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Abstract

Let G be a simply connected Lie group and g be its complexified Lie algebra.
Building on the work of Wenzl in [Wen98], we present a weak tensor structure on the
unitary modular categories arising from representation categories of quantum groups
Uq(g) when q is specialised at roots of unity, following [CCP21]. The theory therein
developed allows one to reconstruct these categories as representation categories of
a discrete unitary coboundary weak Hopf algebra.

Then, we consider the twisted categories obtained by modifying the associator
by means of 3-cocycles on the dual of the centre of G and reconstruct them as
representation categories of suitable discrete unitary weak Hopf algebras; this is
done by adaptation of the work in [NY15] in the analogous scenario of the compact
quantum group corresponding to Uq(g) specialised at q > 1.
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1

Introduction

Motivation

The main focus of the present thesis are representation categories arising from
quantum groups at roots of 1, and Tannakian reconstruction of a certain twisted
version of them, as we outline deeper in the introduction. Beforehand however, we
would like to spend some words about WZW models and their remarkable relation
with our topic, in order to insert our work in such an interesting context.

Modular tensor categories arise naturally in the context of conformal field theo-
ries (CFT), more specifically the Wess-Zumino-Witten (WZW) models. More pre-
cisely, as first shown in [MSe88] and [MSe89], chiral rational CFT satisfy certain
polynomial equations that lead to the Verlinde conjecture; in the case of WZW
models this in turn produces the surprising Verlinde formula for the dimensions of
the spaces of sections of the “generalized theta divisors”.

Moreover, Moore and Seiberg noticed in [MSe89] that their polynomial equations
seem to reflect the properties of a special sort of tensor categories. Modular tensor
categories were actually formalised in [Tur92] by axiomatisation of some of these
properties, and an abstract modular category may be obtained from the polynomial
equations.

The later work of Huang about rational CFT in the context of vertex operator al-
gebras (VOA) granted the proper rigour to the discourse of Moore and Seiberg, while
also clarifying some notable examples. Less vaguely, WZW models (see [DMS12]
as a comprehensive treatise) are associated to affine Lie algebras and to the rela-
tive universal affine VOA (the ones defined e.g. in [Kac98]); Huang reformulates
the Verlinde conjecture in this context, and proves it in [Hua05], under suitable
requirements on the VOA. Therefore the Verlinde formula on the associate CFT
yields very strong information about a certain category of modules of the affine Lie
algebras, including in particular modularity.

Let us elaborate on such categories down to some detail, following [Hua18].
Given a simple complex Lie algebra g with dual Coxeter number ȟ and invariant
symmetric bilinear form (·|·), the affine Lie algebra ĝ is

(
g ⊗ C[t, t−1]

)
⊕ CK as a

vector space; we write

ĝ± := g⊗ t±1C[t±1] , so that ĝ = ĝ− ⊕ g⊕ CK ⊕ ĝ+ .

The bracket is determined by

[a⊗ tm, b⊗ tn] = [a, b]⊗ tm+n +mδm+n,0(a|b)K [K, a⊗ tn] = 0
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for a, b in g and m,n in Z. It corresponds to the operator product expansion (see
[Kac98])

a(z)b(w) ∼ [a, b](w)
z − w

+ (a|b)K
(z − w)2 ,

where a(z) =
∑
n∈Z at

nz−1−n for a in g; thus, in the language of [Kac98], ĝ is a
formal distribution Lie algebra.

LetM be a g-module, decomposable into generalised eigenspaces of the Casimir
operator. The action on M is extended to g ⊕ CK ⊕ ĝ+ by letting K act as a
scalar k, called level, and ĝ+ as 0, and we have the induced ĝ-module M̂k :=
U(g) ⊗U(g⊕CK⊕g+) M . If ȟ + k 6= 0, M is endowed with a C-grading that extends
to one on the whole M̂k using the C-grading of ĝ itself.

In the case when M is the irreducible highest weight module L(λ) of highest
weight λ, one finds by usual cyclicity arguments that M̂k admits a unique irreducible
quotient, denoted by L(k, λ), which is the unique irreducible ĝ-module such that K
acts as k and the space of all elements annihilated by ĝ is isomorphic to L(λ) as a
g-module. Now L(k, 0) has a natural structure of VOA, the universal affine VOA
V k(g) of [Kac98], and L(k, λ) becomes an L(k, 0)-module for dominant integral λ.
For k non-negative integer, consider the category Õk of ĝ-modules of level k that
are isomorphic to direct sums of irreducible ĝ-modules of the form L(k, λ) for λ a
dominant integral weight such that (λ, θ) ≤ k, where θ is the highest root of g.

The categories Õk are the ones proved to possess a structure of modular tensor
category in [Hua05]. Even more interestingly, and of special relevance to our main
focus, they are equivalent as ribbon tensor categories to certain subquotients Tq(g)
of the representation categories of quantum enveloping algebras specialised at roots
of unity q. More precisely, as proved in [Fin96] and its correction [Fin13], Õk is
equivalent to Tq(g) for q of the following form:

e
ıπ
` with D | ` , (1)

where D is the ratio between the squares of a long root and a short root, if `/D−ȟ =
k. This theorem was proved by Finkelberg, using a previous equivalence due to
Kazhdan and Lusztig between Tq(g) and a different category of ĝ-modules; we report
however, as pointed out in [Hua18], that there are actually a few cases not covered,
e.g. when g is of type E8 and k = 2.

It is appropriate to note that the categories Tq(g) for q of the form (1) can
be proved to be modular in a more direct fashion, using the results of [Bru00].
In this case Tq(g) is also unitary (so it is a C∗ ribbon category in the sense of the
forthcoming Definition 1.5C); this result becomes apparent through the treatment of
[Wen98] reviewed in subsection 4.3 and is usually referred to as Wenzl-Xu theorem,
e.g. in [Row06]. We also refer to the latter article for an account about modularity
of Tq(g) considering general roots of 1.

Quantum groups at roots of 1 and weak Hopf algebras

We now elaborate briefly about the categories Tq(g) for q as in (1), which are the
main concrete mathematical object the present thesis deals with. Let g be a simple
complex Lie algebra; the quantized universal enveloping algebra Uq(g) is obtained
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from a formal deformation of the classical universal enveloping algebra of g by
specialisation to q using the so called “restricted integral form” (see [CP95]).

Referring to section 3 for details, here we content ourselves with saying that
Uq(g) is a Hopf algebra endowed with an involution ·∗, compatible with its product
just as in usual ∗-algebras. On the other hand the compatibility with the coproduct
∆ is less of a standard one. In fact, contrary to what happens for Hopf ∗-algebras,
∆ does not commute with ·∗, but we rather have ∆ ◦ ∗ = (∗ ⊗ ∗) ◦∆op, where ∆op

is the switched coproduct, i.e. ·∗ is anticomultiplicative. Moreover, the R-matrix,
defining a braiding on Rep

(
Uq(g)

)
, satisfies R∗ = R−1

21 . Returning to Tq(g), Tq(g)
stands for the subcategory of tilting modules (see e.g. [Lus93] for a comprehensive
treatment and references to the original work of H. H. Andersen and others) in
Rep

(
Uq(g)

)
; on the other hand the overline refers to a categorical quotient by the

tensor ideal of “negligible modules”.
It is implicitly expressed in [Wen98] that Tq(g) can be presented as a linear

subcategory Gq(g) ⊂ Tq(g), using a new truncated tensor product that eliminates the
negligible summands that may appear; hence the forgetful functorW : Gq(g)→ Hilb
is well defined. Besides, Gq(g) is actually strictly monoidal, i.e. its tensor product
is associative and the associator is trivial. Even though W, due to the truncation
procedure, cannot be endowed with a tensor structure as it trivially happens for
the forgetful functor on Rep

(
Uq(g)

)
, it admits a particularly interesting weakened

structure, called “weak tensor”; the notion is introduced in [CCP21], providing the
theoretical basis for the thesis. This means that we have natural transformations

F 2
ρ,σ :W(ρ)⊗W(σ)→W(ρ⊗ σ) , G2

ρ,σ :W(ρ⊗ σ)→W(ρ)⊗W(σ)

such that F 2
ρ,σ ◦G2

ρ,σ =W(ρ⊗ σ), the identical transformation, and F 2, G2 have a
certain weak compatibility with associators, in our case trivial, of Gq(g) and Hilb:

F 2
ρ,σ⊗τ ◦

(
W(ρ)⊗ F 2

σ,τ

)
◦
(
G2
ρ,σ ⊗W(τ)

)
◦G2

ρ⊗σ,τ =W(ρ⊗ σ ⊗ τ) ,
F 2
ρ⊗σ,τ ◦

(
F 2
ρ,σ ⊗W(τ)

)
◦
(
W(ρ)⊗G2

σ,τ

)
◦G2

ρ,σ⊗τ =W(ρ⊗ σ ⊗ τ) .

Such structure is especially relevant in view of Tannakian theory, which produces a
complex algebra equipped with a non-unital coproduct (A,∆) and a tensor equiv-
alence E : C → Rep(A), such that E sends each ρ in a representation on W(ρ).
The properties of ∆ mirror the weak tensor structure of W; in particular ∆ is not
associative, but we still have

(id⊗∆)
(
∆(1)

)
(∆⊗ id)

(
∆(a)

)
= (id⊗∆)

(
∆(a)

)
(∆⊗ id)

(
∆(1)

)
∀ a ∈ A , (2)

i.e, according to the nomenclature of [CCP21], A is a weak bialgebra; moreover the
rigidity of Gq(g) results in the definition of a (unique) antipode for A, turning it
into a weak Hopf algebra. Besides,W being a ∗-functor, it induces on A a ∗-algebra
structure, and the properties of the involution of Ux(g) sprout in a remarkable
compatibility of the involution of A with its coproduct, given by the quasi-triangular
structure induced on (A,∆) by the R-matrix of Ux(g). The situation is worded in
[CCP21] saying that A is unitary coboundary, where an abstract theory is modelled
on the very case of the functor W. More generally, [CCP21] introduces the wider
notion of unitary weak Hopf algebras.
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Among the notable properties of weak Hopf algebras, they admit a simple notion
of 2-cocycles, by which the coproduct may be modified to obtain new weak Hopf
algebras. To begin with, a 2-cocycle on A is a partial isomorphism in A ⊗ A
form ∆(1) to some other idempotent of A⊗ A, and one defines the new coproduct
∆F (·) = F∆(·)F−1; so ∆F (1) is the final domain of F . Then (A,∆F ) is still a weak
Hopf algebra if and only if F fulfils the following 2-cocycle identity:

(id⊗∆)(F−1)(1⊗ F−1)(F ⊗ 1)(∆⊗ id)(F ) = (id⊗∆)
(
∆(1)

)
(∆⊗ id)

(
∆(1)

)
(∆⊗ id)(F−1)(F−1 ⊗ 1)(1⊗ F )(id⊗∆)(F ) = (∆⊗ id)

(
∆(1)

)
(id⊗∆)

(
∆(1)

) (3)

2-cocycles are also employed in order to express the compatibility of involution and
coproduct in the case of a unitary weak Hopf algebra: by definition, (A, ·∗,∆,Ω) is
a unitary weak Hopf algebra if (A, ·∗) is a ∗-algebra, (A,∆) is a weak Hopf algebra
and Ω is a positive 2-cocycle such that ∆Ω = ∆(·∗)∗. This way (A, ·,∆F ,ΩF ),
having put ΩF := (F ∗)−1ΩF−1, is still a unitary weak Hopf algebra.

In absence of condition (3), F is simply called a “twist”, and ∆F gets to induce
the further generalised “unitary weak quasi-Hopf algebra” structure on A; the main
difference lies in the fact that property (2) is replaced by

Φ(∆⊗ id)
(
∆(a)

)
= (id⊗∆)

(
∆(a)

)
Φ ,

where Φ is a partial isomorphism between the idempotents (∆ ⊗ id)
(
∆(1)

)
and

(id ⊗ ∆)
(
∆(1)

)
; Φ encodes the associator of Rep(A). In the case of a weak Hopf

algebra, Φ = (id⊗∆)
(
∆(1)

)
(∆⊗ id)

(
∆(1)

)
, with inverse Φ−1 = (∆⊗ id)

(
∆(1)

)
(id⊗

∆)
(
∆(1)

)
. As an upside of weak quasi-Hopf algebras, a given (∆,Φ) can be modified

by arbitrary twists to new weak quasi-coalgebra structures (∆F ,ΦF ) on A, where
ΦF depends on Φ and F .

Twisted associators and QUE algebras

The main result of the thesis arises from the work by S. Neshveyev and M. Yamashita
in [NY15]. The authors consider the specialised QUE algebra Uq(g) for q > 1; in
this case Rep

(
Uq(g)

)
is the representation category of a compact quantum group

Gq and the situation is much more similar to the classical one. Now, one may
utilise usual 3-cocycles on the integral weight lattice for g, or equivalently on the
dual of the centre of the corresponding compact simply connected Lie group G,
with values in the circle, to modify the associator of Rep(Gq); we thus have a new
category Rep(Gq)Φ. The authors prove it to be unitarily equivalent to the category
of representations of a particular compact quantum group Gτq , obtained modifying
the coproduct of Uq(g) by an l-tuple τ of elements of the centre of G, l being the
rank of g

The thesis deals with the same problem in the scenario where Gq is replaced by
the unitary coboundary weak Hopf algebra A constructed from the weak tensor ∗-
functor W. The theory of [CCP21] naturally applies to the problem, once the weak
tensor structure of W is explicitly written down in a suitable form. In particular,
the analogue of Rep(Gq)Φ turns out to be the representation category of a unitary
weak quasi-Hopf algebra. We prove that such algebra can be twisted to a unitary
weak Hopf algebra, though not a coboundary one as A is; the employed twist is
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defined from an n-tuple τ as in [NY15], but inserting idempotents suited to the
non-unitality of the coproduct.

Subsequently, the twisted algebras are tracked back to appropriate twists of
Uq(g), coinciding with the ones introduced in [NY15] except for the difference in the
involution, due to the different values of q. Writing Uq(g)′ for the new QUE algebra,
we may again consider the tilting modules in Rep

(
Uq(g)′

)
and the quotient by the

tensor ideal of negligible morphisms, obtaining a C∗ tensor category analogue to
Gq(g) along the same lines followed to define the latter. We prove that the two C∗
tensor categories are isomorphic.

The stated results might assume greater interest in view of the equivalence found
in [Fin96] between Tq(g) and the category Õk mentioned above. A conceivable
development of the work of the thesis is the research of vertex algebras yielding
module categories equivalent to the twisted versions of Tq(g).

Summary structure of the thesis

The first chapter develops the Tannakian reconstruction theory for a weak quasi-
tensor ∗-functor on a C∗ tensor category treated in [CCP21].

The second introduces quantum groups at roots of unity and the fusion cate-
gories arising from them; the theory of the first chapter is subsequently applied to
a weak tensor ∗-functor constructed building on the work of [Wen98].

The third chapter adapts the reconstruction result of [NY15] to the scenario
presented in the second chapter. We refer to the introductions at the beginning of
chapters and sections for more detailed summaries.

Note on cross-references We adopt the convention of [Hum12]. So, Proposition
1.3 is the (unique) Proposition in subsection 1.3, and is referred to as “the Proposi-
tion” within the subsection. Similarly, formula 2.2(1) is the expression labelled by
(1) in 2.2, just called (1) within the subsection.
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General theory

The present chapter is devoted to the development of the abstract algebraic struc-
ture providing our general framework, following [CCP21]. Section 1 mainly recalls
some basic categorical notions centred around tensor categories and functors be-
tween them. Section 2 focuses on the situation when a tensor category is endowed
with a faithful functor into the category of vector spaces. Tannaka-Krein duality
then associates to the functor a suitable algebra, whose properties shall be discussed
there.

1 Tensor categories

We start by fixing the terminology and notation from general category theory. Sub-
sections 1.1 and 1.2 are designed to introduce tensor categories, providing the basic
categorical framework of the thesis; in this regard we basically follow the approach
of the first four chapters of [EGNO15]. However, we forewarn that our Definition
1.2E of tensor categories is given in the more restrictive context of semi-simple
abelian categories (see the comments below it for a more detailed comparison with
the definition at the beginning of the fourth chapter of [EGNO15]).

Subsections 1.3, 1.4 and 1.5 deal with possible richer structure, i.e. categorical
duals, generalised coboundaries (a generalisation of braidings we are going to need
later on), and involutions respectively.

Throughout the whole thesis every category, unless otherwise stated, will be
meant to be C-linear, i.e. for each pair of objects a, b the corresponding set of
morphisms (a, b) will actually be a vector space, and the composition maps will
be bilinear. The identity morphism in (a, a) will be denoted by a. Every functor
between C-linear categories will be taken to be linear on each morphism space.

1.1 Additive structure

Since we are mainly focused on representation categories of quantum groups, we are
particularly interested in semi-simple abelian categories.

Definition A. A category A is said to be abelian if

i) C contains a null object;

ii) C has finite direct sums;

iii) every morphism of C admits a kernel and a cokernel;
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iv) every monomorphism of C is a kernel and every epimorpism is a cokernel.

Remark A. We recall that, given objects ρ1, . . . , ρn, a direct sum of them is an object
ρ1 ⊕ · · · ⊕ ρn with morphism ik in (ρk, ρ1 ⊕ · · · ⊕ ρn) and pk in (ρ1 ⊕ · · · ⊕ ρn, ρk)
such that pkik = ρk, for k = 1, . . . , n and

∑n
k=1 ikpk = ρ1 ⊕ · · · ⊕ ρn.

It is also useful to note that the existence of kernels and cokernels imply that C
has addends. Namely if e is an idempotent element in some (ρ, ρ) then there is an
object π and morphism i in (π, ρ), p in (ρ, π) such that pi = π and ip = e.

We refrain from going into greater detail about abelianness, referring to [Mac71]
for a proper treatment, and contenting ourselves with a couple of simple observations
appropriate to polish our terminology.

Proposition-Definition. Let ρ be a non-null object in an abelian category. Then,
up to isomorphisms, ρ admits exactly two subobjects if and only if it admits exactly
two quotients. If this is the case, we say that ρ is simple.

Proof. Suppose the only quotients of ρ are 0, the null object, and ρ itself; consider
a monomorphism f in (π, ρ). Then f = ker(p), where p is an epimorphism in (ρ, σ)
for some object σ. So either p = 0 or p = ρ, and accordingly f = 0 or f = ρ. The
converse is dual.

Proposition. Let ρ be a simple object in an abelian category. Then, for any mor-
phism f in (π, ρ), f is an epimorphism or f = 0; dually, for any g in (ρ, σ), g is a
monomorphism or g = 0.

Proof. We just prove the first assertion. Since our category is abelian, we may
write f = me, with m a monomorphism and e an epimorphism. Then, by the
Proposition-Definition, either m = ρ up to isomorphism or m = 0, and f = e or
f = 0 accordingly.

Remark B. In an abelian category a morphism that is both mono and epi is actually
an isomorphism; so the Proposition implies Shur’s lemma, which is of fundamental
importance in the forthcoming development.

Let us turn to semi-simplicity.

Definition B. An abelian category is called semi-simple if each of its objects can
be written as a direct sum of a finite number of simple objects.

We observe that, thanks to Shur’s lemma, the morphism spaces of a semi-simple
abelian category are finite-dimensional. We also point out that any exact sequence
splits. To sum up, these categories are very well behaved under the “additive”
aspect, which indeed we are not going to further investigate in itself.

1.2 Monoidal structure

Definition A. A monoidal category is the datum of a triple (C,⊗, a), where

• C is a category;

• ⊗ is a functor C × C → C, called tensor product;
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• aρ,σ,τ : (ρ⊗ σ)⊗ τ → ρ⊗ (σ ⊗ τ), with ρ, σ, τ running through C, are natural
isomorphisms satisfying the pentagon axiom

(ρ⊗ aσ,τ,υ) ◦ aρ,σ⊗τ,υ ◦ (aρ,σ,τ ⊗ υ) = aρ,σ,τ⊗υ ◦ aρ⊗σ,τ ∀ ρ, σ, τ, υ ∈ C .

The natural isomorphism a is called associator.
Furthermore (C,⊗, a) is assumed to possess units, which we introduce in next defi-
nition. We will often trim ⊗ and/or a out of our notation, writing e.g. (C,⊗) or C,
when they will not be specifically relevant or will result clearly from the context.

We adopt the definition of monoidal units originally given by Saavedra, following
the treatment in [Koc08].

Definition B. A unit for a monoidal category is a pair (1, i), where

• the object 1 is cancellable, i.e. the functors given, for each morphism f , by

f 7→ 1⊗ f , f 7→ f ⊗ 1

are equivalences;

• i is an isomorphism in (1⊗ 1,1).

The units of a given monoidal category C are the objects of a new category U . A
morphism φ from (1, i) to (1′, i′), is a morphism of C in (1, 1′) such that

• for all morphism f , φ⊗ f = 0 and f ⊗φ = 0 both imply f = 0; this is usually
worded by saying that the morphism φ is cancellable;

• i′ ◦ (φ⊗ φ) = φ⊗ i.

We have to point out that the category U in previous definition is actually
not C-linear; indeed for any pair of objects in U the corresponding morphism space
contains exactly one isomorphism, i.e. U is contractible. It is also in order to remark
that Definition B does not rely on the associator, contrary to the more traditional
definition in terms of natural isomorphisms l : 1⊗ ρ→ ρ and r : ρ⊗ 1→ ρ, called
unitors. However, for any given associator, the assignment

(1, l, r) 7→ (1, i) , i := l1 = r1

actually gives a bijection between “traditional” and “Saavedra” units. This becomes
particularly useful when it comes to monoidal functors.

Definition C. Let (C,⊗, a) and (C′,⊗′, a′) be monoidal categories. A monoidal
functor from the former to the latter is the datum of a functor F : C → C′ plus
natural isomorphisms Fρ,σ : F(ρ)⊗F(σ)→ F(ρ⊗ σ) such that

(
F(ρ)⊗F(σ)

)
⊗F(τ)

Fρ,σ⊗F(τ) //

a′F(ρ),F(σ),F(τ)
��

F(ρ⊗ σ)⊗F(τ)
Fρ⊗σ,τ // F

(
(ρ⊗ σ)⊗ τ

)
F(aρ,σ,τ )

��
F(ρ)⊗

(
F(σ)⊗F(τ)

) F(ρ)⊗Fσ,τ // F(ρ)⊗F(σ ⊗ τ)
Fρ,σ⊗τ // F

(
ρ⊗ (σ ⊗ τ)

)
commutes for all ρ, σ, τ objects in C. The natural isomorphism F is called the
monoidal structure of F . Of course, the identity functor idC : C → C is a monoidal
functor with the trivial monoidal structure.
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In the above situation, consider a unit for C, say (1, i); then we have the isomor-
phism i′ := F(i) ◦ F1,1. So as soon as F (1) is cancellable, e.g. it is isomorphic to
some unit as an object of C′,

(
F(1), i′

)
is a unit for C′; moreover, by contractibility,

F (1) is cancellable if and only if F (u) is, for any unit (u, j) of C. To sum up, we
have

Proposition-Definition. Let F be as in Definition C; for each unit (u, j) for C,
consider the pair

(
F(u), j′

)
. Then all of the latter pairs are units for C′ if and only

if F(1) is cancellable for some unit (1, i) of C. If this is the case, F is said to be
compatible with units.

Now, as it is shown in [Koc08], it turns out that this notion of compatibility
with units is equivalent to the traditional one. More precisely, we have the following

Lemma. Let F : (C,⊗) → (C′,⊗′) be a monoidal functor compatible with units.
Consider a unit (1, i) of C, a unit (1′, i′) of C′, and the corresponding traditional
units (1, l, r), (1′, l′, r′); we denote by ψ the unique isomorphism from (1′, i′) to(
F (1),F(i) ◦ F1,1

)
. Then ψ is also the unique isomorphism from 1′ to F(1) such

that the following commute for each ρ in C:

1′ ⊗′ F(ρ)
l′F(ρ) //

ψ⊗F(ρ)
��

F(ρ)

F(1)⊗′ F(ρ)
F1,ρ // F(1⊗ ρ)

F(lρ)

OO
F(ρ)⊗′ 1′

r′F(ρ) //

F(ρ)⊗ψ
��

F(ρ)

F(ρ)⊗′ F(1)
Fρ,1 // F(ρ⊗ 1)

F(rρ)

OO

To summarize, compatibility with units is a property rather than a further piece
of information and we will always assume it for every monoidal functor.

We conclude our review of general monoidal categories by the following

Definition D. Let (F , F ), (G, G) be monoidal functors between (C,⊗) and (C′,⊗′).
A natural transformation given by morphisms ηρ in

(
F(ρ),G(ρ)

)
is said to be

monoidal if
Gρ,σ ◦ (ηρ ⊗′ ησ) = ηρ⊗σ ◦ Fρ,σ ∀ ρ, σ ∈ C

and η1 is an isomorphism for any 1 unit of C.

Clearly the last condition actually holds for all units by naturality; it is also
easy to see that η1 ◦ φ = ψ, where φ and ψ express the compatibilities with units
of F and G.

Quotient categories For future use (in the forthcoming subsection 4.2), we
record a simple categorical construction (the standard more general approach may
be found in II.8 of [Mac71]).

Proposition. Let (C,⊗, a) be a monoidal category and I a collection of vector
subspaces Iρ,σ ⊂ (ρ, σ) for ρ, σ objects of C; the quotient maps will be marked by
overlines.

We assume that I is an ideal of C, which means that g = 0 implies fgh = 0 for
all morphisms f, g, h such that the composition is defined. Then fg := fg defines a



1 Tensor categories 11

composition for a new category C whose objects are the objects of C, with morphism
space (ρ, σ) for each ρ, σ.

Furthermore, if f = 0 implies f ⊗ g = 0 = g ⊗ f for all morphisms f, g then
f⊗g := f ⊗ g defines a tensor product ⊗ coinciding with ⊗ on objects, and (C,⊗, a)
is a monoidal category.

We finally settle down a basic terminology issue about the main notion of current
section.

Definition E. By a tensor category we will mean a monoidal category (C,⊗, a)
where C is a semisimple abelian category. We also require the units to be simple
objects.

A quick word of warning: the above definition is tailored on the theoretical
development of section 2, but it is not really standard and actually quite a few
variations are spread through the literature, see e.g. [EGNO15] and [CP95]. In the
notable case of [EGNO15], the authors contemplate locally finite categories rather
than semi-simple ones, and assume them to be rigid (see Definition 1.3A).

In the present thesis we will use “tensor” instead of “monoidal” for the relative
notions as well; e.g. we will speak of tensor functors rather than of monoidal ones.
This is also consistent with our forthcoming nomenclature for functors from a tensor
category to Vec or Hilb, which follows [CCP21].

Finally, we will generally use 1 to denote a generic unit, refraining from making
a specific choice; however, we will often make use of this freedom for normalisation
purposes (e.g., in Definition 2.1A).

1.3 Rigidity

We now briefly recall the notion of dual objects in a tensor category. We limit
ourselves to the case where it is strict as a monoidal category, i.e. the tensor product
is associative, whence the associator is taken to be trivial, and we have a unit 1
such that 1⊗ρ = ρ = ρ⊗1 for every object ρ. The general definitions are recovered
by just inserting associators and unitors where needed; moreover, thanks to the
strictness theorem (see [Mac71]) any property valid for a strict category extends to
the general case just in the same way.

Definition A. Let C be a strict tensor category. Given objects ρ, σ, we say that
σ is a right dual of ρ, or that ρ is a left dual of σ, if there is a pair (b, d) with b in
(1, ρ⊗ σ) and d in (σ ⊗ ρ, 1) such that the compositions

ρ
b⊗ρ−−→ ρ⊗ σ ⊗ ρ ρ⊗d−−→ ρ and σ

σ⊗b−−→ σ ⊗ ρ⊗ σ d⊗σ−−→ σ

equal respectively ρ and σ. In this is the case, we say that (b, d) is a duality pair
with left object ρ and right object σ; C is said to be rigid if every object possesses
both left and right duals.

Assuming that C is rigid, suppose we have an assignment ρ 7→ (bρ, dρ) where the
latter is a duality pair with left object ρ and right object ρ∨ for all ρ in C. Then this
extends to a contravariant functor D in a unique way. Namely, given f in (ρ, σ),

(f ⊗ ρ∨) ◦ bρ = (σ ⊗ f∨) ◦ bσ, or equivalently, dρ ◦ (ρ⊗ f∨) = dσ ◦ (f ⊗ σ∨).
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Moreover the choice of the duality pairs is in fact not essential, thanks to the
following basic observation.

Proposition. Consider a duality pair (b, d) with left object ρ and right object σ.
Then

• if u : σ → σ̃ is an isomorphism, then
(
(ρ⊗u)◦b, d◦(u−1⊗ρ)

)
is still a duality

pair with left object ρ;

• conversely, if (b̃, d̃) is a duality pair with left object ρ and right object σ̃, then
(b̃, d̃) =

(
(ρ⊗ u) ◦ b, d ◦ (u−1 ⊗ ρ)

)
with u = (d⊗ σ̃) ◦ (σ ⊗ b̃).

Indeed, supposing we have choices (bρ, dρ) and (bρ̃, dρ̃), the above second point
provides us with isomorphisms uρ and one can easily verify that this defines a
natural isomorphism between the two right duality functors.

Finally, the ·∨ functors are actually tensor between C and Cop (see the beginning
of next subsection for Cop), in such a way that the natural isomorphisms u become
tensor as well. More precisely, given objects ρ and σ, σ∨⊗ρ∨ is a right dual of ρ⊗σ
by

1
bρ−→ ρ⊗ ρ∨ ρ⊗bσ⊗ρ∨−−−−−−→ ρ⊗ σ ⊗ σ∨ ⊗ ρ∨ ,

σ∨ ⊗ ρ∨ ⊗ ρ⊗ σ σ∨⊗dρ⊗σ−−−−−−→ σ∨ ⊗ σ dσ−→ 1 ,

and again the second point of the Proposition yields isomorphisms Dρ,σ in
(
(ρ ⊗

σ)∨, σ∨⊗ρ∨
)
(keep in mind that D is contravariant). The triviality of the associator

makes it easy to check tensoriality for both the D functors and the u isomorphisms.
We proceed to recall the notion of compatibility with duality of an isomorphism of
the identity functor for later use.

