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Abstract 

In this paper, a multiscale method is developed to predict Young's modulus of Fullerene-Reinforced Polymer 

Nanocomposites (FRPNs). Poly methyl methacrylate (PMMA) is chosen as the polymer matrix while C60 fullerene is 

considered as the reinforcement. First, molecular dynamics (MD) simulations are conducted to calculate the Young 

modulus of nanocomposite unit cell with different weight fractions of fullerene. Then, a micromechanics model for a 

composite with multi-inclusion reinforcements is developed based on the extension of the Mori-Tanaka model and 

generalized Eshelby's results. Numerical results obtained from the proposed micromechanics model are compared with 

those calculated from the MD simulations and good agreement is achieved. In addition, we propose an extension for the 

Halpin-Tsai model to predict Young's modulus of the FRPNs.  
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1. Introduction 

In recent years, there has been a growing interest in the application of polymer materials reinforced with nanostructures, 

in  both industrial and scientific fields [1]. Fullerenes and other carbon nanostructures such as nanotubes and graphene 

sheets can be used as reinforcements of the polymer composites [2-4]. According to experimental researches, the 

incorporation of the fullerene into polymer matrices can significantly enhance their mechanical properties [5-10].  

Computational modeling of the FRPNs enables parametric study of nanocomposites to assist the design of these 

materials for practical applications. Among various computational approaches, molecular dynamics simulation is 

considered to be a powerful tool to produce reliable results in material modeling. Recently, more attention has been paid 

to the investigation of the FRPNs through the MD simulations. The first attempt was provided by Adnan et al. [11] to 

elucidate the influence of filler size on elastic properties of fullerene reinforced polyethylene nanocomposites. However, 

in their investigation, fullerenes were modeled as rigid solid inclusions. Using the MD simulations, Ferdous et al. [12] 

investigated the effects of reinforcement dispersion and the strength of filler and matrix interface on the mechanical 
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properties of the FRPNs. They also proposed a finite element model and considered both interphase and interface regions 

around the fullerene. The effects of fullerene on the thermo-mechanical properties of Araldite LY 5052/Aradur HY 5052 

cross-linked resin epoxy were studied by Jeyranpour et al. [13]. In another study, the elastic properties of high density 

polyethylene reinforced by fullerene and graphene fillers was studied by Lu et al [14] using the MD simulations. Recently, 

Giannopoulos [15] proposed a combined MD simulation and finite element method for predicting the elastic properties of 

the fullerene reinforced nylon-12. In another study, employing the MD simulations, Izadi et al. [16] estimated the elastic 

properties of polymer nanocomposites reinforced with C60 fullerene and C60@C240 carbon onion. More recently, thermo-

elastic response of PMMA matrix reinforced with C240 was investigated using combination of MD simulations and the 

finite element method [17].  

Although the MD simulations have usually been utilized in modeling the nanocomposites, these simulations are 

inherently time consuming and computationally expensive. To overcome the mentioned limitation, various combined MD 

simulations-micromechanics methods have been developed in the literature [18-20]. However, combined MD simulations-

micromechanics methods for fullerene reinforced polymer composites have not been presented so far. In this study, we 

developed a multiscale method, which combines the MD simulations with a continuum micromechanics. First, the Young 

modulus of various FRPCs with different weight fractions of the C60 is obtained using the MD simulations. The Materials 

Studio software is used to perform the MD simulations. Then, the interphase region is distinguished around the fullerene 

molecule and its effective stiffness is calculated. A micromechanics model is developed for a non-dilute composite with a 

multi inclusion reinforcement based on the generalized Eshelby's results with the assumptions of the Mori-Tanaka 

approach. The developed micromechanics model is used to predict the elastic properties of unit cells. In addition, the results 

obtained from the MD simulations are used to extend the Halpin-Tsai micromechanics model.  

