of hyperspectral images. A CNN algorithm processes SRS images to generate a map of sub-cellular components based on the chemical
information provided by spectral pixels. Reproduced with permission.[67] Copyright 2020, American Chemical Society.

In this scenario, DNNs have been employed to solve the
inverse problem related to Equation (11), that is, to retrieve
Im(𝜒 (3)

R (𝜔)) from the measurement of ICARS. Two different solu-
tions have been proposed, tackling the problem of spectral de-
noising from two different standpoints. In ref. [63], Valensise
et al. employed a CNN, with the architecture inspired by classical
LeNets,[64] to leverage the richness of the input representations
obtained through the convolutional layers and the flexibility of
dense layers (Figure 6a). Convolutional layers perform very well
in detecting peaks regardless of their position in the spectrum. In
ref. [65], Houhou et al. used instead a LSTM architecture, looking
at the spectrum as a sequence of values and at the line distortion
as a pattern recurring in the data. we recall that LSTMs fall in the
branch of recurrent NNs, meaning that unlike in standard feed-
forward NNs, feedback connections are present among neurons.
The training of themodels is performed on synthetic datasets ob-
tained through random sampling of the parameters in Equation
(12) and the generation of smooth NRB traces, based on sigmoid
and Gaussian functions. The simulated CARS spectra are used
as inputs for the network, and the corresponding imaginary part
as target variables. Both methods have been validated on CARS
spectra experimentally measured on solvents.

In the context of nonlinear optical spectroscopy, pump–probe
spectroscopy has been employed as a gold standard technique to
study ultrafast electronic dynamics of material systems. It is typ-
ical to use high peak power laser sources to measure ultrafast
pump–probe delay time traces, which may give rise to coherent
artifacts under a broad range of experimental conditions. Among
those, the cross-phase modulation (XPM) artifact causes strong
signal distortions around time zero that hide a significant part of
the dynamics of interest, causing loss of fundamental informa-
tion to characterize the material under investigation. That is why
the development of efficient methods to tackle the issue of XPM
artifact removal urges, but the literature on the topic is some-
what restricted. In this framework, Bresci et al.[68] reported an AI-
drivenmodel to retrieve pump–probe ultrafast electronic dynam-
ics embedded in XPM artifacts. The CNNmodel, “XPMnet,” was
trained on 105 inputsmade up of data-augmented experimentally
measured XPM artifacts superimposed on simulated exponen-
tial electronic cooling dynamics. Such electronic dynamics con-
stituted the ideal ground truth to reconstruct. Themodel was able
to operate with excellent figures of merit on both simulated and
experimental pump–probe signals: MSE = 5 × 10−5, mean abso-

lute percentage error=1% andR2 = 0.99 (R2 is defined as
∑

i (fi−y)2∑
i (yi−y)2

,
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where fi is the model ith prediction, y is the ith ground truth and
y is the overall mean ground truth). The experimental validation
of the model on indium tin oxide (ITO), a key semiconductor for
the development of infrared plasmonic devices, showed that the
CNN predicted electronic dynamics in perfect agreement with
expected outcomes in terms of material-specific time constants.
Since “XPMnet” operates with high accuracy and an execution
time as short as 30 ms, the AI model could be integrated in real
time in pump–probe setups to increase the amount of informa-
tion one can obtain from ultrafast spectroscopy measurements.

4.1.2. Denoising of Hyperspectral Images

SRS is a CRS technique widely employed to perform chemically
selective imaging.[62] However, low signal-to-noise ratio (SNR)
and light scattering in dense samples (e.g., biological tissues)
limit biomedical applications of SRS. Low SNR issues can be typ-
ically mitigated through longer acquisition times, that are nev-
ertheless not applicable when a high imaging speed is required
or can induce sample damage. In ref. [69] a CNN is trained to
perform denoising of SRS images. The model is trained through
pairs of images collected at low (input) and high (target) SNR,
obtained varying the laser power. The trained model is demon-
strated to perform well even on images whose SNR is limited by
other factors, such as imaging depth and zoom.
Lin et al.[70] presented a DL model for SNR improvement of

hyperspectral SRS images in the fingerprint region. They devel-
oped an encoder–decoder ResNN which exploited upsampling
and skip connections to achieve a high performance with a low
amount of training data (<20 spectroscopic images of 200×200
pixels with 128 spectral channels). The input–output pairs were
chosen as experimental SRS hyperspectral cubes with low pixel
integration time (low SNR) and high pixel integration time (high
SNR), respectively. The model improved the SNR of hyperspec-
tral SRS images by one order of magnitude, allowing an acquisi-
tion speed of 20 𝜇s per pixel. The proposed ResNN features spa-
tial and spectral parallel filtering in convolutional layers able to
maintain information about correlations both in the spectral and
in the spatial domain. The AI-driven denoiser was able to outper-
form conventional unsupervised algorithms for image restora-
tion (e.g., block-matching 4D filtering). When compared with
U-net, the model was able to denoise images with better detail
preservation avoiding the introduction of artifacts.
Among the most widely used techniques in biomedicine, ma-

terials science and metrology, one can find spectral interferome-
try. Measured single-shot interference patterns are employed to
retrieve the phase and amplitude of the optical electric field, typi-
cally bymeans of theHilbert transform. Because of the determin-
istic nature of such an approach, this method is not robust with
respect to nonlinear optical distortions, shot noise and is lim-
ited by the sampling rate in detection. Pu et al.[71] demonstrated
how deep learning may be a valid solution to perform spectral
interferometry measurements with high accuracy also in case
of such nonideal experimental conditions. They proposed a five-
layer fully-connected NN trained on 6000 experimental spectral
interferograms, as measured by a time stretch single-shot spec-
trometer. Interferograms are derived from electric fields spec-
trally modulated with known causal profiles of phase and am-

plitude that constitute the model ground truth. Indeed, the re-
gressionmodel outputs a vector that concatenates phase and am-
plitude spectra of the complex electric field. Remarkably, the al-
gorithm, which operates on single shot measurements, outper-
forms the Hilbert transform technique as a time-averaged result
over multiple frames by a grating-based spectrometer, in terms
of both prediction accuracy and time-effectiveness. In fact, the
Hilbert transform suffers from distortions induced by optical
nonlinearities, mainly self-phase modulation, taking place in the
dispersive media used for time stretching. The amplitude and
phase RMSE for the AI-driven predictions are 0.03 and 0.04, re-
spectively. On the other hand, the traditional Hilbert transforms
features a poorer amplitude and phase RMSE of 0.16 and 1.1, re-
spectively.

4.2. Spectral Chemometrics

Vibrational spectroscopy, such as infrared (IR) and Raman tech-
niques, is able to extract chemically specific information with
high speed, accuracy and non-invasiveness. However, the deriva-
tion of quantitative chemical data relies on the employment
of chemometrics, a data-driven mathematical and statistical ap-
proach to extract the chemically relevant information from spec-
tral measurements of light-matter interactions. One of the most
popular traditional chemometric methods is partial least squares
(PLS) regression,[72] which is able to unveil the embedded chem-
ically relevant linear relationships in highly multivariate spec-
troscopic data. Principal component analysis (PCA)[73,74] is an-
other commonly employed analytical method in chemometrics:
it performs a change of basis on the data, projecting them onto
the principal components space. SVMs[75,76] constitute another
class of powerful methods. In particular, such models have been
widely employed due to their high performance in classification
tasks. However, all the aforementioned traditional chemometric
methods require spectral data preprocessing in most cases in or-
der to achieve a robust and accurate result (e.g., baseline correc-
tion, scatter correction, signal smoothing and scaling[77]). Data
preprocessing, besides requiring an a priori knowledge of the
sample and being expensive in terms of time, resources and com-
puting, may also cover patterns of interest and generate artifacts,
thus compromising the reliability of the chemical classification
and quantification.[78] A valid solution to the drawbacks associ-
ated with data preprocessing is the use of AI:DL algorithms, such
as CNNs, act as end-to-end approaches able to operate directly on
raw spectral data, extracting more and more complex patterns of
interest as the input traverses convolutional layers.

4.2.1. Chemometrics of Spectral Profiles

In the context of AI-driven spectral chemometrics, Zhang et al.[66]

proposed “DeepSpectra” (Figure 6b), an end-to-end CNN inte-
grating data pre-processing and analysis in a single-stage ar-
chitecture. They compared the performance of “DeepSpectra”
with popular multivariate calibration methods (i.e., PLS, PCA,
and SVM) on both raw and preprocessed visible and near-
infrared (NIR) spectra of pharmaceutical tablets, wheat, soil, and
corn. The CNN input consisted in a raw spectrum, whereas the
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output was the single object character to be predicted. “Deep-
Spectra” featured a peculiar structure in the convolutional layers,
the so-called inception module: after a first classical convolution,
the second and the third layers combined parallel kernels and
pooling steps. Increasing the convolutional width in such a way
granted a higher adaptability to diverse spectral patterns in the in-
put. On the other hand, increasing the convolutional depth im-
proved feature extraction, even in the case of extremely hidden
nonlinear patterns. The final fully connected layers computed
the output prediction in the form of a single node. “DeepSpec-
tra” on raw data outperformed PCA, PLS, and SVM methods on
pre-processed data, featuring a root-mean-square error (RMSE)
in the range < 0.1 ÷ 0.3 in any case studied. Indeed, predictions
on preprocessed data exhibited a RMSE in the range 0.1 ÷ 1.4
with SVM, 0.3 ÷ 1.1 with PCA and 0.1 ÷ 0.6 with PLS algorithms.
This work demonstrated the possibility to achieve a more accu-
rate quantitative analysis via DL rather than classical calibration
approaches, with the advantages of acting directly on raw data,
reducing the computational and temporal cost and avoiding the
human bias in the choice of pre-processing methods.
Liu et al.[79] developed a CNN to classify chemical species

from Raman spectroscopy data, exploiting the RRUFF mineral
dataset.[80] Their goal was to combine preprocessing, feature ex-
traction and classification in a single model, in order to avoid
any manual tuning and to achieve a higher accuracy with respect
to the common chemometric pipelines for Raman spectra (i.e.,
cosmic ray removal, baseline correction, smoothing, PCA, SVM-
based final classification). The proposed CNN takes a 1D experi-
mental spontaneous Raman spectrum in wavenumbers as an in-
put. The output consisted in a fully connected layer with a num-
ber of nodes equivalent to the number of chemical species into
which data had to be classified: they tested either 512 or 1671
different minerals multi-classifications. The model architecture
was a variant of LeNet, a popular CNN for classification tasks: it
featured three pyramid-shaped convolutional layers and two fully
connected layers. The algorithm achieved an accuracy of 93.5%
on raw spectral data, outperforming by a large margin the higher
accuracy of the SVM algorithm on raw data (52.2%). Interest-
ingly, while the SVM increased its performance up to an accu-
racy of 82.1% with preprocessing (e.g., asymmetric least squares
baseline correction), the CNN performance accuracy dropped by
0.5–2.5% when preprocessing was applied to its inputs. This fact
proved that the DL-based model could retrieve discriminant in-
formation for an accurate prediction by managing baseline inter-
ference rather then working on baseline-corrected data. A similar
problem was tackled by Ho et al.[81] by means of a ResNN model
applied on single spontaneous Raman spectra of infectious bac-
teria with poor SNR. The output of the algorithm is a probabil-
ity distribution over 30 different classes of bacterial species, fur-
ther grouped according to the recommended treatment, which
is indeed the ultimate goal in the fight against infectious dis-
eases. The model features six skip connections and unlike pre-
vious works on similar architectures replaces pooling layers with
strided convolutions. This particular choice led to a better spatial
localization of Raman peaks, overall improving the model per-
formance. The model was trained on a total amount of 6 × 104