Definition B. Let C be a rigid category and suppose we have right and left duality
functors both having the value ρ∨ on each object ρ. Given natural morphisms ηρ in
(ρ, ρ), we say that the natural transformation η is compatible with duality if ηρ∨ = η∨ρ
for all ρ.

In fact, compatibility with duality does not depend on the choice of the right
duals; indeed, in the situation of Definition B, if ·∨′ is another right duality functor
consider natural isomorphisms uρ in (ρ∨, ρ∨′). We have

ηρ∨′ = uηρ∨u
−1 = uη∨ρ u

−1 = η∨
′

ρ .

Remark A. What we have said since the definition of D obviously goes through for
left duals as well. Let us now further suppose that the right and left duality functors
we chose for our rigid category C coincide on objects. Then ρ∨∨ and ρ are both
right duals for ρ∨ and again we obtain a natural isomorphism ω from the identity
functor idC to D2. Conversely, given right duals ρ∨ and a natural isomorphisms ωρ
in (ρ, ρ∨∨), we apply the first point of the Proposition to pass from dualities with
left object ρ∨ and right object ρ∨∨ to dualities with the same left object and right
object ρ, so ρ∨ becomes also a left dual of ρ. The two passages are clearly inverse
to each other.
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To sum up, given a right duality functor D, we have a bijective correspondence
between left duality functors coinciding on objects with D and natural isomorphisms
from idC to D2.

We have to stress that the natural isomorphism ωρ of Remark A will generally
fail to be tensor. It therefore makes sense to introduce the following more specific
notion.

Definition C. Given a right duality functor D on C, a pivotal structure for D is a
monoidal isomorphism ω from idC to D2.

The scenario of Definition C further specifies if one considers the categorical
traces. We recall that for every object ρ of C one defines TrLρ ,TrRρ : (ρ, ρ)→ C by

TrLρ (f) = dρ ◦ (ρ∨ ⊗ fω−1) ◦ bρ∨ , TrRρ (f) = dρ∨ ◦ (ωf ⊗ ρ∨) ◦ bρ .

Definition D. A pivotal structure on C is said to be a spherical structure if TrLρ =
TrRρ for all objects ρ. Denoting the common value by Trρ, the categorical dimension
is defined for each ρ by Trρ(ρ).

The categorical traces are clearly linear; in the pivotal case they are also multi-
plicative, namely TrLρ⊗σ(f ⊗ g) = TrLρ (f) TrLσ (g) for all f in (ρ, ρ), g in (σ, σ), and
similarly for TrRρ . Finally, in the spherical case one also has Trρ(gf) = Trσ(fg) for
all f in (ρ, σ), g in (σ, ρ).

For later use, we now consider yet another kind of a special case in the choice
of left and right duals.
Remark B. Let (C,⊗, a) be a rigid tensor category, and suppose we have ∨· and ·∨
left and right duality functors inverse to each other. Then we may define a new
monoidal structure on C:

ρ⊗̌σ := ∨(σ∨ ⊗ ρ∨) , ǎρ,σ,τ = ∨aτ∨,σ∨,ρ∨ .

The verifications are straightforward; for instance, aτ,σ,ρ is in
(
(τ⊗σ)⊗ρ, τ⊗(σ⊗ρ)

)
,

so

∨aτ∨,σ∨,ρ∨ is in
(
∨(τ∨ ⊗ (σ∨ ⊗ ρ∨)

)
, ∨
(
(τ∨ ⊗ σ∨)⊗ ρ∨

))
=(

∨(τ∨ ⊗ (ρ⊗̌σ)∨
)
, ∨
(
(σ⊗̌τ)∨ ⊗ ρ∨

))
=
(
(ρ⊗̌σ)⊗̌τ, ρ⊗̌(σ⊗̌τ)

)
.

We also remark that Dρ,σ : (ρ ⊗ σ)∨ → σ∨ ⊗ ρ∨ is a tensor structure on the right
duality functor D exactly if ∨Dρ,σ : ρ⊗̌σ → ρ ⊗ σ is one on the identity functor
considered from (C,⊗, a) to (C, ⊗̌, ǎ); this can be seen by just applying ∨· or ·∨ to
the diagram for each of the tensor structures.

1.4 Braidings and generalised coboundaries

General coboundaries were introduced in [CCP21] and provide a simple generalisa-
tion of braidings in terms of tensor functors. Since they offer a convenient tool for
our forthcoming developments (see 2.7), we go ahead and treat them here, while also
fixing our notation and definitions for a few related more usual categorical notions.
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Definition A. Let C be a tensor category. A generalised coboundary on it is a
tensor structure on the identity functor considered from Cswap to C.

Here Cswap denotes the tensor category obtained by composing the tensor prod-
uct with the swap functor on C×C and modifying the associator accordingly; namely,
if we start with (C,⊗, a) then Cswap = C, f ⊗op g = g ⊗ f for all f, g morphisms of
C and aop

ρ,σ,τ = a−1
τ,σ,ρ for all ρ, σ, τ objects of C. So c is a generalised coboundary for

C if
(ρ⊗ σ)⊗ τ

cρ,σ⊗τ //

aρ,σ,τ

��

(σ ⊗ ρ)⊗ τ
cσ⊗ρ,τ // τ ⊗ (σ ⊗ ρ)

ρ⊗ (σ ⊗ τ)
ρ⊗cσ,τ // ρ⊗ (τ ⊗ σ)

cρ,τ⊗σ // (τ ⊗ σ)⊗ ρ

aτ,σ,ρ

OO
(1)

commutes for all ρ, σ, τ in C. We observe that since the units are simple c1,1 is
a non-zero scalar, so up to dividing c by it we may assume c1,1 = 1. Hence the
compatibility of c with units implies

lρ = rρ ◦ c1,ρ , rρ = lρ ◦ cρ,1 ∀ ρ ∈ C .

Remark A. By naturality of c, the diagrams

(ρ⊗ σ)⊗ τ
cρ,σ⊗τ//

cρ⊗σ,τ

��

(σ ⊗ ρ)⊗ τ
cσ⊗ρ,τ

��
τ ⊗ (ρ⊗ σ)

τ⊗cρ,σ// τ ⊗ (σ ⊗ ρ)

ρ⊗ (σ ⊗ τ)
ρ⊗cσ,τ //

cρ,σ⊗τ

��

ρ⊗ (τ ⊗ σ)
cρ,τ⊗σ

��
(σ ⊗ τ)⊗ ρ

cσ,τ⊗ρ// (τ ⊗ σ)⊗ ρ

commute for all ρ, σ, τ in C. If we apply them respectively to the first and the second
row of (1) and rotate the resulting diagram by π, we obtain that c′ρ,σ := c−1

σ,ρ is a
general coboundary as well; in keeping with the nomenclature for braidings, it is
called the reversed generalised coboundary.

Example. Diagram (1) commutes if c is a braiding. This follows from the braided
version of the coherence theorem (see [Mac71]), since the two rows of (1) give the
same element of B2, the braid group with two generators. Moreover, if c is a braiding
c1,1 = 1 is automatic.

Now, let us suppose that C is rigid, and consider right duals ρ∨ for each object ρ
with duality pairs (bρ, dρ); we may see them as left duals for Cswap. Then, viewing
idC as a tensor isomorphism from Cswap to C with tensor structure c, we get duality
pairs (b′ρ, d′ρ) with right object ρ and left object ρ∨. Explicitly,

b′ρ = c(ρ∨, ρ)−1 ◦ bρ and d′ρ = dρ ◦ c(ρ, ρ∨) .

The corresponding isomorphism (see Remark 1.3A) from idC to D2 is called the
Drinfel’d isomorphism of c; we denote it by u. Now from c one can define two
interesting tensor structures on idC :

c2) this is given by cσ,ρ ◦ cρ,σ for each ρ, σ; in other words we go from C to Cswap

and then back to C with the identity functors equipped respectively with cσ,ρ
and cρ,σ and c2 is the tensor structure induced on the composition.
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c2) Since u is a natural isomorphism from idC to D2, we may pull back the tensor
structure of D2 (see 1.3) to idC ; this is c2.

Remark B. We observe that c2 does not depend on the particular realization of D.
To see this, let us consider a second right duality functor D′ and denote the relative
quantities adding a ′ to the notation for the matches relative to D. Since D and D′
are tensor isomorphic, so are D2 and D′2, say by ϑ; therefore the right cell of

ρ⊗ σ
uρ⊗uσ //

(c2)ρ,σ
��

ρ∨∨ ⊗ σ∨∨
ϑρ⊗ϑσ //

D2
ρ,σ

��

ρ∨
′∨′ ⊗ σ∨′∨′

D′ρ,σ
��

ρ⊗ σ
uρ⊗σ // (ρ⊗ σ)∨∨

ϑρ⊗σ // (ρ⊗ σ)∨′∨′

commutes and so does the left one by definition of c2, hence the outer cell commutes
as well. Moreover the rows of the diagram actually compose to u′ρ ⊗ u′σ and u′ρ⊗σ.
So (c2)ρ,σ must equal (c′2)ρ,σ by definition of the latter.
The following two theorems provide a useful characterization of the possible pivotal
structures on C in terms of automorphisms of idC and a sufficient condition for them
to be actually spherical.

Definition B. Consider a tensor category C and a tensor structure b for idC . A
balancing structure for b is a tensor isomorphism from idC with b to idC with the
trivial tensor structure. Explicitly,

vρ ⊗ vσ = vρ⊗σ ◦ bρ,σ .

Since 1 is simple we may, and will, assume v1 = 1. Furthermore, in the case where
C is rigid, a balancing structure for b compatible with duality will be called a ribbon
structure.

Theorem. Let C be a rigid tensor category with a generalised coboundary c. We
consider a right duality functor D, and the corresponding Drinfel’d isomorphism u.
Then

• if v is a ribbon structure for c2, then the left and right categorical traces for
uv−1 coincide;

• there is a bijective correspondence between pivotal structures for D and bal-
ancing structures for c2, given by

ω ↔ w ω = uw−1 .

Proof. The second point is obvious by definition of c2 and of balancing structure.
The first point on the other hand requires quite a bit of calculation, for which we
refer to [CCP21] (Theorem 21.13).

Remark C. We also recall (see Proposition 8.9.3 of [EGNO15] for a proof) that if
c is a braiding we have c2 = c2. So in this case the Theorem asserts that if v is a
ribbon structure for c2 then uv−1 is a spherical structure.
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Before concluding the subsection, we return to the general scenario of a tensor
category C with a generalised coboundary c on it, and introduce a simple suitable
notion of deformation. Given a natural isomorphism η from the identity functor idC
to itself with η1 = 1, we put

cηρ,σ := cρ,σ ◦ (η−1
ρ ⊗ η−1

σ ) ◦ ηρ⊗σ , (2)

namely we compose c, a tensor structure on idC : Cswap → C, with the unique tensor
structure Tη on idC : C → C such that η becomes tensor from the identical tensor
structure to Tη. Equivalently, by naturality of c and η, we may rewrite (2) as

cηρ,σ = ησ⊗ρ ◦ cρσ ◦ (η−1
ρ ⊗ η−1

σ ) ,

i.e. cη is the unique generalised coboundary on C such that η becomes tensor from
idC : Cswap → C with c to idC : Cswap → C with cη; in particular cη is a braiding if c
is. By similar computations one sees that (cη)′ = (c′)η−1 .

Finally, we have the following nice result “intertwining” the bijection of the
Theorem with deformation.

Lemma. We consider a rigid tensor category C and fix a right duality functor D.
Let c be a generalised coboundary and u its Drinfel’d isomorphism relative to D.
Then, given a natural isomorphism η from idC to itself with η1 = 1 and compatible
with duality, the Drinfel’d isomorphism for cη is

u ◦ η−2 =: uη . (3)

Moreover, the assignment v 7→ v ◦ η−2 defines a bijection from balancing structures
for c2 to balancing structures for (cη)2. The same is true for c2 and (cη)2.

Proof. Formula (3) is easily computed applying the definition of the Drinfel’d ele-
ment (see also Remark 1.3A) using compatibility of η with duality. Therefore

u ◦ v−1 = uη ◦ (v ◦ η−2)−1

for all v isomorphisms of idC ; so, by the second point of the Theorem, v is balancing
for c2 if and only if v ◦ η−2 is for (cη)2. The same fact for c2 and (cη)2 follows from
the readily checked formula

(cη)2
ρ,σ = η2

ρ⊗σ ◦ (c2)ρ,σ ◦ (η−2
ρ ⊗ η−2

σ ) .

1.5 C∗ categories and ribbon tensor categories

Definition A. A C∗ category is a pair (C, ·∗) where C is a C-linear category and ·∗
is a conjugation on C. This in turn means that we have antilinear maps

·∗ : (ρ, σ)→ (σ, ρ) f 7→ f∗

such that f∗∗ = f and (g ◦f)∗ = f∗ ◦g∗ whenever the composition is defined. More-
over we require the morphism spaces to be Banach spaces, whose norms, denoted
by ‖ · ‖, satisfy the following properties:
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• ‖g ◦ f‖ ≤ ‖g‖‖f‖; (sub-multiplicativity)

• ‖f∗f‖ = ‖f‖2. (C∗ identity)

Finally, f∗f is required to be positive for every morphism f (note that (a, a) is a
C∗-algebra for every object a).

If C is a semi-simple abelian category, which is the situation of our interest, the
portion of Definition A concerning norms is actually redundant.

Proposition. Let C be a semi-simple abelian category, with an involution ·∗ such
that f∗f is positive for every f morphism of C. Then C admits a unique structure
of a C∗ category.

Proof. To begin with, the morphism spaces are finite-dimensional, hence complete
with respect to every norm. Furthermore, any (ρ, ρ) admits a unique C∗ norm.
More explicitly, ‖f‖ =

√
r(f∗f) for all f in (ρ, ρ), where r stands for “spectral

radius of”; so by the C∗ identity there is at most one choice of norms satisfying
Definition A. On the other hand it is easy to see that ‖f‖ :=

√
r(f∗f) defines

norms as required, provided f∗f to be positive for all morphism f .

Remark. If, again, C is semi-simple abelian, the positivity requirement allows us to
upgrade general direct sums to orthogonal ones. Explicitly, let us consider ik in
(ρk, ρ1 ⊕ · · · ⊕ ρn) and pk in (ρ1 ⊕ · · · ⊕ ρn, ρk) as in Remark 1.1A; up to further
decomposing each ρk, we may assume them to be simple. Then i∗kik is idρk times a
positive scalar, so up to dividing the square root, we may assume i∗kik = idρk , for
all k. To sum up, we may assume the ik to be isometries, and put pk = i∗k.

Conversely the positivity requirement is automatically met if orthogonal sums
are available. To see this, let us consider f in (ρ, σ). By functional calculus we
find self-adjoint idempotents p+, p− commuting with f∗f such that f∗fp+ ≥ 0 and
f∗fp− ≤ 0; we need to prove f∗fp− = 0. Now f∗fp− = p−f

∗fp− = (fp−)∗(fp−),
so we are reduced to prove that f∗f ≤ 0 implies f∗f = 0. To this aim we consider an
orthogonal direct sum τ with isometries i in (ρ, τ), j in (σ, τ) such that ii∗+jj∗ = τ .
We put g := jfi∗ so that g∗g = if∗fi∗; now f∗f = −h∗h for some h in (ρ, ρ), hence

g∗g = if∗fi∗ = −ih∗hi∗ = −(ihi∗)∗(ihi∗) ≤ 0 ,

since ihi∗ is in (τ, τ). On the other hand g∗g ≥ 0, so g∗g = 0 and f∗f = i∗g∗gi = 0.

Definition B. Given C∗ categories (C, ·∗), (C′, ·∗′), a functor F : C → C′ is said
to be a ∗-functor if F(f∗) = F(f)∗′ for all f morphism of C. Given ∗-functors
F ,G : C → C′, a natural isomorphism η from F to G is said to be unitary if so is ηρ
for all ρ object of C.

All kinds of categories that can be defined combining structures from previous
subsections admit a C∗ version, which is generally obtained by requiring suitable
compatibility conditions with the conjugation. The most elaborate instance of such
an arrangement occurs for ribbon tensor categories, which we proceed to define in
both the “algebraic” and C∗ versions.
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Definition C. A ribbon category is a rigid tensor category (C,⊗, a), say with duality
pairs (bρ, dρ) with left object ρ and right object ρ∨ for each ρ, which is further
equipped with a braiding c and a ribbon element v.

Then C is a C∗ ribbon category if it is also a C∗ category, say with conjugation
·∗, and the following are verified:

• (f ⊗ g)∗ = f∗ ⊗ g∗;

• a∗ρ,σ,τ = a−1
ρ,σ,τ , c∗ρ,σ = c−1

ρ,σ, v∗ρ = v−1
ρ ;

• b∗ρ = dρ ◦ cρ,ρ∨ ◦ (v−1
ρ ⊗ ρ∨);

• d∗ρ = (ρ∨ ⊗ vρ) ◦ c−1
ρ∨,ρ ◦ bρ.

The compatibility conditions of the first and the second points in Definition
1.5C just require ⊗ to be a ∗-functor and the natural isomorphisms involved to be
unitary. The third and the fourth point deal with the new duality pairs obtained by
conjugating (bρ, dρ); they yield a left duality functor coinciding on objects with the
given right duality functor D. The condition is that the corresponding isomorphism
ω from idC to D2 actually equal uv−1, where u is the Drinfel’d isomorphism for c.

So ω is a spherical structure, which coincides with the one coming from c and
v. Hence the categorical trace may be computed, for each object ρ, as follows:

Trρ(f) = dρ ◦ (ρ∨ ⊗ f) ◦ d∗ρ = b∗ρ ◦ (f ⊗ ρ∨) ◦ bρ ∀ f ∈ (ρ, ρ) .

In particular, we see that categorical dimensions are positive. Moreover Tr(fg∗)
defines a scalar product on each morphism space (ρ, σ), turning it into a Hilbert
space.

2 Weak quasi-tensor functors and Tannaka-Krein dual-
ity

Most notable examples of a tensor category are offered by representation categories
of an algebra endowed with some form of coproduct; one then has the forgetful
functor, with values in Vec. Throughout the present section, we will mainly adopt
the reverse point of view. More precisely our basic starting point will be a weak
quasi-tensor functor, a remarkably flexible generalised version of a tensor functor,
from some tensor category into Vec, say F : C → Vec.

As it is well known in the case of tensor functors, Tannaka-Krein duality allows
one to use F to reconstruct C as a representation category of a suitable algebraic
object, and the latter is determined by F up to isomorphism. So we may take
F as a convenient form to present our algebraic object, in that it is evidently an
enrichment of the categorical datum. This way our category is clearly displayed
and any further structure attached comes effectively encoded by the properties of
the particular functor we are looking at.

Subsection 2.1 is devoted to the introduction of discrete weak quasi-bialgebras,
the algebraic object needed for the reconstruction results we mentioned, and specif-
ically to their construction from weak quasi-tensor functors. Indeed, weak quasi-
Hopf algebras were introduced in [MS92] and [Sch95] with this exact purpose in
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the context of fusion categories arising from conformal field theory; their methods
were subsequently developed and conveniently formalised in [Här97], and extended
beyond fusion categories in [CCP21]. The actual Tannaka-Krein duality result we
present, in Theorem 2.2, follows Theorem 5.6 of [CCP21].

Subsection 2.3 refines the reconstruction theorem by reexpressing antipodes
and/or braided symmetries our category may be endowed with in terms of ad-
ditional structure of the relative discrete weak quasi-bialgebra.

Moving on, subsection 2.4 refines the treatment of 2.1 and 2.2 in order to deal
with the case of a ∗-functor on a C∗ tensor category F : C → Hilb; accordingly, the
corresponding weak quasi-bialgebra A will be endowed with an involution. Likewise,
subsection 2.6 completes 2.3 considering some further arising compatibility issue.

Generally speaking such adaptations and refinements are often most conve-
niently treated under the algebraic aspect in terms of certain elements of A ⊗ A
called “twists”. Roughly speaking, they can be thought of as morphisms between
the possible weak quasi-coalgebra structures on A, or, in categorical terms, between
the possible weak quasi-tensor structures on F . Twists will be treated in subsection
2.5 and will play a fundamental role in the last chapter.

Finally, subsections 2.7 and 2.8 focus on the properties of two special types
of weak quasi-Hopf algebras. In the case of the unitary coboundary type, such
properties arise from the C∗-ribbon structure of C (see Definition 1.5C); on the
other hand, weak Hopf algebras correspond to the case when the weak quasi-tensor
functor F belong to a class more alike the one of usual tensor functors, though still
more general. Both such special situations are met in the examples arising from
quantum groups at roots of 1, which motivate their formalisation, as discussed in
next chapter.

2.1 Weak quasi-bialgebras

Following [CCP21], we introduce the main notion of the present section. In order
to keep our notation agile, we will treat Vec, the category of complex vector spaces
of finite dimension, as if it were strict with unit C, by just implying its associator
and unitors.

Definition A. Let (C,⊗, a) be a tensor category (see the paragraph at the end of
1.2) and F : C → Vec a faithful functor. A weak quasi-tensor structure on F is a
pair (F,G) of natural transformations given by

Fρ,σ : F(ρ)⊗F(σ)→ F(ρ⊗ σ) , Gρ,σ : F(ρ⊗ σ)→ F(ρ)⊗F(σ)

such that F ◦ G is the identity. We further require F to be compatible with units
(see the Remark below), and assume the normalisation condition F(1) = C.

Finally, in keeping with Definition 1.2D, given faithful functors Fi : C → Vec
with weak quasi-tensor structures (Fi, Gi) where i = 1, 2, an isomorphism u from
F1 to F2 will be called a tensor isomorphism if

(F2)ρ,σ ◦ (uρ ⊗ uσ) = uρ⊗σ ◦ (F1)ρ,σ and (uρ ⊗ uσ) ◦ (G1)ρ,σ = (G2)ρ,σ ◦ uρ⊗σ ;

we also require the condition u1 = 1.
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Remark. A weak quasi-tensor structure is obviously far weaker than a tensor one.
On the other hand we just gave the notion of compatibility with units for tensor
functors so to this regard Definition A needs to be made clear.

To this aim, we take the agreement that, in the first place, for F to be “com-
patible with units” means that Gρ,σFρ,σ is also identical whenever any of ρ, σ is a
unit, so that Gρ,σ and Fρ,σ are inverse to each other. Moreover (F , F ) is assumed
to make the diagram in Definition 1.2C commutative whenever any two of ρ, σ, τ
are units.

With this understanding settled, a weak quasi-tensor functor is as good as a
usual tensor one for what pertains to units, and the discussion and results of 1.2
apply as well.

We shall now proceed to construct out of F a few pieces of algebraic structure
that will add up to a certain discrete weak quasi-bialgebra, whose general notion
we introduce later on (Definition C).

The algebra We let A := End(F), the unital associative C-algebra of natural en-
domorphisms of F , and also define the generalised tensor powers A⊗n := End(F⊗n)
(see the forthcoming Definition B for a formalisation); namely, a generic element of
A⊗n is given by natural maps

ηρ1,...,ρn : F(ρ1)⊗ · · · ⊗ F(ρn)→ F(ρ1)⊗ · · · ⊗ F(ρn) .

The identities are just the identical natural endomorphism, which we will usually
just denote by 1 for every A⊗n, unless this causes ambiguity.

It is important to note that the A⊗n algebras are isomorphic to a direct product
of matrix algebras. More explicitly, any choice of a complete collection of mutually
non-equivalent simple objects I = {ι} yields an isomorphism

A⊗n →
∏

ι1,...,ιn∈I

n⊗
k=1

End
(
F(ιk)

)
,

obtained by considering the values ηι1,...,ιn of η in A⊗n on n-tuples of objects in I.

The coproduct Given η in A, ∆(η) is defined by ∆(η)ρ,σ := Gρ,σ ◦ ηρ⊗σ ◦ Fρ,σ
for each ρ, σ objects of C, namely the diagram

F(ρ)⊗F(σ)
∆(η)ρ,σ //

Fρ,σ
��

F(ρ)⊗F(σ)

F(ρ⊗ σ)
ηρ⊗σ // F(ρ⊗ σ)

Gρ,σ

OO
(1)

is commutative; ∆ is multiplicative, since ∆(ηθ)ρ,σ = Gρ,σ ◦ ηρ⊗σ ◦ θρ⊗σ ◦ Fρ,σ =
Gρ,σ ◦ ηρ⊗σ ◦Fρ,σ ◦Gρ,σ ◦ θρ⊗σ ◦Fρ,σ = (∆η)ρ,σ(∆θ)ρ,σ. In a similar fashion, we may
take the coproduct on some factor of a higher tensor power, defining e.g. the maps
(id⊗∆) and (∆⊗ id) from A⊗A to A⊗A⊗A.

We note that generally ∆ will be neither coassociative nor unital, whereas it
would be both had we considered a tensor functor. Instead, we have ∆(1)ρ,σ =
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Gρ,σFρ,σ, which is indeed idempotent since FG = 1. However, we still have a
(unique) counit ε, given by ε(η) = η1; like in the case of ∆, we may also take ε on
some factor of a tensor power, e.g. if θ is in A⊗2 then

(
(id⊗ε)θ

)
ρ

= θρ,1. This said,
the counit properties hold just as usual:

(ε⊗ id)
(
∆(η)

)
= η = (id⊗ε)

(
∆(η)

)
;

indeed, by compatibility of F with units we have

F(lρ) = G1,ρ , F(rρ) = Gρ,1 ∀ ρ , (2)

so for example ∆(η)1,ρ = G1,ρη1,ρF1,ρ = F(lρ)η1,ρF(l−1
ρ ) = ηρ, having used the

naturality of η for the last equality.

The associator Even if ∆ is not expected to be coassociative, (∆⊗ id) ◦∆ and
(id⊗∆)◦∆ are in fact “equivalent”. We define Φ in A⊗A⊗A by commutativity of

F(ρ)⊗F(σ)⊗F(τ)
Φρ,σ,τ //

Fρ,σ⊗F(τ)
��

F(ρ)⊗F(σ)⊗F(τ)

F(ρ⊗ σ)⊗F(τ)

Fρ⊗σ,τ
��

F(ρ)⊗F(σ ⊗ τ)

F(ρ)⊗Gσ,τ

OO

F
(
(ρ⊗ σ)⊗ τ

) F(aρ,σ,τ ) // F
(
ρ⊗ (σ ⊗ τ)

)Gρ,σ⊗τ

OO

(3)

for each ρ, σ, τ objects in C. It is easy to see that Φ is a partial isomorphism (see
see Appendix I) in

(
(∆⊗ id)(∆1), (id⊗∆)(∆1)

)
, and that

Φ(∆⊗ id)(∆a) = (id⊗∆)(∆a)Φ ∀ a ∈ A .

Furthermore, since (ρ⊗ lτ ) ◦ aρ,1,τ ◦ (r−1
ρ ⊗ τ) = ρ⊗ τ by coherence,

Φρ,1,τ =
(
F(ρ)⊗G1,τ

)
◦Gρ,1⊗τ ◦ F(aρ,σ,τ ) ◦ Fρ⊗1,τ ◦

(
Fρ,1 ⊗F(τ)

)
=
(
F(ρ)⊗F(lτ )

)
◦Gρ,1⊗τ ◦ F(aρ,σ,τ ) ◦ Fρ⊗1,τ ◦

(
F(r−1

ρ )⊗F(τ)
)

= Gρ,τ ◦ F(ρ⊗ lτ ) ◦ F(aρ,σ,τ ) ◦ F(r−1
ρ ⊗ τ) ◦ Fρ,τ = Gρ,τFρ,τ ,

having used (2) for the first equality and naturality of F and G for the second; so
(id⊗ε ⊗ id)Φ = ∆(1). Finally, the pentagon axiom for a results in the following
cocycle condition for Φ:

(id⊗Φ)(id⊗∆⊗ id)Φ(Φ⊗ id) = (id⊗ id⊗∆)Φ(Φ⊗ id⊗ id)Φ .

We may now axiomatise the triple (A,∆,Φ); prior to doing that, we clarify what
we mean by a discrete algebra.

Definition B. We say that a unital associative C-algebra A is discrete if it is
isomorphic to a direct product of matrix algebras, i.e. an algebra of the form

M =
∏
ι∈I

End(Vι) ,
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where each Vι is a complex vector space of finite dimension, with the indexing set
I possibly infinite. We also consider the algebras

M⊗n :=
∏

ι1,...,ιn

n⊗
k=1

End(Vik) .

For each n, M⊗n is endowed with the topology of “pointwise convergence”, which
is the weakest topology such that the projection map onto each

⊗n
k=1 End(Vik) is

continuous for all choice of i1, . . . , in; we observe that M⊗n is complete and the
usual tensor product M⊗n is dense in M⊗n, for all n. We transfer the induced
topology of M⊗n on A⊗n by isomorphism; it is easy to see that the topology on
A does not depend on which isomorphism we started with. For each n, we define
the generalised tensor power A⊗n as the completion of A⊗n, which is isomorphic to
M⊗n.

A coproduct on the discrete algebra A is allowed to take values in A⊗2; however,
any time we define a linear map having some A⊗n as its domain we may consider its
unique extension to A⊗n (the original map is automatically uniformly continuous).
For this reason we drop the underlined symbol ⊗, and just use ⊗.

Example. Let G be any discrete group. ThenM := Map(G,C), the set of complex
valued functions on G, may be viewed as a discrete algebra. Indeed M =

∏
g∈G C,

so this is the special case when all matrix are 1× 1.
Moreover the n-th generalised tensor power is just Map(In,C), and a coproduct

is obtained using the composition of G, e.g.:

(id⊗∆) : M ⊗M →M ⊗M ⊗M
(
(id⊗∆)f

)
(g, h, k) = f(g, hk) .

We note that in the case of End(F) introduced above the generalised tensor
powers were concretely realized as End(F⊗n), so we preferred to define ∆, ε and Φ
directly in these terms. We also point out that Definition B is just aimed to make
more rigorous the treatment of the concrete example presented in this subsection.
For a proper abstract treatment in the due generality, we refer to [VDa96].