 

2. Molecular modeling and simulations 

2.1 Fullerene-reinforced polymer composites 

In this work, the MD simulations are conducted using the simulation package Material Studio. In addition, the Condensed 

Phase Optimized Molecular Potential for Atomistic Simulation Studies (COMPASS) is employed to describe inter- and 

intra-atomic interactions. To control temperature and pressure of the system, the Nose-Hoover thermostat [21] and the 

Berendsen barostat [22] are used respectively. In addition, the velocity-Verlet integration algorithm is employed to 

integrate the equations of motion, with a time step of 1 fs and a potential cutoff of 1.5 nm. Furthermore, periodic boundary 

conditions are imposed in all directions of the nanocomposite unit cells. To construct the nanocomposite unit cells, a C60 

fullerene is placed at the center of the unit cell and the Poly methyl methacrylate (PMMA) with 10 monomers is dispersed 
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uniformly within the cell in non-overlapping positions. Here, we construct four nanocomposite unit cells with various 

weight fractions of C60 (1, 2, 3 and 4 wt%). The total energy of the unit cells is minimized by adopting the smart algorithm 

which is a cascade of the steepest descent, adjusted basis set Newton-Raphson, and quasi-Newton methods. Then, the unit 

cells are relaxed at 500 K in an NVT ensemble for 300 ps. Subsequently, for 500 ps, they are subjected to an NPT ensemble 

with a temperature of 500 K and a pressure of 1 atm. Finally, the unit cells are equilibrated at ambient temperature and 

pressure, adopting an NPT ensemble at 1 atm. and 298 K for 500 ps. After construction of the cells, the deformation of the 

unit cells under uniaxial tension/compression and pure shear strains is studied. More details on the MD simulations are 

provided in Ref. [16]. Using the Voigt-Reuss-Hill approach, the values of Young’s modulus of C60/PMMA nanocomposites 

with various weight fractions are calculated and listed in Table 1 (Details of the calculation are given in Ref. [16]).  

 

Table 1. Effective Young’s modulus of C60/PMMA nanocomposite cells with various weight fractions 

Carbon filler Percent of Concentration Young’s Modulus (GPa) 

C60 1 3.298 

C60 2 3.313 

C60 3 3.438 

C60 4 3.774 

 

2.2. Young’s modulus of dense interphase 

Formation of an ordered layer around a nanofiller embedded in a polymer nanocomposite was proven through several 

experiments and MD simulations [23, 24]. This polymer layer has higher density and elastic properties than the amorphous 

bulk polymer. This layer is commonly referred as interphase. Characterization of interphase is usually performed through 

MD simulations. Several studies suggest that the enhancement of the mechanical properties of nanocomposites is mainly 

provided by the interphase [25]. In the present paper, a novel method is proposed for the calculation of Young's modulus 

of the interphase region. The idea of proposed method is based on the fact that Young's modulus of the PMMA polymer is 

directly related to its density [26]. For the calculation of interphase elastic properties, at the first step, the average density 

of interphase region,  , can be estimated via the normalized density of polymer near the fullerene, 0( ) ( )g r r = , which 

is plotted in Fig. 1 for one case as an instance. As shown in the figure, polymer atoms appear at a radius of 5.85 Å from 

the center of the fullerene. The existence of the fullerene perturbs the density profile of the surrounding polymer. Although 

the density perturbation is sensed until 27 Å distant from the fullerene center, the main disturbance is observed up to 

approximately 14.5 Å. Therefore, the interphase is considered as a spherical shell with its inner and outer radii equal to 

r1=5.85 Å and r2=14.5 Å, respectively. The average density of interphase region can be calculated by the following relation 
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where 
0  is the density of bulk polymer. Using Eq. (1) and setting 

0 1.11 =  g/cm3, we obtain 1.16 =  g/cm3. Although 

it is not shown here, the average density of interphase region is not sensitive to the weight fraction of C60. After estimating 

the density of interphase region, a polymer unit cell with the density of interphase region is constructed and its Young's 

modulus is determined. The calculated value of the interphase Young's modulus is 4.7 GPa.  

 

Fig. 1. Variations of the normalized density of polymer in the representative volume element (RVE)  

with 2 wt% of C60. 

2.3. Young's modulus of isolated C60 

Several researches have been conducted to estimate the Young modulus of the isolated C60 molecule using different 

approaches such as the MD simulations, the Mont Carlo simulations, molecular mechanics and finite element analysis. 

Different values have been reported in the literature ranging from 1.1 to 5.5 TPa [27-30]. For the estimation of Young's 

modulus of C60 molecule, various equivalent continuum structures such as spherical shell and solid sphere can be 

considered. In the present paper, we have considered both cases in the evaluation of micromechanics model. The values of 

Young's modulus, which will be used in our micromechanical model, are listed in Table 2.  