Raman spectra, 2 × 103 for each one of the 30 infectious bacterial
species considered in the study. For 1 s measurements, featuring
a SNR ratio of 4.1, the ResNNmodel achieves an accuracy of 82%

on the 30-class task, which increases with the input SNR. Inter-
estingly, when considering the further treatment classification,
the model reaches an accuracy of 97%. The authors employed lo-
gistic regression and SVMclassificationmethods for benchmark,
both of which were outperformed by the ResNN-driven classifier.
In fact, in the 30-class task and in the treatment choice task the
accuracy of logistic regression was 75.5% and 93.3%, respectively.
Similarly, SVM achieved an accuracy of 74.9% and of 92.2%, re-
spectively.
Combining CNNs with ensemble learning, as reported for the

first time by Yuanyuan et al.,[82] turned out to be a valid strat-
egy to outperform single CNN chemometric analysis. Ensemble
learning consists in training and testing several models on ran-
domly sampled subsets, then aggregating each individual pre-
diction into a final output by means of an averaging method.
The purpose of such an approach is to grant the stability and
the robustness of the quantitative model: each sub-model anal-
yses the local distribution of data so that their combination is an
actual depiction of the blueprint of the dataset. The proposed en-
sembled CNN (ECNN) consisted in an aggregation of 10 CNN
models, whose predictions were combined into a final output by
weighted average. They trained, validated and tested the archi-
tecture on three raw IR spectroscopy datasets of corn, gasoline
and mixed gases. The ECNN input consisted in 1D experimen-
tal IR spectra, while the ECNN output layer nodes provided the
predicted content of a variable number of chemical components,
according to the experimental dataset (e.g., moisture, oil, starch,
and protein content for the corn dataset). The coefficient of de-
termination R2 for the ECNN model classification performance
was higher with statistical significance than a single CNNmodel
or traditional PLS (different methods were run 50 times to pro-
vide statistical comparisons). In particular, the variance of the R2

parameter was much smaller for the ECNN than the compared
methods, which implied that the novel ECNN approach actually
met the goal of increasing the model stability.
Even though DL-based chemometrics may be considered a

preferable but optional method, it is actually essential when spec-
tral signals are overwhelmed by optical background effects and
high noise, which prevents data interpretation via traditional
methods. In this context, surface-enhanced Raman scattering
(SERS) is one of the most promising tools for highly sensitive
bio-imaging: it is able to amplify and detect low-densitymolecular
vibrational signals otherwise poorly resolvable. The main draw-
back of SERS is the challenging interpretation of the spectral data
because of strong interference effects, as pointed out by Gusel-
nikova et al.[83] in their work on DL-assisted SERS detection of
minor UV-induced DNA damage. In particular, they proposed a
CNN taking as an input the SERS spectra of UV-damaged oligo-
nuncleotides grafted to an Au plasmonic surface, whereas the
CNN output consisted of a classification into four different cate-
gories of damage related to different UV-exposure durations. The
relevant result of this CNNmodel was the ability to classify DNA
damage with a 98% accuracy from SERS spectra measurements
avoiding optimization procedures, such as baseline correction,
optimal sample area, optimal laser intensity and acquisition time.
Convolutional layers of CNNs applied to spectroscopy signals

were demonstrated to be able to find optimal data manipula-
tion and feature extraction methods by tuning kernel variables
automatically: kernels serve as spectral pre-processors.[84–86] The
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process through which CNN kernels perform feature selection
for chemometrics is not a total “black box:” it can be qualita-
tively understood and recognized by making the kernels output
explicit, as reported by Bjerrum et al.[87] in a study on CNN-based
chemometrics of NIR spectroscopic data of drug tablets. They
compared the five most active kernels in the first two convolu-
tional layers with their input spectrum. In the first convolutional
layer, the most active areas in four out of five kernels were the
ones with higher input spectral intensity, with kernel activation
intensity dependent on the slope of the spectral peaks of the in-
put. The fifth kernel of layer one was instead activated in cor-
respondence of the lower intensity areas of the input spectrum,
thus highlighting orthogonal features with respect to the other fil-
ters. Hence, the first convolutional layer was able to apply thresh-
old and derivative activation, which are well-known spectral sig-
nal processing techniques (e.g., Savitsky–Golay filtering). Simi-
larly, the analysis of orthogonal components is also a key feature
of popular chemometric processing algorithms, such as PLS and
PCA. The next convolutional layer acted on the output of the first
layer, thus achieving a higher level of abstraction and amore com-
plex feature selection: the most active kernel areas were related
to the peak surroundings of the input spectrum. This indicates
that the second convolutional layer performed spectral region
and variable selection, another well-known technique for spec-
tral analysis.
Bjerrum and colleagues thus proved how CNNs applied on

spectral signals are able to automatically mimic and optimize
popular chemometric pre-processing methods without the need
for human decision in the process. They also reported an interest-
ing and effective procedure to increase the robustness of CNNs
employed in chemometrics: spectral DA. It consists in generating
expected variations of the existing training spectra and exploiting
them for a more diverse training, thus reducing the risk of over-
fitting the model and increasing its accuracy on unseen spectral
instances. They applied this novel spectral DA on NIR spectro-
scopic data used to train a CNN model for drug content predic-
tion in tablets. The model received a 1D spectrum as input and
predicted the drug content value via a single-node output. They
presented three valid spectral augmentation techniques: random
offsets variation of ±0.1 times the training set standard devia-
tion, random slope change in the range 0.95÷1.05 and random
intensity multiplication by 1±0.1 times the training set standard
deviation. Such changes were applied nine times for every in-
stance in the training set, which resulted into a tenfold increase
of the training and validation set dimension. The performance
of the CNN model with and without spectral DA was investi-
gated in terms of RMSE: the standard dataset resulted in a train-
ing RMSE of 3.02 and a testing RMSE of 4.01, whereas the DA
dataset achieved a training RMSE of 2.21 and a testing RMSE of
3.97. Along with a decrease in the RMSE value, the DA proce-
dure allowed to obtain smoothed loss function decreasing curves
in both training and testing over the course of the epochs.
It is worth noticing that chemometric analysis accuracy is

strictly dependent on the instrumental calibration of spectrom-
eters employed for spectral measurements. Indeed, spectrome-
ters are commonly used in spectroscopy to obtain quantitative
data from light–matter interactions. However, they suffer from
a time-varying calibration and absolute calibrations may not suit
a variety of devices. Chatziadakis et al.[88] proposed an AI-based

method to extract chemometric data from electron energy loss
spectra, which could be readily applied to spectral profiles from
optical spectroscopy measurements as well. They validated the
model on three different electronic environments of manganese,
addressing only the relative position of absorption and emission
peaks rather than their absolute one, which may be strongly af-
fected by calibration. As a matter of fact, only the spectral shape
was used by the algorithm to identify the chemicals: the peaks
in the training examples were shifted as a DA procedure, in or-
der to achieve spectral translation-invariance by the AI classi-
fier. They employed this DA dataset to train and test three differ-
ent NN architectures: a densely connected NN featuring 11,000
weights, a fully convolutional NN without dense layers featuring
650 weights and a convolutional feature extractor followed by a
dense NN featuring 1100 weights. The algorithms took as input
the spectral data and produced a classification into three differ-
ent classes, implemented via a final three-nodes output layer. The
proposed fully CNN with the lower number of weights proved to
be the sole agnostic architecture with respect to the translation of
spectral peaks.

4.2.2. Chemometrics of Hyperspectral Images

AI-based chemometrics applications involve also higher dimen-
sional data: whereas spectra are regarded as 1D, 3D hyperspectral
images with an arbitrary number of spectral channels can be em-
ployed as well as inputs for DL models. Hence, an hyperspectral
3D image of this fashion consists in 1D spectra for each pixel of
a 2D image of the sample.
Krauß et al.[89] proposed a hierarchical CNN for a highly ac-

curate spectral and spatial chemical analysis and classification of
Raman spectroscopic images of urine cells for urothelial bladder
cancer screening. The CNNmodel took as input a spectral image
and processed it to produce a cell classification into tumorous or
not, achieved via a final output layer featuring two nodes asso-
ciated with the diagnosis result certainty. This work proved how
sequential convolutional layers applied to 3D inputs were able to
cope not only with spectral but also with morphological informa-
tion by hierarchical merging: kernel by kernel, a broader area of
spectral pixels was integrated so that chemical features inherent
to the Raman spectrum were associated with the corresponding
spatial region. They also demonstrated that hierarchical CNNs
on spectral images may be efficiently applied on a reduced num-
ber of spectral points, thus down-sizing the 3D input and reduc-
ing the time and computational cost. The max-relevance min-
redundancy (MRMR) algorithm was employed to select wave-
lengths relevant for the classification from the Raman spectra.
As a result, the hierarchical CNN algorithm outperformed with
an accuracy of 0.99 both conventional pixel-by-pixel full-spectra
classifiers (0.96 accuracy) and conventional morphological fea-
tures extraction methods (0.89 accuracy).
In the same context, Zhang et al.[67] reported an example of

DL-based chemical imaging from high-speed femtosecond SRS.
They proposed a CNN, named DeepChem, which was able to
produce as output a subcellular organelle 2D map with chemi-
cal selectivity on four components (i.e., nuclei, cytoplasm, lipid
droplets, and endoplasmic reticulum) given a single-frame fem-
tosecond SRS image (Figure 6c). Indeed, hyperspectral SRS
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measurements with chirped pulses require a longer acquisition
time than hyperspectral single-shot SRS measurements with
nonchirped pulses, but the latter modality is associated with low
spectral resolution and deteriorated SNR. DeepChem served as
a crucial tool to tackle the trade-off between spectral and chemi-
cal selectivity, SNR and measurement speed. The CNN training
was done employing as inputs spectrally summed chirped-pulses
SRS hyperspectral images collected via spectral scanning by a
motorized translational stage (acquisition time: 110 s), whereas
the associated ground truths consisted in chemical maps ob-
tained by hyperspectral image segmentation by Phasor–Markov
Random Field. Subsequently, DeepChem was tested on single-
shot femstosecond SRS images obtained via nonchirped fem-
tosecond pulses (acquisition time: 1–2 s) and lacking of spectral
resolution: the CNN was able to predict the chemical map with
a F1 score (i.e., the harmonic mean of precision, which is the
number of true positives over the number of all positive results,
and recall, which is the number of true positives over the number
of all samples that should have been identified as positives) of a
0.787 for nuclei, 0.645 for lipid droplets, 0.805 for endoplasmic
reticulum, and 0.789 for cytoplasm, which could be considered as
a promising result compared to conventional chemical segmen-
tation methods of fluorescence images (about 0.7 F1 score).