Definition C. A discrete weak quasi-bialgebra is a triple (A,∆,Φ) where:

i) A is a discrete unital associative C-algebra;

ii) ∆ : A → A ⊗ A is linear and multiplicative, not necessarily unital; moreover
∆ admits a counit, i.e. a homomorphism of unital algebras ε : A → C such
that (ε⊗ id)(∆a) = a = (id⊗ε)(∆a) for all a in A.

iii) Φ is a partial isomorphism in A ⊗ A ⊗ A (see Appendix I), with domain
(∆⊗ id)(∆1) and codomain (id⊗∆)(∆1), such that

Φ(∆⊗ id)(∆a) = (id⊗∆)(∆a)Φ ∀ a ∈ A . (4)

Moreover Φ satisfies the normalisation condition (id⊗ε ⊗ id)Φ = ∆(1) and
the cocycle identity

(1⊗ Φ)(id⊗∆⊗ id)Φ(Φ⊗ 1) = (id⊗ id⊗∆)Φ(∆⊗ id⊗ id)Φ . (5)
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We need to take care of a couple of bits of notation. Firstly, when we write some
element η of the generalised tensor power A⊗n as η1 ⊗ · · · ⊗ ηn, we actually refer
to the value ηρ1,...,ρn for generic ρ1, . . . , ρn objects of C, while also implying a finite
summation symbol; one may think we are approximating η by regular tensor powers,
so that, given a finite-dimensional representation of A⊗n, we find an expression∑
η1 ⊗ · · · ⊗ ηn equalling η when both are evaluated on the representation we are

considering.
This notation is also convenient in order to express multiplication of some com-

ponents of an element η in A⊗n. For instance, let us consider η = η1 ⊗ η2 ⊗ η3 in
A⊗3; then, for each ρ, σ, (η3η1 ⊗ η2)ρ,σ is obtained by considering the value ηρ,σ,ρ
in End

(
F(ρ)

)
⊗ End

(
F(σ)

)
⊗ End

(
F(ρ)

)
and multiplying the first and the third

factor, putting the latter on the left.
Furthermore, we will sometimes make use of Sweedler’s notation for coproducts,

even though generally, due to non-coassociativity,

a(1)(1) ⊗ a(1)(2) ⊗ a(2) 6= a(1) ⊗ a(2)(1) ⊗ a(2)(2) ,

so expressions like a(1) ⊗ a(2) ⊗ a(3) make no sense.

2.2 Tannakian reconstruction

Given the discrete weak quasi bialgebra (A,∆,Φ), we may consider the category
Rep(A) of finite-dimensional A-modules; as usual, the morphisms are the linear
maps intertwining the action of A, which we also refer to as “A-linear”: given
A-modules V and W a C-linear map is in (V,W ) if

f(av) = af(v) ∀ v ∈ V, a ∈ A.

We define the tensor product V ⊗AW by the usual formula

a(v ⊗ w) := a(1)v ⊗ a(2)w ∀ a ∈ A , v ∈ V , w ∈W ;

however, as a vector space V ⊗AW is not the whole tensor product V ⊗W but it
is rather the subspace ∆(1)(V ⊗W ). Furthermore, given morphisms f in (V1, V2)
and g in (W1,W2), by A-linearity we have

f ⊗ g∆(a)V1,W1 = ∆(a)V2,W2f ⊗ g ,

where ∆(a)Vi,Wi denotes the action of ∆(a) as an element of A ⊗ A on Vi ⊗ Wi

(i = 1, 2); in particular f ⊗ g maps V1 ⊗AW1 into V2 ⊗AW2, so we can put

f ⊗A g := f ⊗ g , (1)

understanding the right-hand side as a map from V1 ⊗AW1 to V2 ⊗AW2. Turning
to the associator, we put

(aA)U,V,W (u⊗ v ⊗ w) := φu⊗ ϕv ⊗ ψw ,

where we wrote Φ = φ⊗ϕ⊗ψ (see the end of 2.1); the properties of Φ, listed in point
iii) of Definition 2.1C, ensure that aA is a legitimate associator for Rep(A). Finally,
the counit ε defines a unit of Rep(A), and points ii) and iii) in Definition 2.1C grant
that ε is a (traditional) unit, with the usual unitors of Vec. Summarizing,



24 General theory

Lemma. The semi-simple abelian category Rep(A), endowed with the tensor prod-
uct ⊗A and the associator aA, is a tensor category.

Remark. To see that aA is an associator, it is very appropriate to keep in mind the
categories P(A⊗A⊗A) and P

(
End(U ⊗ V ⊗W )

)
of appendix I, and the functor

S of formula I(3) relative to U ⊗ V ⊗W .
Indeed Φ is a partial isomorphism from (id⊗∆)(∆1) to (∆ ⊗ id)(∆1), so if

we apply S to its action on U ⊗ V ⊗W as an element of A ⊗ A ⊗ A we obtain an
isomorphism between the subspaces (id⊗∆)(∆1)(U⊗V ⊗W ) and (∆⊗id)(∆1)((U⊗
V ⊗W )); moreover (aA)U,V,W is A-linear by 2.1(4), and aA is natural in U, V,W
by definition of intertwiners. Let us look more closely at 2.1(5). This is to be
interpreted as an identity between partial isomorphisms from (∆ ⊗ id⊗ id)(∆ ⊗
id)(∆1) =: p to (id⊗ id⊗∆)(id⊗∆)(∆1) =: q. More in detail, Φ ⊗ 1 is a partial
isomorphism from

(
(∆⊗ id)(∆1)

)
⊗ 1 to

(
(id⊗∆)(∆1)

)
⊗ 1; now(

(∆⊗ id)(∆1)
)
⊗ 1 =

(
(∆⊗ id⊗ id)(∆⊗ id)

)
(1⊗ 1) ,

so we may consider the restriction of Φ⊗1 from p onto (Φ⊗1)p(Φ−1⊗1) = (id⊗∆⊗
id)(∆⊗ id)(∆1), by 2.1(4). Then, (id⊗∆⊗ id)Φ goes from (id⊗∆⊗ id)(∆⊗ id)(∆1)
to (id⊗∆⊗ id)(id⊗∆)(∆1), and we see like for Φ⊗ 1 that 1⊗Φ in turn goes from
(id⊗∆⊗ id)(id⊗∆)(∆1) to q. By similar considerations, we see that the right-hand
side of 2.1(5) is a composition of partial isomorphisms too, from p to q on the whole.

Now, if we consider the action of both sides on a generic U ⊗ V ⊗W ⊗X, and
apply the functor S relative to P

(
End(U ⊗ V ⊗W ⊗ X)

)
, it is clear that 2.1(5)

becomes exactly the pentagon axiom for aA.
We also remark that the defining formula (1) is nicely interpreted in terms of

P
(

End
(
(V1⊗W1)⊕(V2⊗W2)

))
: f⊗g is a morphism from ∆(a)V1,W1 to ∆(a)V2,W2 ,

so the understanding we established after the formula is nothing but the implication
at the right-hand side of the functor S relative to (V1 ⊗W1)⊕ (V2 ⊗W2).

We are finally ready to state the following basic Tannakian reconstruction result:

Theorem. Let (C,⊗, a) be a tensor category and F : C → Vec a faithful functor
with weak quasi-tensor structure (F,G); we also consider the discrete weak quasi-
bialgebra (A,∆,Φ) constructed as in 2.1.

Then there exists a tensor equivalence E : C → Rep(A) such that F = FA ◦ E,
where FA : Rep(A)→ Vec is the forgetful functor.

Conversely, let A′ be a discrete quasi bialgebra, and E ′ : C → Rep(A′) a tensor
equivalence such that F and FA′ ◦E ′ are tensor isomorphic (see the end of Definition
2.1A). Then A and A′ are isomorphic.

Proof. Consider the vector space F(ρ), with ρ an object of C; we upgrade it to an
A-module, which we call E(ρ), by introducing the action

ηv := ηρ(v) ∀ η ∈ A .

Then, given objects ρ, σ and a morphism f in (ρ, σ), the map F(f) is also A-linear,
by naturality. The assignment

f ∈ (ρ, σ) 7→ E(f) ∈
(
E(ρ), E(σ)

)
E(f) = F(f) ,
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together with the previous introduction of E(ρ), clearly defines a functor E : C →
Rep(A); it is also clear that F = FA ◦ E .

Then, since Fρ,σGρ,σ = F(ρ⊗σ) and Gρ,σFρ,σ = ∆(1)F(ρ)⊗F(σ), Fρ,σ and Gρ,σ
are actually partial isomorphisms inverse to each other between E(ρ) ⊗ E(σ) and
E(ρ⊗ σ). They are also A-linear by 2.1(1), and 2.1(3) is exactly the compatibility
with the associators (see the diagram in Definition 1.2C).

We are left to verify that E is an equivalence and prove the second assertion of the
Theorem. In order to proceed, we make a simple observation about representations
of discrete algebras.

Given vector spaces Vι, with ι in I possibly infinite, let us consider the direct
product and M =

∏
ι∈I End(Vι); we denote the projection map onto the ι-th com-

ponent by pι : M → End(Vι). Then it is easy to see that {pι}ι∈I is a complete
collection of mutually non-equivalent simple objects (we abbreviate to c.n.e.s. from
now to the end of the proof) for Rep(M).

The fact that E is an equivalence follows at once, because given a c.n.e.s. {ι}
for C, E sends each ι to the corresponding projection for A.

Now, consider A′ and E ′ as in the last assertion, but with F = FA ◦ E ′; then
{E(ι)} is a c.n.e.s. for Rep(A′), and E(ι) is F(ι) as a vector space, so, again by the
observation, A′ is isomorphic to A. Finally, suppose we have F ′ : C → Vec with a
weak quasi tensor structure (F ′, G′) and natural isomorphisms uρ : F(ρ) → F ′(ρ)
as in the end of Definition 2.1A; we apply the constructions of 2.1 for F ′ to get
(A′,∆′,Φ′). Then it is readily verified that

U : A→ A′ U(η)ρ = uρηρu
−1
ρ

is an isomorphisms from (A,∆,Φ) to (A′,∆′,Φ′).

2.3 More structure on (A, ∆, Φ)
We remain in the scenario of Theorem 2.2. If C carries any structure on top of its
monoidal datum (⊗, a), the additional data will transfer to Rep(A) thanks to the
tensor equivalence E , hence it will result in more structure on top of (A,∆,Φ) itself.

Antipodes Suppose that C is rigid, and consider right duals ρ∨ for each object ρ,
with duality pairs (bρ, dρ); we further assume dimF(ρ∨) = dimF(ρ) for all ρ object
of C.

Given a complete collection of mutually non-equivalent simple objects I = {ι},
we choose isomorphisms Uι : F(ι)′ → F(ι∨), denoting by ·′ the usual dual on Vec,
and turn F(ι)′ into an A-module by upgrading Uι to an intertwiner, for each ι.

This way F(ι) and F(ι)′ become left and right duals as A-modules; indeed so
are F(ι) and F(ι∨), since E : C → Rep(A) is a tensor equivalence, so we shall apply
Proposition 1.3. Therefore we have A-linear maps

bι : C→ F(ι)⊗A F(ι)′ and dι : F(ι)′ ⊗A F(ι)→ C , (1)

where ⊗A is the tensor product of Rep(A), forming a duality pair. We define an
antiautomorphism S : A→ A by

〈f, S(η)ιv〉 := 〈ηιf, v〉 ∀ι ∈ I , v ∈ F(ι) , f ∈ F(ι)′ , (2)
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where 〈·, ·〉 denotes the usual duality pairing in Vec. Now, we translate the properties
of the pairs (1) into properties of S.

To begin with, there exist unique α, β in A such that bι sends 1 into βι and
dι = Tr(αι·), where Tr is the usual trace on Vec, for all ι in I. Then, A-linearity of
dι means that, for all ι,

〈f, S(η(1))αη(2)v〉 = ε(η)〈f, αv〉 ∀ v ∈ F(ι) , f ∈ F(ι)′ ,

so S(η(1))αη(2) = ε(η)α, for all η in A. Similarly, each η in A acts on β just by
multiplication by ε(η), hence η(1)βS(η(2)) = ε(η)β for all η in A.

Finally, let us unravel the equations for the duality pairs (bι, dι). The first
duality identity states that the composition

F(ι)→ C⊗F(ι) bι⊗id−−−→
(
F(ι)⊗F(ι)′

)
⊗F(ι) · · · · · ·

Φ−→F(ι)⊗
(
F(ι)′ ⊗F(ι)

) id⊗dι−−−−→ F(ι)⊗ C→ F(ι)

equals F(ι); we put φ ⊗ ϕ ⊗ ψ := Φ and φ′ ⊗ ϕ′ ⊗ ψ′ := Φ−1 (see the end of 2.1).
By tracking a generic v in F(ι) through the composition and applying f in F(ι)′,
we get 〈f, φβS(ϕ)αψv〉 = 〈f, v〉. So we have φβS(ϕ)αψ = 1; treating the second
duality identity analogously, we get S(φ′)αϕ′βS(ψ′) = 1 as well.

Summarizing, we have defined a weak antipode on A.

Definition A. A weak antipode on a discrete weak quasi-bialgebra (A,∆,Φ) is a
triple (S, α, β) where S : A → A is an antiautomorphism and α, β are invertible
elements in A such that:

• S(η(1))αη(2) = ε(η)α, for all η in A;

• η(1)βS(η(2)) = ε(η)β for all η in A;

• φβS(ϕ)αψ = 1 and S(φ′)αϕ′βS(ψ′) = 1, having put φ ⊗ ϕ ⊗ ψ := Φ and
φ′ ⊗ ϕ′ ⊗ ψ′ := Φ−1 as above.

By uniqueness of the counit, we also have ε◦S = S. A discrete weak quasi-bialgebra
admitting a weak antipode is called a discrete weak quasi-Hopf algebra.

Remark A. A weak antipode (S, α, β) defines right duals on Rep(A) in the usual
way. Namely, given an A-module V , the dual vector space V ′ becomes an A-module
by

〈ηf, v〉 := 〈f, S(η)v〉 ∀ η ∈ A ;

moreover if we put bV (1) = β. and dV = Tr(α.·), where α. and β. denote the actions
of α and β on V , we obtain a duality pair. The corresponding right duality functor
·∨ is just the usual transpose in Vec on morphisms.

The verifications retrace the passages we went through to prove the properties
of (S, α, β); indeed a weak antipode for (A,∆,Φ) is exactly equivalent to A-actions
on all V ′ and duality pairs (bV , dV ) with left object V and right object V ′ for each
A-module V . From this fact and Proposition 1.3 the following simple result readily
follows.
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Proposition-Definition. Let (S, α, β) be a weak antipode for the weak quasi-
Hopf algebra (A,∆,Φ). For u in A invertible, we put Su := uS(·)u−1, αu := uα and
βu := βu−1; then (Su, αu, βu) is another weak antipode, and all weak antipodes for
(A,∆,Φ) are of this form.

If (S, 1, 1) is a weak antipode, S is called a strong antipode. So (A,∆,Φ) admits
a strong antipode if and only if all weak antipodes are of the form (Su, u, u−1); we
also see that in this case there is just one strong antipode.

Remark B. By (S, α, β) we may define left duals too. This time, given an A-module
V , its dual V ′ becomes an A-module by

〈ηf, v〉 := 〈f, S−1(η)v〉 ∀ η ∈ A ,

while b′V (1) = S−1(β) and d′V = Tr
(
S−1(α) ·

)
form the relative duality pair; again,

the corresponding left duality functor ∨· is the Vec transpose on morphisms. More-
over up to identifying the vector spaces V and V ′′, ∨· and ·∨ are inverse to each
other, so Remark 1.3B applies.

It is easily checked that the new monoidal structure on Rep(A) is given by
coproduct and associator

∆̌ = (S ⊗ S) ◦∆op ◦ S−1 , Φ̌ = (S ⊗ S ⊗ S)Φ321 ,

where ∆op(η) = ∆(η)21 (see appendix II). Moreover, we have a tensor structure on
the identity functor considered from

(
Rep(A),⊗A, aA

)
to(

Rep(A), ⊗̌A, ǎA
)
, which is equivalent to a twist f from (∆,Φ) to (∆̌, Φ̌) (see Lemma

2.5B). We may look at the situation as a weak form of anticomultiplicativity of S,
as

f
(
S(η)(1) ⊗ S(η)(2)

)
f−1 = S(η(2))⊗ S(η(1)) ∀ η ∈ A .

Finally the tensor structure on D2 may be expressed in terms of f :

D2 = f−1(S ⊗ S)(f21) , (3)

of course implying the due double duals of Vec, so that D2
V,W : V ∨∨ ⊗ W∨∨ →

(V ⊗W )∨∨.

R-matrix Suppose that C has a generalised coboundary c (Definition 1.4A); we
define R in A⊗A by

Gσ,ρF(cρ,σ)Fρ,σ =: Σ
(
F(ρ),F(σ)

)
Rρ,σ ∀ ρ, σ objects of C , (4)

where Σ(V,W ) : V ⊗W →W⊗V is the flip map. Now c is a generalised coboundary
on C exactly if Gσ,ρF(cρ,σ)Fρ,σ is one on Rep(A), since E is a tensor equivalence.
This is in turn equivalent to the fact that R is a twist from (∆,Φ) to (∆op,Φop),
where ∆op(η) = ∆(η)21, and Φop = Φ−1

321; the compatibility of c with units plus the
further condition c1,1 = 1 (see 1.4) result in the normalisation conditions (ε⊗id)R =
1 = (id⊗ε)R.

As anticipated at the beginning of present section 2, twists are to be treated
in 2.5, and introduced in Definition 2.5A. For the time being however, we provide
a working definition right away, also considering that another twist occurs, just as
naturally as here, in 2.4.
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Definition B. Consider (∆1,Φ1) and (∆2,Φ2) both making the discrete algebra A
into a weak quasi-bialgebra. Then a twist from (∆1,Φ1) to (∆2,Φ2) is a partially
invertible (see Appendix I) element U of A⊗A from ∆1(1) to ∆2(1) such that

U∆1(·) = ∆2(·)U (1⊗ U)(id⊗∆1)(U)Φ1 = Φ2(∆2 ⊗ id)(U)(U ⊗ 1) .

Coming back to the generalised coboundary c, we also note that is a braiding
exactly if R further satisfies

(id⊗∆)R = Φ−1
231R13Φ213R12Φ−1

123 , (∆⊗ id)R = Φ312R13Φ−1
132R23Φ123 . (5)

Summarizing the remarks about c, we have the following

Proposition. The assignment (4) defines a bijection between generalised cobound-
aries on C and twists from (∆,Φ) to (∆op,Φop); moreover, c is a braiding if and
only if R further satisfies (5).

We therefore establish the following terminology:

Definition C. An almost cocommutative structure on a discrete weak quasi-bialgebra
(A,∆,Φ) is a twist R from (∆,Φ) to (∆op,Φop); if R further satisfies (5), it is called
a quasi-triangular structure. Accordingly, the quadruple (A,∆,Φ, R) is referred to
as a discrete almost cocommutative, or quasi-triangular, weak quasi-bialgebra.

One could also say, as it is more usual, that given R in A ⊗ A, the natural
isomorphisms Σ

(
F(ρ),F(σ)

)
Rρ,σ amount to a braiding if and only if

R∆(a)R−1 = ∆op(a) ∀ a ∈ A . (6)

and (5) holds. From this properties one deduces the compatibility of R with both
associator and counit (see Definition 2.5A), by Example 1.4. We also observe that
if the twist R corresponds to the generalised coboundary c then R−1

21 corresponds
to its reverse.

We now assume to have a fixed braiding c, and the corresponding quasi-triangular
structure R.

Lemma. If A admits a (unique by the Proposition-Definition) strong antipode S
then the Drinfel’d isomorphism u and its inverse are related to R = r ⊗ t and
R−1 = r ⊗ t by

u = S(t)r , u−1 = S−1(t)r .

Proof. This is a straightforward generalisation of the corresponding proof for quasi-
triangular Hopf algebras (see for example Proposition 4.2.3 in [CP95]); indeed, even
though the defining property of a usual antipode, which is satisfied by our strong
antipodes, is applied, coassociativity of the coproduct is not.

Here of course we implied the double dual in Vec as in (3), so that u in an
invertible element of A with

S2(a) = uau−1 ∀ a ∈ A .
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With the expression of D2 in hand, we observe that the identity c2 = c2 (see Remark
1.4C) may be expressed as it follows

R21R∆(u) = ∆(u)R21R = f−1(S ⊗ S)(f21)f(u⊗ u) ,

where we added the first equality by just using (6). Let us now turn to the ribbon
structures of c.

Definition D. Let (A,∆,Φ) be a discrete quasi-Hopf algebra, with a weak antipode
(S, α, β). Given a quasi-triangular structure R, a ribbon element for R is a central
invertible element v in A such that

R21R = ∆(v−1)v ⊗ v , (7)

S(v) = v and ε(v) = 1.

Ribbon elements of A are nothing but ribbon structures of C seen as elements
of A. Indeed, by definition of A, the algebra of natural isomorphisms from idC to
itself embeds into A as its centre; besides, (7) is the fact that v is balancing (see
Definition 1.4B) for c2 = c2; the other two conditions are respectively compatibility
with duality and the normalisation condition v1 = 1.

We point out that ε(v) = 1 can actually be obtained applying ε ⊗ id to both
sides of (7), since (ε ⊗ id)R = 1 = (id⊗ε)R. Furthermore, in the situation of the
Lemma, we have v2 = uS(u); this is achieved by applying (S ⊗ id) to both sides of
(7) and then multiplying, making use of the strong antipode property of S.

Remark C. Let us look back to the bijection of the second point of Theorem 1.4:
balancing structures w correspond to pivotal ones ω, which we can now see as
invertible elements of A such that

ωaω−1 = S2(a) , ∆(ω) = f−1(S ⊗ S)(f21)ω ⊗ ω .

Now, if we take w to be a ribbon element v then ω also verifies

S(ω) = ω−1 , rω−1s = sωr , (8)

where R =: r ⊗ s; conversely, if a pivotal element ω satisfies the identities (8) then
v = uω−1 is ribbon.

This remark is an easy adaptation of [Pan97], where the results are proved in
the case of a finite dimensional quasi-triangular Hopf algebra. The author defines a
charmed element to be an invertible ω such that ωaω−1 = S2(a) holds for all a in
the algebra and the further identities (8) are verified; he also reexpresses the second
of those as S(u) = ω−1uω−1, provided that the first holds.

He then proves that v is ribbon if and only if ω = uv−1 is charmed and group-
like. Indeed the pivotal condition ∆(ω) = f−1(S ⊗ S)(f21)ω ⊗ ω reduces to just “ω
group-like” when f = 1, as it is for a Hopf algebra.

To sum up, we have the following specialisation of the second point of Theorem
1.4: v is ribbon if and only if ω = uv−1 is charmed and pivotal.
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2.4 Unitary weak quasi-bialgebras

We now enrich the constructions of 2.1 to treat the case of a weak quasi-tensor func-
tor F : C → Hilb. Definition 2.1A still applies by just replacing “Vec” with “Hilb”
and “tensor category” with “C∗ tensor category”; we also expand the normalisation
condition F(1) = C implying the trivial scalar product on C.

The algebra We equip the discrete algebra A = End(F) and its generalised
tensor powers with the following involutions:

(η†)ρ1,...,ρn := η∗ρ1,...,ρn ∀ ρ1, . . . , ρn objects of C , (1)

where the ·∗ in the right-hand side is the Hilbert adjoint relative to the ⊗ scalar
product on F(ρ1) ⊗ · · · ⊗ F(ρn); antilinearity, antimultiplicativity and ·†† = id are
evident. Any choice of a complete collection of mutually non-equivalent simple
objects I = {ι} still yields an isomorphism

A⊗n →
∏

ι1,...,ιn∈I

n⊗
k=1

End
(
F(ιk)

)
as in 2.1. However now the F(ι) are Hilbert spaces, so Definition 2.1B needs to be
adapted.

Definition A. We say that a unital associative C-algebra A with an involution ·†
is a discrete unitary algebra if it is ∗-isomorphic to an algebra of the form M =∏
ι∈I End(Vι), where each Vι is a Hilbert space of finite dimension. The algebras

M⊗n :=
∏

ι1,...,ιn

n⊗
k=1

End(Vik)

are equipped with the direct product of the tensor products of the involutions
relative to the scalar products.

The generalised tensor powers are then introduced just as in Definition 2.1B; we
will also drop the underlined symbol ⊗ for the same reasons.

The coproduct and the associator Given the original weak quasi-tensor struc-
ture (F,G), we readily see that (G∗, F ∗) is a weak quasi-tensor structure as well,
to which we may apply the constructions of 2.1. This way we obtain a new pair
(∆̃, Φ̃), and by the definitions we have

∆̃ = ∆(·†)† , Φ̃ = (Φ†)−1 .

Moreover Ω := F ∗F is a twist from (∆,Φ) to (∆̃, Φ̃), with partial inverse Ω−1 =
GG∗, so Ω and Ω−1 are both positive. We recall that twists will be introduced in
next subsection, more precisely in Definition 2.5A; the fact that Ω twists (∆,Φ) to
(∆̃, Φ̃) is a particular case of Remark 2.5.

To sum up, we have defined a discrete unitary weak quasi-bialgebra.

Definition B. A discrete unitary weak quasi-bialgebra is a quintuple
(A, ·†,∆,Φ,Ω) such that:
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• (A, ·†) is a discrete unitary algebra;

• (A,∆,Φ) is a discrete weak quasi-bialgebra;

• Ω is a twist from (∆,Φ) to (∆̃, Φ̃), where ∆̃ = ∆(·†)† and Φ̃ = (Φ†)−1, positive
as an element of A⊗A.

By uniqueness of the counit, we also have ε(a†) = ε(a) for all a in A; indeed,
putting ε̃(a) := ε(a†), we have

(id⊗ε̃)∆(a) = a(1)ε(a
†
(2)) = (id⊗ε)∆(a†)† = (id⊗ε)

(
Ω∆(a)Ω−1) = a ,

since (id⊗ε)Ω = 1; (ε̃⊗ id)∆(a) = a is verified analogously, so ε̃ is a counit.
Remark. The condition ∆̃ = Ω∆(·)Ω−1, may be expanded as

(a†)(1) ⊗ (a†)(2) = Ω−1(a†(1) ⊗ a
†
(2))Ω ∀ a ∈ A , (2)

so ∆ is a ∗-homomorphism if Ω = ∆(1); then we would also have Φ† = Φ−1. An
apparently weaker situation occurs when Ω is a trivial twist (see Definition 2.5A),
namely Ω = ∆(1)†∆(1) and Ω−1 = ∆(1)∆(1)†; this is the case exactly if G and F ∗
are isometries, i.e. G∗G and FF ∗ are both identical.

However, it is shown in section 2 of [CCP21] that this is in turn equivalent to
the apparently stronger condition F ∗ = G, i.e. Ω = F ∗F = GF = ∆(1), so nothing
changed.

Tannakian reconstruction

We proceed to adapt Lemma 2.2 and Theorem 2.2 to the present scenario, and
consider the category Rep+(A) of C∗ A-modules; the generic object is a finite-
dimensional A-module V which is also equipped with a complex valued A-invariant
scalar product (·, ·)V , namely

(v, aw)V = (a†v, w)V ∀ v, w ∈ V .

In other words the objects of Rep+(A) are the ∗-representations of A on finite-
dimensional Hilbert spaces. Given C∗ A-modules V and W , if a map f : V →W is
A-linear so is the Hilbert adjoint f∗ : W → V ; with this conjugation, Rep+(A) is
clearly a C∗ tensor category.

It is also clear that if we forget the scalar products on the C∗ A-modules, we
obtain a forgetful functor O from Rep+(A) to Rep(A), identical on morphisms; we
require the tensor product and associator on Rep+(A) to make the identity maps of
each O(V )⊗A O(W ) into a tensor structure. This means that the tensor products
are defined just like in 2.2 as A-modules, and the associator is given by the same
maps; hence we still denote them by ⊗A and aA respectively.

We are left to define the scalar products on the tensor products. To this
aim, given C∗ A-modules V and W , we consider the categories P(A ⊗ A, ·†) and
P
(

End(V ⊗W ), ·†
)
(see appendix I), where the latter ·† comes from the usual ⊗

scalar product, which we denote by (·, ·)p. By considering the action of A ⊗ A on
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V ⊗W we obtain a ∗-functor from P(A⊗A, ·†) to P
(

End(V ⊗W ), ·†
)
, since (·, ·)V

and (·, ·)W are A-invariant.
We endow V ⊗AW with a scalar product by enriching the object ∆(1) of P(A)

to the object
(
∆(1),Ω

)
of P(A, ·†); we then apply the S functor (defined in formula

I(3)) to their actions on the full tensor product V ⊗ W . Indeed, (·, ·)V⊗AW is
A-invariant: for all x, y in V ⊗AW ,(

x,∆(a)y
)
V⊗AW =

(
x,Ω∆(a)y

)
p

=
(
∆(a)†Ωx, y

)
p

=(
Ω∆(a†)x, y

)
p

=
(
∆(a†)x,Ωy

)
p

=
(
∆(a†)x, y

)
V⊗AW ,

(3)

where we used (2) and the A-invariance of (·, ·)V and (·, ·)W ; so V ⊗A W is a C∗
A-module as well.

Lemma. The C∗ semi-simple abelian category Rep+(A), endowed with the tensor
product ⊗A and the associator aA, is a C∗ tensor category.

Proof. We need to verify that ⊗A is a ∗-functor and that the associator maps are
unitary. With regard to the fist issue, let us consider morphisms f in (V1, V2), g in
(W1,W2) and denote by ΩVi,Wi the action of Ω as an element of A⊗A on Vi ⊗Wi

(i = 1, 2); then
(f ⊗ g)∗ = Ω−1

V1,W1
f∗ ⊗ g∗ΩV2,W2 = f∗ ⊗ g∗ ,

by A-linearity of f∗ and g∗ (see formula 2.2(1) and the end of Remark 2.2).
Turning to the associator, we consider the category P(A ⊗ A ⊗ A, ·†); Φ is a

partial isomorphism from
(
(∆ ⊗ id)(∆1), (Ω ⊗ 1)(∆ ⊗ id)Ω

)
to
(
(id⊗∆)(∆1), (1 ⊗

Ω)(id⊗∆)Ω
)
, so

Φ∗ = (∆⊗ id)Ω−1(Ω−1 ⊗ 1)Φ†(1⊗ Ω)(id⊗∆)Ω =
(Ω−1 ⊗ 1)(∆̃⊗ id)Ω−1Φ†(id⊗∆̃)Ω(1⊗ Ω) =(

(1⊗ Ω)(id⊗∆)ΩΦ(∆⊗ id)Ω−1(Ω−1 ⊗ 1)
)† =

(
(Φ†)−1)† = Φ−1 ,

where we used (2) in the first passage, self-adjointness of Ω in the second and
compatibility of the twist Ω with associators in the third. The desired unitarity is
obtained by letting both sides act on a generic full tensor product U ⊗ V ⊗W and
then applying the ∗-functor S relative to U ⊗V ⊗W with the ⊗ scalar product.