 

Table 2. Effective Young's modulus of C60  

Equivalent continuum structure Young's Modulus (GPa) 

Spherical shell 2.1 

Solid sphere 1.2 
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3. Micromechanics Model 

Although the MD simulations are very useful tools for the characterization of polymer nanocomposites, they are 

computationally expensive and time-consuming. Therefore, development of a micromechanics model, which can 

effectively predict the mechanical properties of nanocomposites, can be quite beneficial. In this section, a micromechanics 

model is developed for a composite with multi-layer inclusions based on the extension of Mori-Tanaka model and 

generalized Eshelby's results proposed by Nemmat-Nasser and Hori [31]. Two main issues play basic roles in the 

development of our micromechanics model: 1) equivalent homogenous solid and 2) generalization of Eshelby's results. 

Prior to the description of the developed micromechanics model, named as "Extended Mori-Tanaka" model, these two 

issues are explained in the next subsections.  

 

3.1. Equivalent homogeneous RVE and Eshelby's Tensor 

Consider a finite homogeneous linear elastic solid V with elasticity tensor C, which contains a homogeneous linear 

elastic inclusion   with elasticity tensor 


C  (Fig. 2). Assume that the body is subjected to a surface traction corresponding 

to a uniform stress 0σ . Due to the presence of inclusion in the body, the stress tensor σ  and strain tensor ε  can be 

expressed as 

(2) 0
d= +σ(x) σ (x) σ  

(3) 
0

d= +ε(x) ε (x) ε  

where 1
0 0

−=ε C σ , d
ε (x)  and d

σ (x)  are the disturbance strain and stress fields, respectively. By using Hooke's law, the 

stress-strain relations in the body can be expressed as follows: 

0

Ω
0

      for  
( )

    for  

d

d

V +  −
= 

+ 

C(ε (x) ε ) x
σ x

C (ε (x) ε ) x
 (4) 

Instead of handling the introduced heterogeneous solid, it is more applicable to deal with an equivalent homogeneous 

body with the uniform elasticity tensor C. In order to consider the mismatch of the material properties of the matrix and 

inclusion, it is necessary to define an eigenstrain ( )
ε x  in  , such that the equivalent homogeneous solid has the same 

strain and stress fields as the actual heterogeneous solid under the applied traction. The eigenstrain is given by  

0      for  
( )

    for  

V




 −
= 



x
ε x

ε x
 (5) 

Therefore, the stress-strain relation is 
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0( )  d = + −σ x C(ε (x) ε ε )  (6) 

The schematic representation of the homogenization process is depicted in Fig. 2.  

 

 

Fig. 2. Illustration of the homogenization process  

 

Eshelby [32] showed that if V −  is homogeneous, linearly elastic, infinitely extended and   is an ellipsoid then 

the eigenstrain, 

ε , and the resulting strain, d

ε , are uniform in  . Furthermore, it was shown that the relation between 

d
ε  and 


ε  is  

d *
ε = S ε  (7) 

where 


S  is called Eshelby's tensor. This tensor is fourth-order tensor and depends on the geometry and orientation of the 

inclusion and the elastic properties of the surrounding medium. The components of Eshelby's tensor are given for various 

inclusion shapes in the literature [33-37]. The components of 


S  for spherical inclusion are expressed by [31]  

5 1 4 5
( )

15(1 ) 15(1 )
ijkl ij kl ik jl il jkS

 
     

 

 − −
= + +

− −
 (8) 

where   is the Poisson ratio of the matrix.  

 

3.2. Generalization of Eshelby's Results 

Nemat-Nasser and Hori [31] developed a general form of Eshelby results for a multi-layer inclusion, which each layer 

has distinct constant eigenstrains. Consider an unbounded uniform elastic solid 
1  with an ellipsoidal multi-layer inclusion 
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E, which contains a nested series of ellipsoids, ( )2,...m  =  with eigenstrain 
*
ε , such that 2 3 .... m    and 

m E = . Furthermore, annular region between i  and 1i −  is denoted by 
1i i i −  −  ( 3,...i m= ) (Fig. 3).  

 

 

Fig. 3. A four-layer inclusion embedded in an infinite domain 

 

By using Tanaka-Mori result [38], Nemat-Nasser and Hori [31] calculated the volume average strain, 
d

ε  in each region. 

Their proposed relation is somehow complicated but it can be simplified for some special cases. For example, if all 

are similar and coaxial, 
d

ε  is only dependent on 
*
ε . i.e.,  

(9) d

 

*
ε = Sε        for 2,...m =  

where S  is the common Eshelby tensor of all  .  