5. Application of AI to Optical Wavefront Shaping

Light that propagates in media experiences a distortion of the
wavefront due to the inhomogeneous profile of the refractive in-
dex across the material. The consequent random interference
produces the so called optical speckle, a pattern composed by dark
and bright spots. The process of light propagation can be analyt-
ically described by a transmission matrix T , such that the output
electric field y is linked to the input one x by

y = Tx . (13)

The transmission matrix T describes the interaction between
the medium and the optical field and it is responsible for
phase distortions leading to speckle formation. Optical wavefront
shaping[90] encompasses a series of techniques that are employed
to compensate for this. Generally, a spatial lightmodulator (SLM)
is used tomodify the wavefront of the incoming light and achieve
optical focusing or imaging through the scattering medium. In
order to optimize light control by the SLM, several approaches
may be employed, as optical phase conjugation, iterative opti-
mization or transmission matrix measurement.[91] These con-
ventional methods suffer from a time-consuming optimization
procedure, whose complexity scales linearly with the number of
pixels of the SLM of the order of 106 and, among them, the trans-
mission matrix method is too sensitive to noise and sample per-
turbations. Indeed, it relies on the assumption that optical pro-
cesses are linear and can be modeled as a single matrix, which
is not always true in noisy environments. Vellekoop and Mosk
employed for the first time optical wavefront shaping to focus
light through[92] and inside scattering objects[93] with an algo-
rithm that constructs the inverse diffusion wavefront exploiting
the linearity of the scattering process. A complete survey of all
the techniques employed for optical wavefront shaping is beyond

the aim of this work. Nevertheless, we refer the interested read-
ers to the work of Vallekoop[94] that focuses on feedback-based
wavefront shaping approaches and on some of the fundamen-
tal properties of these techniques as well as to the work of Mosk
et al.,[95] who reviewed the field of optical phase conjugation in
disordered media and novel wave modalities such as ultrasound
and radio waves. Finally, the review of Horstmeyer et al.[96] fo-
cuses on guidestar-assisted techniques for controlling light in-
side in vivo tissue and provides a description of some biological
applications of such approaches.

5.1. Computational Imaging

A field related to wavefront shaping is computational imaging
(CI).[97] The aim of CI is to overcome the limitations of imag-
ing systems, mainly due to the physical measurement and the
medium throughwhich light travels before reaching the detector.
Hence, after the computation, CI provides information which is
not readily available from intensity images, such as tomography
and quantitative phase retrieval. In this context, the scattering
problem is stated as the Tikhonov–Wiener optimization function

f̂ = argminf ||Hf − g||2 + 𝛼Φ(f ) (14)

where || ⋅ || denotes the L2 norm, f̂ is the estimate of the target
image f , and g is the measured intensity; H is the scattering op-
erator and Φ is used to encode the a priori knowledge about the
correlation patterns that are present in the scene being imaged,
that may help in the recovery of the original object, with 𝛼 a pa-
rameter ruling its weight. A computational imaging scheme with
the ML engine is schematically shown in Figure 7.
In these contexts AI, and in particular ANNs, can be conve-

niently exploited thanks to their capability to approximate com-
plex functions. Namely, by looking at input–output pairs coming
from the transmission or imaging setup, a NN can be trained
to approximate the operators T , H, and Φ ruling light propaga-
tion. The first demonstration of solution of imaging inverse prob-
lem in presence of scatterers by means of ML tools was given
by Horisaki et al.[98] In this work, a SVM was trained to well
approximate the inverse relation from speckle pattern to object
images. The algorithm was trained on a dataset of human faces
and showed major improvements with respect to previous meth-
ods, such as TM measurement techniques. Later, Lyu et al.[99]

employed a DNN to approximate the mapping between the im-
age displayed on the SLM and the corresponding speckle pattern
recorded by a camera after a scattering slab. The proposed NN
was a fully-connectedDNNwith five hidden layers, with ReLU ac-
tivation function. Four thousands images from theMNIST hand-
written digits dataset[100] were used as training set for the ex-
periment. The digit (ground truth) was displayed by the SLM,
and the corresponding speckle pattern used as network input. In
ref. [101] the same task was accomplished by means of a CNN
built with the encoder–decoder architecture. Interestingly, be-
side the conventional mean absolute error loss function, also the
negative Pearson correlation coefficient (NPCC) was investigated
as loss function. NPCC is defined as NPCC = −cov(Y,G)∕𝜎Y𝜎G,
where Y and G are respectively the NN output and the ground
truth, cov(⋅) is the covariance, 𝜎Y and 𝜎G the standard deviation
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Figure 7. General computational imaging system. An illumination system, here represented by the illumination operatorHi, guides light onto the object
f . After the object, light is shaped by an optical encoding through a collection system, represented by the collection operator Hc, that delivers light onto
a camera which registers the image intensity pattern g. The acquired raw image is sent to the ML engine to obtain the reconstructed image f̂ . The ML
engine generally includes a multilayered architecture and is informed on the physics of the illumination and collection optics. The three componentsHi,
Hc and the prior knowledge Φ are incorporated in the ML engine either explicitly as approximants or implicitly through training with examples. Adapted
with permission.[97] Copyright 2019, Optical Society of America.

of Y and G. Training the network using this loss function, they
demonstrated that the DNN showed superior performances in
case of sparse objects and strong scatterers. The network was
trained and tested exploiting several datasets: Faces-LFW[102] and
Faces-ATT[103] (i.e., dataset of web face images and photographed
faces, respectively, each labeled with the correspondent iden-
tity), ImageNet[104] (i.e., dataset of images of objects with corre-
spondent hand-annotated object classification), MNIST[100] and
CIFAR[105] (i.e., color images of 10 object classes). In ref. [106]
a network made of convolutional layers followed by dense layers
was used to tackle the same problem.
Finally, Li et al.,[107] differently from previous works, trained

the CNN not to reconstruct the transmission matrix of a single
scatteringmediumbut to learn a “one-to-all”mapping usingmul-
tiple scatteringmedia for the training. They showed that the CNN
model trained on a few diffusers can sufficiently support the sta-
tistical information of all diffusers having the samemean charac-
teristics, thus performing well on speckle patterns from unseen
diffusers for high-quality object predictions.
As already mentioned above, these reviewed DL-based meth-

ods use arbitrary images to train the DNNs for reconstruction
tasks. Moreover, they do not require to measure the complex field
amplitude as they just need input–output field intensities for the
training. Hence, compared to traditional TMmethods, they show
higher accuracy and reduced optical setup complexity. Finally,
the proposed architectures exhibit promising results also when
tested on images of objects not included into the training set.
A seminal work for the application of AI to light control

was performed by Horisaki et al., exploiting the same approach
described above. In ref. [108] the SVM was trained to focus
light onto a 5 × 5 pixel grid through a SLM. Later, Turpin
et al.[109] demonstrated light control through scattering materials
by means of a single-layer NN and a CNNmade of three convolu-
tional layers and three max-pooling layers. Pairs of binary illumi-
nation patterns were generated via a SLM, and the corresponding
speckle pattern was recorded through a CCD. Given this dataset,
theNNwas trained to infer the relationship between the scattered
light distribution and the illumination pattern. Once this was es-
tablished, a desired output pattern was input in the NN and the
corresponding illumination pattern, to be displayed on the SLM,
was obtained. Good agreement between the desired pattern and
the one actually displayed on the CCD was demonstrated for sev-

eral scattering media: glass diffusers, multi-modal fibers and pa-
per. Moreover, exploiting other NNs, the authors demonstrated
the capability of controlling transmitted light through the light
portion that is reflected by the scatterer. This is accomplished ex-
ploiting two NNs: one approximating the relationship between
transmitted and reflected light by the scatterer, the other inferring
the relationship between the reflected light and the illumination
pattern displayed on the SLM.
Recently, Luo et al.[110] combined a NN with a genetic algo-

rithm (GA).[111,112] GAs are metaheuristic algorithms used to
solve real-life complex problems belonging to different fields
such as economics, engineering, politics, andmanagement. They
mimic the Darwinian theory of survival of the fittest in nature
using as basic elements chromosome representation, fitness se-
lection and biological-inspired operators such as selection, mu-
tation, and crossover. While NNs are not guaranteed to reach a
global optimumof the parameter set for approximating the target
function, GA guarantees the convergence to the global optimum,
provided that the starting point is in proximity of the global op-
timum. In ref. [110], a GA is used to improve the illumination
pattern provided by the CNN. The CNN takes as input the SLM
pattern, the corresponding speckle and the desired focus pattern.
The latter two inputs are processed by two independent set of
convolutional layers, while the SLM pattern is directly passed to
a fully connected layer. Finally, a series of fully connected layers
is used to concatenate all the inputs and produce the SLM pattern
to obtain the desired light arrangement.
In ref. [113] the inverse problem of CI (see Equation (14))

is formulated in terms of a purely phase-modulated field. Let
E(x, y, z = 0) = ei𝜙(x,y) represent the optical field with unitary am-
plitude and phase modulated by the unknown object, which in-
troduced a phase 𝜙(x, y) at the lateral Cartesian coordinates x, y at
position z = 0. After propagating a distance z, the measured in-
tensity image is I(x, y) = |E(x, y, z)|2 = H𝜙(x, y), where H is the
forward operator that relates the phase 𝜙(x, y) at the origin z = 0
to the intensity image at distance z. To retrieve the optical phase
it is then required to solve the inverse problem

�̂�(x, y) = HinvI(x, y) (15)

with �̂� denoting the estimate of the phase rather than the exact
solution. The NN used in this experiment is based on a ResNet
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architecture. A SLM is used to generate phase images, by ran-
domly sampling images from the Faces-LFW[102] or the ImageNet
database.[104] The corresponding raw intensity was detected by a
CMOS camera. The DNN was first trained using images of faces
and then images of natural objects. The two trained models were
able to reconstruct distinct images, such as handwritten digits,
characters from different languages and images from a disjoint
natural image dataset. Both trained networks reached accurate re-
sults, suggesting that they have actually learned a generalizable
model approximating the inverse operatorHinv.