Theorem. Let (C, ·∗,⊗, a) be a C∗ tensor category and F : C → Hilb a faithful ∗-
functor with weak quasi-tensor structure (F,G); we also consider the discrete unitary
weak quasi-bialgebra (A, ·†,∆,Φ,Ω) constructed above.

Then there exists an equivalence of C∗ tensor categories E : C → Rep+(A) such
that F = FA ◦ E, where FA : Rep+(A)→ Hilb is the forgetful functor.

Conversely, let A′ be a discrete unitary weak quasi-bialgebra and E ′ : C →
Rep+(A′) an equivalence of C∗ tensor categories such that F and FA′ ◦ E ′ are
unitarily tensor isomorphic (see Definitions 1.5B and 2.1A). Then A and A′ are
isomorphic.

Proof. We upgrade each Hilbert space F(ρ) to an A-module as in the proof of
Theorem 2.2; the scalar product on F(ρ) is A-invariant by the defining formula (1),
hence it makes F(ρ) into a C∗ A-module E(ρ).
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Then, again, by defining E to coincide with F on morphisms we obtain a functor
with F = FA ◦ E ; and E is actually a ∗-functor because F is.

The tensor structure E of E is defined as in the proof of Theorem 2.2; but
now each map Eρ,σ is unitary, since Ω−1F ∗ = G by definition of Ω. However the
verification that E is an equivalence of C∗ categories proceeds otherwise analogously,
replacing the theory of tensor categories with that of C∗ tensor categories.

We content ourselves with making explicit the properties of E for the sake of
clarity: the tensor structure of E is unitary; furthermore there exists a “quasi-
inverse” Ẽ : Rep+(A) → C which is also a ∗-functor with unitary tensor structure,
such that idC and ẼE are unitarily monoidally isomorphic (see Definitions 1.2D and
1.5B) and so are idRep+(A) and EẼ .

The proof of the final assertion also proceeds analogously to the case of Theorem
2.2; the only new feature is that since every isomorphism uρ is unitary, U is a ∗-
isomorphism too.

2.5 Twists

Throughout present subsection C will be a C∗ tensor category. Rather than consid-
ering weak quasi-tensor ∗-functors from C to Hilb one at a time, we will be mainly
concerned with the relation between their isomorphism classes. We recall that the
Grothendieck ring of C is the associative ring Gr(C) of isomorphism classes of objects
of C;

[ρ] + [σ] = [ρ+ σ] , [ρ] · [σ] = [ρ⊗ σ] ,

where [ρ] denotes the isomorphism class of the object ρ.
The following simple proposition provides a complete linear invariant; here and

in the sequel “linear” is just a shortcut for “not necessarily unitary” (remember that
we generally assume all functors to be C-linear).

Proposition A. Given a functor F : C → Vec, we introduce its dimension function

d : Gr(C)→ N d([ρ]) = dim
(
F(ρ)

)
.

Then F is faithful if and only if d vanishes nowhere.
Furthermore, consider weak quasi-tensor ∗-functors F1,F2 : C → Hilb and their

dimension functions d1, d2; then F1 and F2 are linearly isomorphic if and only if
d1 = d2.

Proof. By semi-simplicity, f is faithful exactly if F(ρ) is not the null vector space
for all ρ simple object of C, which is in turn equivalent to d vanishing nowhere.

Moving on, suppose d1 = d2, and consider a complete collection of mutually
non-equivalent simple objects I = {ι}. Since dim

(
F1(ι)

)
= dim

(
F2(ι)

)
, we may

choose a linear isomorphism ηι : F1(ι) → F2(ι), for each ι; the unique natural
transformation η taking the values ηι on I is then a linear isomorphism η from F1
to F2. The other direction is trivial.

Now, let us denote by V the forgetful functor from Hilb to Vec. Two weak quasi-
tensor ∗-functors F1,F2 may well have the same dimension function, or even satisfy
V ◦ F1 = V ◦ F2, without being unitarily isomorphic. More explicitly, a given a
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∗-functor F , may be modified by perturbing the scalar product (·, ·) on the generic
F(ρ) by means of any natural transformation t, positive and invertible: we define
new scalar products on each F(ρ) by

(v, w)t := (v, tρw) ∀ v, w ∈ F(ρ) ;

we also need t1 = 1 to grant the normalisation condition (see the beginning of 2.4).
If this is the case, the above modification defines a new weak quasi-tensor ∗-functor
Ft, coinciding with F on morphisms; Ft is still a ∗-functor by naturality of t. This
is actually all that can happen up to unitary isomorphism.

Proposition B. Let F : C → Hilb be a weak quasi-tensor ∗-functor, with dimension
function d and consider the discrete ∗-algebra (A, ·†) corresponding to F (see the
beginning of 2.4). We introduce the following equivalence relation on the set A+

1 :=
{t ∈ A positive definite with ε(t) = 1}:

t1 ∼ t2 if t1 = u†t2u

for some invertible u in A with ε(u) = 1. Then the assignment t 7→ Ft defines a
bijection from the quotient A+

1 /∼ to the set of unitary isomorphism classes of weak
quasi-tensor ∗-functors from C to Hilb with dimension function d.

Proof. To begin with, we note that t1 = u†t2u amounts exactly to “u is a unitary
isomorphism from Ft1 to Ft2”; and any such isomorphism may be assumed to satisfy
ε(u) = 1 by rescaling if needed. So all we have to prove is that any weak quasi-
tensor ∗-functor G : C → Hilb with dimension function d is unitarily isomorphic to
some Ft.

By Proposition A, we have a linear isomorphism v from F to G (we may take
ε(v) = 1), and we may consider the unique ∗-functor F̃ such that V◦F̃ = V◦F which
also upgrades v to a unitary isomorphism: we just pull back the scalar products on
the generic object G(ρ) by v.

Now, let us say that F(ρ) is the vector space V
(
F(ρ)

)
with scalar product (·, ·);

the scalar product relative to F̃(ρ) is of the form (·, tρ·) for a unique positive definite
tρ in End

(
F(ρ)

)
, and t1 = 1 by normalisation of the functors involved. Moreover

the tρs are natural in ρ by the fact that F̃ is a ∗-functor. So they define t in A+
1

and Ft = F̃ which is unitarily isomorphic to G.

Lemma A. Let F : C → Hilb be a weak quasi-tensor ∗-functor, and consider the
discrete unitary weak quasi-bialgebra (A, ·†,∆,Φ,Ω) constructed as in 2.4. Then the
discrete unitary weak quasi-bialgebra corresponding to Ft is (A, ·†t ,∆,Φ,Ωt), with
·†t = t−1 ·† t and Ωt = (t−1 ⊗ t−1)Ω∆(t).

Furthermore, if we send the generic C∗ A-module into the vector space with the
same A-action, but with scalar product perturbed by the action of t, we obtain a
tensor ∗-isomorphism

Et : Rep+(A, ·†,∆,Φ,Ω)→ Rep+(A, ·†t ,∆,Φ,Ωt)

identical on morphisms, with tensor structure given by the identical maps.
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Finally, we have the commutative diagram

Rep+(A, ·†,∆,Φ,Ω)

(F
A,·†,∆,Φ,Ω)t ((

Et // Rep+(A, ·†t ,∆,Φ,Ωt)

F
A,·†t ,∆,Φ,Ωtvv

Hilb

,

where FA,·†,∆,Φ,Ω and FA,·†t ,∆,Φ,Ωt denote the suitable forgetful functors. The equal-
ity holds also with respect to the weak quasi-tensor structures involved.

Proof. The first assertion is easily verified: the coproduct and the associator depend
only on (F,G), whereas ·†t and Ωt have to be computed using the Hilbert adjoints
relative to the perturbed scalar products, yielding the stated formulas.

Moving on, by naturality of t,

Et(f)∗ = t−1
V f∗tW = f∗ = Et(f∗) ∀ f ∈ (V,W ) ,

where tV and tW are the actions of t on V andW , so Et is a ∗-functor. Furthermore,
the scalar products on Et(V )⊗ Et(W ) and Et(V ⊗W ) coincide:

(t⊗ t)Ωt = (t−1 ⊗ t−1)(t⊗ t)Ω∆(t) = Ω∆(t) ,

hence the identical maps are a legitimate tensor structure on Et.
The final assertion is now self-evident; it may be taken as an example of the

situation of Theorem 2.4.

Proposition B refines Proposition A by considering unitary isomorphisms rather
than just linear ones, but we are still overlooking the weak quasi-tensor structures.
The following refining step is achieved by a modification analogous to “F → Ft”,
where the role of t will be played by certain elements in A⊗A called “twists”, the
most relevant algebraic objects in the thesis. In order to introduce them, we briefly
divert from the refining progression just outlined.

The following definition relies on the basic notion of partial isomorphisms in an
associative algebra, already encountered in quite a few cases. They are separately
treated in Appendix I, where their immediate definition is followed by a simple
discussion about categories of idempotents of associative algebras.

Definition A. Let (A,∆i,Φi) be a discrete weak quasi-bialgebra, for i = 1, 2. A
twist of A from (∆1,Φ1) to (∆2,Φ2) is a partially invertible element U of A ⊗ A
with (ε⊗ id)U = 1 = (id⊗ε)U and the following further properties:

• U−1U = ∆1(1), UU−1 = ∆2(1);

• U∆1(a) = ∆2(a)U for all a in A;

• (1⊗ U)(id⊗∆1)(U)Φ1 = Φ2(∆2 ⊗ id)(U)(U ⊗ 1).

If U = ∆2(1)∆1(1) and U−1 = ∆1(1)∆2(1) then U is called a trivial twist. In this
case the second and the third point simplify to:

• ∆2(1)∆1(a) = ∆2(a)∆1(1) for all a in A;
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• (id⊗∆2)(∆21)Φ1 = Φ2(∆1 ⊗ id)(∆11).

It is clear that the twists of a discrete algebra form a groupoid; however, if we
are given a certain discrete weak quasi-bialgebra (A,∆,Φ) it is most immediate to
focus on twists from the known pair (∆,Φ). To this regard we observe that if U is a
partially invertible element of A⊗A with domain ∆(1) and (ε⊗id)U = 1 = (id⊗ε)U ,
then if we put

∆U = U∆(·)U−1 , ΦU = (1⊗ U)(id⊗∆)(U)Φ(∆⊗ id)(U−1)(U−1 ⊗ 1)

the new triple (A,∆U ,ΦU ) is still a discrete weak quasi-bialgebra and U is a twist
from (∆,Φ) to (∆U ,ΦU ).

As an example, if u is an invertible in A with ε(u) = 1 then δ(u) := (u⊗u)∆(u−1)
is a twist from (∆,Φ): its codomain is (u⊗ u)∆(1)(u−1 ⊗ u−1), the partial inverse
is ∆(u)(u−1 ⊗ u−1) and

(ε⊗ id)δ(u) = (id⊗ε)δ(u) = ε(u)uu−1 = 1 .

Definition B. Let (A,∆,Φ) be a discrete weak quasi-bialgebra. A twist of A from
(∆,Φ) of the form δ(u) is called a coboundary.

Two twists U1, U2 of A from (∆,Φ) are said to be cohomologous if

U2 = (u⊗ u)U1∆(u−1)

for some invertible u in A with ε(u) = 1.
Equivalently, U2 = (u ⊗ u)∆U1(u−1)U1, so U2 is cohomologous to U1 exactly

if it can be obtained by multiplying U1 by a coboundary on the left side in the
groupoid of twists. We may also write U2 = (u ⊗ u)U1(u−1 ⊗ u−1)(u ⊗ u)∆(u−1),
and (u⊗ u)U1(u−1 ⊗ u−1) is checked to be a twist from (∆δ(u),Φδ(u)).

Remark. Let F : C → Vec be a faithful functor, and (F,G), (F ′, G′) two weak
quasi-tensor structures on it; we write (∆,Φ) and (∆′,Φ′) for the coproduct and
the associator that they define on End(F). We note that U := G′F is a twist from
(∆,Φ) to (∆′,Φ′), with inverse GF ′; so we also have (F ′, G′) = (FU−1, UG).

We are ready to set about refining Proposition B, as anticipated. For the rest
of the subsection F : C → Hilb will be a faithful ∗-functor with weak quasi-tensor
structure (F,G), and d its dimension function; the relative discrete unitary weak
quasi-bialgebra will be denoted by (A, ·†,∆,Φ,Ω).

T (A,∆,Φ) will be the set of twists of A from (∆,Φ) and A+
1 will be as in

Proposition B. For all twist U from (∆,Φ), we write (FU , GU ) := (FU−1, UG),
which clearly is still a weak quasi-tensor structure on F .

Proposition C. Consider the set A+
1 × T (A,∆,Φ) and the following equivalence

relation on it: (t1, U1) ∼ (t2, U2) if there is an invertible u in A with ε(u) = 1 such
that

t1 = u†t2u and U2 = (u⊗ u)U1∆(u−1) .

Then the assignment (t, U) 7→
(
Ft, (FU , GU )

)
defines a bijection from the quotient(

A+
1 × T (A,∆,Φ)

)
/ ∼ to the set of unitary tensor isomorphism classes of weak

quasi-tensor ∗-functors from C to Hilb with dimension function d.
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Proof. It retraces for the most part the proof of Proposition B. The only new fact to
be shown is that, for all t in A+

1 , any weak quasi-tensor structure (H, I) on Ft is of
the form (FU , GU ) for some twist U from (∆,Φ). This follows form the Remark.

Lemma B. For every twist U of A from (∆,Φ), the discrete unitary weak quasi-
bialgebra corresponding to F with tensor structure (FU , GU ) is
(A, ·†,∆U ,ΦU ,ΩU ), with ΩU = (U †)−1ΩU−1.

Furthermore the action of U−1 on the generic F(ρ)⊗F(σ) is a tensor structure
on the identical functor from Rep+(A, ·†,∆,Φ,Ω) to
Rep+(A, ·†,∆U ,ΦU ,ΩU ), which thus becomes a tensor ∗-isomorphism

EU : Rep+(A, ·†,∆,Φ,Ω)→ Rep+(A, ·†,∆U ,ΦU ,ΩU ) .

Finally, with respect to the weak quasi-tensor structures involved, we have the
commutative diagram

Rep+(A, ·†,∆,Φ,Ω)

(F
A,·†,∆,Φ,Ω)U ((

EU // Rep+(A, ·†,∆U ,ΦU ,ΩU )

F
A,·†,∆U ,ΦU ,ΩUvv

Hilb

,

where FA,·†,∆,Φ,Ω and FA,·†,∆U ,ΦU ,ΩU denote the suitable forgetful functors; the sub-
script U on the former specifies that its weak quasi-tensor structure is twisted by U ,
whereas the latter is taken with its standard weak quasi-tensor structure.

Proof. As in the case of Lemma A, the first assertion in verified going through the
construction of subsections 2.1 and 2.4; twisting the weak quasi-tensor structure
does not affect the involution ·†.

Moving on, U−1 is a partial isomorphism from ∆U (1) to ∆(1), hence, implying
the functor S of formula I(3) relative to V ⊗W on the action of U−1 on V ⊗W , it
defines an isomorphism (EU )V,W : V ⊗∆U

W → V ⊗∆ W , for all A-modules V,W .
Now, the second point of Definition A for U is exactly A-linearity of all (EU )V,W ; the
third one is compatibility of EU with the associators (see the diagram in Definition
1.2C); finally the normalisation condition (ε⊗ id)U = 1 = (id⊗ε)U is compatibility
of EU with units.

As in the case of Lemma A, the last assertion is self-evident, and it provides an
example of the situation of Theorem 2.4.

The modifications F → Ft and (F,G) → (FU , GU ), to which we will refer
simply as “twistings” by t and U respectively, are obviously independent. Hence the
corresponding twistings of the relative discrete unitary weak quasi-tensor bialgebras
commute with each other; in particular (Ωt)U = (ΩU )t (the analogous identities for
·† and (∆,Φ) are obvious since both are affected by just one of the twistings).

This could also be easily checked just in terms of unitary discrete weak quasi-
bialgebras. In fact, even though we preferred to focus on discrete algebras in view
of their relevance in Tannakian reconstruction, all the structure introduced makes
just as much sense in terms of usual algebras and may be treated without reference
to category theory; for instance, a unitary weak quasi-bialgebra (A, ·†,∆,Φ,Ω) may
be twisted to new ones using the quintuples in Lemmas A and B as definitions.
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Coming back to the commutativity of the two twistings, Definitions A and B
could have been applied to the simpler case of a weak quasi-tensor functor from a
tensor category, just like we made no reference to weak quasi-tensor structures in
Proposition B; in its place we would have proved

Proposition D. Let F : C → Vec a faithful functor with weak quasi-tensor structure
(F,G), say with dimension function d, and consider the relative discrete weak quasi-
bialgebra (A,∆,Φ). We denote by T (A,∆,Φ) the set of twists of A from (∆,Φ) and
the cohomologousness relation by ∼.

Then the assignment U 7→
(
F , (FU , GU )

)
defines a bijection from the quotient

T (A,∆,Φ)/∼ to the set of tensor isomorphism classes of weak quasi-tensor functors
from C to Vec with dimension function d.

However, we would have then still come to Proposition C passing from linear to
∗ weak quasi-tensor functors.

2.6 More structure on (A, †, ∆, Φ, Ω)
Let us return to the scenario of Theorem 2.4. Even though we may just apply the
arguments of 2.3 to obtain weak antipodes and/or quasi-triangular structures on
(A,∆,Φ), some adaptations are in order in view of the further structure given by
(·†,Ω). We will come to compatibility conditions suitable for the whole quintuple
(A, ·†,∆,Φ,Ω).

Antipodes We refer to the homonymous paragraph in 2.3. The condition on
dimensions dimF(ρ∨) = dimF(ρ) is still needed, but here we replace F(ι)′ with
the conjugate vector space F(ι), inheriting the scalar product of F(ι), and we take
the isomorphisms Uι to be unitary, so that the scalar product of F(ι) is A-linear.

Then we translate the defining formula 2.3(2) to conjugate spaces using the
usual isomorphisms between dual and conjugate Hilbert spaces. So, denoting by
φ : A → End(V ) the homomorphism for a generic A-module V and by φc the one
for the right dual V , we have

φc(η) = φ(Sη)∗ ; (1)

given a C-linear map T , T is the same map between the conjugate vector spaces.
Now, since φ and φc are both ∗-homomorphisms,

φ
(
S(η†)

)
= φc(η†)∗ = φc(η) = φ(Sη)∗ = φ

(
(Sη)†

)
,

so the weak antipode (S, α, β) has the additional property S(·†) = (S·)†.
Before dealing with compatibility with Ω, we need the following more general

fact about twists and weak antipodes.

Proposition A. Let (A,∆,Φ) a discrete weak quasi-Hopf algebra and (S, α, β) a
weak antipode. Given a twist U from (∆,Φ), the twisted algebra (A,∆U ,ΦU ) admits
the weak antipode (S, αU , βU ), where

αU = S(u)αv and βU = uβS(v) ,

having put U = u⊗ v and U−1 = u⊗ v (see the end of 2.1).
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Proof. This can be checked directly. Alternatively one can take into account the
first assertion of Lemma 2.5B (dropping the unitary structure) and apply the con-
struction of 2.3 to compute an antipode for the twisted algebra.

Coming back to our quintuple (A, ·†,∆,Φ,Ω) we note that the the weak quasi-
bialgebra (A, ∆̃, Φ̃) (introduced just before Definition 2.4B) admits the weak an-
tipode (S̃, α̃, β̃) with

S̃ = S−1(·†)† , α̃ = S−1(β)† , β̃ = S−1(α)† ;

this is obtained applying † and S−1 to the three points of Definition 2.3A. On the
other hand we have the weak antipode (S, αΩ, βΩ) yielded by Proposition A; so
Proposition-Definition 2.3 provides us with a unique invertible ω in A such that

S = ωS−1(·†)†ω−1 , αΩ = ωS−1(β)† , βΩ = S−1(α)†ω−1 .

R-matrix Like in the case of weak antipodes, we preliminarily state a basic fact
about twists in presence of almost cocommutative structures (see Definition 2.3C).

Proposition-Definition. Let (A,∆i,Φi, Ri) be a discrete almost cocommutative
weak quasi-bialgebra, for i = 1, 2.

Then, for all twist U from (∆1,Φ1) to (∆2,Φ2), (R1)U := U21R1U
−1 = R2 is

an almost cocommutative structure on (A2,∆2,Φ2), quasi-triangular exactly if so
is R1 for (A1,∆1,Φ1). If (R1)U = R2 holds, U is said to be a cocommutative twist
from (∆1,Φ1, R1) to (∆2,Φ2, R2).

If U is a cocommutative twist from (∆1,Φ1, R1) to (∆2,Φ2, R2) and there is
another cocommutative twist V from (∆2,Φ2, R2) to (∆3,Φ3, R3) then V U is a
cocommutative twist from (∆1,Φ1, R1) to (∆3,Φ3, R3).

Returning to our discrete unitary quasi-bialgebra (A, ·†,∆,Φ,Ω), if the triple
(A,∆,Φ) possesses an almost cocommutative structure, we readily obtain one for
(A, ∆̃, Φ̃), namely R̃ = (R†)−1, and if R is quasi-triangular, so is R̃. The comparison
between R̃ and RΩ, yields the following useful result.

Lemma. In, the scenario of Theorem 2.4, suppose C possesses a generalised cobound-
ary c, with corresponding almost cocommutative structure R. Then c is unitary if
and only if Ω is a cocommutative twist from (∆,Φ, R) to (∆̃, Φ̃, R̃), i.e. RΩ = R̃.

Proof. By definition of R (see formula 2.3(4)) and since E is an equivalence of C∗
tensor categories, c is unitary exactly if

Σ
(
F(ρ),F(σ)

)
Rρ,σ : E(ρ)⊗A E(σ)→ E(σ)⊗A E(ρ)

is for all ρ, σ objects of C, where ⊗A denotes the tensor product of Rep+(A). Now,
keeping in mind the category P

(
End

(
F(ρ) ⊗ F(σ)

))
, with the tensor product of

the involutions coming from the scalar products of F(ρ) and F(σ), we compute(
Σ
(
F(ρ),F(σ)

)
Rρ,σ

)∗
= Ω−1

ρ,σR
†
ρ,σΣ

(
F(σ),F(ρ)

)
Ωσ,ρ =

(Ω−1R†Ω21)ρ,σΣ
(
F(σ),F(ρ)

)
= (R†Ω)ρ,σΣ

(
F(σ),F(ρ)

)
,
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having used that the flip map Σ is of course unitary with respect to the mentioned
tensor product involution. On the other hand(

Σ
(
F(ρ),F(σ)

)
Rρ,σ

)−1
= R−1

ρ,σΣ
(
F(σ),F(ρ)

)
.

Therefore c is unitary exactly if R†Ω = R−1, i.e. RΩ = R̃.

2.7 Unitary coboundary weak quasi-Hopf algebras

Some discrete quasi-triangular quasi-Hopf algebras, notably the ones arising from
quantum groups at roots of 1 to be treated in next chapter, possess an involution
featuring a special kind of compatibility with the quasi-triangular structure. As
we shall see, this circumstance, together with the existence of a certain root of a
ribbon element, provides such algebras with an intrinsic structure of unitary weak
quasi-Hopf algebras and their representation category is C∗ ribbon (see Definition
1.5C).

Definition. A discrete unitary coboundary weak quasi-Hopf algebra is a sextuple
(A, ·†,∆,Φ, R,w) where:

• (A, ·†) is a discrete unitary algebra;

• (A,∆,Φ) is a discrete weak quasi-Hopf algebra, with a weak antipode (S, α, β)
such that S(·†) = S(·)†;

• R is a quasi-triangular structure for (A,∆,Φ) and there is a trivial twist E
from (∆op,Φop) to (∆̃, Φ̃) such that (R†)−1 = E21R21E

−1;

• w is a central unitary element of A, with ε(w) = 1 and S(w) = w; moreover
v := w2 is a ribbon element for R. Finally, writing Tw := ∆(w)(w−1 ⊗ w−1),
Ωw := ERTw is positive.

We point out that the condition on S in the second point is actually free, since
an antipode commuting with ·† may be obtained by the argument presented in 2.6,
which does not rely on Ω. Given (S, α, β) with S(·†) = S(·)†, all other antipodes
satisfying the same condition are of the form(

xS(·)x†, xα, βx†
)
, for x ∈ A unitary.

Proposition. The quintuple (A, ·†,∆,Φ,Ωw) is a discrete unitary weak quasi-Hopf
algebra, such that Ωw is a cocommutative twist from (∆,Φ, R) to (∆̃, Φ̃, R̃), where
R̃ := (R†)−1.

Proof. We observe that R21 =: Rop is a quasi-triangular structure on the triple
(A,∆op,Φop) and (R†)−1 = R̃ is one on (A, ∆̃, Φ̃) (see 2.6). Moreover, the identity
E21R21E

−1 = (R†)−1 states that E is a cocommutative twist (see Proposition-
Definition 2.6) from (∆op,Φop, Rop) to (∆̃, Φ̃, R̃).

Let us now look more closely at the central unitary element w. Given its proper-
ties, we may use it to perform a deformation (see the end of 1.4) on the braiding on
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Rep+(A) corresponding to R, thus obtaining the new almost cocommutative struc-
ture R := R∆(w)(w−1 ⊗ w−1) = RTw. We also note that Tw is a cocommutative
twist from (∆,Φ, R) to itself; since R is clearly one from (∆,Φ, R) to (∆op,Φop, Rop),
we conclude that Ωw = ER = ERTw is a cocommutative twist from (∆,Φ, R) to
(∆̃, Φ̃, R̃).

Finally, since Ωw is also assumed to be positive, (A, ·†,∆,Φ,Ω) is a discrete
unitary weak quasi-bialgebra.

Remark. In the Proposition, it is actually possible to drop the assumption that
Ω is positive and still deduce Ω†w = Ωw from the other axioms, as it is found in
[CCP21]. However, this is only useful when the first point in the Definition is
relaxed to “(A, ·†) is a discrete ∗-algebra”, which means that the Vι of Definition
2.4A are allowed to be equipped with non-degenerate Hermitian forms rather than
necessarily scalar products. Then one considers the category Reph(A), where the
A-moduli are accordingly equipped with non-degenerate Hermitian forms, so that
Ω† = Ω is good enough to define the forms on tensor products, and the treatment
of 2.4 still goes through.

This more general approach is carried over in [CCP21], where the more general
notion of “discrete Hermitian coboundary weak quasi-Hopf algebra” replaces the
unitary case of the Definition.

It is also interesting to note that R21R = ∆(1):

R21R = R21∆op(w)(w−1 ⊗ w−1)R∆(w)(w−1 ⊗ w−1)
= R21R∆(w2)(w−2 ⊗ w−2) = R21R∆(v)(v−1 ⊗ v−1) = ∆(1) .

This is equivalent to c2 = 1, where c is the generalised coboundary corresponding
to R; so c is what is usually called a coboundary, which explains the nomenclature
of the Definition. Let us now turn to Rep+(A).

Lemma. Consider the C∗ tensor category Rep+(A) endowed with the right duals
defined by (S, α, β) and the ribbon structure defined by (R, v) (see Remark 2.3A,
formula 2.6(1) and Proposition 2.3).

Then Rep+(A) is a C∗ ribbon category (see Definition 1.5C) if and only if β =
α†.

Proof. Since Ωw is a cocommutative twist from (∆,Φ, R) to (∆̃, Φ̃, R̃), the corre-
sponding braiding c is unitary by Lemma 2.6; moreover the ribbon element v = w2

is unitary because w is. Thus, in order to prove Rep+(A) to be C∗ ribbon, one just
has to check the identities

b∗V = dV ◦ cV,V ◦ (v−1
V ⊗ idV ) , d∗V = (idV ⊗vV ) ◦ c−1

V ,V
◦ bV (1)

for the generic C∗ A-module V , which we proceed to do assuming β = α†. To this
aim, we choose an orthonormal basis {ek} for V and write

bV (1) =
∑
k

βekek , dV (v ⊗ w) = (αw, v)V ,
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where u is just the vector u in V considered as an element of V and (·, ·)V is the
scalar product on V ; it induces on V the scalar product

(v, w)V := (w, v)V , ∀ v, w ∈ V .

We recall that the A-action on V is given by av = S(a)†v. In order to compute
d∗V (1), we consider V ⊗ V with the scalar product (·, ·)V ⊗ (·, ·)V , and denote the
corresponding adjoint by ·∗p . E.g.

d
∗p
V =

∑
k

ek ⊗ α†ek , b
∗p
V (v ⊗ w) = (β†v, w) .

Finally, we write Ωw =: m⊗n and Ω−1
w =: p⊗ q. Since the action of Ωw defines the

scalar product on V ⊗A V , we have

d∗V (1) = Ω−1
w d

∗p
V (1) = Ω−1

w

∑
k

ek ⊗ α†ek =
∑
k

pek ⊗ qα†ek

=
∑
k

S(p)†ek ⊗ qα†ek =
∑
k

ek ⊗ qα†S(p)ek =
∑
k

ek ⊗ α†Ωwek .

In the last passage we used S(·†) = S(·)† and applied Proposition 2.6A for the
identity qα†S(p) =

(
S(p)αq

)† = αΩw . Along the same lines, we compute

b∗V (v ⊗ w) = b
∗p
V

(
Ωw(v ⊗ w)

)
= b
∗p
V (mv ⊗ nw) = b

∗p
V (mv ⊗ S(n)†w)

= (β†mv, S(n)†w)V = (S(n)β†mv,w)V = (β†Ωwv, w)V .

We are now ready to check the first of (1). Writing R =: r ⊗ s, we evaluate the
right-hand side on v1 ⊗ v2:(

dV ◦ cV,V ◦ (v−1
V ⊗ idV )

)
(v1 ⊗ v2) =

(
dV ◦ ΣV,V

)
(rv−1v1 ⊗ sv2) =

dV
(
S(s)†v2 ⊗ rv−1v1

)
=
(
αrv−1v1, S(s)†v2

)
V

=
(
S(s)αrv−1v1, v2

)
V
.