 

3.3. Concentration Tensor 

The volume average stress, σ , and volume average strain, ε , in a composite with "n" phases can be written as: 

(10) 

1

n

af 
 =

=σ σ  

(11) 

1

n

af 
 =

=ε ε  

where σ  and ε  are the volume average stress and strain in phase  , and 
af  is the volume fraction of each phase, 

defined as: 
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(12) f
V





=  

in which 
  is the volume of phase   and V is the volume of the entire composite. If all phases are homogeneous and 

elastic, the constitutive equations for each phase and the composite are 

(13) 
  =σ C ε  

(14) =σ Cε  

where αC  and C  are the elasticity tensors of phase   and the composite, respectively. In this mean-field homogenization 

scheme, the average strain fields in each phase and the composite are related as follows: 

α =ε A ε  (15) 

in which αA  denotes strain concentration tensor. Using Eqs. (11) and (15), one obtains 

1

n

f  
 =

=I A  (16) 

where I is the unity tensor. Finally, the effective elasticity tensor of the composite can be obtained by using Eqs. (10)-(16) 

[39]: 

1 1

1

( )
n

αf  
 =

= + −C C C C A  (17) 

In order to obtain the effective moduli of an "n" phase composite, the concentration tensor should be determined. In the 

following section, the procedure for calculating the concentration tensor for a non-dilute composite with multi-layer 

inclusions will be presented.  

 

3.4. Extension of the Mori-Tanaka Micromechanics Model  

In this section, to calculate the concentration tensor for a non-dilute composite having multi-layer inclusions, first, the 

composite with dilute concentration of inclusions is considered and then by using the Mori-Tanaka assumption, the tensor 

is modified for the non-dilute dispersion of inclusions. 

 

3.4.1. Effective Elasticity Tensor for a Composite with Multi-Layer Inclusion and Dilute Concentration  

An unbounded uniform elastic solid 
1  with elasticity tensor 

1C  is considered. It encloses an ellipsoidal multi-layer 

inclusion E, containing a nested series of ellipsoids, ( )2,...m  = , such that 
2 3 .... m    and 

m E =  (Fig. 

4). The elasticity tensor in various regions of composite is expressed by 
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(18) 

1 1

2 2( )

if in

if in

if in 




= = 
 

C x

C C x C x

C x

 

 

 

Fig. 4. A four-layer inclusion embedded in an infinite domain 
1 .  

 

To obtain an equivalent homogenous body with elasticity tensor 
1C , we must define 2


ε  and 


ε  in 

2  and   (

3,...m = ), respectively. Therefore, the consistency conditions for the homogenization process are  

 (19) 
0 1 0( ) ( )d d

   

+ = + −C ε ε C ε ε ε     for 2,...m =  

If all 
  are similar and coaxial, Eq. (9) holds true. By introducing Eq. (9) into Eq. (19), we obtain the eigenstrain in 

each region in terms of far field strain 0ε .  

(20) ( )
1

0 

− = −ε B S ε for 2,...m =  

where 

(21) ( )
1

1 1 

−
= −B C C C  

Finally, the strain in each region can be obtained as a function of 0ε , i.e.,  

(22) ( )( )1

0 0

d

  

−
= + = + −ε ε ε I S B S ε  

Comparing Eq. (22) with Eq. (15) and noting that 0
ε = ε , the concentration tensor can be obtained as follows: 
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(23) ( )
1dil

 

−
= + −A I S B S  

Consequently, the elasticity tensor for a composite with dilute concentration of multi-layer inclusion can be obtained 

as follow: 

(24) 1 1

1

( )
n

dilf   
 =

= + −C C C C A  

 

3.4.2. Effective Elasticity Tensor for a Composite with Multi-Layer Inclusions and Non-Dilute Concentration 

In the preceding section, the effect of other inclusions in the stress and strain field is neglected because it is assumed 

that the multi-layer inclusion is embedded in an infinite matrix. The effect of other inclusions can be accounted by using 

the Mori-Tanaka approach. In this approach, it is assumed that each inclusion in a non-dilute composite feels the effect of 

surrounding matrix strain ( 1
ε ) in the same way as a single inclusion embedded in an infinite matrix feels a far field strain 

equals to 1
ε  (see, Fig. 5). 