5.2. Digital Holography

Digital holography (DH) is a CI technique that allows retriev-
ing the phase of a light field, exploiting the presence of a refer-
ence beam that interferes with the field under investigation.[114]

The presence of the reference field produces artifacts that require
in turn additional intensity information for proper phase recov-
ery, that are generally obtained by scanning physical degrees of
freedom of the experiments (e.g., sample-to-sensor distance) or
varying the properties (wavelength, phasefront) of the reference
beam. In ref. [115], Rivenson et al. proposed a solution for phase
recovery and holographic image reconstruction using DNNs. Af-
ter proper training of the network with 150 training instances,
they demonstrated that a single measured hologram is enough
to extract the phase information. The employed neural network
is a deep CNN with residual blocks. The network input is com-
posed by a single hologram image, divided into amplitude and
phase contribution, while the corresponding ground truth is ob-
tained applying the state-of-the-art algorithm in DH, namely the
multi-height phase recovery method.
A CNN, inspired by the U-Net, was also exploited by Wu

et al.[116] to automatically perform autofocusing and phase recov-
ery to retrieve the 3D information from a single hologram image.
This approach allows to extend the depth of field (DOF) and re-
construction speed in holographic imaging. The CNN is trained
by using pairs of defocused back-propagated holograms and their
corresponding in-focus phase-recovered images, as ground truth.
Once trained, given a single back-propagated hologram, the CNN
is able to reconstruct the in-focus image of the sample over a
DOF of ≈ 90𝜇m. This DL method for DOF extension is non-
iterative and significantly improves the algorithm time complex-
ity of holographic image reconstruction from O(n⋅m) to O(1),
where n refers to the number of individual object points or par-
ticles within the sample volume, and m represents the focusing
search space within which each object point or particle needs to
be individually focused.
As this section has pointed out, artificial intelligence can be

used to assist DH to perform automatic auto-focusing and image
reconstruction. Nevertheless, DH can be a useful tool to provide
input–output pairs to train NNs. Next section will extensively de-
scribe this last aspect.

5.3. Multi-Modal Fibers: Control of Non-Linear Wavefront
Distorsions

Optical wavefront shaping is also strictly related to MMFs, which
support tens of thousands of opticalmodes and can deliver spatial

Figure 8. Scheme of a typical holographic setup, commonly employed to
collect input–output pairs to trainDNNs. The light of a 560 nm laser is split
into two beams at the polarizing beam splitter (PBS): signal and reference
beams. The laser beam in the signal arm is modulated by a spatial light
modulator (SLM). Then, the SLMpattern is imaged onto the proximal fiber
facet by means of a 4f-system, constituted by the lens L1 and the objective
OBJ1. A second 4f-system, constituted by the objective OBJ2 and the lens
L2, is employed at the distal end of the fiber to image the output speckle
pattern at CCD1. CCD2measures the SLM output pattern. The system can
also record the corresponding digital hologram which is formed when the
reference beam interferes with the speckle pattern on the CCD1. Adapted
with permission under the terms of a CC-BY-NC-ND license.[139] Copyright
2019, The Authors, published by Elsevier Inc. HWP: half waveplate; OBJ:
objective; L: lens; P: polarizer; OF: optical fiber; BS: beam splitter.

information. Coherent light that propagates into MMFs, which
behave as scattering media, experiences distorsion in the wave-
front shapes of the input fields due to modal dispersion. Since
1967, MMFs have been used for imaging. The very first applica-
tion of MMFs in imaging was done by Spitz and Wertz,[117] who
phase conjugated the light transmitted through a MMF and ob-
tained a recognizable image back at the input. After them, several
groups[118–125] exploited MMF for imaging using optical phase
conjugation as the mechanism to undo the modal distorsion in-
troduced by the MMF. Other research groups have tried to com-
pensate for the modal dispersion in MMF using digital iterative
algorithms[126–130] or interferometric methods [131–135]

Thanks to the development of DH,[122,123,136–138] imaging in
MMF has changed. Indeed, DH provides several input–output
pairs that can be used to characterize the transmission matrix
of a MMF. Nevertheless, the experimental setup (see Figure 8)
used for holography to generate the input–output pairs requires
a calibration step in advance, since it involves different optical
elements. Once the transmission matrix is reconstructed from
the input–output pairs, it is used to establish the input wavefront
shape at the frontal end of the fiber in order to obtain a desired
target image at the distal end of the fiber. The retrieved trans-
mission matrix is also used to interpret the light at the distal end
of the fiber knowing a given SLM input pattern. The problem is
that the time at which the calibration has been performed and
the time when the retrieved matrix is used are different and this
may lead to a poor reliability of the performance of the system. In
particular, the bending of the fiber is one of the most detrimental
problems for applications to imaging. Another drawback of DH
is the complexity of the experimental setup used to acquire the
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input–output pairs. Indeed, the holography system requires an
external reference beam brought to the output of the fiber to gen-
erate an interference pattern fromwhich the complex optical field
(amplitude and phase) can be extracted. Although some studies
have shown that the reference beam can also be sent through
the same MMF,[135] multiple quadrature phase measurements
must be done to extract the phase. In order to assess the fidelity
of the transmission matrix approach, in the system constituted
by MMF and SLM, measurements with amplitude modulation
only, phase modulation only and combination of both have been
executed. Themain problem is that theMMF is treated as a black
box which cannot be modeled by a simple physical system, that
is the reason why to characterize it one needs a number of or-
thogonal input modes at least equal to the degrees of freedom of
the system.
In the past few years, the development of AI has led to

the growing usage of DL approaches to solve highly nonlinear
problems.[140] Indeed, DL allows one to reconstruct the trans-
mission matrix feeding the network with a number of non-
necessarily orthogonal inputs. Since DL deals with nonlinear sys-
tems, NNs are suitable to retrieve the transmission properties
of the MMFs reconstructing the nonlinear relationships between
inputs and outputs. Hence, to retrieve what input phase (or am-
plitude) has generated an intensity pattern, one can refer to inten-
sity measurements only, rather than holographic measurements,
thus simplifying the experimental setup. It is relevant to notice
that when a phase term 𝜙(x, y) is introduced to the input complex
optical field, the system has two nonlinearities: the first is the ex-
ponential law ei𝜙(x,y) due to the way the SLM displays the input
phase pattern 𝜙(x, y) and the second is the square law introduced
by the detector, which takes the square of the modulus of the out-
put complex optical field |E(x, y)|2. Finally, the NN can also take
into account temporal drifts of the transmission properties of the
fiber, solving also bending issues.
The studies for adapting a NN for image recognition in aMMF

started in 1991 by Aisawa et al.[141] They proposed a way to per-
form image classification through MMF using a NN. In 2001
Marusarz et al.[142] wrote a paper where they retrieved the trans-
mission property of the fiber using a NN-based technique. In
these preliminary works, the constructed NN algorithms were
primitive compared to the modern DNNs.

5.4. Recent Applications to Multi-Modal Fibers

In 2017, Takagi et al.[143] presented a ML algorithm for object
recognition in MMF that can be treated as a strongly scatter-
ing medium. They experimented the performance of three well-
known supervised learning algorithms when studying propaga-
tion in MMF: SVM, adaptive boosting (AB) [144] and a NN. The
experimental setup is realized with a SLM and a MMF. Face and
nonface images are used as input object images. They are dis-
played onto the SLM, which is illuminated by a laser diode. A
image sensor, which measures the output intensity, collects the
speckle patterns used for training and testing the different super-
vised learning algorithms which classifies the speckle in face and
nonface speckles. The training set size was 2000 (1000 face im-
ages and 1000 nonface images) and the testing set size was 400
(200 face images and 200 nonface images). The accuracy of the

three algorithms is calculated by considering randomly selected
sampling pixels in the speckle patterns, that were set at the same
positions for all the speckle patterns both in the training and test
processes. Their results showed that the SVM had the highest
accuracy rates at all numbers of sampling pixels and also at all
numbers of training sets, demonstrating also that all the super-
vised learning methods achieved high accuracy rates around 90
% for classification.
In 2018, Borhani et al.[145] used a DNN to interpret the trans-

mission properties of a MMF using the speckle patterns pro-
duced by launching images in aMMF. The database, used to train
and assess the recognition and reconstruction performances of
the network, is constituted by handwritten digits. The experi-
mental setup is constituted by a SLM and a graded-index (GRIN)
MMF (62.5 𝜇m core diameter, 4500 spatial modes). The input
images are displayed on the SLM, illuminated by a laser diode,
and are imaged on the proximal facet of the MMF by mean of a
4f-system. The output images are collected through a CCDwhich
measures the output intensity. A half-wave plate and a linear po-
larizer are placed before and after the SLM, respectively, in order
to test both phase and amplitude patterns as inputs to the GRIN
fiber. The NN used to classify the distal end images and the re-
constructed SLM input images is a visual geometry group (VGG)
type CNN. It consists of a convolutional front-endwith downsam-
pling for encoding and a fully connected back-end for classifica-
tion. A U-net CNN, exploiting the architecture developed by Ron-
neberger et al.,[55] is used to reconstruct the SLM input images
from the output speckle patterns. They showed that the fidelity
of the reconstruction, which is based on the reconstructed im-
ages obtained from the experiments, decreases from 97.6% for
a 0.1-m fiber to 90.0% for a 1-km fiber. Moreover, the classifica-
tion accuracy, defined as the percentage of correctly recognized
digits, decreases with increasing fiber length for both amplitude
and phase-modulated proximal facet input modes from 90% for
a 2-cm fiber to 30% for a 1-km fiber.
In the same year, Rahmani et al.[146] showed that a DNN