(2)

On the other hand, since Ωw = Ω†w = (w ⊗ w)∆(w)†R†∆(1)†, Proposition 2.6A
allows us to compute

β†Ωw =
(
w(w(1))†r†1(1)βS(1(2))S(s†)S(w(2))†w

)†
=
(
w(w(1))†r†βS(s†)S(w(2))†w

)† = S(w(2))S(s)βrw(1)v
−1 ,

where we used the second weak antipode identity (the second point in Definition
2.3A) for the second equality and the properties of w for the third one. Moreover,
denoting by µ : A⊗A→ A the multiplication, we have

S(w(2))S(s)β†rw(1) =
(
µ ◦ (S ⊗ id)

)(
S(β†)sw(2) ⊗ rw(1)

)
=(

µ ◦ (S ⊗ id)
)(
S(β†)w(1)s⊗ w(2)r

)
= S(s)S(w(1))β†w(2)r ,

having used R21∆op(·) = ∆(·)R21. Finally, we can apply β = α†, the first weak
antipode identity and ε(w) = 1 to conclude

β†Ωw = S(s)S(w(1))β†w(2)rv
−1 = S(s)S(w(1))αw(2)rv

−1 = S(s)αrv−1 .
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Together with (2), this proves the first of (1); a proof of the second is achieved
through similar technicalities, and may be found in [CCP21]. Besides, the cited
proof actually shows the identity β = α† to be equivalent to the second of (1). So
β = α† is also a necessary condition for Rep+(A) to be a C∗ ribbon category.

We conclude the subsection with a useful result that will enable us to construct
a discrete unitary coboundary weak quasi-Hopf algebras from a purely categorical
datum, by a reconstruction procedure. From a more systematic point of view, the
notion of a discrete unitary coboundary weak quasi-Hopf algebra will be shown to
arise from a Tannakian result, a situation analogous to the ones of 2.1 and 2.4.

Theorem. Let C+ be a C∗ semi-simple abelian category, (C,⊗, a) a tensor category
and F : C+ → C a linear equivalence. Furthermore, let G+ : C+ → Hilb a faithful ∗-
functor and G : C → Hilb a faithful functor with weak quasi-tensor structure (G,H)
such that the following diagram commutes.

C+ G+
//

F
��

Hilb

C

G

DD (3)

Then G(a) is unitary (see Definition 1.5B) if and only if C+ can be upgraded to a
C∗ tensor category and F to a tensor equivalence with tensor structure F such that
G(F ) is unitary.

If this is the case, let us further suppose C to be rigid and endowed with a
braiding c; we also assume that there is a natural isomorphism w from the identity
functor idC to itself, with w1 = 1 and compatible with duality, such that v := w2

is a ribbon structure for c. We pull back all this additional structure to C+ by
means of the tensor equivalence F and likewise consider the unique weak quasi-
tensor structure on G+ such that (3) also commutes with respect to the weak quasi-
tensor structures involved. We denote by (A+, ·†,∆,Φ,Ω) the discrete unitary weak
quasi-Hopf algebra constructed as in 2.4, with quasi-triangular structure and ribbon
element (R, v) constructed as in 2.6.

Then (A+, ·†,∆,Φ, R,w) is a discrete unitary coboundary weak quasi-Hopf alge-
bra such that Ωw = Ω if and only if G(cρ,σ) and G(wρ) are unitary for all ρ, σ in C
and the following identities hold:

Gσ,ρΣ
(
G(ρ),G(σ)

)
G∗ρ,σ = G(cwρ,σ) , H∗ρ,σΣ

(
G(σ),G(ρ)

)
Hσ,ρ = G(cwρ,σ)−1 ,

where cw is the coboundary obtained from c by deformation by w.

Proof. We consider the discrete unitary algebra (A+, ·†) and the equivalence of C∗
categories E+ : C+ → Rep+(A+) constructed from G+ as in Theorem 2.4, or actually
a simpler version where all monoidal data is suppressed.

Similarly, we consider the discrete weak quasi-bialgebra (A,∆,Φ) and the tensor
equivalence E : C → Rep(A) constructed as in Theorem 2.1 from

(
G, (G,H)

)
. Since

G takes values in Hilb, we also have the weak quasi tensor structure (H∗, G∗).
We denote the corrisponding coproduct and associator by (∆̂, Φ̂), and note that
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Ω := G∗G is a twist from (∆,Φ) to (∆̂, Φ̂), with partial inverse Ω−1 = HH∗ (see
Definition 2.5A).

Since F is a linear equivalence, we have the linear isomorphism

γ : A→ A+ γ(η) = η ◦ E ,

where the natural transformation η ◦ E takes the values (η ◦ E)ρ = ηE(ρ); γ⊗k is
similarly defined between the k-th generalised tensor powers, for all k. We may
use γ to transport (∆,Φ) and (∆̂, Φ̂) to A+; we use the same notation for the
transported pairs and proceed to clarify the relation between (∆̂, Φ̂) and the pair
(∆̃, Φ̃) of Definition B.

While ∆̂ = ∆(·†)†Φ̃ results clearly from the definition, it is not the same for the
associators. Indeed

Φ̂ρ,σ,τ = ΦF(ρ),F(σ),F(τ) =
(
G+(ρ)⊗G∗F(ρ),F(σ)

)
◦G∗F(ρ),F(σ)⊗F(τ)◦

G(aF(ρ),F(σ),F(τ)) ◦H∗F(ρ)⊗F(σ),F(τ) ◦
(
H∗F(ρ),F(σ) ⊗ G

+(τ)
)
,

so Φ̂ = (Φ∗)−1 exactly if G(a) is unitary. We assume that this is the case and prove
the “only if” implication in the first assertion of the statement.

By the above discussion (A+, ·†,∆,Φ,Ω) is a discrete unitary weak quasi-bialgebra,
hence Rep+(A+) is a C∗ tensor category by Lemma 2.4. Then, by general cate-
gorical arguments, we may pull back the monoidal data of Rep+(A+) to C+ using
the equivalence of C∗ tensor categories E+, in a way that C+ becomes a C∗ tensor
category and E+ an equivalence of C∗ tensor categories. Finally, F shall be endowed
with the unique (keeping in mind that G and G+ are faithful) tensor structure F
such that (3) also holds with respect to the weak quasi-tensor structures; moreover
we may achieve unitarity of G(F ) by polar decomposition, accordingly modifying
C+ and the tensor structure of E+ if needed.

To see the converse, let us assume C+ to be a C∗ tensor category and F a
tensor equivalence with tensor structure F ; we consider the unique weak quasi-
tensor structure (G+, H+) on G+ such that (3) also commutes with respect to the
weak quasi-tensor structures and apply the full version of Theorem 2.4, upgrading
(A+, ·†) to a discrete unitary weak quasi-bialgebra (A+, ·†,∆+,Φ+,Ω).

In this situation the above γ becomes an isomorphism of weak quasi-bialgebras;
in particular, for all ρ, σ, τ objects of C+,

ΦF(ρ),F(σ),F(τ) = Φ+
ρ,σ,τ , (4)

which is unitary from
(
E+(ρ)⊗A+E+(σ)

)
⊗A+E+(τ) to E+(ρ)⊗A+(E+(σ)⊗A+E+(τ)

)
.

Moreover, the unitary tensor structure of E+ is given by

G+
ρ,σ = G(Fρ,σ) ◦GF(ρ),F(σ)

restricted to E+(ρ)⊗A+E+(σ); therefore unitarity of G(Fρ,σ) implies that the restric-
tion of GF(ρ),F(σ) to E+(ρ) ⊗A+ E+(σ) is unitary as well. Finally, E(ρ) ⊗A E(σ) =
E+(ρ) ⊗A+ E+(σ) as vector spaces, thus by (4) and the defining diagram (3),
G(aF(ρ),F(σ),F(τ)) is unitary for all ρ, σ, τ objects of C+; hence G(a) is unitary since
F is an equivalence.
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Let us now pass to prove the “only if” implication of the second assertion; as
in the statement, we drop the + superscripts from (∆+,Φ+) for simplicity. By
unitarity of the braiding on Rep+(A+) (see the proof of the Lemma) and of G(F ),
we deduce that G(c) is unitary too, just as in the case of G(a); the unitarity of G(w)
is evident.

Furthermore, we have G∗ρ,σ = Ωρ,σHρ,σ for all ρ, σ in C, and Ω = ERw by
assumption, where E is the trivial twist ∆(1)†∆op(1) and Rw corresponds to the
coboundary cw. Thus (Rw)ρ,σ = Σ

(
G(σ),G(ρ)

)
Hσ,ρG(cwρ,σ)Gρ,σ and we compute

G(cwρ,σ) = Gσ,ρΣ
(
G(ρ),G(σ)

)
E−1G∗ρ,σ = Gσ,ρΣ

(
G(ρ),G(σ)

)
G∗ρ,σ ,

where we cancelled E−1 = ∆op(1)∆(1)† because

∆op(1) = Σ
(
G(σ),G(ρ)

)
Hσ,ρGσ,ρΣ

(
G(ρ),G(σ)

)
, ∆(1)† = G∗ρ,σH

∗
ρ,σ (5)

by the definitions. The second identity at the end of the statement can be derived
analogously.

We now turn to the other implication, and write E := ∆(1)†∆op(1) and E :=
∆op(1)∆(1)†. Still keeping in mind (5), the first of the given identities allows us to
compute

(Rw)ρ,σ = Σ
(
G(σ),G(ρ)

)
Hσ,ρG(cwρ,σ)Gρ,σ

= Σ
(
G(σ),G(ρ)

)
Hσ,ρGσ,ρΣ

(
G(ρ),G(σ)

)
G∗ρ,σGρ,σ = Eρ,σΩρ,σ ,

i.e. Rw = EΩ; likewise R−1
w = Ω−1E by the second identity at the end of the

statement. So E is actually partially invertible, with inverse E, and Ωw = ERw =
Ω, which incidentally is positive. Furthermore, since G(c) and G(F ) are unitary,
so is the the braiding induced by c on A+, whence Ω is a cocommutative twist
from (∆,Φ, R) to (∆̃, Φ̃, R̃) by Lemma 2.6; therefore E is a cocommutative twist
from (∆op,Φop, Rop) to (∆̃, Φ̃, R̃), as required by the Definition. Finally ε(w) = 1,
S(w) = w and unitarity of w are equivalent to w1 = 1, compatibility of w with
duality and unitarity of G(w) respectively.

2.8 Weak Hopf algebras

The notion of a weak quasi-tensor functor (Definition 2.1A) features a remarkable
special case, closer to an actual tensor functor but still general enough to be useful
in the reconstruction of categories arising from quantum groups at roots of 1, which
we will treat in next chapter.

Definition A. Let(C,⊗, a) be a tensor category and F : C → Vec a faithful func-
tor with weak quasi-tensor structure (F,G). We say that (F,G) is a weak tensor
structure if it satisfies:

F(aρ,σ,τ ) = Fρ,σ⊗τ ◦
(
F(ρ)⊗ Fσ,τ

)
◦
(
Gρ,σ ⊗F(τ)

)
◦Gρ⊗σ,τ , (1)

F(a−1
ρ,σ,τ ) = Fρ⊗σ,τ ◦

(
Fρ,σ ⊗F(τ)

)
◦
(
F(ρ)⊗Gσ,τ

)
◦Gρ,σ⊗τ . (2)

Now, we fix a rigid tensor category C, say with right duals ρ∨ and duality pairs
(bρ, dρ) for each object ρ, and a weak tensor functor F as in Definition A. We will
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exploit the identities (1) and (2) to derive special properties for the weak quasi-Hopf
algebra (A,∆,Φ) constructed from F (see 2.1).

The most relevant new property is about the form of the associator. Replacing
F(aρ,σ,τ ) and F(a−1

ρ,σ,τ ) in the defining diagram 2.1(3) by means of (1) and (2), we
obtain respectively

Φ = (id⊗∆)(∆1)(∆⊗ id)(∆1) , and Φ−1 = (∆⊗ id)(∆1)(id⊗∆)(∆1) .

Turning to the antipode, thanks to (1), (2) and the good behaviour with respect
to units discussed in Remark 2.1, weak tensor functors are as good as tensor ones
when it comes to compatibility with duals.

Proposition A. For each ρ object of C, the pair
(
Gρ,ρ∨ ◦ F(bρ),F(dρ) ◦Fρ∨,ρ

)
is a

duality pair in Vec with left object F(ρ) and right object F(ρ∨).

Proof. We limit ourselves to prove the first duality identity, which in our case reads(
F(ρ)⊗F(dρ)

)
◦
(
F(ρ)⊗ Fρ∨,ρ

)
◦
(
Gρ,ρ∨ ⊗F(ρ)

)
◦
(
F(bρ)⊗F(ρ)

)
= F(ρ) ; (3)

the second one is treated in complete analogy. Now, by identities 2.1(2) and natu-
rality of F , F(ρ)⊗F(dρ) equals

F(rρ) ◦ Fρ,1 ◦
(
F(ρ)⊗F(dρ)

)
= F(rρ) ◦ F(ρ⊗ dρ) ◦ Fρ,ρ∨⊗ρ ;

analogously, by 2.1(2) and naturality of G, F(bρ)⊗F(ρ) equals(
F(bρ)⊗F(ρ)

)
◦G1,ρ ◦ F(l−1

ρ ) = Gρ⊗ρ∨,ρ ◦ F(bρ ⊗ ρ) ◦ F(l−1
ρ ) .

Furthermore, identity (1) produces

Fρ,ρ∨⊗ρ ◦
(
F(ρ)⊗ Fρ∨,ρ

)
◦
(
Gρ,ρ∨ ⊗F(ρ)

)
◦Gρ⊗ρ∨,ρ = F(aρ,ρ∨,ρ) .

Therefore, recollecting the pieces we see that the left-hand side of (3) equals

F(rρ) ◦ F(ρ⊗ dρ) ◦ F(aρ,ρ∨,ρ) ◦ F(bρ ⊗ ρ) ◦ F(l−1
ρ ) =

F
(
rρ ◦ (ρ⊗ dρ) ◦ aρ,ρ∨,ρ ◦ (bρ ⊗ ρ) ◦ l−1

ρ

)
= F(ρ) ,

by the first duality identity for the pair (bρ, dρ).

Proposition A allows us to improve the construction of the weak antipode pre-
sented in 2.3. Since F(ρ) and F(ρ∨) are left and right duals in Vec, we may apply
Proposition 1.3 to take Uι : F(ι)′ → F(ι∨) such that

bEρ =
(
F(ρ)⊗ Uρ

)
◦ bVec
F(ρ) , and dEρ = dVec

F(ρ) ◦
(
U−1
ρ ⊗F(ρ)

)
,

where (bE , dE) :=
(
Gρ,ρ∨ ◦F(bρ),F(dρ)◦Fρ∨,ρ

)
and (bVec

F(ρ), d
Vec
F(ρ)) is the usual duality

pair in Vec for F(ρ), namely

bVec
F(ρ)(1) = idF(ρ) and dVec

F(ρ) = Tr
End

(
F(ρ)

) . (4)
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Now E : C → Rep(A) is a tensor equivalence, bEρ and dEρ are morphisms in Rep(A),
whence so are bVec

ρ and dVec
ρ . Therefore (bVec

F(ρ), d
Vec
F(ρ)) is actually a duality pair in

Rep(A); from these duality pairs we define (S, α, β) as in 2.3, but now α = 1 = β
by (4), so S is a strong antipode.

Prior to axiomatising the special structure obtained and discussing its properties,
we need to introduce some notational shortcuts. Given a coproduct ∆, we put

3∆(1) := (∆⊗ id)(∆1) , ∆3(1) := (id⊗∆)(∆1) ,
4∆(1) := (∆⊗ id⊗ id)(∆⊗ id)(∆1) , ∆4(1) := (id⊗ id⊗∆)(id⊗∆)(∆1) ,

so for instance an associator for ∆ is a partially invertible from 3∆(1) to ∆3(1).

Definition B. A pair (A,∆) is called a discrete weak Hopf algebra if(
A,∆,∆3(1)3∆(1)

)
is a weak quasi-Hopf algebra and

(
∆3(1)3∆(1)

)−1 = 3∆(1)∆3(1) .

Definition B is remarkably simple, in that not only is the associator determined
by the pair (A,∆), but we also have a canonical choice of a weak antipode. Indeed
the existence of a, unique by Proposition-Definition 2.3, strong antipode for the
above example does not depend on the concrete construction we presented. It
rather just follows from Definition B, so we may just take the strong antipode,
usually denoted by S.

Proposition B. Let (A,∆) be a discrete weak Hopf algebra. Then it admits a
strong antipode.

Proof. Let (S, α, β) be a weak antipode. We write

Φ =
(
1(1) ⊗ 1(2)(1) ⊗ 1(2)(2)

)(
1(1′)(1′)⊗1(1′)(2′) ⊗ 1(2′)

)
= 1(1)1(1′)(1′) ⊗ 1(2)(1)1(1′)(2′) ⊗ 1(2)(2)1(2′)

Therefore the first identity in the third point of Definition 2.3A reads

1 = 1(1)1(1′)(1′)βS
(
1(2)(1)1(1′)(2′)

)
α1(2)(2)1(2′)

= 1(1)1(1′)(1′)βS(1(1′)(2′))S(1(2)(1))α1(2)(2)1(2′)

= ε(1(1′))ε(1(2))1(1)βα1(2′) = βα ,

i.e. β = α−1. The statement follows from Proposition-Definition 2.3.

We now focus on the special case of weak tensor functors in Theorem 2.1. In
view of the arguments developed between Definition A and Proposition A, we just
need to point out the following trivial fact:

given a discrete weak Hopf algebra (A,∆), the forgetful functor FA : Rep(A)→
Vec admits a natural weak tensor structure. Namely, for each choice of A-modules
V,W we set (∆1)V,W =: GV,WFV,W , where (∆1)V,W denotes the action of ∆(1) on
V ⊗W and GV,W : (∆1)V,W → V ⊗W , FV,W : V ⊗W → (∆1)V,W are determined
by FV,WGV,W = idV⊗W .
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Corollary A. We consider the situation of Theorem 2.1, with C rigid. Then (F,G)
is a weak tensor structure if and only if (A,∆) is a weak Hopf algebra.

Let us now come back to the scenario we fixed after Definition A, namely we
have a rigid tensor category C and a weak tensor functor F : C → Vec; we also
consider the associated discrete weak Hopf algebra (A,∆).

Now, in view of the classification achieved by Proposition 2.5D, we apply Def-
inition A to express whether the twisted structure (FU , GU ) is still weak tensor in
terms of the twist U . Identities (1) and (2) for (FU , GU ) translate into

(1⊗ U)(id⊗∆)(U)(∆⊗ id)(U−1)(U ⊗ 1) = (∆U )3(1)3(∆U )(1) , (5)
(U ⊗ 1)(∆⊗ id)(U)(id⊗∆)(U−1)(1⊗ U) = 3(∆U )(1)(∆U )3(1) , (6)

which correspond to the more usual cocycle condition presented, for instance, in
[NT14] in the analogous situation for tensor functors. We therefore extend the
same terminology to our case.

Definition C. A cocycle of a discrete weak Hopf algebra (A,∆), is a twist U of A
from

(
∆,∆3(1)3∆(1)

)
such that (5) and (6) are verified. We denote the set of such

cocycles by Z(A,∆).

Remark. Given twists U1, U2 of A from
(
∆,∆3(1)3∆(1)

)
, u is a tensor isomorphism

from
(
F , (FU1 , GU1)

)
to
(
F , (FU1 , GU1)

)
exactly if

U2 = u⊗ uU1∆(u−1) .

So, since tensor isomorphisms send weak tensor structures into weak tensor struc-
tures, we see that U1 is a cocycle exactly if U2 is. Thus, as it can also be checked
directly, cohomologousness preserves cocycles and any coboundary is a cocycle.

It is now clear that cocycles are exactly what we need in order to formulate a
refinement of Proposition 2.5D appropriate to take care of weak tensor structures.
Indeed, in view of Corollary A and the arguments since developed, we have the
following

Corollary B. We consider the situation of Proposition 2.5D, with C rigid and
(F,G) weak tensor.

Then (FU , GU ) is a weak tensor structure exactly if U is a cocycle of (A,∆).
Moreover, if we restrict the assignment U 7→

(
F , (FU , GU )

)
to cocycles of (A,∆) we

obtain a bijection from Z(A,∆)/∼ to the set of tensor isomorphism classes of weak
tensor functors from C to Vec with dimension function d.

We do not mind to mention that the results of this subsection may be straight-
forwardly adapted to deal with the unitary case, e.g. to obtain suitable refinements
of Theorem 2.4 and Proposition 2.5C analogous to Corollaries A and B.
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Quantum groups

Quantum groups at roots of unity are the actual mathematical object we deal with
in the thesis, by means of the general algebraic tools presented in previous chap-
ter. More in detail, we are specially interested in the fusion categories of [Wen98],
which the present chapter is therefore designed to introduce. To this aim quantum
universal enveloping algebras are introduced in section 3, together with their spe-
cialisations and the basic structure results for the relative representation categories.
Section 4 deals with the category of tilting modules and their quotient by the tensor
ideal of negligible modules (see [CP95] or [Lus93]). The work of [Wen98] endows
these fusion categories with a C∗ ribbon structure (see Definition 1.5C) and allows
us to present a weak tensor functor on them, following [CCP21]. This provides a
remarkable application for the theory of previous chapter.

3 Quantum universal enveloping algebras

Since they provide one of the most relevant incarnations of quantum groups, QUE
(we will henceforth stick to the acronym) algebras are very well known. However, we
will rapidly introduce them in order to fix notation; subsequently, we will adopt the
less widely established version presented in [Saw06], which is especially appropriate
to the development of next chapter.

3.1 The Hopf algebra Ux(g) and its involution

The Lie algebra datum We follow [Hum12] for notation and nomenclature
about Lie algebras. Let g be a simple complex Lie algebra, h a maximal toral
subalgebra, Φ ⊂ h′ the relative root system, ∆ = {α1, . . . , αl} a base for it. Let
(·, ·) the unique associative non-degenerate symmetric bilinear form on h′ such that
(α, α) = 2 for every α in Φ short and D the ratio between the square lengths of a
long root and a short root; for types A,D,E we take (α, α) = 2 for all α in Φ and
D = 1.

For each α in Φ, we write α̌ := 2
(α,α)α, so that Φ̌ is the root system dual to Φ.

We recall that ∆̌ is a base for Φ̌ and that the partial order ≺ on Φ restricted to
long roots or to short ones, is preserved by ·̌. Therefore if θ is the highest root in
Φ and ϕ̌ is the highest root in Φ̌, then ϕ is the highest short root in Φ and θ̌ is the
highest short root in Φ̌.

Let E be the euclidean space generated by Φ endowed with (·, ·); let Λ := {λ ∈
E | (λ, α̌) ∈ Z ∀ α ∈ Φ} be the weight lattice, Λr the sublattice generated by Φ
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and Λ+ := {λ ∈ Λ | (λ, α̌i) ≥ 0 ∀ 1 ≤ i ≤ l} the set of dominant integral weights.
Furthermore, we denote by L the least positive integer such that L(λ, µ) is integer
for all λ, µ in Λ; e.g. L = l+1 for type Al, and the other values are listed in [Saw06].

The fundamental dominant weights and the Cartan integers are

〈λi, α̌j〉 := δij , aij := (α̌i, αj) ;

as common in the context of QUE algebras, the latter differ from those of [Hum12]
by a switch of i and j. We denote the Weyl group by W and put ρ := 1

2
∑
α�0 α;

the translated action of W on E is defined by

σ · v + ρ := σ(v + ρ) , ∀ v ∈ E , σ ∈ W . (1)

Finally we introduce the dual Coxeter number and the Coxeter number:

ȟ := (ρ, θ̌) + 1 , h := (ρ, ϕ̌) + 1 .

The QUE algebra Let A = Q[x, x−1], the ring of Laurent polynomials in x with
rational coefficients. The x-integers and x-binomials are defined, for all n integer
and k positive integer, by

[n]x := xn − x−n

x− x−1 ,

[
n

k

]
x

:=
k∏
j=1

[n+ 1− j]x
[j]x

.

Note that [0]x = 0, and [−n]x = −[n]x, whence
[n
k

]
x

= 0 for n ≥ 0 and k > n;
we also put

[n
0
]
x

= 1 for all integer n. With this understanding we have, for all
n ≥ k ≥ 1, the binomial identity[

n

k

]
x

= x−k
[
n− 1
k

]
x

+ xn−k
[
n− 1
k − 1

]
x

;

in particular
[n
k

]
x
in in A by induction. Finally, we will write [n]x! :=

∏n
i=1[i]x for

all positive integer n and [0]x! := 1.
We proceed to introduce Ux(g); as an associative algebra over Q(x), it has gen-

erators Ek, Fk,Kk,K
−1
k , for 1 ≤ k ≤ l, and relations

KiKj = KjKi , KiK
−1
i = 1 = K−1

i Ki ;
KiEjK

−1
i = x(αi,αj)Ej , KiFjK

−1
i = x−(αi,αj)Fj ;

EiFj − FjEi = δij
Ki −K−1

i

xi − x−1
i

;

1−aij∑
k=0

(−1)k
[
1− aij
k

]
x

E
1−aij−k
i EjE

k
i = 0 for i 6= j ;

1−aij∑
k=0

(−1)k
[
1− aij
k

]
x

F
1−aij−k
i FjF

k
i = 0 for i 6= j .

Here xi stands for x if αi is short and for xD if αi is long. The following coproduct
turns Ux(g) into a Hopf algebra:

∆(Ei) = Ei ⊗Ki + 1⊗ Ei , ∆(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi , ∆(Ki) = Ki ⊗Ki .
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We agreed with [Saw06], whereas some authors (e.g. [Wen98]) use ∆op in place of
the above ∆; accordingly, the antipode is given by

S(Ki) = K−1
i , S(Ei) = −EiK−1

i , S(Fi) = −KiFi ,

and the counit ε is given by ε(Ei) = 0, ε(Fi) = 0, ε(Ki) = 1.

The involution As in [Wen98], we define an involution · on Q(x) by q = q for
all q in Q and x = x−1. Conjugate vector spaces over Q(x), or conjugate A-moduli,
and antilinear maps are accordingly defined. Now, we define an involution ·∗ on
Ux(g), prescribing the following:

E∗i = Fi , F ∗i = Ei , K∗i = K−1
i ;

In fact ·∗ extends to an antilinear antiautomorphism of Ux(g) squaring to the iden-
tity. Besides, for all a in Ux(g),

(a∗)(1) ⊗ (a∗)(2) = (a(2))∗ ⊗ (a(1))∗ , ε(a∗) = ε(a) , S(a∗) = S(a)∗ . (2)

Note that this involution differs from the one usually given when x is to be spe-
cialised to a real number. Most notably we have K∗i = K−1

i rather than K∗i = Ki.
The reason is that x is to be specialised (see Definition 3.2) to a root of unity; so,
since Ki acts on a vector of weight λ as the scalar x(λ,αi), the Ki must be unitary.

3.2 The restricted integral form

Definition. Let Ux a Hopf algebra over Q(x), and write A = Q[x, x−1]. An integral
form of Ux is a Hopf A-subalgebra UA ⊂ Ux such that Ux = UA ⊗A Q(x).

The specialisation of Ux to a non-zero complex number q is the tensor product
Uq := UA ⊗φ C defined by the homomorphism

φ : A → C x 7→ q .

In our particular case, we consider the so called “restricted” integral form U res
A (g).

This nomenclature stresses the contrast with the equally interesting “non-restricted”
integral form. Indeed, the representation theories of the respective specialisation
differ significantly both from each other and from the classical one. We refer to
sections 11.1 of [CP95] for the non-restricted form, or to their original sources
[DK90] and [DKP92], where the irreducible modules are shown to be intimately
related to the algebraic variety of characters on the centre.

Coming back to U res
x (g), as an A-subalgebra of Ux(g) it is generated by the

elements

E
(r)
i := Ei

[r]x! , F
(r)
i := Fi

[r]x! , Ki , K
−1
i 1 ≤ i ≤ l , r ∈ N .

We refer to 11.2 of [CP95] for an account of the main properties of U res
A (g); however,

they mostly depend on the following fundamental PBW result, which we report
without proof.
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Theorem. Let U res +
A (g), U res−

A (g) and U res 0
A (g) be the subalgebras generated by

{E1, . . . , El}, {F1, . . . , Fl} and {K1, . . . ,Kl}. Then, given an enumeration of the
positive roots {β1, . . . , βN}, the sets {E1, . . . , El} and {F1, . . . , Fl} may be completed
to sets {Eβ1 , . . . , EβN } and {Fβ1 , . . . , FβN } such that

KiEβjK
−1
i = x(αi,βj)Eβj , KiFβjK

−1
i = x−(αi,βj)Fβj . (1)

Moreover, U res +
A (g) and U res−

A (g) are free A-modules with bases formed by the prod-
ucts

E
(tN )
βN
· · ·E(t1)

β1
, F

(tN )
βN
· · ·F (t1)

β1
,

for t1, . . . , tN non-negative integers such that tj > 0 for at least one j.
The subalgebra U res 0

A (g) is a free A-module as well, with basis formed by the
products

l∏
i=1

Kσi
i

[
Ki; 0
si

]
xi

, where
[
Ki; 0
si

]
xi

:=
si∏
k=1

Kix
1−k
i −K−1

i xk−1
i

xki − x
−k
i

,

for s1, . . . , sl non-negative integers and σi in {0, 1}. Finally, multiplication defines
an isomorphism of A-modules

U res−
A (g)⊗ U res 0

A (g)⊗ U res +
A (g) −→ U res

A (g) .

The fact that U res
A (g) is an integral form of Ux(g), for which we have the same

basis, follows at once. Furthermore, the representation theory of Ux(g) is treated
mostly as for the classical enveloping algebra U(g), or equivalently, the Lie algebra
g itself (see § 20 and 21 of [Hum12]). In our case though, the role of h is played by
U0
x(g), the subalgebra generated by {K1, . . . ,Kl}.