 

Fig. 5. Schematic of Mori-Tanaka assumption 

 

To apply the Mori-Tanaka assumption in our formulation, we just need to substitute ε  in Eq. (24) with 1ε . This 

reformulation is inspired from a study conducted by Dunn and Ledbetter. Accordingly, ε  in each phase becomes 

(25) 
1 0

dil

   = = =ε A ε A ε A ε     for 2,...m =  

Then, according to Eq. (11), we have 
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(26) 
1 1

1 2

n n
dilf f f   

 = =

 
= = + 

 
 0

ε = ε ε I A ε  

So, the concentration tensor for a non-dilute composite with multi-layer inclusions obtains as follows: 

(27) 

1

1

2

n
dil dilf f   



−

=

 
= + 

 
A A I A    for 2,...m =  

Finally, the relation for the stiffness tensor of a non-dilute composite with multi-layer inclusions is expressed as 

(28) 

( )( ) ( )( )

1

1 1 1

2 2

1

1 1

1 1 1

2 2

( )

( )

n n
dil dil

n n

f f f

f f f

    

 

    

 

−

= =

−

− −

= =

 
= + − + 

 
 

 
= + − + − + + − 

 
 

 

 

C C C C A I A

C C C I S B S I I S B S

 

Equation (28) is the extension of the Mori-Tanaka model for a composite with multi-layer inclusions. Therefore, we 

call this new model "Extended Mori-Tanaka Micromechanics Model".  

 

3.5. Extension of the Halpin-Tsai Model 

In this subsection, we attempted to extend the Halpin–Tsai model for a multi-phase composite. Halpin and Tsai [40] 

developed a semi-empirical model based on the works done by Hill [41] and Hermans [42]. The model was developed for 

two-phase composite. The common form of the Halpin–Tsai equation has the following form 

(29) 
1

1m

E

E





+
=

−
    with f m

f m

E E

E E




−
=

+
 

where E , Em and fE  are Young's moduli of the composite, the matrix and the reinforcement, respectively, and   is the 

volume fraction of reinforcement. Furthermore, in Eq. (29),   is an empirical parameter and is a measure of reinforcement 

geometry which depends on the loading conditions. This parameter is usually determined by curve fitting of experimental 

or numerical data [43]. We propose the extended Halpin-Tsai model for a multi-phase composite as follows:  

(30) 

1

1m

f
E

E f

 



 



 



+

=
−




 

in which f   is the volume fraction of phase   and   is defined by 

(31)  
m

m

E E

E E









−
=

+
 

where E  is Young's modulus of phase  .  
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4. Results and discussion  

In this section, Young's modulus of FRPCs with different weight fractions of the C60 are calculated from the Extended 

Mori-Tanaka, extended Halpin-Tsai models and the results are compared with the results of MD simulations.  

 

4.1. Two-phase models 

To elucidate the importance of considering multi-phase composite models for modeling the FRPCs, in the first 

subsection, we only consider two phases in each RVE (Fig. 6). In this case, since we have two-phase composite, the 

common form of Mori-Tanaka and Halpin-Tsai models are used to predict the Young modulus. The results obtained from 

these micromechanics models are listed in Table 3 and are compared with the MD results.  

 

Fig. 6. Molecular unit cell and the two-phase equivalent continuum model 

 

Table 3. Elastic modulus of FRPCs obtained from the MD simulations, and two phase Mori-Tanaka and Halpin-Tsai 

models 

Weight  

fractions 

Young's Modulus (GPa) 

MD simulation  Mori-Tanaka model Halpin-Tsai model 

1 3.298 3.0100 3.0147 

2 3.313 3.0202 3.0297 

3 3.438 3.0304 3.0447 

4 3.774 3.0413 3.0607 

 

As can be inferred from the table, by considering two phases for the FRPC, all of micromechanics models fail to predict 

to the MD simulation results. This clearly reveals the importance of considering the interphase region on the calculation of 
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elastic properties of FRPCs. A similar conclusion has previously been reported for carbon nanotube-reinforced polymer 

nanocomposites [44].  

 

4.2. Multi-phase models 

In this subsection, the extended Mori-Tanaka and extended Halpin-Tsai models are used to predict the results of the 

MD simulations. Two different cases are investigated: 1) four-phase model comprising the fullerene (solid sphere), the 

interface region, the interphase region, and the polymer, and 2) five-phase model comprising an internal void in fullerene, 

the fullerene (Spherical shell), the interface region, the interphase region, and the polymer (Fig. 7). In Table 4, the volume 

fractions of different phases in the four-phase model is presented. As inferred from Table 4, the volume fraction of the 

interphase region is about 68 times higher than C60 and 20 times higher than the interface in each unit cell. So, it is physically 

a more dominant layer than the two other phases. Similar results in the literature emphasize the role of interphase as the 

true reinforcement phase in carbon-based nanocomposite [12, 25, 44]. Due to the soft interface, the load transfer from the 

matrix to the fullerene is deemed weak, and hence Young’s modulus of the interface is set to zero. Furthermore, Young’s 

modulus of internal void is set to zero since no atom is present in this region. In addition, the empirical parameter   is set 

to 2 which is the value suggested for spherical inclusion [45].  