can learn the input–output relationship in a 0.75-m long MMF.
Specifically, they demonstrated that a CNN can learn the nonlin-
ear relationships between the amplitude of the speckle pattern
(phase information lost) obtained at the output of the fiber and
the phase or the amplitude at the input of the fiber. The train-
ing set used to retrieve amplitude-to-amplitude and amplitude-
to-phase relationships is constituted by the speckle patterns of
handwritten Latin alphabet. They used two different architec-
tures: a 22-layers CNN, based on a VGG type network, and a
20-layers CNN based on a ResNN. The dataset is constituted by
60 000 images for the training set and 1000 images for the val-
idation set and the learning algorithm uses a MSE loss func-
tion. They showed that the VGG type network can generate in-
put SLM amplitude and phase patterns with average 2D cor-
relations of ≈93% for amplitude patterns and ≈79% for phase
patterns. Besides, the model can reach fidelities on the valida-
tion set as high as ≈98% for amplitude patterns and ≈85% for
phase patterns. On the other hand, the ResNN type architecture
reproduces input amplitudes with a fidelity of ≈96% and input
phases with a fidelity of ≈88% with a much faster convergence
rate. The novelty of this work is the capability of the networks
of transferring the learning, testing it for phase and amplitude
reconstruction in images different from the ones used in the
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training and validation set. Just using the VGG-net architec-
ture, the reconstruction accuracy reached≈90%. Finally, from the
measured transmission matrix they computed the inverse ma-
trix in order to compute the input phase pattern displayed on
the SLM from desired speckle patterns. Hence, the NN is fed
with these input images. The output of the CNN will give the
image captured on the camera, that were generated at the out-
put of the MMF with a fidelity that could be as high as ≈94%.
In 2019, Kürüm et al.[147] used a multi-core, MMF (MCMMF)
array as a multiplexed speckle spectrometer, achieving real-time
spectral imaging over several thousands of individual fiber cores.
Indeed, a MCMMF bundle can be used as a frequency char-
acterization element in a high-throughput imaging spectrome-
ter for snapshot spatial and spectral measurements with sub-
nanometer spectral resolution, using a compressive sensing (CS)
algorithm to retrieve the spectral information. They showed how
DL can perform the same work as well as CS. The experimental
setup is characterized by a supercontinuum light source which
is spectrally filtered by an acousto-optic tunable filter achieving
a spectral resolution of 5 nm. The spectrally filtered light is first
sent to a single-mode fiber to avoid any other spectral drift in-
troduced in the setup and then sent to the MMF array of 3012
fibers with individual core diameters of 50 𝜇m by means of a
SLM. A CMOS camera is used to retrieve the output speckle pat-
terns. Since all fiber cores are different, they give rise to differ-
ent speckle patterns at the output. Moreover, the speckle patterns
for every wavelength are stored into a multispectral transmis-
sion matrix for every core, which in principle allows to retrieve
spectral information from arbitrary superposition states using
number different techniques. Spectra consisting in many wave-
lengths correspond to the superposition of different speckle pat-
terns.
In this work, Kürüm et al. performed spectral reconstruction

via DL by using a CNN constituted by a series of convolutional
layers followed by two fully connected layers and a final dense
output layer with 43 neurons, correspondent to the size of the re-
trieved spectrum. The size of the network is adjusted according to
each tested sampling condition, that is, to the number of pixels of
the CMOS camera selected to feed the network. Each convolution
is followed by batch normalization and a leaky ReLU activation
layer. To test the performance of each network, multiple patterns
were digitally added up together to simulate a real signal made
of a given number of nonzero wavelength components with ran-
domly varying intensities. For each MMF, the dataset was consti-
tuted by 31 000 images, 29 000 used for training, 1000 for vali-
dation and 1000 for the final evaluation. The performance of the
NN were assessed both in the case of downsampling and over-
sampling. For downsampling, DL yields a very good performance
and even clearly outperforms CS for dense spectra in the under-
sampling case. For the oversampling case, the DL shows weaker
performances. This is due to the statistical nature of the NN com-
pared to the CS approach, which is an analytical approach which
in any case yields to the optimal solution, even if at a higher com-
putational cost.
In 2019, Caramazza et al.[148] implemented a method that sta-

tistically reconstructs the inverse transformationmatrix for prop-
agation in MMF. The main goal is to transmit natural scenes at
high frame rates, high resolutions and in full color. They used a
shallow network constituted by a fully connected complex-valued

matrix. The output speckle patterns of the MMF with amplitude
distribution, x, that corresponds to the square root of the mea-
sured speckle intensity patterns, are fed to the fully connected
layer together with the intensity images, I, that have generated
each speckle pattern. The algorithm approximates the inverse of
a complex transmission matrix,W, such that I = |Wx|2. The ob-
tained W is then used to retrieve images that were not part of
the sample dataset starting from intensity measurements of their
output speckle patterns., The training dataset consists of images
from the ImageNet database.[104] During the training procedure,
thematrixW is changed through a stochastic gradient descent ap-
proach thus ensuring convergence of the loss function to a min-
imum value.
In 2020, Rahmani et al.[149] proposed an online learning ap-

proach for the projection of arbitrary shapes through a MMF
when a sample of intensity-only measurements is taken at the
output. They used a NN to solve the highly ill-posed problem of
predicting a scattering medium system’s forward and backward
response functions. With respect to previous works, in which
DNNs have been used to predict the input field from amplitude-
only speckle pattern at the output of the fiber, they realized a NN
able to learn the correct inputs that will generate a desired out-
put of a MMF. This is challenging because they did not have a
training set that consisted of desired output of the MMF with
the corresponding input fields to feed the MMF. The novelty
of their work is that they used a combination of two networks
to generate the inputs that created a desired target. Indeed, the
whole network, called projector network, is made of two sub-
networks: actor and model. These two subnetworks work siner-
gistically: starting from speckle patterns, the actor produces at
its output the SLM input patterns to feed the fiber. The model
then is meant to mimic the forward propagation of light into
the MMF producing from the inputs (the SLM patterns) the de-
sired output (the speckle images), backpropagating the error be-
tween the desired target and the speckle pattern measured at
the distal end of the fiber. When this error reaches the actor,
its parameters are adjusted thus reducing the error given by
the model.
The entire learning process is divided into three main steps,

sketched in Figure 9: 1) a number of input control patterns are
sent to the system and recorder to the camera; 2) the model is
trained on this input patterns in order to learn the forward path
of light from the SLM toward theMMF till the camera at the distal
end of the fiber; 3) While themodel is fixed, the actor is fed with a
desired output to generate a given SLM image correspondent to
that target image. The actor-produced SLM image is passed to the
fixed model now mimicking the fiber. Finally, the error between
the output of the model and the target image is backpropagated
via the model to the actor to update its trainable weights and bi-
ases. After this training, the test procedures to assess the accuracy
of the neural network is performed by feeding the projector with
a target image, obtaining the SLM image which will be given to
the fiber to obtain the real output, which is then compared with
the desired one.
The set of images used to produce the training set consists

of handwritten Latin alphabet from EMNIST.[150] After the train-
ing, the NN is used directly to project a different category of
images, thus showing the generalization ability of the projector
network reaching accuracy as high as ≈ 90% even with images
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Figure 9. The projector neural network consists of two subnetworks: actor and model. The actor, once trained, takes as input a target image, that corre-
sponds to the output speckle pattern collected at the distal end of the MMF, and gives at its output the correspondent SLM pattern, that experimentally
is then delivered at the frontal end of the fiber and propagates into it giving the output speckle pattern. The role of the model is to help the actor in this
operation by mimicking the forward propagation of light into the MMF. a) The experimental generation of the training set, made of input SLM patterns
and output speckle patterns. The experimental setup, as the one shown in Figure 8, creates the input–output pairs. b) The training of the model using
as input the measured SLM patterns and getting at the output the speckle patterns, so that the DNN can learn the rules of propagation through the
MMF. c) The training of the subnetwork actor while the subnetwork model is kept fixed. The actor starting from desired output image will produce at
its output a predicted SLM image that will go through the model to generate the NN output then compared with the input one. Hence, the error is
backpropagated via the fixed model to the actor to update its weights and biases. Eventually, the network is tested by feeding the actor with desired
output images and delivering the predicted SLM images directly to the MMF system measuring the output speckle pattern with a CCD. Adapted with
permission.[149] Copyright 2021, The Authors, under exclusive license to Springer Nature.

not included in the training set. It is also shown that the perfor-
mance of the network in inferring the SLM images are strictly
related to the complexity of the target image. Nevertheless, train-
ing the projector network on complex images, even though the
convergence speed is lower, has shown that it is able to pro-
vide SLM images with fidelities comparable with those of full-
measurement schemes.
Another work on image transmission through a MMF via DL

was done by Kurekci et al.[151] They built three different CNNs
based on U-net, VGG-net e RES-net architectures trained with
31 200 grey-scale handwritten letters of the Latin alphabet and
using a MSE cost function. After the training, the networks per-
formances are assessed using 5200 images of handwritten Latin
letters not included in the training set. The result of their studies
shows that the RES-net architecture is the best compared to the
other two architecture both in terms of accuracy and of compu-
tational time. After the reconstruction of the input field, once the
networks are fed with the speckle patterns obtained from experi-
ments, it is shown that the ResNet and the U-Net both converge
(minimize the validation set loss) in less than 20 epochs, after
which their validation set losses increase slightly and their train-
ing losses keep decreasing. This is not the same in the VGG-net
architecture, which is due to the fact that the ResNet and the U-
Net are both architectures where the input features get stacked
and represented in smaller matrices in the encoder part and then
progressively decoded to reconstruct the MMF input, while the
VGG-net preserves the input shape through the network by re-
shaping layers.