Proposition-Definition. We consider the inclusion

ι : Λr → U0
x(g) αi 7→ Ki for 1 ≤ i ≤ l ,

and write ι(β) =: Kβ. Let V be a U0
x(g)-module and ω a homomorphism from

U0
x(g) to the multiplicative group of Q(x). A non-zero vector v in V is said to be

an ω-vector if Kβv = ω(β)v for all β in Λr. For 1 ≤ i ≤ l,

KβEiv = q(αi,β)ω(β)Eiv and KβFiv = q−(αi,β)ω(β)Fiv . (2)

The representation category Rep
(
Ux(g)

)
is semi-simple as in the classical case,

but now the simple objects are parametrised by homomorphism of the form

ωσ,λ(Kβ) = −1σ(β)x(λ,β) ,

where λ is a dominant integral weight and σ is a homomorphism from Λr to Z/(2Z).
In detail, the module Vσ,λ contains an ωσ,λ-vector vσ,λ and Vσ,λ = U−x (g)vσ,λ,
where U−x (g) is the subalgebra generated by {F1, . . . , Fl}. Moreover, Vσ,0 is one-
dimensional for all σ, with

Kivσ,0 = −1σ(αi) , Eivσ,0 = 0 , Fivσ,0 = 0 , ∀ 1 ≤ i ≤ l ,
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and Vσ,λ = Vσ,0 ⊗ V0,λ for all σ, λ. For this reason, we are just going to consider
the cases σ = 0 and speak of weight vectors as usual, rather than ω0,λ-vectors. We
also write V0,λ =: Vλ and call it the Weyl module of highest weight λ. In fact all
its weights are of the form λ −

∑l
i=1 ciαi, where ci are non-negative integers, by

identities (2); the weight spaces have the same multiplicities as in the classical case,
and the tensor products Vλ ⊗ Vµ obey the same fusion rules.

Sawin’s construction and R-matrix

For all dominant integral weight λ, we consider the U res
A -module Vλ,A := U res−

A vλ ⊂
Vλ. Thanks to the Theorem, this is a free A-module and Vλ = Vλ,A ⊗A Q(x).

Furthermore, we consider the discrete Hopf algebra (see Definition 2.1B) U†A(h) :=
AΛ, the set of maps from Λ to A. It may be thought as a direct product of one-
dimensional matrix algebras indexed by Λ; accordingly, the k-th generalised tensor
power is A(Λk). The coproduct, counit and antipode are as follows:

(∆f)(λ, µ) = f(λ+ µ) , ε(f) = f(0) , (Sf)(λ) = f(−λ) ∀ λ, µ ∈ Λ .

Next, we consider the root space decomposition of U res
A (g), i.e. the decomposition

into weight spaces with respect to the adjoint action: U res 0
A (g) is the 0-space, and

identities (1) produce the decomposition for U res +
A (g) and U res−

A (g). Multiplication
of each λ-space by f(λ) defines an action of U†A(h) on U res

A (g), and it is readily
checked that U res

A (g) is a Hopf algebra in the category of U†A(h)-modules, namely all
the operations are U†A(h)-linear.

Therefore, we may consider the smash product U res
A (g) o U†A(h) (see [Mon93]).

It is U res
A (g)⊗U†A(h) as an A-module and, writing a⊗ h =: ah, a product is defined

by
(ah)(bk) = (ah(1)b)(h(2)k) ∀ a, b ∈ U res

A (g) , h, k ∈ U†A(h) .

We endow U res
A (g)o U†A(h) with the unique coproduct restricting to the coproducts

already given on the subalgebras U res
A (g) and U†A(h).

Even though we have to consider the tensor products U res
A (g)⊗k ⊗A(Λk) rather

than the usual tensor powers, U res
A (g) o U†A(h) satisfies all the axioms of a Hopf

algebra in the category of A-modules. For all f in U res
A (g), we have the relations

fKi = Kif , fEi = Eif(·+ αi) , fFi = Fif(· − αi) . (3)

The involution extends to U†A(h) by f∗ = f , preserving properties 3.1(2).
As our next step, we define U†A(g)

⊗k
as the quotient of each U res

A (g)⊗k ⊗ A(Λk)

by the kernel Ik of its action on⊕
λ1,...,λk∈Λ+

Vλ1,A ⊗ · · · ⊗ Vλk,A , ∀ k ∈ N ;

in other words we identify the elements of U res
A (g)⊗k ⊗ A(Λk) with their action on

all the possible tensor products Vλ1,A ⊗ · · · ⊗ Vλk,A, so that U†A(g) includes into a
discrete algebra:

U†A(g)
⊗k

↪−→
⊕

λ1,...,λk∈Λ+

End
(
Vλ1,A ⊗ · · · ⊗ Vλk,A

)
∀ k ∈ N . (4)
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Finally, we replace each U†A(g)
⊗k

with its closure with respect to the topology
induced by the above inclusions.

Since the various
k factors︷ ︸︸ ︷

id⊗ · · · ⊗ id⊗∆⊗ id⊗ · · · ⊗ id map Ik into Ik+1 and are obvi-
ously continuous with respect to the given topologies, U†A(g) still satisfies the axioms
of a Hopf algebra in the category of A-modules, and we take it as our integral form;
likewise, ·∗ lowers to the quotient and then extends to the closure retaining all its
properties.
Remark. By definition of weight vectors,

Ki = x(αi,·) ,

[
Ki; 0
si

]
xi

=
[
(α̌i, ·)
si

]
xi

∀ 1 ≤ i ≤ l . (5)

So we may think of U†A(h) and its generalised tensor powers A(Λk) as extensions
of U res 0

A (g)⊗k: more concretely, instead of being limited to the A-linear span of
products of elements of the form (5), all maps Λk → A are available. We also remark
that the elements of U res

A (g)⊗k ⊗A(Λk) may be viewed as maps Λk → U res
A (g)⊗k.

The upside of U†A(g) over U res
A (g) is that it provides a suitable environment where

to define the R-matrix.
To this aim we just still need a slight modification. Let A′ = Z[y, y−1], define

an inclusion A ↪→ A′ by x 7→ yL and put U†A′(g) := U†A(g)⊗A A′. This amounts to
adjoining to A an L-th root of 1, and we write x

n
L =: yn for all integer n. We are

now ready to write the R-matrix, lying in U†A′(g)⊗2:

R(λ, µ) := x(λ,µ)
+∞∑

t1,...,tN=0

N∏
j=1

x
tj(tj+1)

2
j (1− x2

j )tj
(
[tj ]xj !

)(
E

(tj)
βj
⊗ F (tj)

βj

)
,

where xr stands for x if βr is short and for xD if it is long. We note that x(λ,µ) is
the only possibly fractioned power in the expression, with (λ, µ) lying in Z/L by
definition of L. More importantly, the series is actually Cauchy with respect to the
topology induced by (4), because each of the summands vanishes on Vλ,A ⊗ Vµ,A
for all but finitely many choices of λ, µ; therefore it defines a legitimate element of
U†A′(g)⊗2.

Lemma. R is invertible in U†A′(g)⊗2 and it has the following properties:

R∆(·)R−1 = ∆op , (∆⊗ id)R = R13R23 , (id⊗∆)R = R13R12 ,

R∗ = R−1
21 .

Proof. For the first three identities we refer to chapter 32 of [Lus93]. The last one
is proved in [Wen98] (Lemma 1.4.1), using ∆(·)∗ = ∆op(·∗) (the first of identities
(2)) together with the peculiar form of R.

The Lemma may be rephrased by saying that R is a quasi-triangular structure
for U†A′(g), and that R∗ is the opposite structure (Definition 2.3C and the subsequent
observations straightforwardly adapt to the present scenario).
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Finally, ω := x(2ρ,·) is a group-like charmed element for R (see the end of 2.3).
Indeed ωaω−1 = K2ρaK

−1
2ρ = S2(a) is easily checked for the generators of Ux(g).

However, even though we know R explicitly, a verification of the second of identities
2.3(8) would still be quite laborious so we refrain from undertaking it here.

3.3 Roots of 1

We now fix a complex root of 1 q of order `′, and specialise (see Definition 3.2)
U†A′(g) to it. Let ` be the order of q2, i.e. ` = `′/2 if `′ is even and ` = `′ if `′ is odd,
and choose r such that rL = q. We consider the specialisation Uq(g) := U†A′(g)⊗A′C
obtained by identifying x1/L with r.

Furthermore, rather than considering the category of all Uq(g)-modules, we limit
ourselves to the “admissible” ones; this piece of nomenclature is borrowed from
[NY15], and it corresponds to the “type 1” of [CP95].

Definition. A finite dimensional Uq(g)-module V is said to be admissible if, as a
vector space, has decomposition V =

⊕
λ V

λ such that for all λ

fv = f(λ)v ∀ f ∈ U†q (h) , v ∈ V λ ,

where U†q (h) = U†A′(h)⊗A′ C. From now on, Rep
(
Uq(g)

)
will stand for the category

of admissible Uq(g)-modules.

In other words we are excluding the analogue of the case σ 6= 0 described before
Sawin’s construction. Note that, by 3.2(5), each V λ is a weight space according to
Definition 11.2.2 in [CP95]. Of course, the specialised modules Vλ(q) := Vλ,A′ ⊗A′ C
are admissible but, as it is well known, not all of them are simple; more precisely,
we rather have the forthcoming Lemma A, known as linkage principle.

Prior to reporting it, we need to introduce the affine Weyl group W`. It is
generated by the reflections across the hyperplanes

Hα,k =
{
{(x, α) = k`} if D | `
{(x, α̌) = k`} if D - ` α ∈ Φ , k ∈ Z .

We list below some basic properties, and establish some nomenclature, for W` and
its translated action (defined as in 3.1(1)). If D | ` (D - `),

• W` =W o `Λ̌r (W o `Λr);

• W` is generated by the reflections across the hyperplanes orthogonal to the
simple roots together with the translation by `θ/D (`ϕ);

• W` acts freely and transitively on the set of the connected components of the
complement of

⋃
α,k(Hα,k − ρ), called Weyl alcoves;

• the principal Weyl alcove C`, defined as{
x ∈ E

∣∣ (x+ ρ, αi) > 0 for i = 1, . . . , l , (x+ ρ, θ) < `
(
(x+ ρ, ϕ) < `

)}
,

is a Weyl alcove, and its closure C` is a fundamental domain for the translated
action of W`.
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Lemma A (Linkage principle). Let λ, µ be dominant integral weights. Then there
exists a non-zero homomorphism from a subobject of Vλ(q) to a quotient of Vµ(q) if
and only if λ and µ belong to the same W`-orbit.

Remark. The PBW basis for U res−
A (g) given by Theorem 3.2 specialises to a basis

for the subalgebra U−q (g) generated by {F1, . . . , Fl}. Therefore, by the arguments
of § 20 of [Hum12], any Uq(g)-module generated by a vector of highest weight λ
is indecomposable and admits a unique irreducible quotient, which is the unique
irreducible module of maximal weight λ.

So, as a consequence of the linkage principle, if λ lies in C` then Vλ(q) is irre-
ducible. Indeed for any submodule we can consider the submodule generated by a
vector of highest weight µ ≺ λ in it; since µ is in the principal Weyl alcove as well,
µ = λ because C` is a fundamental domain.

We next recall the quantum version of Weyl’s formula, which expresses the quantum
dimension of the Weyl modules in terms of q and the root system. In the formula
qdim(V ) = qtrV (idV ), the categorical trace corresponding to the spherical structure
given by q2(ρ,·), i.e. qtrV (f) = Tr(q2(ρ,·)f) for all f in (V, V ).

qdim
(
Vλ(q)

)
=

∏
Φ3β�0

q(λ+ρ,β) − q−(λ+ρ,β)

q(ρ,β) − q−(ρ,β) , (1)

provided that `/D ≥ ȟ (` ≥ h) if D | ` (D - `); this condition is exactly the
requirement that each of the above denominators does not vanish.

4 Fusion categories

As it is well-known, Rep
(
Uq(g)

)
is not a semi-simple category, and a standard way

to circumvent the problem is introducing “tilting modules”. The representation
theory of quantum groups at roots of unity was studied in [APK90], and tilting
modules are treated in detail in [And92a].

We report the definition and basic properties of tilting modules in 4.1. Notably,
they form a monoidal subcategory Tq(g) of Rep

(
Uq(g)

)
, which behaves in many

respects like the semi-simple tensor category of classical g-modules. Indeed one
recovers a C∗ ribbon category (see Definition 1.5C) with a finite number of objects
Tq(g) after quotienting by a certain “negligible” ideal, through the basic categorical
procedure we recalled in Proposition 1.2; this will be done in 4.2.

Finally, 4.4 contains an explicit realisation of the mentioned quotient as a linear
subcategory of Rep

(
Uq(g)

)
, by the introduction of a suitable “truncated” tensor

product. In particular, we will have the forgetful functor W : Tq(g) → Hilb, which
will be shown to possess a natural weak tensor structure in Lemma 4.4A. Therefore,
combining the theory of 2.7 and 2.8, we will obtain a unitary coboundary weak Hopf
algebra, as shown in Lemma 4.4B.

The two mentioned Lemmas reformulate part of Theorem 26.1 of [CCP21]; on
the whole, subsection 4.4 is made possible by the analysis in [Wen98] about invariant
forms on tensor products of Weyl modules, which we will outline in 4.3.
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4.1 Tilting modules

Definition A. An admissible Uq(g)-module V has a Weyl filtration if there exists
a sequence of submodules

0 = V0 ⊂ · · · ⊂ Vp = V

with Vr/Vr−1 ' Vλr(q), where λr is a dominant integral weight, for r = 1 . . . , p.
An admissible Uq(g)-module V is said to be tilting if both V and its dual V ′

have Weyl filtrations.

We proceed to report some basic properties of tilting modules. The Proposition
and Lemma A are Propositions 11.3.3 and 11.3.4 of [CP95], while Lemma B is
Theorem 2 of [Saw06].

Proposition. • The dual of a tilting module is tilting;

• the direct sum of two tilting modules is tilting;

• any direct summand of a tilting module is tilting;

• the tensor product of two tilting modules is tilting.

Lemma A. For all dominant integral weight λ, there exists a unique up to isomor-
phism indecomposable tilting module Tq(λ) such that:

• the set of weights of Tq(λ) is contained in the convex hull of the W-orbit of λ;

• λ is the unique highest weight of Tq(λ), and dim
(
Tq(λ)λ

)
= 1;

• Tq(λ)′ ' Tq
(
− w0(λ)

)
, where w0 is the unique element of W mapping all

positive roots to negative roots.

Lemma B. For every dominant integral weight λ, qdim
(
Tq(λ)

)
6= 0 exactly if λ

lies in C`.

As reported in [Wen98], tilting modules may be also characterized in terms of
fundamental modules, which are the specialisation to q of the classical fundamental
modules (see chapter 13 of [Cart05]). Following [Wen98], for each Lie type we choose
a certain fundamental module V and let κ be its highest weight. For the classical
types, V is chosen as it follows (the vertices in the Dynkin diagrams are numbered
as in [Hum12] ):

Al) the natural vector module of sll+1, κ is the fundamental dominant weight λ1;

Bl) the spin module of o2l+1, κ = λl;

Cl) the natural vector module of sp2l, κ = λ1;

Dl) any of the two spin modules of o2l, κ equal to λl−1 and λl respectively;

E6) κ is any of λ1 or λ6, i.e. the corresponding vertex in the Dynkin diagram is
chosen between the two farthest from the branching point;
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E7, E8) κ equals respectively, λ7 and λ8, i.e. its vertex is the farthest from the branch-
ing point;

F4) κ = λ4, i.e. its vertex is connected to only one edge and α4 is short;

G2) κ = λ1, i.e. α1 is short.

Theorem. Suppose that κ lies in the principal Weyl alcove C`. Then an admissible
Uq(g)-module is tilting if and only if it is a direct sum of direct summands of tensor
powers of V (q).

In view of the above results, we fix some bits of notation: if D | ` (D - `) we write
k := `/D− ȟ (l− h), and h(λ) := (λ, θ̌)

(
(λ, φ)

)
for every dominant integral weight

λ. So λ lies in Cl exactly if h(λ) ≤ k. We also write Λ` := Λ+ ∩ C`. The integer k
is usually called level (see the introduction for the relation with the level for vertex
operator algebra modules).

Example. h(κ) is 1 for the classical types, E6 and E7; it is 2 for E8. If D | `
(D - `), it is 1 (2) for F4 and G2.

4.2 Negligible modules and the quotient category

Let Tq(g) be the full subcategory of Rep
(
Uq(g)

)
whose objects are the tilting mod-

ules. Thanks to Proposition 4.1, it inherits the monoidal structure of Uq(g), and
direct sums are well defined. However, we note that Tq(g) is not abelian, because
some morphisms fail to have a kernel; this may be seen by a basic analysis of the
indecomposable tilting modules with highest weight outside C` for g = sl2 (see
Example 11.3.9 in [CP95]).

In order to recover semi-simplicity, we need to quotient out a certain “negligible”
ideal of Tq(g) by means of the construction described in Proposition 1.2. As we shall
see, this actually yields a fusion category, i.e. we will have just a finite number of
non-equivalent simple objects, indexed by Λ`.

The following definition of negligible morphisms is the one given in 3.3 of 4.3.

Definition. A morphism f : S → T between tilting modules is said to be negligible
if qtrS(gf) = 0 for all morphism g : T → S. A tilting module is said be negligible
if its categorical trace is identically zero.

Example. For all dominant integral weight λ, the highest weight indecomposable
tilting module Tq(λ) (see Lemma 4.1A) is negligible if and only if qdim

(
Tq(λ)

)
= 0.

To see this, let qtrλ be the categorical trace on Tq(λ) and consider an endo-
morphism f of Tq(λ); writing s for the semi-simple part of f , qtrλ(f) = qtrλ(s).
Besides, Tq(λ) is indecomposable and each of the eigenspaces of s is a submodule,
there is just one of them, i.e. s is a multiple of the identity, so the claim about
negligibility of Tq(λ) follows from Lemma 4.1B.

Remark. As a consequence, given a tilting module T we can apply Proposition 4.1
and Lemma 4.1A to obtain a decomposition T '

(⊕
λ∈Λ` nλTq(λ)

)
⊕N , where the

nλ are non-negative integers and N is negligible.
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Moreover, by Lemma 3.3 Vλ(q) is irreducible for all λ in Λ`; hence its dual is
V−w0(λ)(q) as in the classical case. Since −w0(ρ) = ρ, V−w0(λ)(q) is in turn irre-
ducible, and we conclude that Tq(λ) = Vλ(q) for all λ in Λ`. Therefore the above
decomposition may be rewritten as

T '
( ⊕
λ∈Λ`

nλVλ(q)
)
⊕N . (1)

Proposition. Negligible morphisms form an ideal N of Tq(g) (see Proposition 1.2),
coinciding with the ideal generated by the negligible tilting modules, or more properly
by the identities idT for T negligible. Moreover, if f is a negligible morphism so are
f ⊗ g and g ⊗ f for all morphism g.

The quotient monoidal category Tq(g) constructed as in Proposition 1.2 is a
semi-simple abelian category and the restriction of the quotient map to the linear
subcategory of tilting modules whose negligible part in the decomposition (1) vanishes
is a linear equivalence. Therefore the Weyl modules Vλ(q) with λ ranging in Λ` form
a complete collection of non-equivalent simple objects for Tq(g).

Finally, the duality pairs, the braiding and the ribbon obtained by taking the
suitable quotients turn Tq(g) into a ribbon category (see Definition 1.5C).

Proof. If g : T → U is negligible so is any composition fgh, since qtr(efgh) =
qtr(hefg); it is also clear that if a morphism f factors through a negligible module
f itself is negligible, so the ideal composed by the linear spans of such morphism is
contained in N .

On the other hand, let f : T → U be negligible, and consider idempotents
idT = ps + pn, idU = qs + qn providing the decomposition (1) for T and U . Then

0 = qtrT (gf) = qtrT (gqsfps) ∀ g : U → T .

But the Weyl modules Vλ(q) with λ in Λ` are irreducible and they have non-zero
quantum dimension by Lemma 4.1B, so we must have qsfps = 0, i.e. f = qnf +
qsfpn; the first sentence in the statement is proved. Moving on, let us also consider
a tensor product f ⊗ g for an arbitrary morphism g between tilting modules V and
W ; as just shown we may write f = f1f2 with f1 in (N,U), f2 in (T,N) and N
negligible. So we have

qtrT⊗V
(
h(f ⊗ g)

)
= qtrT⊗V

(
(f1 ⊗ g)(f2 ⊗ idW )h

)
= qtrN⊗V

(
(f2 ⊗ idW )h(f1 ⊗ g)

)
∀ h ∈ (U ⊗W,T ⊗ V ) .

Now End(N ⊗ V ) ' N ⊗ (V ⊗ V ′) ⊗ N ′ ' N ⊗ End(V ) ⊗ N ′, and by taking the
categorical trace of the middle factor we obtain a homomorphism γ : End(N⊗V )→
End(N) (usually called a “contraction”, see 3.2 in [Wen98]) such that qtrN⊗V =
qtrN ◦γ; in particular qtrN⊗V = 0 sinceN is negligible, so qtrT⊗V

(
h(f⊗g)

)
vanishes

for all h, i.e. f ⊗ g is negligible.
Given that all the assumptions of Proposition 1.2 are met, we construct the

quotient monoidal category Tq(g). By the above discussion, the Weyl modules with
highest weights in Λ` form a complete collection of mutually non-equivalent simple
objects for Tq(g), so the restriction of the statement is indeed a linear equivalence.
The final sentence is self-evident.
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4.3 Invariant forms on tensor products

For the rest of current section, we fix a root of 1 of the form q = e
iπ
` with D | `,

and also assume ` to be so large that the highest weight of the fundamental module
(see 4.1) is contained in Λ`. By Example 4.1 this amounts to assume the level
k = `/D− ȟ to be at least 1 except for type E8, for which the level is needed to be
at least 2.

Lemma. Let λ be a dominant integral weight and ηλ a highest weight vector in
the Weyl module Vλ. Then there is a unique invariant sesquilinear form (·, ·) on
Vλ with (vλ, vλ) = 1, and such form is Hermitian; the adjectives “Hermitian” and
“invariant” mean respectively

(v, w) = (w, v) and (av, w) = (v, a∗w) ∀ v, w ∈ Vλ , a ∈ Ux(g) . (1)

Furthermore, consider the arc Iλ =
{
qt := eıπt

∣∣ |t| < 1
m−D

}
, where m = (λ+ ρ, θ).

Then the specialised module Vλ(qt) is irreducible for all qt in Iλ, and (·, ·) specialises
to an invariant positive definite Hermitian form.

We also note that λ lies in C` exactly if q = e
ıπ
` is in Iλ, and then for all |t| < 1

`
such that qt is a root of 1 λ also lies in C`t, where `t is the order of q2

t .

Proof. The first part of the statement merges Lemma 2.2 and Proposition 2.3 in
[Wen98]. One considers the Ux(g)-action

av := S−1(a∗) a ∈ Ux(g) , v ∈ Vλ

on the conjugate Vλ (see the end of 3.1) and provides the dual V ′λ with the action

〈v, af〉 := 〈S−1(a)v, f〉 a ∈ Ux(g) , v ∈ Vλ , f ∈ V ′λ .

Then Vλ and V ′λ are isomorphic because they are both irreducible with highest
weight −w0(λ), and the isomorphism is used to define the desired form. We refer
to Proposition 2.3 in [Wen98] for the Hermitianity of (·, ·); its uniqueness follows by
cyclicity of vλ.

The second part of the statement is Proposition 2.4 in [Wen98]. We claim that
if t 6= 0 and |t| < 1

m−D then
(λ+ ρ, θt) ≤ `t , (2)

where `t is the order of q2
t , which we understand to be +∞ if qt is not a root of 1;

θt = θ if D | ` (we take that to be true if `t = +∞), whereas θt = ϕ if D - `.

Proof of inequality (2). The claim is empty if q is not a root of 1; otherwise, we
note that |t| < 1

m−D implies `t > m−D, since 2πr|t| < 2π for all r ≤ m−D. We
exhaust the dichotomy D | `t or D - `t.

(D | `t) We have θt = θ and we need to check m ≤ `t. Now D | (µ, θ) for all integral
weight µ; thus both m and `t are multiples of D and then m − D < `t is
equivalent to m ≤ `t.

(2 = D - `t) Now θt = ϕ and we need (λ+ ρ, ϕ) ≤ `t. We note that

(λ+ ρ, ϕ) = m− (λ+ ρ, θ − ϕ) < `t +D − (λ+ ρ, θ − ϕ) ;

but (λ+ ρ, ϕ) < (λ+ ρ, θ) are both integers and D = 2, so (λ+ ρ, ϕ) < `t + 1.
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(3 = D - `t) Again θ = ϕ, and we check (λ+ρ, ϕ) ≤ `t. The type of g isG2; (λ+ρ, θ−ϕ) = 4
and we conclude as in previous case.

Therefore λ lies in C`t if qt is a root of 1, whence Vλ(qt) is irreducible for all t
in Iλ by Remark 3.3 (recall that if qt is not a root of 1 Vλ(qt) is irreducible).

By (vλ, vλ) = 1 and the second of (1), (·, ·) restricts to a sesquilinear form on Vλ,A
with values in A, so it specialises to a non-zero complex valued invariant Hermitian
form. The radical V (q)⊥ is a submodule by invariance, so it is the null space for
all t in Iλ by irreducibility, namely (·, ·) is non-degenerate. Moreover, since (·, ·) is
positive definite at qt = 1 and its signature is continuous in t, it is also positive
definite for all qt in Iλ.

Finally, using D | ` as shown above, (λ+ ρ, θ) ≤ ` is equivalent to 1
` <

1
m−D ; by

the claim, this in turn implies (λ+ ρ, θt) ≤ `t for all |t| < 1
` .

We now extend the Lemma to tensor products, first in the general case and
subsequently for the specialisation to q, which once again requires special care.

The general case

Given Weyl modules with highest weights λ1, . . . , λn, we consider the tensor product
W := Vλ1 ⊗ · · · ⊗ Vλn and endow it with the product form

(ξ1 ⊗ · · · ⊗ ξn, η1 ⊗ · · · ⊗ ηn)pn :=
n∏
k=1

(ξk, ηk) ξk, ηk ∈ Vλk , k = 1, . . . n .

The form (·, ·)pn fails to be invariant, because the coproduct of Ux(g) does not com-
mute with its involution. Rather, the first of identities 3.1(2) may be rewritten as
∆̃ = ∆op (see Definition 2.4B for this notation). Therefore, since R twists ∆ to
∆op, it may be used inductively on n to perturb (·, ·)pn to an invariant form (·, ·)′n.
More precisely, realising W as the tensor product W1⊗W2, where W1 and W2 have
n1 and n2 factors, we put

(ξ1 ⊗ ξ2, η1 ⊗ η2)′n := (ξ1, rη1)′n1(ξ2, sη2)′n2 ξ1, η1 ∈W1 , ξ2, η2 ∈W2 , (3)

where we put R := r⊗s; of course we define (·, ·)′ = (·, ·)p for n = 1. The invariance
of (·, ·)′n is checked exactly as in 2.4(3). The fact that (·, ·)′n does not depend on the
realisation of the tensor product is again checked by induction, using the second
and third identities in Lemma 3.2 (namely the fact that R is a quasi-triangular
structure) and we also find expressions for the overall element Rn in Ux(g)⊗n such
that (·, ·)′n = (·, Rn·)pn. E.g.

(idn⊗ · · · ⊗ id3⊗c1,2)(idn⊗ · · · ⊗ id4⊗c(1⊗2),3) · · · c(1⊗···⊗n−1),n = ΣRn ,

where c is the braiding corresponding to R and we wrote k in place of Vλk for
k = 1, . . . , n for better readability. Σ is the permutation associated to the braid of
the composition at the left-hand side. Alternatively, we could have used any other
composition with the same braid, such as

(cn−1,n ⊗ idn−2⊗ · · · ⊗ id1)(cn−2,(n−1⊗n) ⊗ idn−2⊗ · · · ⊗ id1) · · · c1,2⊗···⊗n .
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We recall (see [Dri89] for a proof) that the ribbon element v corresponding to the
charmed element ω (see the end of 3.2) acts on each Weyl module Vν as the scalar
x−G(ν), where G(ν) = (ν, ν + 2ρ).

In order to treat v as an element of Ux(g), we map the usual tensor products
Ux(g)⊗M to their action on

∏
λ1,...,λM∈Λ+ End(Vλ1)⊗ · · ·⊗End(VλM ), as for Sawin’s

construction; this defines a homomorphism α from Ux(g) to the discrete Hopf Q(x)-
algebra of natural transformations of the forgetful functor F : Rep

(
Ux(g)

)
→

VecQ(x).
Since the action of R obviously factors through α, the application of α ⊗ α to

R may be implied in the defining formula (3). Furthermore, by semi-simplicity of
Rep

(
Ux(g)

)
, we can define a unitary square root w of v in the mentioned discrete

Hopf algebra by requiring w to act as the scalar x−
G(ν)

2 on each Weyl module Vν .
Now, in keeping with 2.7, we define a new form (·, ·)n by replacing R with its

deformation R∆(w)w−1 ⊗ w−1 in (3), so

(·, ·)n := (·,Ξn·)′n Ξnξ := x
G(ν)−

∑n

k=1 G(λk)
2 ξ (4)

whenever ξ is in a submodule of Vλ1⊗· · ·⊗Vλn with highest weight ν. We henceforth
drop the subscript n from (·, ·)pn, (·, ·)′n and (·, ·)n.

Proposition A. The form (·, ·) is invariant and Hermitian.

Proof. Invariance follows from invariance of (·, ·)′ together with the fact that ∆(w)w−1⊗
w−1 commutes with ∆(a) for all a in Ux(g).

Since (·, ·)p is Hermitian, we are left to show that Ωw := R∆(w)w−1 ⊗ w−1 is
self-adjoint. To this aim, we compute

Ωw = R∆(w)w−1 ⊗ w−1 = w−1 ⊗ w−1∆op(w)R = w∗ ⊗ w∗∆(w∗)∗R ,

where we used R∆(·) = ∆op(·)R, ∆op = ∆̃ and w∗ = w−1. Therefore

Ω∗w = R∗∆(w−1)w ⊗ w = RR−1R∗∆(w−1)w ⊗ w
= R(R21R)−1∆(w−1)w ⊗ w = R∆(v)v−1 ⊗ v−1∆(w−1)w ⊗ w = Ωw ,

having used R∗ = R−1
21 (Lemma 3.2).