 

Table 4. Volume fractions of different phases in the four-phase model 

Weight fraction of C60 
Volume Fractions 

Fullerene Interface Interphase Matrix 

1 0.0016 0.0056 0.1116 0.8812 

2 0.0033 0.0113 0.2255 0.7599 

3 0.005 0.0169 0.3384 0.6398 

4 0.0067 0.0229 0.4586 0.5118 

 

 

Fig. 7. Molecular unit cell and the five-phase equivalent continuum model 
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The computed values of the Young modulus of the C60/PMMA nanocomposites with various weight fractions are listed 

in Table 5 for the two different cases. As can be seen from Table 5, the extended Mori-Tanaka model can successfully 

predict the MD simulation results. This clearly shows the capability of the model in describing the stiffening mechanism 

of fullerene molecule in the polymer composite. Furthermore, it is observed that the results of the five-phase model are 

more closed to the MD simulation results. In addition, the results reveal that extended Halpin-Tsai model can predict 

acceptable results.  

 

Table 5. Comparison of Young's modulus calculated from extended Mori-Tanaka and extended Halpin-Tsai models 

with the MD simulation results 

Weight  

fractions 

Young's Modulus (GPa) 

MD simulation  
Extended Mori-Tanaka model  Extended Halpin-Tsai model 

Four-phase Five-phase  Four-phase Five-phase 

1 3.298 3.182 3.194  3.207 3.221 

2 3.313 3.321 3.347  3.372 3.399 

3 3.438 3.465 3.505  3.540 3.584 

4 3.774 3.625 3.682  3.726 3.788 

 

5. Conclusions 

In this paper, an extended Mori-Tanaka model for composites with multi-layer inclusions was developed to estimate 

Young's modulus of FRPNs with different weight fractions. Furthermore, an extension to Halpin-Tsai model was proposed 

to account the multi-layer inclusions in composites. First, the Young moduli of composite and the effective interphase were 

computed by the MD simulations. Then, for comparison purposes, the common Mori–Tanaka and the Halpin-Tsai 

micromechanics models were used to calculate the Young modulus of the FRPNs. A comparison of the two-phase 

micromechanical results and the MD results indicates that the Young modulus of the nanocomposites cannot be precisely 

predicted using the two-phase micromechanical models which proves the indispensable role of interphase region in the 

reinforcement of nanocomposite. The results of multi-phase micromechanical models were computed and compared with 

the MD results. The results clearly revealed the capability of the four- and five-phase models to predict Young's modulus 

of FRPNs. It can be concluded that the accuracy of results depends on two main parameters: the number of phase and 

accuracy of estimating of the Young modulus of each phase. Finally, the micromechanical models proposed herein can be 

utilized to predict Young's modulus of composites with inclusions possessing arbitrary number of layers.  

 

Conflict of interest  



15 

 

The authors declare that there are no conflicts of interest. 

 

References 

[1] Zeng, Q., Yu, A., Lu, G., 2008. Multiscale modeling and simulation of polymer nanocomposites. Progress in Polymer 

Science 33, 191-269. 

[2] Okonkwo, A.O., Jagadale, P., Herrera, J.E.G., Hadjiev, V.G., Saldaña, J.M., Tagliaferro, A., Hernandez, F.C.R., 2015. 

High-toughness/low-friction ductile epoxy coatings reinforced with carbon nanostructures. Polymer Testing 47, 113-119. 

[3] Moghaddam, F., Ghavanloo, E., Fazelzadeh, S.A., 2016. Effect of carbon nanotube geometries on mechanical properties 

of nanocomposite via nanoscale representative volume element. Journal of Solid Mechanics, 8, 568-577. 

[4] Zaccardi, F., Santonicola, M.G., Laurenzi, S., 2021. Role of interface bonding on the elastic properties of epoxy-based 

nanocomposites with carbon nanotubes using multiscale analysis. Composite Structures, 255, 113050. 

[5] Calleja, F.B., Giri, L., Asano, T., Mieno, T., Sakurai, A., Ohnuma, M., Sawatari, C., 1996. Structure and mechanical 

properties of polyethylene-fullerene composites. Journal of Materials Science 31, 5153-5157.  