5.5. Highly Stable Information Retrieval in Perturbed
Multi-Modal Fibers

In 2019, Fan et al.[152] developed a CNN with the capability to
accurately predict unknown information at the other end of a
MMF at any state. Indeed, any change of the fiber geometry leads
to different MMF transmission matrices (TM) and so to differ-
ent states. Introducing high variability in the MMF shapes, they
developed a CNN network able to: predict the MMF transmis-
sion feeding the NN with the output speckle patterns obtained
by the measured TM, perform image retrieval at different states
of a stationary MMF and also when continuous shape variations
in the MMF occur. The experimental setup is characterized by
a digital micromirror device (DMD), which is illuminated by a
laser at 632.8 nm and which can display different binary patterns
switching on and off the single DMD modules. This binary pat-
tern modulates the light, which reaches the proximal end of the
MMF, while the output speckle pattern of the MMF is sent to a
CMOS camera.
The training set is constituted by 28×28 pixels images which

are converted to 36×36 pixels images to match the DMD pattern
requirements, where they are then converted to binary images.
After calculating the TM matrices with 8000 input–output pairs,
they used 7800 speckle patterns calculated from experimental
TM. To estimate the performance of the whole network other 780
speckle patterns where derived from other images taken from a
different database. The average prediction accuracy between the
predicted binary images and the ground truth is 98.74%. For the
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second experiment, the experimentally acquired input–output
pairs are used to train directly the CNN, without deriving them
from the TM. The collection of input–output pairs is repeated
for different MMF geometric shapes. Starting with a dataset of
40 000 images, they used them in a ratio 9:1 for the training and
testing set, respectively. They showed that, using for the training
process all the images obtained at the different MMF states, the
trainedCNNhas an accuracy above 96% for all possible geometric
shapes. Finally, they fed the NNs with a dataset of speckle images
acquired while continuous variations were induced in the MMF.
Out of these images, some speckle input images and their cor-
responding binary DMD labels are randomly selected to be used
as training data set, while the remaining speckle inputs and their
corresponding patterns are used for testing. The average predic-
tion accuracy is 96.48%.
In 2020, Kakkava et al.[153] proposed an alternative approach

for recovering the information through the MMF system in the
presence of a wavelength drift in the light source using DNNs.
Indeed, perturbations of the system caused by wavelength, ther-
mal or mechanical drift, may be catastrophic for a calibration-
based technique such as TM. Therefore, it is needed to look for
a technique which is calibration free. The dataset is obtained by
taking 10 000 images of handwritten digits fromMNIST[100] and
considering the input field at the SLM of the experimental setup
and the output speckle pattern at the CCD set at the distal end
of the MMF. The wavelength drift is induced through a Matlab
script, generating an array of 100 different wavelengths, which
are sorted in an ascending order to guarantee fast stabilization of
the laser.
The NN used for image classification throughMMF is a VGG-

type CNN. It is trained with batches of 100 images and it relies on
a MSE cost function. In order to test the performance of DNNs
in the presence of wavelength drift, it is essential that the classifi-
cation accuracy is first determined for the different wavelengths
within the drift bandwidth in no-drift conditions. This approach
takes into account that for different wavelengths there is a differ-
ent number of supported modes that could result in low capa-
bility of the system to support the input images. In this way, the
accuracy is only related to the noise induced in the dataset by the
wavelength drift. The training and test sets consist of images cap-
tured at a single wavelength, without any drift during recording.
After establishing that in the range from 700 to 1000-nm there
is a good number of spatial modes coupled with the MMF that
do not affect the input images accuracy, they considered differ-
ent bandwidths (from 6 to 96-nm) around a central wavelength
of 800-nm. The training is performed in two different cases. In
the first case, the wavelength is kept fixed during the training
and then tested on speckle patterns where it drifts. In the sec-
ond case, the training is performed for speckle patterns related
to different values of the wavelength. For the first case they show
that the DNN is efficient only for a very narrow range of wave-
lengths, after which the accuracy drops abruptly to 10% at 812-
nm. Instead, for the second case, a classification accuracy of 70%
is achieved even with a drift of 100-nm. Moreover, varying the
dataset size, they showed that the more severe the wavelength
drift, the more samples are needed for achieving higher classifi-
cation accuracies. But in any case, a dataset larger than 6000 is not
needed for 100 nm wavelength drift, since the accuracy saturates
even using larger datasets.

5.6. Nonlinear Frequency Conversion Control

All the previously reviewed works about DL applications in MMF
dealmainly with spatial control of light propagation via wavefront
shaping with a SLM. Recently, Tegin et al.[154] have proposed a
ML approach to learn and control nonlinear frequency conver-
sion insideMMF. The physical processes involved in the creation
of new optical frequencies in MMF are cascaded SRS as well as
supercontinuum generation. They studied the effect of the initial
spatial excitation condition of a GRIN MMF on the output spec-
trum. In particular, they showed that they showed that two highly
nonlinear phenomena such as supercontinuum generation and
broadening of the spectrum based on cascaded SRS can be ex-
perimentally controlled for the first time in the literature with
ML tools. Numerical calculations allowed the authors to deter-
mine the preliminary excitation patterns to feed the MMF, nu-
merically solving the multi-modal nonlinear Schrödinger equa-
tion with a Raman scattering term and a third-order dispersion
term. Simulating the propagation of different modes inside the
fiber, they showed that spectral broadening can be obtained either
by favoring lower order modes or, keeping the pump parameters
fixed, when equal excitation of all the modes is provided. Finally,
smoother supercontinuum formation is achieved when coupling
most of the energy to higher-order modes.
The experimentally measured spectra at the output of the fiber

(generated by the propagation of 10 ps short pulses in a 20-m
GRIN MMF with 62.5-𝜇m core diameter) are fed to the network
as inputs, and for each spectrum, the coefficients to generate the
corresponding beam profiles are the output variables of the net-
work, constituted by four hidden layers. By adjusting the peak
power of the pulses to 85 and 150 kW, they can study the two
nonlinear broadening phenomena. Indeed, the latter peak power
favors spectral broadening induced by SRS processes, while the
former favors supercontinuum generation at the output of the
MMF. The experimentally collected datasets are divided with a ra-
tio of 9:1 for training and validation. To assess the performance
of the trained network, a collection of synthetic spectral shapes
is generated via summations of Gaussian distributions with dif-
ferent amplitudes and widths. These synthetic spectra are fed to
the DNN which provides the parameters for the input field at
the proximal end of the MMF. Comparing the experimental re-
sult with the designed spectra, to which noise is also added to
simulate real measurements, an accuracy higher than ≈ 80% is
achieved. In this way, they showed how ML can be used also to
predict highly nonlinear effects with a good accuracy.
Another approach in which AI has been used for automated

control of highly nonlinear optical processes has been proposed
by Valensise et al. in 2021.[155] They used a Deep RL algorithm
to control and optimize white light continuum (WLC) genera-
tion in bulk media without a-priori knowledge of the system dy-
namics or functioning. WLC generation is a very complex task
which involves many nonlinear optical processes such as self-
phase modulation, self focusing, self-steepening, space–time fo-
cusing, group velocity dispersion as well as femtosecond fila-
mentation. The high complexity of these processes, combined
with fluctuations of the parameters of the driving laser, call for
a time-consuming optimization procedure to obtain a broad and
long-term stable WLC. The experimental setup (see Figure 10a)
is made of a fiber-based ytterbium laser system, generating
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Figure 10. a) WLC generation setup modeled as a Markov decision process. The state of the system st is a three-component vector (z, 𝜃,𝜙). The action
at is the absolute movement of the three actuators. The reward is provided to the RL agent, calculating it from the measured spectra acquired while the
three actuators are moving. b) Actor–critic architecture constituted by two NNs trained for different purposes. The actor NN approximates the policy
function 𝜋, which maps the relationship between the state st and the action at. The critic NN approximates the state-action value function Q(st, at), that
is an estimation of the cumulative reward, once the state st and the action at are provided to the network. Adapted with permission.[155] Copyright 2021,
Optical Society of America.

300-fs pulses at 1030-nm and 2-MHz repetition rate, which are
tightly focused with a 5-cm lens on a 6-mm YAG crystal mounted
on a motorized translational stage to adjust the position of the
laser focus z. Before the lens, a combination of a HWP, mounted
on a motorized rotational state 𝜃, and a polarizing beam splitter
(PBS) is used to control the pulse energy, while a second rotary
stage controls the aperture of a iris 𝜙 to regulate the beam diver-
gence. Finally, the collimated beam is sent to a visible spectrom-
eter which records the WLC spectra.
In this work, the WLC generation system is designed as a

Markov decision process (MDP) in which an agent, after the ob-
servation of the actual state s of the system, acts on the three pa-
rameters z, 𝜃, and 𝜙 following a policy 𝜋. This action a brings
the system to a new state s′. During each action, WLC spectra
are acquired and a reward, corresponding to a single scalar num-
ber, is given to the agent. Dealing with continuous parameters, a
twin delayed deep deterministic policy gradient (DDPG) actor–
critic architecture[156] (see Figure 10b) is used for training the
system. The training procedure is divided into episodes each last-
ing 50 steps of the three actuators. After sampling the parameter
space (four episodes), an evaluation phase (three episodes) is per-
formed to see what the agents learned. Typically, the agent needs
two further explorations (two episodes), each one followed by an
evaluation phase (three episodes), to acquire the correct knowl-
edge. At each exploration step, when an action is taken, random
noise is added to the actuator thus allowing the agent to explore
new states which may lead to the optimum policy 𝜋∗. Its only at
the third evaluation phase that the RL agent is able to give at each
episode positive rewards. After training, the RL agent was able to
learn how to switch on and to obtain a long-term stable WLC,
showing that the broader and most intense spectrum is not al-
ways the one chosen by the agent since it aims at maximizing
the cumulative rewards.
In ref. [157] Salmela et al. presented a solution to the prob-

lem of ultrashort pulses propagation in optical fibers using a
machine-learning based paradigm with a RNN. Specifically, they
demonstrated how a RNN with LSTM accurately predicts the

temporal and spectral evolution of higher-order soliton com-
pression, studying the propagation of picosecond pulses in the
anomalous dispersion regime of a highly nonlinear fiber. Then,
they extended their analysis to more complex propagation dy-
namics, such as the generation of a broadband supercontinuum
by injecting femtosecond pulses into a highly nonlinear fiber.
Their work demonstrated that the NN was able to reproduce
the dynamics both in the temporal and spectral domain both
for soliton compression and supercontinuum generation. More-
over, their results for the case of higher-order soliton compres-
sion were in excellent agreement with experiments, showing that
NNs can be used as an important and standard tool for analyzing
complex ultrafast dynamics.

6. Application of AI to Quantum Optics

The development of quantum technologies has now reached
the stage in which some form of automated data processing is
strongly desirable. This need arises from the large amount of data
that a complex quantum system can generate as well as the ne-
cessity of not relying on an operator who acts on the system. ML
thus appears as an appealing technique to handle such problems.
In particular, in the field of quantum optics,[158] the complexity
of the new experiments is constantly increasing. We now have
the equipment and the platforms to generate high dimensional,
multipartite entangled states, involving physical systems com-
posed of more than two subsystems, which can be manipulated
to achieve different tasks. One of the direct consequences of deal-
ing with such complex systems is that the control and the char-
acterization of the generated states require bigger efforts both in
terms of computational costs and in the ability of modeling their
behavior. Indeed, while the full characterization of a classical sys-
tem requires a number of parameters that scales linearly with
the systems size, the number of measurements and parameters
needed to describe the produced quantum states scales exponen-
tially with their dimensions. Such exponential scaling is intrin-
sically linked to specific properties of quantum phenomena.[159]
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Therefore, the use of ML methods appears especially useful in
noisy experimental conditions, where the application of the theo-
retical model can fail and the development of a specific model re-
sults to be extremely hard in particular for high dimensional sys-
tems. The increased complexity of the available photonic quan-
tum resources is the main reason why in the last years the num-
ber of experiments resorting to ML has rapidly spread in this
field. Its use has been demonstrated to be beneficial in different
aspects that we will examine individually in the following, that
is, the generation of quantum states, their use in metrological
applications and ultimately their characterization.