Remark. Consider the two adjoints ·∗ and ∗· defined by the non-Hermitian form

x

∑r

i=1 G(λi)
2 (·, ·)′ on the tensor product Vλ1 ⊗ · · · ⊗ Vλr : given V = Vµ1 ⊗ · · · ⊗ Vµs ,

W = Vν1 ⊗ · · · ⊗ Vνt and a morphism f in (V,W ),

x

∑t

k=1 G(νk)
2 (fv, w)′ =: x

∑s

j=1 G(µj)

2 (v, f∗w)′

x

∑t

k=1 G(νk)
2 (w, fv)′ =: x

∑s

j=1 G(µj)

2 (∗fw, v)′
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for all v in V and w in W . We observe that ·∗ = ∗·. Indeed, denoting the adjoint
relative to (·, ·)p by ·†, we have

f∗ = x
−
∑s

j=1 G(µj)

2 R−1
s f †Rtx

∑t

k=1 G(νk)
2 and

∗f = x

∑s

j=1 G(µj)

2 (R∗s)−1f †R∗tx
−
∑t

k=1 G(νk)
2 , so

f∗ = x
−
∑s

j=1 G(µj)(R−1
s R∗s)(∗f)(R−1

t R∗t )−1x
∑t

k=1 G(νk) .

Now, using R∗ = R−1
21 , one computes that R−1

r R∗r acts on each submodule with
highest weight λ of the generic Vλ⊗· · ·⊗Vλr as the scalar x−G(λ)+

∑r

i=1G(λi), whence
our claim follows, also keeping in mind that f∗ and ∗f are intertwiners, because (·, ·)′
is invariant. It is checked analogously that ·∗ and ∗· coincide with the usual adjoint
defined by the Hermitian form (·, ·).

The specialisation to q

We now deal with the problem of specialising the forms (·, ·)′ and (·, ·) to the root
q. As in 3.3, we consider the specialisation Uq(g) = U†A′(g) ⊗A′ C obtained by
identifying x1/L with the L-th root of q e

ıπ
L` ; similarly the specialisation to q of a

U†A(g) module V will be denoted V (q) := V ⊗A′ C. Given U†A(g) modules V1, V2 and
a morphism f in (V1, V2), we write

f(q) : V1(q)→ V2(q) f(q)(v ⊗ p) = f(v)⊗ p(r) ∀ v ∈ V1 , p ∈ A′ .

As already observed in the proof of the above Lemma, the form (·, ·) on a single
Weyl module Vλ restricts to a Hermitian form on Vλ,A with values in A, for all λ in
Λ+; moreover if λ lies in C` the specialisation is a non-degenerate complex form on
the irreducible module Vλ(q). We therefore have the following close consequence.

Proposition B. Let λ1, . . . , λn be dominant integral weights lying in C`; consider
the tensor product W := Vλ1 ⊗ · · · ⊗ Vλn and the forms (·, ·)p and (·, ·)′ defined on
it. Then

• (·, ·)p specialises to a non-degenerate Hermitian form (·, ·)pq on W (q);

• (·, ·)′ specialises to an invariant non-degenerate form (·, ·)′q on W (q).

Proof. The first point simply follows from the Lemma. Furthermore R is an invert-
ible element of U†A′(g)⊗2 by Lemma 3.2, so it specialises to an invertible element of
Uq(g)⊗2; the same is true for each Rn (except that it is in Uq(g)⊗n). The second
point follows from the first one together with the definition of (·, ·)′.

Contrary to the situation of (·, ·)p and (·, ·)′, the form (·, ·) cannot be specialised
to q. The reason is that the square root w introduced before the defining formula
(4) by semi-simplicity of Rep

(
Ux(g)

)
is not guaranteed to belong in the integral

form U†A′(g), which would be needed to just proceed as plainly as in Proposition B.
In fact, we see that the integral form cannot contain a square root of the ribbon

element: if it did, we could specialise the (·, ·) form on any tensor product Vλ ⊗ Vµ,
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e.g. for λ, µ in Λ`; then the specialised form would have to be positive by the
continuity argument of the Lemma, whence Vλ(q) ⊗ Vµ(q) would be completely
reducible. Of course, this is actually false for some λ, µ in Λ`.

Nevertheless, in the scenario of Proposition B, the square root w(q) may still
be defined on any submodule of W (which is a tilting module, as well as all its
submodules, by Proposition 4.1) with null negligible part, because such submodules
are direct sums of Weyl modules with highest weight in Λ`. Moreover if p is a
self-adjoint idempotent element of End(W ) then ∗p(q) = p(q) = p(q)∗ with respect
to (·, ·)′q (see the Remark) so the restriction of the form to p(q)W (q) is still non-
degenerate.

Summarizing, if a self-adjoint idempotent element p of End(W ) is such that
p(q)W (q) has null negligible part then we can perturb the restriction of (·, ·)′q to
p(q)W (q) as in formula (4), and we thus obtain a positive definite invariant form
on p(q)W (q). The following Theorem provides idempotents as desired in the case
of tensor products of the form Vλ ⊗ V (V is the fundamental module) for λ in Λ`;
this will be enough for our purposes by Theorem 4.1.

Theorem. Let λ be a dominant integral weight in Λ`, and consider the tensor
product W := Vλ ⊗ V . Then there exists an idempotent p in End(W ), self-adjoint
with respect to the form (·, ·) on W , such that:

• pW is isomorphic to a direct sum ⊕
λ∈Λ` nλVλ, where the nλ are non-negative

integers;

• the restriction of (·, ·)′q to p(q) is non-degenerate and its following perturbation
is positive definite:

(·,Ξ·)′q Ξξ := q
G(ν)−G(λ)−G(κ)

2 ξ (5)

whenever ξ is in a submodule of p(q)W (q) with highest weight ν;

•
(
1− p(q)

)
W (q) is negligible.

Moreover, the second point still holds upon replacing q with qt := eıπt, through the
whole arc given by |t| ≤ 1/`.

The Theorem corresponds to Lemma 3.6.1, Lemma 3.6.2 and Proposition 3.6 in
[Wen98], to which we refer for a proof. We just point out that the final assertion
simply follows from the fact that if qt is a root of 1 then the relative principal Weyl
alcove contains the one for q. On the other hand, as the order of qt increases the
negligible part of W (qt) eventually reduces to zero, as it is of course the case for
qt = 1.

4.4 The forgetful functor on the quotient category

Applying iteratively Theorem 4.3, we find for each positive integer n an idempo-
tent pn in End(V ⊗n), self adjoint with respect to (·, ·) such that pn(q)V ⊗n(q) is
isomorphic to a direct sum of specialised Weyl modules with highest weight in the
principal alcove and

(
1− pn(q)

)
V ⊗n(q) is negligible. Each pn(q)V ⊗n(q) is endowed

with the form (·, ·)q defined as in (5).
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The category Gq(g) We are now set up to use Theorem 4.1 to realise (see the
forthcoming Proposition B) Tq(g) as a linear subcategory Gq(g) of Rep

(
Uq(g)

)
, also

endowed with the structure of a C∗ tensor category:

• the generic object is an enumeration of a finite set of pairs (n, p) where n is
a positive integer and p is an idempotent of End

(
V ⊗n(q)

)
with p < pn(q),

self-adjoint with respect to (·, ·)q;

• the generic morphism
{
(nj , qj)

}N
j=1 →

{
(mi, pi)

}M
i=1 is a matrix M ×N where

the (i, j) entry is an element of pi(V ⊗j , V ⊗i)qj .

The composition for Gq(g) is the matrix product. The involution is obtained by
taking the Hermitian conjugate matrix, where we mean the ·∗ operation for the
conjugate of each entry.

Turning to the tensor product, given p < pm, p′ < pm′ , q < pn, q′ < pn′ , f in
(p, p′) and g in (q, q′) we put

f⊗g := pm′+n′f ⊗ gpm+n , (1)

and extend by bilinearity. The following simple result plays an essential role in the
subsequent calculations.

Proposition A. Let f : T1 → T2 be a morphism between tilting modules, both with
null negligible part. If f factors through a negligible module then f = 0.

Proof. T1 and T2 are each isomorphic to a direct sum of specialised Weyl modules
with highest weights in the principal Weyl alcove. Moreover it follows from Weyl’s
formula 3.3(1) that qdim

(
Vλ(q)

)
is positive for all λ in Λ`. From this fact it follows

that qtr(f∗f) = 0 implies f = 0.
By semi-simplicity, it suffices to verify the implication assuming that T1 and T2

are both a multiples of a certain Weyl module; then if f 6= 0 qtr(f∗f) is qdim
(
Vλ(q)

)
times the usual trace of a positive definite matrix, so qtr(f∗f) > 0.

Coming back to our statement, let N be a negligible module, g in (T1, N) and
h in (N,T2) such that f = hg; then

qtrT1(f∗f) = qtrT1(g∗h∗hg) = qtrN (gg∗h∗h) = 0 .

With the Proposition at our disposal, ⊗ is easily checked to be a bifunctor;
besides, one also sees that Gq is a strict monoidal category. More precisely, given
self-adjoint idempotents P (nk) < pnk for k = 1, . . . N ,

P (k1)⊗ · · ·⊗P (kN ) = pnk1+···+nkN P
(k1) ⊗ · · · ⊗ P (kN )pnk1+···+nkN .

Proposition B. The category Gq is tensor equivalent to the quotient Tq(g) by the
inclusion of Gq in Tq(g) followed by the quotient functor.

Proof. As a morphism of Tq(g), each pn is the identity of End(V ⊗n); the identical
maps are immediately seen to be a tensor structure. In view of Proposition 4.2,
the stated functor sends a complete collection of mutually non-equivalent simple
objects for Gq(g) into one for Tq(g) and is therefore an equivalence.
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We also mention that, by the very Definition 4.2, the quantum traces lower to
the quotients, and we check as in Proposition A that the Hermitian form

f, g 7→ qtrU (fg∗) f, g ∈ (T,U)

is actually a scalar product on the morphism space (T,U), for all T, V tilting mod-
ules. Therefore, according to the definition in 2.3 of [Row06], Tq(g) is a unitary
ribbon category for q fixed as in the beginning of 4.3; this is Wenzl-Xu theorem.

It is also worthwhile to mention that as soon as D divides the order of q2 (since
q2 = eı

2π
` and D | `, this is our case) Tq(g) is modular. We refer to [Row06] for

a detailed account on the problem of modularity of Tq(g). The very interesting
relation between modular tensor categories and topological conformal field theories
is treated in [Tur92] and [Tur94].

The weak tensor structure We denote by W : Gq(g) → Hilb the forgetful
functor and we choose, for each weight λ in Λ`, a self adjoint idempotent pλ <
pnλ such that pλ(q)V ⊗nλ(q) ' Vλ(q). By Proposition 4.2, they form a complete
collection of mutually non-equivalent simple objects for Gq(g); therefore we may
define structure maps F,G for W by prescribing

Fλ,µ := (pλ⊗pµ)(pλ ⊗ pµ) Gλ,µ := (pλ ⊗ pµ)(pλ⊗pµ) . (2)

We remark that, for each λ, µ in Λ`,

Fλ,µGλ,µ = pnλ+nµ(pλ ⊗ pµ)pnλ+nµ(pλ ⊗ pµ)pnλ+nµ(pλ ⊗ pµ)pnλ+nµ

= pnλ+nµ(pλ ⊗ pµ)pnλ+nµ = pλ⊗pµ ,

where we used Proposition A to cancel the factors pnλ+nµ in the middle of the
expression; so FG is indeed identical. Moreover, since F e G are compatible with
orthogonal direct sums by naturality, we obtain expressions for them at generic
objects P (n) < pn and P (m) < pm.

To this aim, consider Sj : pλj → P (n) and Tk : pµk → P (m) such that

S∗jSj′ = δj,j′pλj ,
∑
j

SjS
∗
j = P (n) , T ∗kTk′ = δk,k′pλk ,

∑
k

TkT
∗
k = P (m) .

We note that, being ⊗ and ⊗ both bilinear and commuting with ∗, the products Sj⊗
Tk and Sj⊗Tk enjoy the same properties, i.e. they provide orthogonal decomposition
for P (n) ⊗ P (m) and P (n)⊗P (m) respectively (the first with respect to the products
form). We therefore have the expressions

FP (n),P (m) =
∑
j,k

Sj⊗TkFλj ,µkS
∗
j ⊗ T ∗k , GP (n),P (m) =

∑
j,k

Sj ⊗ TkGλj ,µkS
∗
j⊗T ∗k .

Lemma A. The maps F and G form a weak tensor structure on W .

Proof. Being Gq strict, we have to prove that

FP,Q⊗R ◦ (P ⊗ FQ,R) ◦ (GP,Q ⊗R) ◦GP⊗Q,R = P⊗Q⊗R , (3)
FP⊗Q,R ◦ (FP,Q ⊗R) ◦ (P ⊗GQ,R) ◦GP,Q⊗R = P⊗Q⊗R ; (4)
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by naturality, we may limit ourselves to the case P = pλ, Q = pµ, R = pν con λ, µ,
ν in Λ`.

In order to evaluate, for instance, (3) we have to consider orthogonal decom-
positions of pλ⊗pµ and pµ⊗pν , say by Sj and Tk; however the left-hand side is
an endomorphism of pλ⊗pµ⊗pν = pnλ+nµ+nνpλ ⊗ pµ ⊗ pνpnλ+nµ+nν . So, applying
Proposition A together with the fact that f ⊗ g is negligible as soon as either of f, g
is (see Proposition 4.2), we may cancel all the pk appearing in the middle of the
expression. E.g.

Fpλ,pµ⊗pν =
∑
k

(pλ⊗Tk)Fλ,µk(pλ ⊗ T ∗k ) =∑
k

pnλ+nµ+nν (pλ ⊗ Tk)pnλ+nλk (pnλ ⊗ pnλk )pnλ+nλk (pnλ ⊗ pnλk )(pλ ⊗ T ∗k )

reduces to

pnλ+nµ+nν
∑
k

(pλ ⊗ Tk)(pλ ⊗ T ∗k ) = pnλ+nµ+nνpλ ⊗ pµ ⊗ pν .

Treating the other factors at the left-hand side of (3) likewise we see that it indeed
equals pλ⊗pµ⊗pν . Identity (4) is verified just analogously.

We can now apply Theorem 2.4 and Corollary 2.8A to obtain a unitary weak
Hopf algebraA(g, q,W), with a unitary tensor equivalence Gq(g)→ Rep

(
A(g, q,W)

)
.

Remark. A different choice of the pλ affects A(g, q,W) just by a trivial twist (see
Definition 2.5A); in order to outline the easy verification, we call F ′ and G′ the
structure maps for the new choice. We have to check

G′F = G′F ′GF , GF ′ = GFG′F ′ ,

and we can take subscripts among the pλ. So we would need to use the general
(summed) expression for G′ ed F ′; again Proposition A yields the needed cancella-
tions.

Finally, a different choice of the pn, say p′n, produces a category G′q unitarily
tensorially isomorphic to Gq. The isomorphism, is defined as follows:

E : Gq → G′q E(f) = p′nfp
′
m for f ∈ (p, q) , p < pm , q < pn . (5)

It is clearly a ∗-functor, and, marking the tensor product of G′q by ⊗′,

E(p)⊗′E(q) = p′m+n(p′mpp′m)⊗ (p′nqp′n)p′m+n = p′m+n(p⊗ q)p′m+n = E(p⊗q) ,

having used Proposition A once again. Therefore E is a tensor ∗-isomorphism with
identical tensor structure, whose inverse is obtained by swapping pk and p′k in (5)
for k = m,n.

We now take into account the quasi-triangular structure of Uq(g), and see how it
reflects on A(g, q,W). As we already observed (in the proof of Proposition 4.3A) the
coproduct of Uq(g) satisfies ∆̃ = ∆op, and R∗ = R−1

21 (Lemma 3.2); these properties
actually carry over to A(g, q,W) through the truncation procedure we discussed,
making it into a unitary coboundary weak Hopf algebra.
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Lemma B. The unitary weak Hopf algebra A(g, q,W), endowed with the quasi-
triangular structure and the root of the ribbon element arising from Gq(g) (considered
with the braiding and the root of the ribbon element induced by the equivalence of
Proposition B) as in 2.3, is a unitary coboundary weak Hopf algebra.

Proof. In view of Theorem 2.7, applied to the particular case where F is the identity
functor, we are left to check the identities

Fp,qΣ(p, q)F ∗p,q =W(cwp,q) , G∗p,qΣ(q, p)Gq,p =W(cwp,q)−1 . (6)

We just prove the first identity, forgoing the analogous treatment of the other one.
The idempotents p < pm, q < pn can be taken among the chosen pλ, so

Fp,q = (p⊗q)(p⊗ q) = pm+np⊗ qpm+np⊗ q ;

all of the Hilbert spaces we are considering are subspaces of V ⊗m+n, and we shall
treat them in terms of idempotents and partial adjoints implying the functor S of
I(3) (this is also the reason why we wrote Σ(p, q) rather than Σ

(
W(p),W(q)

)
in

(6)).
In order to compute F ∗p,q, we note that the domain is taken with the product of

the (·, ·) forms on pmV ⊗m and pnV ⊗n, whereas the the codomain is taken with (·, ·)
on v⊗m+n. We define

Ωk := pkΞkpkρ⊗k(Rk) .

Here Ξk is defined as in Theorem 4.3, while pk, pk are such that pkpk = id, pkpk = pk;
Rk is the one for the (·, ·)′ form (see 4.3) and ρ is the homomorphism for the Uq(g)-
action on V . Therefore, by definition of (·, ·),

F ∗p,q = Ωm
−1 ⊗ Ωn

−1F †p,qΩm+n ,

where † denotes the adjoint with respect to (·, ·)p on V ⊗m+n; besides p is orthogonal
with respect to Ωm, q is to Ωn and p⊗q is to Ωm+n, thus

p† = ΩmpΩm
−1 , q† = ΩnqΩn

−1 , (p⊗q)† = Ωm+n(p⊗q)Ωm+n
−1 .

Hence we have

F ∗p,q = Ωm
−1 ⊗ Ωn

−1(Ωm ⊗ Ωn)(p⊗ q)(Ωm
−1 ⊗ Ωn

−1)
Ωm+n(p⊗q)Ωm+n

−1Ωm+n

= (p⊗ q)(Ωm
−1 ⊗ Ωn

−1)Ωm+n(p⊗q) .

Therefore on the whole

Fq,pΣ(p, q)F ∗p,q =(q⊗p)(q ⊗ p)Σ(p, q)(p⊗ q)(Ωm
−1 ⊗ Ωn

−1)Ωm+n(p⊗q)
=pm+nΣ(p, q)(p⊗ q)(Ωm

−1 ⊗ Ωn
−1)Ωm+n(p⊗ q)pm+n .

In the final passage we used Σ(p, q)(p ⊗ q) = (q ⊗ p)Σ(p, q) and applied Lemma A
to eliminate the pm+n in the middle of the expression.

Let us now turn to evaluate the right-hand side of (6). As stated in Proposition
B the needed cw for Gq is pulled back from the one for Tq(g). The braiding for
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the latter is just the one for Tq(g) seen in the quotient; on the other hand w is
determined by its values q−

G(ν)
2 on each Weyl module with highest weight ν in Λ`.

The corresponding morphisms in Gq are just given by the representatives between
the appropriate pk. In conclusion

W (cwp,q) =pm+nΣ(p, q)(p⊗ q)ρ⊗m+n((∆m ⊗∆n)R
)

(imΞm−1jm)⊗ (inΞn−1jn)(p⊗ q)im+nΞm+njm+npm+n .

Now, we note that

(Ωm
−1 ⊗ Ωn

−1)Ωm+n =(
imΞm−1jmρ

⊗m(Rm−1)
)
⊗
(
inΞn−1jnρ

⊗n(Rn−1)
ρ⊗m+n(Rm+n)im+nΞm+njm+n =(

(imΞm−1jm)⊗ (inΞn−1jn)
)
ρ⊗m+n((∆m ⊗∆n)R

)
(im+nΞm+njm+n) ,

taking into account that (Rm−1⊗Rn−1)Rm+n = (∆m⊗∆n)R for last passage. Fi-
nally the first factor in last line commutes with the second (imΞm−1jm and inΞn−1jn
are intertwiners). Therefore, substituting the new expression of (Ωm

−1⊗Ωn
−1)Ωm+n

in the one of Fq,pΣ(p, q)F ∗p,q, we see that the latter coincides with the expression of
W(cwp,q).
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Twisted fusion categories

By the quantum Racah formula (see [Saw06]), the fusion rules of the quotients
Tq(g) introduced in Proposition 4.2 depend on q only through the order ` of q2.
Very remarkably, as shown in [KW93], one can associate to an arbitrary tensor
category C with the same fusion rules (the product of the Grothendieck ring of C,
recalled at the beginning of 2.5) as the mentioned quotients, for g = slN and ` fixed,
a pair of non-zero complex numbers (qC , τC), defined up to replacing (qC , τC) with
(q−1
C , τ−1

C ), in such a way that C is determined by the pair up to tensor equivalence.
Moreover, all possible pairs are actually reached by some twisted versions of

Tq(g) itself. Less vaguely, such twists are obtained perturbing the associativity
morphism by a certain “invariant 3-cocycle” defined in terms of an N -th root of 1 w
(more details are reported in Example 5.2). Then qC = q2 and τC = (−1)NqN−1w.

The present chapter arises form [NY15], where the authors settle down the prob-
lem of reconstructing the mentioned twisted categories as representation categories
of quantum groups of their own, for q a positive real number (so ` = +∞); this is
the case when the predual of the specialised form Uqg introduced in 3.3 is actually
a compact quantum group in the sense of Woronowicz.

On the other hand, we shall deal with the same problem for q a non-trivial root
of 1. The treatment of [NY15] carries over without particular difficulty. However,
it is interesting to note that Sawin’s presentation of the QUE algebras (see 3.2)
turns out to be nicely suited for the adaptation needed, and we will get to take
advantage of the explicit knowledge of the weak tensor structure of the forgetful
functor W on the quotient category Gq(g) presented in 4.4. As in the computations
there discussed, Proposition 4.4A will play a crucial role.

More interestingly, the twisted versions of Gq(g) fit immediately in the general
framework of our first chapter as representation categories of twists of the discrete
weak Hopf algebra A(g, q,W) introduced in 4.4, in the sense of 2.5. Furthermore,
the twisted algebras are actually still unitary weak Hopf algebras, providing us
with more examples of this remarkable algebraic structure. Their representation
categories are also granted not to be equivalent to Gq(g) since as in the compact
case (see Remark 4.4 in [NY15]), as observed in [CCP21], they are not braided.

Finally, the twists of A(g, q,W) can be tracked back to a suitable central exten-
sion of the QUE algebra we started with, as in 2.1 of [NY15]. Even though in our
case one has to go through the categorical quotient and the construction discussed
in 4.4, this adaptation does not specially require further work; incidentally, Sawin’s
presentation of the QUE algebra will still come in very handy.
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5 Reconstructing the twisted categories

Throughout this section, unless otherwise stated, g will be a simple complex Lie
algebra as in 3.1, and we also adopt all further structure and notation therein
introduced. Furthermore, q will be a complex root of 1 as at the beginning of 4.3,
so that all the constructions leading to the unitary coboundary weak Hopf algebra
A(g, q,W) go through (see Lemma 4.4B). More generally, we will freely refer to the
various objects defined in this scenario through previous chapter.

5.1 Abelian quantum subgroups and cohomology

Let us consider the specialised QUE algebra Uq(g) introduced in 3.3, and the cat-
egory of tilting modules Tq(g) (from the beginning of 4.2). Even though the latter
is not a semi-simple abelian category, the natural endomorphisms of the forgetful
functor W0 : Tq(g)→ Hilb form a complex unital associative algebra A(g, q) just as
in 2.1; a coassociative coproduct with its counit is defined as well, since W0 comes
with its obvious tensor structure. Of course non-semi-simplicity of Tq(g) prevents
A(g, q) from being a discrete algebra (Definition 2.1B).

The reason why we introduced A(g, q) is its immediate relation with the discrete
unitary coboundary weak Hopf algebra A(g, q,W) constructed from the forgetful
functor W : Gq(g) → Hilb in previous section. If η is a natural endomorphism of
W0, we may limit ourselves to consider the values η takes on the linear subcategory
Gq(g) ⊂ Tq(g), thus obtaining an algebra morphism

A(g, q)→ A(g, q,W) η 7→ [η] . (1)

For greater generalised tensor powers one likewise restricts all the arguments of
a given HT1,...,Tn to belong to Gq(g). All these morphisms are actually surjective
because of the “semisimple+negligible” decomposition discussed in Remark 4.2.

Proposition. Let ∆ and ∆ be the coproducts of A(g, q) and A(g, q,W) respectively.
We have

∆[η] = [∆η]∆1 = ∆1[∆η] ∀ η ∈ A(g, q) . (2)

Proof. Let p < pm, q < pn be among the simple objects pλ < pnλ chosen for
the definition 4.4(2) of the weak tensor structure of W. Then we apply 2.1(1) to
compute ∆[η]p,q =

Gp,q[η]p⊗qFp,q = (p⊗ q)pm+n(p⊗ q)pm+n[η]p⊗qpm+n(p⊗ q)pm+n(p⊗ q)
= (p⊗ q)pm+n(p⊗ q)pm+n(∆η)p,qpm+n(p⊗ q)pm+n(p⊗ q)
= (p⊗ q)pm+n(p⊗ q)pm+n(p⊗ q)(∆η)p,q(p⊗ q)pm+n(p⊗ q)pm+n(p⊗ q) ,

keeping in mind the definition 4.4(1) of the ⊗ coproduct for the second equality
and Proposition 4.4A to move the two inner pm+n in the last passage. Moreover
(∆1)p,q = (p⊗ q)pm+n(p⊗ q)pm+n(p⊗ q); finally (∆η)p,q commutes with both p⊗ q
and pm+n by naturality.



5 Reconstructing the twisted categories 73

The Proposition generalises formula (10.9) of [MS92], covering the case g = sl2.
Of course formula (2) still holds for arbitrary compositions of evaluations of ∆ on
some tensor component, e.g.

(id⊗∆)(∆η) = (id⊗∆)(∆1)[(id⊗∆)(∆η)] = [(id⊗∆)(∆η)](id⊗∆)(∆1) .

By definition of intertwiners, the tensor powers of Uq(g) map into the corre-
sponding ones of A(g, q). We are particularly interested in the natural isomorphisms
coming from the specialisation U†q (h) of the Hopf subalgebra U†A(h) ⊂ U†A(g) defined
in 3.2. We recall that U†q (h) is isomorphic, as a Hopf algebra, to Map(Λ,C), the
abelian algebra of functions on the weight lattice Λ.
Remark. An element f of U†q (h) acts on a vector of weight λ as the scalar f(λ).
This is consistent with the notion of weight vector given in [CP95] in the case when
the order `′ of q is odd, so ` = `′, namely

Kiv = q
(λ,α̌i)
i ,

[
Ki; 0
`

]
qi

v =
[
(λ, α̌i)
`

]
qi

v for i = 1, . . . , l ,

where qi = stands for q if αi is short and for qD if αi is long. We also note that,
according with this notion, a tensor product of a λ-vector and a µ-vector is a (λ+µ)-
vector, which is again consistent with our notion, since (∆f)(λ, µ) = f(λ+ µ).

The coproduct law (∆f)(λ, µ) = f(λ+ µ) actually establishes that the natural
isomorphisms of the tensor powers ofW0 coming from U†q (h) form a cochain complex
isomorphic to C•(Λ,C) = Map(Λ•,C), the trivial cochain complex for the weight
lattice Λ.

Example. Consider a simply connected compact Lie group G such that g is its
complexified Lie algebra, and let T be a maximal torus corresponding to the max-
imal toral subalgebra h. Then the Pontryagin dual T̂ may be identified with the
weight lattice Λ; moreover the characters that are trivial on the centre of G cor-
respond to the root lattice Λr ⊂ Λ, whence Ẑ(G) ' Λ/Λr. Therefore we have the
inclusion

T ↪→ U†q (h) τ 7→ 〈τ, ·〉 ;

the image of T in U†q (h) is exactly given by the homomorphisms from Λ to the circle
T by Pontryagin duality. Furthermore, by the relations 3.2(3)

U†q (h) ∩ Z
(
Uq(g)

)
= {f : Λ→ C | f(·+ α) = f ∀ α ∈ Λr} .

We conclude that the above intersection identifies with Map(Λ/Λr,C), and Z(G) =
Λ̂ ∩ Z

(
Uq(g)

)
, implying the above identifications.

Of course what just said still holds after replacing T with Tn and Uq(g) with its
n-th generalised tensor power (see 3.2). Namely

• Tn embeds into U†q (h)⊗n as Λ̂n;

• U†q (h)⊗n ∩ Z
(
Uq(g)⊗n

)
= Map

(
(Λ/Λr)n,C

)
;

• Z(G)n = Λ̂n ∩ Z
(
Uq(g)⊗n

)
.



74 Twisted fusion categories

5.2 Cocycles on the dual of Z(G)

By Example 5.1 usual 3-cocycles on Λ/Λr correspond to central elements of Uq(g)⊗3.
We now use the epimorphism 5.1(1) to construct new associators for the discrete al-
gebra A(g, q,W). Indeed, it will be enough to take care of the domain and codomain
of the new associator.

Proposition. Let f in Z3(Λ/Λr,C) be a normalised (i.e. f(·, 0, ·) = 1) 3-cocycle,
and put

Φ := (∆3)1[f ](3∆)1 ;

here and below we use the notation introduced before Definition 2.8B for composi-
tions of coproducts. Then, spelling out the unitary weak Hopf algebra A(g, q,W) as
(A, ·†,∆,Ω), the quintuple (A, ·†,∆,Φ,Ω) is still a unitary weak quasi Hopf algebra.

Proof. We need to show that Φ meets the conditions in point iii) of Definition 2.1C
applied to (A,∆,Φ). The element Φ of A⊗3 is partially invertible, with inverse
Φ−1 = (3∆)1[f−1](∆3)1. This can be verified using Proposition 4.4A as in the
proof of Lemma 4.4A.