[6] Zhogova, K., Davydov, I., Punin, V., Troitskii, B., Domvachiev, G., 2005. Investigation of fullerene C60 effect on 

properties of polymethylmethacrylate exposed to ionizing radiation. European Polymer Journal 41, 1260-1264. 

[7] Kropka, J.M., Putz, K.W., Pryamitsyn, V., Ganesan, V., Green, P.F., 2007. Origin of dynamical properties in PMMA− 

C60 nanocomposites. Macromolecules 40, 5424-5432. 

[8] Ogasawara, T., Ishida, Y., Kasai, T., 2009. Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites. 

Composites Science and Technology 69, 2002-2007. 

[9] Rafiee, M.A., Yavari, F., Rafiee, J., Koratkar, N., 2011. Fullerene–epoxy nanocomposites-enhanced mechanical 

properties at low nanofiller loading. Journal of Nanoparticle Research 13, 733-737. 

[10] Ginzburg, B., Tuichiev, S., Rashidov, D., Tabarov, S.K., Sukhanova, T., Vylegzhanina, M., 2012. Effect of fullerene 

C60 on the structure and mechanical properties of thin films based on poly (methylmethacrylate) and other carbochain vinyl 

polymers: a technological aspect. Polymer Science Series A 54, 658-670. 

[11] Adnan, A., Sun, C., Mahfuz, H., 2007. A molecular dynamics simulation study to investigate the effect of filler size 

on elastic properties of polymer nanocomposites. Composites Science and Technology 67, 348-356. 

[12] Ferdous, S.F., Sarker, M.F., Adnan, A., 2013. Role of nanoparticle dispersion and filler-matrix interface on the matrix 

dominated failure of rigid C60-PE nanocomposites: a molecular dynamics simulation study. Polymer 54, 2565-2576. 



16 

 

[13] Jeyranpour, F., Alahyarizadeh, G., Minuchehr, A., 2016. The thermo-mechanical properties estimation of fullerene-

reinforced resin epoxy composites by molecular dynamics simulation–A comparative study. Polymer 88, 9-18. 

[14] Lu, C.T., Weerasinghe, A., Maroudas, D., Ramasubramaniam, A., 2016. A comparison of the elastic properties of 

graphene-and fullerene-reinforced polymer composites: the role of filler morphology and size. Scientific Reports 6, 31735.  

[15] Giannopoulos, G.I., 2019. Linking MD and FEM to predict the mechanical behaviour of fullerene reinforced nylon-

12. Composites Part B 161, 455-463. 

[16] Izadi, R., Ghavanloo, E., Nayebi, A., 2019. Elastic properties of polymer composites reinforced with C60 fullerene and 

carbon onion: molecular dynamics simulation. Physica B 574, 311636. 

[17] Giannopoulos, G.I., Georgantzinos, S.K., Anifantis, N.K., 2020. Thermomechanical response of fullerene-reinforced 

polymers by coupling MD and FEM. Materials 13, 4132. 

[18] Yang, B.J., Shin, H., Lee, H.K., Kim, H., 2013. A combined molecular dynamics/micromechanics/finite element 

approach for multiscale constitutive modeling of nanocomposites with interface effects. Applied Physics Letters 103, 

241903. 

[19] Marcadon, V., Brown, D., Hervé, E., Melé, P., Albérola, N.D., Zaoui, A., 2013. Confrontation between Molecular 

Dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer 

nanocomposites. Computational Materials Science 79, 495-505. 

[20] Shokrieh, M.M., Esmkhani, M., Shokrieh, Z., Zhao, Z., 2014. Stiffness prediction of graphene nanoplatelet/epoxy 

nanocomposites by a combined molecular dynamics–micromechanics method. Computational Materials Science 92, 444-

450. 

[21] Hoover, W.G., 1985. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A 31, 1695-1697.  

[22] Lin, Y., Pan, D., Li, J., Zhang, L., Shao, X., 2017. Application of Berendsen barostat in dissipative particle dynamics 

for nonequilibrium dynamic simulation. Journal of Chemical Physics 146, 124108. 

[23] Karatrantos, A., Clarke, N., Kröger, M., 2016. Modeling of polymer structure and conformations in polymer 

nanocomposites from atomistic to mesoscale: a Review. Polymer Reviews 56, 385-428. 