6.1. Generation of Quantum States of Light

Photonic platforms represent a promising candidate to produce
a huge variety of entangled multiphoton states. However, the dif-
ficulties found in the design of new and efficient optical exper-
iments increase both with the dimensions and the complexity
of the desired states. Lately, AI protocols have been employed to
find the optimal configuration of optical elements producing the
quantum state of interest from the initial state available.[160,161]

This kind of problems can be efficiently solved by RL algorithms
where an agent is trained to search the interesting configurations
producing the desired states.
In ref. [162], Melnikov et al. developed a RL protocol, for-

mulated within the projective simulation framework, to design
complex quantum photonics experiments. The quantum state is
encoded in the orbital angular momentum (OAM) of photons
produced by a double spontaneous parametric down-conversion
(SPDC) process in two nonlinear crystals. The authors give the
agent two different tasks: the first is to find the simplest setup
which allows to produce a quantum state with a certain set of
properties while the second consists in finding as many experi-
mental configurations as possible bringing to the generation of
the same state. To achieve such tasks in each iteration of the al-
gorithm, the agent has access to a set of optical elements includ-
ing beam splitters, mirrors, shift-parameterized holograms, and
Dove prisms which it can sequentially place on the optical ta-
ble. After the analysis of the state obtained upon the evolution
through the chosen elements, the agent either receives a reward
or not as illustrated in Figure 11. The reward is linked to the
generation of the targeted multipartite entangled states and it
depends on which one of the two tasks we are looking at. The
obtained configurations demonstrate how AI algorithms can be
employed even during the design of new optical experiments. In-
terestingly, this kind of approach, which allows the investigation
of millions of different quantum optical experiments, brought
to the discovery of new unconventional setups which have been
used to obtain the first experimental realization of higher dimen-
sional highly entangled states and new quantum techniques. As
new protocols and applications are found, this way of accessing
arbitrary states becomes a key asset.
The combination of ML algorithms and photonics can also be

exploited to improve the efficiency of the ML algorithms them-
selves. Concerning RL algorithms, recently there is a growing in-
terest also to their implementation on photonic architectures.[163]

In ref. [164] Saggio et al. demonstrated a speed-up in learning

Figure 11. An initial quantum state generated via a SPDC process passes
through a series of optical elements chosen by a learning agent. The agent
has access to a toolbox with different optical elements that can be placed
on the optical table through actuators. Depending on the agent choice, a
great variety of different quantum states can be generated and, according
to a specific task, the agent will be rewarded or not.

time exploiting quantum resources, paving the way for quantum-
enhanced RL algorithms.

6.2. Applications to Metrology and Sensing

The second important application ofMLmethods to quantum ex-
periments is their use to avoid all the difficulties arising from the
development of a theoretical model able to describe the quantum
system behavior in a noisy environment. In this scenario, NN
and other ML algorithms can be used to map inputs to outputs
resulting in a faster and simpler solution than finding an explicit
model, since they represent an effective description learned di-
rectly from data.
In this context,ML has found an application in quantumphase

estimation protocols which represent an important benchmark
in the metrology field. The parameter of interest is an optical
phase shift, introduced by the investigated sample, among two
different modes of the optical state used as probe. The task of
metrology experiments consists in estimating such phase with
the smallest uncertainty achievable, which has a fundamental
lower bound introduced by quantum mechanics laws,[165–167]

measuring the optical probe after its interaction with the sam-
ple. To reach this goal, it has been demonstrated that the use
of quantum resources plays a fundamental role. Indeed, us-
ing optical states with nonclassical features, such as entangle-
ment, it is possible to achieve the ultimate limit of measurement
precision.[168,169] A standard class of single-photon states used for
optical metrology purposes is the one of N00N states, where a
fixed number of N photons are distributed in a superposition of
two modes

|Ψ⟩ = 1√
2

(|N⟩|0⟩ + ei𝜑|0⟩|N⟩) (16)
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Figure 12. A two-photon N00N state acquires a phase shift 𝜑 among its two optical modes that can be detected studying the coincidences counts
obtained at the output of a PBS for four different projection angles 𝜃. During the training procedure, a calibrated HWP is inserted in the setup to
introduce a known value of the phase 𝜑. The training is performed associating to each of the inspected phase values the four normalized measured
photon counts which are fed to the input layer of the NN. The training allows the NN to correctly estimate the value of �̄� directly from the four measured
outcomes when a new value of the phase is introduced in the setup.

giving a superposition of either all the photons in the first mode
and the vacuum state |0⟩ in the second one or vice-versa.
The use of such maximally entangled states for quantum en-

hanced phase estimation entails that, when passing through the
sample, all the N photons acquire at the same time the phase 𝜑
of interest, resulting in an oscillation of the registered photon-
counting outcomes with a phaseN𝜑. The improved metrological
capabilities of this class of states derive from such faster change
of the photon-counting probabilities compared to the one ob-
tained with a separable state, resulting in a superior precision
than the one attainable with classical light of the same average en-
ergy. However, to achieve such superiority, it is essential to reach
an accurate description of the quantum state of the probe. In-
deed, the generated states are easily degraded by the presence
of unavoidable experimental noise. Therefore it is necessary to
develop a reliable calibration procedure to fully exploit the intro-
duced quantum advantage. Usually, a detailed theoretical model
of the device operation is developed to reach a highmeasurement
accuracy. In general, this represents a complicated problem since
the task of modeling all the noise sources and how they affect the
optical probe state becomes harder the more complex and the
bigger is the quantum state exploited.
In ref. [170], Cimini et al. demonstrated how ML algorithms

can represent a convenient solution for such calibration tasks,
explaining how to characterize a quantum phase sensor based
on a two-photonN00N state generated exploiting the Hong–Ou–
Mandel (HOM) effect.[171,172] The parameter of interest is the po-
larization rotation introduced by a HWP at the angle 𝜑

2
, which

results in a phase shift between the right- and left-circular po-
larization state of the probe N00N state. The detection scheme,
shown in Figure 12, consists of a second HWP and a PBS, al-
lowing the state projection on arbitrary linear polarizations via
the choice of the angular position 𝜃 of the HWP. Photon count-

ing is performed by fiber-coupled avalanche photodiodes (APD)
placed at each of the two outputs of the PBS. The electric signals
converted by the APDs are then carried to a field programmable
gate array (FPGA) board, which allows one to obtain coincidence
counts. The usual modus operandi consists in building a model
which links the coincidences detection probability, for four dif-
ferent settings 𝜃 of the measurement HWP, to the parameter of
interest𝜑. In this specific case, such conditional probability relies
on the precalibration of the visibility v of the HOM dip and an in-
correct determination of the precalibrated visibility can affect the
value of the phase parameter, introducing a bias in the estima-
tion.
A feed-forward NN is used to map the obtained coincidences

probability for four different measurement settings, fed to the
input layer of the NN, to the relative optical phase 𝜑. The net-
work is trained with a calibrated HWP registering the four de-
tection outcomes for different rotation angles of the measure-
ment HWP. The bigger is the training set size, the better will
be the reconstruction performed by the NN. Moreover, to obtain
a robust model against Poissonian noise affecting the photon
counts, a bootstrapping procedure to augment the training set
has been implemented.
After the network has been trained, the calibratedHWP is sub-

stituted with the sample which introduces the unknown phase
shift 𝜑 between the two modes of the optical N00N state. The
estimation of such phase is achieved feeding the NN with the
coincidences counts registered after the probe interaction with
the sample achieving a near-optimal estimation independently
on the level of the probe signal exploited.
The ability to calibrate sensing devices, circumventing the

need of developing an accurate theoretical model describing the
corresponding response function, becomes vital when dealing
with more complicated devices, whose operation depends on
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multiple parameters. Such dependence would indeed imply to
take into account all the cross-talks among the different parame-
ters, resulting in a quite intricate problem to solve. In this context,
a NN has been used to calibrate the operation of an integrated
three-mode interferometer whose response function depends on
the application of two voltages which regulate the relative phase
shits of two arms with respect to the reference one. In ref. [173],
the NN approach has been used to successfully perform the cali-
bration of the integrated device in the single photon regime, find-
ing a map between voltages and output photons probabilities.
The great advantage of using ML to handle quantum systems

is that, thanks to these algorithms, it is possible to develop mass-
production devices, ready to be used even from nonexpert users.
In fact, AI allows to rely on an autonomous calibration which
does not require either the use of additional states or the develop-
ment of an explicit model describing the system’s behavior. This
capability is the main reason why AI is starting to be involved in
quantum metrology and sensing applications. Finally, the use of
AI algorithms for metrological applications has proved success-
ful for the optimization of the feedback strategy in adaptive phase
estimation protocols.[174,175]

6.3. Classification and Characterization of Optical Quantum
States

Quantum photonic states represent an important resource
not only for sensing applications but also for quantum
communication[176–178] and computation protocols.[179,180] To ex-
ploit the power of quantum effects in all these fields, it is of-
ten necessary to obtain a reliable characterization of the em-
ployed quantum states. The generated states are indeed affected
by noise and experimental imperfections, therefore the knowl-
edge on the actual state available is acquired only through its
complete tomographic reconstruction, that is, reconstructing the
density matrix of the state using measurements on an ensem-
ble of identical quantum states. The knowledge of the den-
sity matrix 𝜌 indeed allows to fully specify the inspected quan-
tum state.[159] However, the number of measurements needed to
obtain a full tomography scales exponentially with the dimen-
sion of the investigated state, therefore for high-dimensional
systems it becomes a computationally hard task to solve, re-
quiring the analysis of a huge amount of data. To overcome
the problems linked to the exponential scaling, generative mod-
els have been employed when it is reasonable to assume that
the investigated quantum state satisfies some specific regularity
properties.
Of particular interest are those states whose wavefunction

can be approximated by a restricted Boltzman machine (RBM)
which is known to be an universal approximator able to learn
a general complex distribution just from the inputs. RBMs are
an unsupervised learning method which allows one to recon-
struct the probability distribution associated to its set of inputs.
They consist of a two-layer NN: the visible layer and the hid-
den layer and connections exist only between visible nodes and
hidden nodes. In recent years they have been proved to be an
efficient tool to solve quantum-physics problems, as demon-
strated in ref. [181]. Restricting to the RBM ansatz, it is possi-
ble to obtain the quantum state tomography solving an unsuper-

vised ML task. In the photonic framework, the idea developed
by ref. [181] has been implemented to obtain the tomography
of an experimental two-qubit state and for the reconstruction of
a continuous-variable optical state from homodyne quadratures
measurements.[182]