We now turn to verify that Φ(3∆)a = (∆3)aΦ for all a in A; we may take a = [η]
with η in A(g, q) thanks to the epimorphism 5.1(1). By Proposition 5.1, we have

(∆31)[f ](3∆1)
(
3∆[η]

)
= (∆31)[f ](3∆1)[3∆η]
= (∆31)[∆3η][f ](3∆1) = (∆3[η])(∆31)[f ](3∆1) ;

for the second equality, we used coassociativity of ∆. Furthermore, the action
of 3∆η = ∆3η commutes with all endomorphisms of any tensor product of three
objects of Tq(g).

Now, once evaluated on a generic full tensor product of simple objects p, q, r
among the ones chosen for definitions 4.4(2), such are [f ] and the idempotents 3∆1,
∆31. As for the idempotents, this follows from the definition of the coproduct
2.1(1) applied to 4.4(2); on the other hand f lies in Z

(
Uq(g)⊗3). Therefore the

above equalities are actually justified, and we rewrite the proved identity as

(∆31)[f ](3∆a) = (∆3a)[f ](3∆1) ∀ a ∈ A . (1)

The normalisation condition for Φ follows from those for f and for the weak Hopf
algebra associator (∆31)(3∆1); so, in order to prove that (A,∆,Φ) is still a weak
quasi-bialgebra, we are left to check the cocycle identity

(1⊗ Φ)(id⊗∆⊗ id)Φ(Φ⊗ 1) = (id⊗ id⊗∆)Φ(∆⊗ id⊗ id)Φ . (2)

By (1) the left-hand side amounts to(
1⊗

(
(∆31)[f ]

))
(id⊗∆⊗ id)

(
(∆31)[f ](3∆1)

)((
[f ](3∆1)

)
⊗ 1

)
= (∆41)

(
1⊗

(
[f ](3∆1)

))
(id⊗∆⊗ id)[f ]

((
(∆31)[f ]

)
⊗ 1

)
(4∆1)

= (∆41)
(
1⊗

(
[f ](3∆1)

))[
(id⊗∆⊗ id)f

]((
(∆31)[f ]

)
⊗ 1

)
(4∆1) ,
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where we used Proposition 5.1 for the last passage. Moreover, since 3∆1 and ∆31
appear between 4∆1 and ∆41, they may be cancelled by Proposition 4.4A. To sum
up the left-hand side of (2) reduces to

(∆41)
(
1⊗ [f ]

)[
(id⊗∆⊗ id)f

](
[f ]⊗ 1

)
(4∆1) .

Along the same lines, we compute (id⊗ id⊗∆)Φ(∆⊗ id⊗ id)Φ to equal

(∆41)(id⊗ id⊗∆)[f ](∆⊗∆)(∆1)(∆⊗ id⊗ id)[f ](4∆1)
= (∆41)

[
(id⊗ id⊗∆)f

][
(∆⊗ id⊗ id)f

]
(4∆1) .

Therefore (2) holds by the usual cocycle identity for f . Finally, we have to verify
that Ω satisfies the identity

(1⊗ Ω)(id⊗∆)(Ω)Φ(∆⊗ id)(Ω−1)(Ω−1 ⊗ 1) = (Φ†)−1 ,

which is true when Φ is replaced by the weak bialgebra associator (∆31)(3∆1); but
Φ = (∆31)[f ](3∆1) and [f ] commutes with all other factors on both sides, so the
above identity holds for Φ as well.

For the rest of current subsection we set g = slN , and we take h to be the Lie
subalgebra of diagonal matrix of null trace. We also consider the whole vector space
h̃ of N ×N diagonal matrices, and the basis {Li | i = 1, . . . , N} of its dual h̃′ dual
to the basis of elementary diagonal matrices {eii | i = 1, . . . , N}.

Therefore h′ may be viewed as the quotient of h̃′ given by the relation L1 + · · ·+
LN = 0; implying this quotient, the fundamental dominant weights are given by
λi = L1 + · · ·Li. Finally, we introduce the homomorphism

| · | : Λ→ Z |Li| = 1 for i = 1, . . . , N − 1 , |LN | = 1−N . (3)

L1 + · · ·+LN maps to zero, so | · | is well defined. Moreover it is easy to check that
|λ| = 0 exactly if λ is in the root sublattice, so | · | provides an explicit isomorphism
Λ/Λr ' Z/NZ.

Example (Kazhdan-Wenzl cocycles). The homomorphism (3) allows us to intro-
duce a very relevant instance of the associators in the Proposition. Namely, given
an N -th root of 1 w, we take

fw(λ, µ, ν) = wγ
(
|λ|,|µ|

)
|ν| where γ(m,n) :=

⌊
m+ n

N

⌋
−
⌊
m

N

⌋
−
⌊
n

N

⌋
(4)

for integer m,n. In fact H3(Λ/Λr,T) is isomorphic to Z/NZ and it is generated by
any fw with w of order N (see the appendix of [NY15]). Moreover the associator
of the category Rep(A,∆,Φfw) differs from the one of the original representation
category C of the weak Hopf algebra (A,∆) by the scalar fw(λ, µ, ν) for each triple of
simple objects with highest weights λ, µ, ν. Therefore, by Kazhdan-Wenzl theory,
the categories Cw := Rep(A,∆,Φfw) with w ranging through the N -th roots of
(primitive or not) are pairwise non-tensor equivalent; moreover they cover all tensor
equivalence classes of any tensor category with the same fusion rules as C.
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5.3 Neshveyev-Yamashita twists

Let us return to the more general picture where g is any simple Lie algebra. Fol-
lowing 2.2 of [NY15], we introduce a particular type of elements of C2(Λ,T) =
Map(Λ2,T) whose coboundary are actually 3-cocycles on the dual of Z(G); their
definition and properties are reported here for better convenience.

Lemma. Given τ = (τ1, . . . , τl) in Z(G)l, let us consider a function g : Λ2 → T

satisfying

g(λ+ Λr, µ) = g(λ, µ) , g(λ, µ+ αi) = 〈τi, λ〉g(λ, µ) ∀ λ, µ ∈ Λ (1)

for i = 1, . . . , l. Then the coboundary ∂g is invariant under translation by Λr in
each of its arguments, and it is a 3-cocycle by construction, so indeed ∂g lies in
Z3(Λ/Λr,T). Moreover:

• if g′ also satisfies conditions (1) then the cohomology classes of ∂g and ∂g′
coincide, so they represent the same element of the third cohomology group
H3(Λ/Λr,T);

• the twisted coproduct ∆g = g∆(·)g−1 for A(g, q) does not depend on the choice
of g either, so it only depends on τ as the cohomology class of ∂g;

• the 3-cocycles of the form ∂g with g satisfying (1) exhaust H3(Λ/Λr,T).

The last point is proved in Proposition 2.6 of [NY15], and it relies significantly
on the assumption that g is simple, rather than just semi-simple. For better conve-
nience, we list here the cocycles, twists and associators appearing in the rest of the
section:

• g : Λ2 → T satisfies conditions (1) for a fixed τ = (τ1, . . . , τl) in Z(G)l;

• f = ∂g−1 is a unitary element of Z3(Λ/Λr,T) by the Lemma;

• in the case g = slN , fw is the unitary element of Z3(Λ/Λr,T) defined in 5.2(4);
by the Lemma we may choose g such that f = ∂g−1 = fw.

• Let (A, ·†,∆,Φ,Ω) be the discrete unitary weak quasi-bialgebra of Proposition
5.2 with f as in the second point, so Φ = (∆3)1[f ](3∆)1.

• We finally put F := [g]∆1, which is clearly a twist from (∆,Φ), and we denote
its codomonain by (∆F ,ΦF ) (see the remarks following Definition 2.5A).

Proposition A. We have ΦF =
(
(∆F )31

)(
3(∆F )1

)
, i.e. (A,∆F ) is a weak Hopf

algebra. Therefore F twists (A, ·†,∆,Φ,Ω) to a discrete unitary weak Hopf algebra.

Proof. By definition we have F−1 = ∆1[g−1], so ∆F = [g]∆(·)[g−1]. Thus

ΦF = (1⊗ F )(id⊗∆)FΦ(∆⊗ id)F−1(F−1 ⊗ 1)
=
(
1⊗ [g]

)
(id⊗∆)[g](∆31)[∂g−1](3∆1)(∆⊗ id)[g−1]

(
[g−1]⊗ 1

)
.
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On the other hand

(∆F )31 =
(
1⊗ [g]

)
(id⊗∆)

(
[g](∆1)[g−1]

)(
1⊗ [g−1]

)
=
(
1⊗ [g]

)
(id⊗∆)[g](∆31)(id⊗∆)[g−1]

(
1⊗ [g−1]

)
,

3(∆F )1 =
(
[g]⊗ 1

)
(∆⊗ id)[g](3∆1)(∆⊗ id)[g−1]

(
[g−1]⊗ 1

)
;

moreover, since ∆31 > (id⊗∆)(1⊗ 1) and 3∆1 > (∆⊗ id)(1⊗ 1)

(∆31)(id⊗∆)[g−1]
(
1⊗ [g−1]

)(
[g]⊗ 1

)
(∆⊗ id)[g](3∆1)

= (∆31)(id⊗∆)[g−1]
(
1⊗ [g−1]

)(
[g]⊗ 1

)
(∆⊗ id)[g](3∆1)

by Proposition 4.4A. But (id⊗∆)[g−1]
(
1⊗ [g−1]

)(
[g]⊗ 1

)
(∆⊗ id)[g] equals [∂g−1],

therefore we conclude
(
(∆F )31

)(
3(∆F )1

)
= ΦF as desired. The final assertion just

follows from Lemma 2.5B.

Corollary. Let g = slN . The representation categories of the discrete unitary weak
Hopf algebras (A, ·†,∆F ,ΩF ) exhaust all tensor equivalence classes of any tensor
category with the same fusion rules as the quotient C = Tq(g).

Proof. Since F twists (A, ·†,∆,Φ,Ω) to (A, ·†,∆F ,ΩF ) their representation cate-
gories are tensor ∗-isomorphic, by Lemma 2.5B. Moreover, for f = fw (see the
third point in the list before Proposition A) the category Rep(A, ·†,∆,Φ,Ω) is the
Cw of Example 5.2; the statement follows from Kazhdan-Wenzl theory, as recalled
at the end of said example.

We observe that unitarity of every Rep(A, ·†,∆F ,ΩF ) provides a concrete way to
verify a fact implied by Proposition 19.12 of [CCP21], namely that pseudounitarity
of C carries over to all its twists Cw.

It is also possible to apply the classification to show that Cw does not admit
braidings unless w2 = 1, as proved in Proposition 19.9 of wqh following the analo-
gous Remark 4.4 of [NY15] for the compact case.

Proposition B. The twisted category Cw admits generalised coboundaries only if
w = 1 for N odd, and only if w = ±1 for N even.

Proof. Let w be an N -th root of 1; as observed in Example 5.2, Cw is tensor equiv-
alent to Rep(A,∆,Φ), where Φ = (∆31)[fw](3∆1). Writing Φ0 := (∆31)(3∆1) and
[fw] =: Υ, we have Φ = Φ0Υ.

By Proposition 2.3, generalised coboundaries on Rep(A,∆,Φ) correspond ex-
actly to almost cocommutative structures for (A,∆,Φ) (Definition 2.3C); so, given
a twist R from (∆,Φ0) to

(
∆op, (Φ0)−1

321
)
, it will be enough to prove that w2 = 1.

We denote byR0 the quasi-triangular structure for the weak Hopf algebra (A,∆),
so R0 twists (∆,Φ0) to

(
∆op, (Φ0)−1

321
)
too; moreover, since Φ0 := (∆31)(3∆1) com-

patibility with the associators (the third point in Definition 2.5A) reduces to

(1⊗R0)(id⊗∆)(R0)(∆⊗ id)(R−1
0 )(R−1

0 ⊗ 1) = (Φ0)−1
321 .

By centrality of Υ, the same condition for R is

(1⊗R)(id⊗∆)(R)(∆⊗ id)(R−1)(R−1 ⊗ 1)Υ = (Φ0)−1
321Υ−1

321 . (2)
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Now, we define F := R−1
0 R and observe that

(1⊗ F )(id⊗∆)F =
(
(1⊗R0)(id⊗∆)R0

)−1(1⊗R)(id⊗∆)R

(F ⊗ 1)(∆⊗ id)F =
(
(R0 ⊗ 1)(∆⊗ id)R0

)−1(R⊗ 1)(∆⊗ id)R ,

because both R0 and R twist ∆ to ∆op (the second point in Definition 2.5A), which
also implies that F twists ∆ to itself. Furthermore, we compute

(1⊗ F−1)(id⊗∆)F−1(∆⊗ id)F (F ⊗ 1) =(
(1⊗ F )(id⊗∆)F

)−1(F ⊗ 1)(∆⊗ id)F = (id⊗∆)R−1(1⊗R−1)·
·(1⊗R0)(id⊗∆)R0(∆⊗ id)R−1

0 (R−1
0 ⊗ 1)(R⊗ 1)(∆⊗ id)R =

(id⊗∆)R−1(1⊗R−1)Φ0
321(R⊗ 1)(∆⊗ id)R .

Finally, applying the inverse of (2) (still keeping in mind that R twists ∆ to ∆op),
we have

(1⊗ F−1)(id⊗∆)F−1(∆⊗ id)F (F ⊗ 1) = Υ321ΥΦ0 .

Summarizing, F twists (∆,Υ321ΥΦ0) to (∆,Φ0), therefore the representation cat-
egories Rep(A,∆,Υ321ΥΦ0) and Rep(A,∆) are isomorphic by Lemma 2.5B. On
the other hand, as observed in Remark 4.4 of [NY15], fw321f

w and fw
2 represent

the same element of H3(Λ/Λr,T), so we conclude that w2 = 1 by Kazhdan-Wenzl
classification.

The twisted QUE algebra Since the 3-cocycle f lies in Z3(Λ/Λr,T), we may
view it as a new associator for the Hopf algebra Uq(g), in the sense of Definition
2.1C (which of course makes sense outside the context of discrete algebras as well),
thus turning the original QUE into a new quasi-Hopf algebra U(∆, f).

Furthermore, the treatment of 4.3 applies without modifications. One may also
realise the quotient Tq(g) of Proposition 4.2 as a linear subcategory C(∆, f) ⊂ Tq(g);
therefore C(∆, f) coincides with the unitary strict tensor category Gq(g) of 4.4,
except that the trivial associator is multiplied by f .

Finally the forgetful functor C(∆, f)→ Hilb admits the same weak quasi-tensor
structure, but such structure is not actually weak tensor as in the case of W due to
the modification of the associator; more precisely the discrete unitary weak quasi-
Hopf algebra provided by the Tannakian theorem 2.4 applied to C(∆, f) is exactly
the quintuple (A, ·†,∆,Φ,Ω) of Proposition 5.2. Now, following [NY15], we modify
the coproduct for U†A(g) by setting

∆′(Ei) = Ei ⊗Ki + τi ⊗ Ei , ∆′(Fi) = Fi ⊗ 1 + τ−1
i K−1

i ⊗ Fi
∆′(f) = ∆(f) ∀ f ∈ U†A(h) ,

obtaining a new Hopf algebra U(∆g, id).

Proposition C. The quasi-triangular structure R twists (∆, f) to (∆̃, f) (see Def-
inition 2.5A) and g twists (∆, f) to (∆g, id). Therefore the element Rg := gRg−1

twists (∆g, id) to (∆̃g, id).
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Proof. Since R is a quasi-triangular structure for Uq(g) and ∆op = ∆(·∗)∗,

R∆(·∗) = ∆(·)∗R , (1⊗R)(id⊗∆)R = (∆⊗ id)R(R⊗ 1) ,

i.e. R twists (∆, id) to (∆̃, ĩd = id). This is still true after replacing id with f ,
because f is central and unitary, so f̃ = (f)−1 = f .

Turning to the second assertion, the identity f∆(·)f−1 = ∆g is readily veri-
fied using the relations 3.2(3) together with properties (1) of g; compatibility with
associators (the third point in Definition 2.5A) reduces to f = ∂g−1.

Finally, g = (g)−1 twists (∆̃, f̃) to (∆̃g, ĩd), so the last assertion follows from the
others by groupoid composition of twists.

The Proposition may be summarized by saying that g twists the triple (·∗,∆, f, R)
to (·∗,∆g, id, Rg), keeping in mind Lemma 2.5B. Even though in our case R is not
self adjoint, it still plays the same role of the twist Ω in Definition 2.4B, especially
through the introduction of the (·, ·)′ form of 4.3.

Moreover the constructions for Uq(g) of 4.2, 4.3 and 4.4, adapted to U(∆, f) as
already discussed, mirror to U(∆g, id) through g. More precisely:

• U(∆, f) and U(∆g, id) share the antipode, S2(x) = q2ρxq−2ρ and in both cases
q2ρ is group-like; so it defines a spherical structure for both representation
categories. Hence the category Tq(g) and its quotient Tq(g) may be equally
well defined from U(∆g, id), just as in 4.2.

• The identity functor, endowed with the tensor structure defined by the action
of g−1, becomes an isomorphism of monoidal categories from Rep

(
U(∆, f)

)
to

Rep
(
U(∆g, id)

)
. Moreover, given dominant integral weights λ, µ, the structure

map g : Vλ(q)⊗∆ Vµ(q)→ Vλ(q)⊗∆g Vµ(q) is unitary with respect to the (·, ·)′
forms defined by R and Rg respectively (see the situation of Lemma 2.5B).

• By previous point, the (·, ·)′ form on a tensor product of specialised Weyl
modules, e.g. W := Vλ(q)⊗∆g Vµ(q), may be perturbed to a positive definite
form on the semi-simple part Ws just as in 4.3, using the automorphism w of
Ws given by the action of q−

G(ν)
2 on each simple component of highest weight

ν. Indeed, in our basic case of two Weyl modules, gR∆(w)w−1 ⊗ w−1g−1 =
Rg∆g(w)w−1 ⊗ w−1.

• For each of the idempotents pn in End(V ⊗∆n), we put

p′n = gnpng
−1
n g2 = 2 , gn = (gn−1 ⊗ 1)(∆n−1 ⊗ id)g ∀ n ≥ 2 .

Here of course ∆2 := ∆ and ∆n = (∆ ⊗ id⊗ · · · ⊗ id) ◦ ∆n−1 (or any other
composition of n − 1 coproducts, since ∆ is coassociative); clearly gn is an
isomorphism from V ⊗∆n to V ⊗∆gn.

We may use the idempotents p′n in the last point to realise the quotient Tq(g)
as a linear subcategory C(∆g, id) ⊂ Tq(g) as already done for U(∆, f) and Uq(g)
using the pn; the scalar product will be marked by ⊗′. Moreover, given the simple
objects pλ < pnλ chosen for definitions 4.4(2), we put p′λ := gnλpλg

−1
nλ

accordingly,
so that {p′λ}λ∈Λ` is a complete collection of pairwise non-equivalent simple objects
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for C(∆g, id). Finally, a weak quasi-tensor structure on the forgetful functor from
C(∆g, id) to Hilb is defined just as in 4.4, of course with the idempotents p′λ in place
of the pλ.

We are now set to exploit the properties of g to define a unitary tensor isomor-
phism of C∗ tensor categories C(∆, f) and C(∆g, id).

Proposition D. Consider the C∗ tensor categories C(∆, f), C(∆g, id). There exists
an isomorphism of C∗ tensor categories E : C(∆, f)→ C(∆g, id).

Proof. We define E by setting

E(f) = gnfg
−1
m for f ∈ (p, q) , p < pm , q < pn (3)

and extending by linearity. In order to define a tensor structure, we consider the
unitary natural isomorphisms

p′m+n(gm ⊗ gn)(∆m ⊗∆n)(g)(p⊗ q)pm+n , p < pm, q < pn (4)

from p⊗q to E(p)⊗′E(q). In order to check unitarity, we note that all the Hilbert
spaces involved are vector subspaces of V ⊗m+n, so they may be treated in terms of
idempotents and partial adjoints as in the proof of Lemma 4.4B. The isomorphisms
in (4) are the restrictions to p⊗q = pm+n(p⊗ q)pm+n of the ones given by the same
expression without the factor (p⊗ q). The adjoints are given by

pm+nR
−1
m+n(∆m ⊗∆n)(g−1)(g−1

m ⊗ g−1
n )(Rg)m+np

′
m+n , and

p′m+n(gm ⊗ gn)(∆m ⊗∆n)(g)pm+n ·
· pm+nR

−1
m+n(∆m ⊗∆n)(g−1)(g−1

m ⊗ g−1
n )(Rg)m+np

′
m+n

= p′m+n(Rg)−1
m+n(Rg)m+np

′
m+n = p′m+n ;

we applied Proposition 4.4A to cancel off pm+n and kept in mind that the restriction
of ∆ to Uq(h) is cocommutative and commutes with ·∗. Moreover, by Proposition
C the trivial associator on Rep

(
U(∆g, id)

)
is unitary with respect to the forms

defined by Rg on the tensor products; this implies that the perturbing matrix does
not depend on how the parentheses are arranged, as it is also true for R itself (this
can also be derived by quasi-triangularity of R, see 4.3 below formula (3)). In
particular

(gm ⊗ gn)(∆m ⊗∆n)(g)R−1
m+n(∆m ⊗∆n)(g−1)(g−1

m ⊗ g−1
n ) = (Rg)−1

m+n ,

and the isomorphisms in (4) are actually unitary. Furthermore, so are

gnp ∈
(
p, E(p)

)
for p < pn .

Therefore, we have the natural unitary isomorphisms

p′m+ngm+n(p⊗ q)(∆m ⊗∆n)(g−1)(g−1
m ⊗ g−1

n )p′m+n , p < pm, q < pn

from E(p)⊗′E(q) to E(p⊗q). The verification that they form a tensor structure for
E boils down to the identity f = ∂g−1, using once again Proposition 4.4A through
the calculation. The inverse of E is obtained replacing g with g−1 and pk with p′k
in (3).
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Note that, denoting byW∆,f andW∆g ,id the forgetful functors to Hilb on C(∆, f)
and C(∆g, id) endowed with the respective weak quasi-tensor structures, W∆,f and
W∆g ,id ◦ E are isomorphic only up to a twist (see Proposition 2.5C). Indeed the
latter is weak tensor, and produces the discrete unitary weak Hopf algebra (A,∆F )
of Proposition A.
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Appendices

I Idempotent elements of an associative algebra
Let us consider an associative C-algebra A, not necessarily unital. Its idempotents
can be seen as the objects of a C-linear category P(A), whose morphism spaces are
given by

(p, q) := qAp = {f ∈ A | fp = f = qf}
for each pair of idempotents p, q in A. From now on we will write q < p if qp =
q = pq, in which case p − q is idempotent too; we will say that an element of A is
partially invertible, or that is a partial isomorphism, if it is an isomorphism of P(A).
We further note that if f : p→ q is partially invertible then we have the bijection

p′ < p ←→ q′ < q q′ = fp′f−1 , (1)

and we may consider the restrictions fp′ = q′f , that are partial isomorphisms as
well, from p′ to q′.

Now, let us suppose we have antilinear antiautomorphisms †· and ·†, inverse to
each other. We use this additional datum to define an enrichment P(A, †·, ·†) of
P(A). An object of the new category is a triple (p, φ, ψ), where p is an idempotent
of A, while φ and ψ are partially invertible respectively in (p, †p) and (p, p†), with
φ† = ψ.

Example. An important special case occurs when φ = p = ψ. This means that
†p = p, or equivalently p = p†; we call such idempotents orthogonal projections.

Morphisms are defined as before, but now †· e ·† define respective operations ∗·
e ·∗. Given objects (p1, φ1, ψ1), (p2, φ2, ψ2) and f in (p1, p2), we put

∗f := φ−1
1 (†f)φ2 , f∗ := ψ−1

1 (f †)ψ2 . (2)

Clearly ∗· and ·∗ are contravariant antilinear automorphisms of P(A, †·, ·†), inverse
to each other. We also remark that in the full subcategory of orthogonal projections,
which we denote by P(A, †·, ·†)⊥, we simply have ∗· = †· and ·∗ = ·†.
Remark. Let (p, φ, ψ) be an object of P(A, †·, ·†); the C-algebra pAp = (p, p) may
be equipped with the antilinear antiautomorphisms ∗· e ·∗, so we can consider the
category (pAp, ∗·, ·∗), and its relative operations ?· and ·?.

In detail, consider objects (qi, πi, $i) of (pAp, ∗·, ·∗), where i = 1, 2. This means
that πi is in

(
qi, φ

−1(†qi)φ
)
, $i is in

(
qi, ψ

−1(q†i )ψ
)
and $i = π∗i = ψ−1π†iψ; further-

more, given g in (q1, q2),
?g = π−1

1 (∗g)π2 = π−1
1 φ−1(†g)φπ2 = (φπ1)−1(†g)(φπ2) ,
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and analogously g? = (ψ$1)−1(g†)(ψ$2). Finally

ψ$i = ψπ∗i = ψψ−1π†iψ = π†iφ
† = (φπi)† .

The Remark could be synthesised by saying that if we send (q, π,$) 7→ (q, φπ, ψ$)
we obtain an inclusion of (pAp, ∗·, ·∗), which we shall call the category of sub-
projections of (p, φ, ψ), in P(A, †·, ·†), identical on morphisms.

A remarkable case occurs when we restrict ourselves to (pAp, ∗·, ·∗)⊥; an idem-
potent q < p is an orthogonal sub-projection exactly if φqφ−1 = †q, or equivalently
ψqψ−1 = q† (see the bijections of the kind of (1)). To compute the operations ∗·
e ·∗ for morphisms between the corresponding objects of P(A, †·, ·†) is particularly
convenient; for instance, consider objects (pi, φi, ψi) and orthogonal sub-projections
qi < pi, i = 1, 2. Then, given g in (q1, q2),

∗g = q1φ
−1
1 (†g)φ2q2 = φ−1

1 (†q1)(†g)(†q2)φ2 = φ−1
1 (†g)φ2 ,

and similarly g† = ψ−1g†ψ2; so, though still keeping in mind that we see g as a
morphism in (q1, q2), we may compute the respective operations as if it were in
(p1, p2).

Idempotents and subspaces

The category P(A) is modelled on the case A = End(V ), where V is a C-vector
space of finite dimension. Moreover it is natural to consider the functor S from
P(A) to the category of the subspaces of V : we send the generic idempotent p into
pV and, given f in (p, q), we put

S(f) = qfp , (3)

where we wrote p = pp with p : pV → V and p : V → pV such that pp = idpV , and
likewise q = qq. In short we see f as a map from pV to qV .

If V comes with a non-degenerate sesquilinear form (·, ·), there are the two
adjoints †· e ·†: for all f in A

(fv, w) =: (v, f †w) , (w, fv) =: (†fw, v) ∀ v, w ∈ V .

So we can consider P(A, †·, ·†). Then, given ψ in (p, p†) partially invertible, it defines
the new non-degenerate form on pV

(v, w)ψ :=
(
v,S(ψ)w

)
=
(
S(φ)v, w

)
∀ v, w ∈ pV ;

in the case of orthogonal projections one just gets the restriction of (·, ·) to pV . If
we take f as in (2), the adjoints ∗S(f) and S(f)∗ relative to (·, ·)ψ1 and (·, ·)ψ2 are
exactly given by the right-hand sides in (2), with S applied to each factor.

To sum up, S may be refined to a functor, compatible with the ∗· and ·∗ op-
erations, from P(A, †·, ·†) to the category of subspaces of V endowed with a non-
degenerate sesquilinear form, by sending (p, φ, ψ) to pV with (·, ·)ψ.
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The Hermitian case If (·, ·) is Hermitian, †· = ·†, in which case we replace the
notation P(A, †·, ·†) with the simpler P(A, ·†). Then (·, ·)ψ is in turn Hermitian if
and only if φ = ψ, i.e. ψ is self-adjoint, in which case we just write (p, ψ) rather
than (p, φ, ψ).

So, naming P(A, ·†)herm the full subcategory of the (p, ψ) objects, S becomes
a ∗-functor from P(A, ·†)herm to the category of subspaces of V endowed with a
non-degenerate Hermitian form.

Finally, if (·, ·) is a scalar product then (·, ·)ψ is also positive definite if and only
if ψ is positive in A.

To conclude the appendix, we do not mind to point out that the case of idem-
potents relative to several vector spaces is covered as well by considering suitable
direct sums; see the end of Remark 2.2 for an example.

II Leg notation
Let V be a C-vector space, and consider the n-th tensor power V ⊗n. Then

σ ∈ Sn 7→ σ. ∈ GL(V ⊗n) σ.(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n)

defines a (left) action of the n-th symmetric group on V ⊗n. Now, we denote σ.v by
vσ(1),...,σ(n); as an example, if σ in S3 is given by σ(1) = 2, σ(2) = 3, σ(3) = 1, then

(u⊗ v ⊗ w)231 = σ.(u⊗ v ⊗ w) = w ⊗ u⊗ v .

Namely, the k-th factor of a tensor product moves to the position given by the k-th
number in the subscript.

If V is a unital algebra A, then for m < n A⊗m ↪→ A⊗n, by just inserting 1 as
the last n −m factors; when we apply the above notation after such an inclusion,
we only specify the final position of the original components of the given element
a1 ⊗ · · · ⊗ am. As an example, with m = 2 and n = 4,

(a⊗ b)42 = 1⊗ b⊗ 1⊗ a .

Even though n is not expressed, it is generally clear from the context (e.g. it is 3
in identities 2.3(5)).

The leg notation obviously extends by continuity to the discrete algebras of
Definition 2.1B. However, if the algebra is explicitly presented as a direct sum of
matrix algebras, as in the case of 2.1, it also applies directly.

In detail, consider η in A⊗n, where A is the discrete algebra of 2.1, and a
permutation σ in Sn. Then for each ρ1, . . . , ρn, denoting by

Σ : End
(
F(ρσ(1))

)
⊗ · · · ⊗ End

(
F(ρσ(n))

)
→ End

(
F(ρ1)

)
⊗ · · · ⊗ End

(
F(ρn)

)
the appropriate flip map, (σ.η)ρ1,...,ρn = Σ(ηρσ(1),...,ρσ(n)). We still have the inclusions
A⊗m ↪→ A⊗n for m < n, and we establish the same rule as above for permutations
following these inclusions.
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