[24] Coleman, J.N., Cadek, M., Ryan, K.P., Fonseca, A., Nagy, J.B., Blau, W.J., Ferreira, M.S., 2006. Reinforcement of 

polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling. Polymer 

47, 8556-8561. 

[25] Malagù, M., Goudarzi, M., Lyulin, A., Benvenuti, E., Simone, A., 2017. Diameter-dependent elastic properties of 

carbon nanotube-polymer composites: Emergence of size effects from atomistic-scale simulations. Composites Part B, 131, 

260-281. 



17 

 

[26] Weishaupt, K., Krbecek, H., Pietralla, M., Hochheimer, H., Mayr, P., 1995. Pressure dependence of the elastic 

constants of poly (methyl methacrylate). Polymer 36, 3267-3271. 

[27] Giannopoulos, G., Georgantzinos, S., Kakavas, P., Anifantis, N., 2013. Radial stiffness and natural frequencies of 

fullerenes via a structural mechanics spring-based method. Fullerenes, Nanotubes and Carbon Nanostructures 21, 248-257. 

[28] Jamal-Omidi, M., ShayanMehr, M., Rafiee, R., 2016. A study on equivalent spherical structure of buckyball-C60 based 

on continuum shell model. Latin American Journal of Solids and Structures 13, 1016-1029. 

[29] Nayebi, A., Ghavanloo, E., Hosseini, N., 2016. Young's modulus Estimation of fullerene nano-structure by using 

molecular mechanics and finite element method. Modares Mechanical Engineering 16, 41-48. 

[30] Ghavanloo, E., Izadi, R., Nayebi, A., 2018. Computational modeling of the effective Young's modulus values of 

fullerene molecules: a combined molecular dynamics simulation and continuum shell model. Journal of Molecular 

Modeling 24, 71. 

[31] Nemat-Nasser, S., Hori, M., 1993. Micromechanics :Overall Properties of Heterogeneous Materials. Elsevier.  

[32] Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. 

Proceedings of the Royal Society of London. Series A 241, 376-396. 

[33] Kiris, A., Inan, E., 2006. Eshelby tensors for a spherical inclusion in microstretch elastic fields. International Journal 

of Solids and Structures 43, 4720-4738. 

[34] Ma, H., Hu, G., 2007. Eshelby tensors for an ellipsoidal inclusion in a microstretch material. International Journal of 

Solids and Structures 44, 3049-3061. 

[35] Ma, H.M., Gao, X.L., 2010. Eshelby’s tensors for plane strain and cylindrical inclusions based on a simplified strain 

gradient elasticity theory. Acta Mechanica 211, 115-129. 

[36] Trotta, S., Marmo, F., Rosati, L., 2017. Evaluation of the Eshelby tensor for polygonal inclusions. Composites Part B 

115, 170-181. 

[37] Yun, G.J., Zhu, F.Y., Lim, H.J., Choi, H., 2021. A damage plasticity constitutive model for wavy CNT nanocomposites 

by incremental Mori-Tanaka approach. Composite Structures, 258, 113178. 

[38] Tanaka, K., Mori, T., 1972. Note on volume integrals of the elastic field around an ellipsoidal inclusion. Journal of 

Elasticity 2, 199-200. 

[39] Jain, A., Jin, B. C., Nutt, S., 2017. Mean field homogenization methods for strand composites. Composites Part B 124, 

31-39. 

[40] Halpin, J., Tsai, S., 1969. Effects of environmental factors on composite materials. Air Force Materials Lab Wright-

Patterson AFB OH. 



18 

 

[41] Hill, R., 1963. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and 

Physics of Solids 11, 357-372. 

[42] Hermans, J., 1967. Elastic properties of fiber reinforced materials when fibers are aligned. Koninklijke Nederlandse 

Akademie Van Weteschappen-Proceedings Series B-Physical Sciences 70, 1.  

[43] Raju, B., Hiremath, S.R., Mahapatra, D.R., 2018. A review of micromechanics based models for effective elastic 

properties of reinforced polymer matrix composites. Composite Structures 204, 607-619. 

[44] Amraei, J., Jam, J. E., Arab, B., Firouz‐Abadi, R.D., 2019. Modeling the interphase region in carbon nanotube‐

reinforced polymer nanocomposites. Polymer Composites 40, E1219-E1234. 

[45] Affdl, J.H., Kardos, J.L., 1976. The Halpin‐Tsai equations: a review. Polymer Engineering & Science 16, 344-352. 

 

 

 