In ref. [183] the task was to perform the tomography of the
following two-photon Bell state

|𝜓⟩ = 1√
2
(|HH⟩ + |VV⟩) (17)

where H and V refer to the horizontal and vertical polarizations
states respectively. In quantum mechanics, due to the collapse
of the wavefunction after the measurement process, to obtain in-
formation about the initial state, before it is altered by the mea-
surement, it is necessary to have a large number of identically
prepared copies of it. The density matrix 𝜌 of the unknown initial
state before it collapses, is therefore reconstructed from the statis-
tics of the measurement outcomes registered on all the copies.
Considering a series of quantum generalized positive-operator
valued measures (POVM) Π̂a, where each index a corresponds
to a possible measurement outcome, the probability of obtaining
the outcome a after the measurement on the state 𝜌 is given by
the Born’s rule

P(a) = Tr[Π̂a𝜌] (18)

If the matrix of elements Taa′ = Tr[Π̂aΠ̂a′ ] is invertible then it is
possible to reconstruct the density matrix of the inspected state.
Generative models can be exploited to approximate the proba-
bility distribution P(a) resulting from a tomographically com-
plete measurement.
In ref. [183] each qubit of the two-photon state is measured

in one of the three Pauli bases (�̂�x, �̂�y, and �̂�z) obtaining nine
possible configurations. The algorithm is trained minimizing,
over all the measured bases, the Kullback–Leibler (KL) diver-
gence between the measured probabilities, reconstructed upon
the outcomes of the Pauli POVM on the two-photon Bell state,
and the corresponding model distribution (see Figure 13). Since
the qubits are encoded in the polarization degree of freedom of
the photons, the Pauli measurement basis is selected through
quarter-wave plates and half-wave plates. The RBM consists of
three hidden neurons and after the training the KL divergence
reached a value of 10−4 indicating the ability of the network to
learn accurately the distribution.
However, there are situations in which either we do not have

access to the complete set of measurements necessary for the full
tomography or we are interested in only specific properties of
the quantum state, therefore the employment of alternative tech-
niques is desirable. There are different examples exploiting NN
based algorithms in the photonic context for the identification of
a specific quantum characteristic on the investigated state. This
ranges from the identification of a negativity in the Wigner func-
tion of an optical continuous variable multi-mode state,[184] to the
classification of different optical states with nonclassical features
arising from the measured click-counting statistics[185,186] and to
the characterization of vector vortex beams.[187]

ML algorithms have been demonstrated to be successfully em-
ployed also for developing benchmarking techniques to validate
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Figure 13. Coincidence count rates obtained measuring with a specific setting the entangled two-photon state generated via a SPDC process. The
measurements probability retrieved repeating such procedure for all the elements of the POVM is fed to the visible layer of the RBM which after being
trained allows to reconstruct the density matrix of the state.

the correct operation of quantum devices. In this spirit, in ref.
[188] Agresti et al. implemented a K-means clustering algorithm
to distinguish between boson samplers that use indistinguish-
able photons from those that do not. As discussed, the use of ML
methods appears useful in the quantum optics framework espe-
cially for dealing with noisy experimental conditions, where the
application of theoretical models can fail and the development
of specific ones results to be extremely complex and computa-
tionally heavy to solve. Moreover, the great versatility of ML algo-
rithms makes it feasible to adapt them to different systems and
experimental conditions, a necessary prerequisite when develop-
ing quantum technological devices.

7. Photonic Computing

In the above sections we have extensively discussed applications
of AI in the field of optics, highlighting its capability to assist
classical and quantum photonics in a wide-range of experimen-
tal applications. Recently, a large and growing research area has
explored the opposite point of view, namely how to develop pho-
tonic platforms that can perform computations andAI tasks. This
attempt is motivated by the Bosonic, noninteracting nature of
photons that allows one to perform parallel computation with
ultra-broad bandwidth. A detailed review of this topic is beyond
the scope of this paper. We refer the reader to excellent and de-
tailed reviews[189–191] that already exist. In any case, we believe that
highlighting the main steps in this field, with the latest research
results, can be useful in order to understand all the aspects of the
fruitful interplay between photonics and AI.[192]

The first implementations of optical neural networks date
back to the 80’s.[193–195] Nevertheless, the available photonic
technology[196] did not allow an easy manipulation of networks
weights nor a straightforward implementation of the nonlinear-
ities required for activation functions. These two aspects are the
two pillars of research in neuromorphic computing,[190] a re-
search stream that aims at developing hardware that reflects the
features of neural models. Huge advancements in this respect
were enabled by the wide development of silicon integrated pho-
tonics and by the demonstration that multiply-and-accumulate
(MAC) operations, the cornerstone of DNN, may be efficiently
computed via optical platforms.[197] These findings gave new
verve to the neuromorphic computing field.[198–203]

In parallel to the development of silicon photonics, another in-
tersection between optics and AI emerged in the early 2000s, af-
ter the first demonstrations of echo-state networks[204] and liquid-
state machines.[205] These objects are particular RNNwhose neu-
rons are connected by fixedweights. Only the final layer is trained
to predict the output, via simple linear regression. These ar-
chitectures were unified in the concept of reservoir comput-
ing (RC):[206] the fixed weights of the RNN are now replaced
by a generic reservoir that can be implemented by any sys-
tem with rich and stable dynamics.[207] This new computational
paradigm was readily exploited by photonic researchers to im-
plement RC via optical hardware.[208–214] These advancements in
RC are reviewed in refs. [215, 216]. In the last years, research
on photonic computation,[217] neuromorphic engineering[218–220]

and RC are growing.[207,221,222] Along this research path, new ap-
plication of photonic hardware and especially SLMs have been
demonstrated, such as computing the ground state of systems
of interacting spins[223,224] or perform classical ML task leverag-
ing similar computational frameworks such as extreme learn-
ing machines[225] exploiting light propagation in free-space[226]

or through fibers.[227]

The idea of exploiting physical systems to overcome the com-
putational limitations encountered by ML algorithms when deal-
ing with high-dimensional datasets is giving rise to a new re-
search branch which exploits the properties of quantum sys-
tems in order to optimize classical ML algorithms.[228–230] Quan-
tum computation indeed has allowed to develop specific algo-
rithms reaching an exponential speed-up compared to their best
known classical counterparts,[231,232] therefore a quantum plat-
form could offer to ML a number of resources inaccessible with
classical computers. The use of quantum photonics platforms
seems promising to investigate this last aspect as demonstrated
in refs. [233–237].

8. Conclusions and Outlooks

AI technologies are becoming more and more ubiquitous and
widespread in a broad range of contexts, from commercial appli-
cations to advanced scientific research. In this respect, photonics
occupies a prominent position.
Numerous experimental contextsmay benefit from the unique

capability of AI-based algorithms to approximate complex
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relationships. This fact allows researchers to boost the perfor-
mance and ease the complexity of experiments by including AI
tools directly in experimental routines. Also, ML models offer
novel and powerful data-analysis tools, which are specifically tai-
lored, thanks to the training procedure, for the problem at hand
and lead to unprecedented results in most of the cases. In this re-
view, we described the theoretical foundations of ML and DL and
showed their application in several experimental photonic con-
texts.
In spectroscopy, DLmodels have been used to perform denois-

ing of spectral traces, for example, for removing spurious sig-
nals in coherent Raman spectroscopymeasurements or for cross-
phase modulation removal in ultrafast pump–probe dynamics,
and spatial and spectral denoising of hyperspectral data, as the
ones generated in coherent Raman imaging applications. Other
DL models have been adopted for chemometrics both in spec-
troscopy and imaging experiments. As spectroscopy is the gold
standard for materials and biomaterials characterization, the in-
tegration of AI tools for data analysis could accelerate and im-
prove the adoption of advanced spectroscopic techniques at the
industrial level for different applications, such as drug screening
and material quality control, as well as for medical diagnostics
and astronomic research.
NNs are particularly effective to assist optical wavefront shap-

ing when dealing with the nonlinear inverse problem of control-
ling light after propagation through a diffusive medium. They
bypass the need for extended information, such as the complex
amplitude of the fields, and for complex experimental systems
required by standard analytical approaches based on the solution
of Maxwell’s equations. For example, MLmodels have been used
in computational imaging to approximate the transmission ma-
trix from speckle patterns after a scatterer to the image or the
relationship between the illumination pattern shown on a spa-
tial light modulator and the corresponding light intensity distri-
bution read by a camera, or in digital holography to retrieve the
phase information from a single measured hologram. A simi-
lar framework is found when light propagates in MMFs, where
modal dispersion distorts the wavefront of coherent light prop-
agating inside the fiber. NNs offer valid solutions to reconstruct
the nonlinear relationship between input and output in MMFs,
to perform object recognition and spectral reconstruction, to re-
construct the input given the speckle pattern at the output of a
MMF and for information retrieval in noisy experimental situ-
ations. In this sense, ML-driven wavefront shaping techniques
constitute a valuable resource for coherent tomography, optical
sensing, and quantitative phase imaging in biological applica-
tions deriving morphological and mechanical properties at sub-
cellular level.
NN-based solutions have been successfully applied not only to

data analysis, but also inside experimental setups. We described
the use of DL for the generation of new optical frequencies in
MMF, for the generation of white-light supercontinuum as well
as for the generation and characterization of quantum states of
light, the building blocks of all quantum information experi-
ments performed with light. Further developments of these ap-
proaches may improve in a non-trivial way the quality and relia-
bility of experimental setups. In quantum photonics, interesting
solutions offered by AI tools involve bypassing theoretical mod-
els’ estimation for metrology and sensing applications, and mod-

eling of quantum states in noisy environments, where analyti-
cal approaches may be too computationally heavy. Given enough
data representing the behavior of the system in the formof input–
output pairs,ML algorithms andNNs can be used to approximate
the unknown description.
Eventually, photonic computing is a research field in which the

opposite perspective of the relationship between photonics and
AI is embraced. In this respect, photonic devices are capable to
provide energy effective computing platforms. New opportuni-
ties may arise from this research area, especially with the aim of
fully incorporating AI algorithms into devices capable of instan-
taneous and accurate responses.
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