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1. Introduction

In this paper we prove the one-sided continuity of the gradient of the solutions to 
quasi-linear variational inequalities with thin obstacles

ˆ

Ω

〈F (x, u,∇u),∇v −∇u〉 + F0(x, u,∇u)(v − u) ≥ 0 ∀ v ∈ K, (1.1)

where the solution u is itself a member of K, that is one of the following two sets:

• Interior thin obstacles

K :=
{
v ∈ W 1,∞(Ω) : v|∂Ω = g, v|Σ ≥ ψ

}
, (1.2)

where Σ ⊂ Ω is a smooth hypersurface dividing Ω into two connected components, 
Ω \ Σ = Ω+ ∪ Ω−, g ∈ W 1,∞(∂Ω) a given boundary value and ψ : Σ → R;

• Boundary obstacles

K :=
{
v ∈ W 1,∞(Ω) : v|∂Ω ≥ ψ

}
, (1.3)

with the unilateral constraint given on the boundary of Ω by a function ψ : ∂Ω → R.

Here F = (F1, . . . , Fn+1) : Ω ×R ×Rn+1 → Rn+1 and F0 : Ω ×R ×Rn+1 → R, Ω ⊂ Rn+1

a bounded open set with smooth boundary.
The boundary variational inequalities are also known as Signorini’s problem in the 

theory of elasticity (see, e.g., [8] for more details on the physical background). A natural 
case of a nonlinear variational inequality is that of minimal surfaces forced to lie above an 
obstacle which is prescribed on the boundary, as introduced by Nitsche [28] in a particular 
instance and previously by H. Lewy [25], who was able to analyzed the linearized problem 
with the Laplace operator. More in general, variational inequalities of this kind might 
arise from minimization problems

minimize
ˆ

Ω

h(x, u,∇u) dx u ∈ K, (1.4)

which lead to the variational inequality (1.1) with F = ∇ph and F0 = ∂zh, where we 
denote by (x, z, p) ∈ Ω ×R ×Rn+1 the variables of h.

This problem has been widely considered in the literature by numerous authors: here 
we recall few of the earlier contributions which are more relevant for the present paper 
by Fichera [8], Lewy [25,26], Nitsche [28], Giusti [18–20], Frehse [13,14], Kinderlehrer 
[22,23], Richardson [29], Caffarelli [3], Ural’tseva [32,33], only to mention a few (an 
increasing number of articles on variational inequalities with thin obstacles appeared in 
the recent years). Under general conditions on the functions F , F0 and on the domain Ω, 
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the existence of Lipschitz solutions has been established (see, e.g., the works by Nitsche 
and Giusti [28,19,20] for the case of minimal surfaces and Giaquinta-Modica [17] for 
more general nonlinearities).

As far as further regularity of the solutions is investigated, in accordance with the 
linear case the one-sided continuity of the derivatives of the solutions up to the thin 
obstacle is expected. Nevertheless, this problem has remained open in this generality 
since the early works, though several significant results have appeared in the last years. 
The main breakthroughs have been obtained for the linear case of the Laplace operator. It 
was well known that in this instance the solutions could not be more regular than having 
1
2 -Hölder derivatives on both sides of the thin obstacle, and the optimal one-sided C1,1/2

regularity was first established in dimension n = 1 by Richardson [29] and more recently 
by Athanasopoulos-Caffarelli [2] in general dimensions (recall also the C1,α regularity 
previously obtained by Caffarelli [3]). Starting from these pioneering works, the Hölder 
one-sided continuity of the derivatives of solutions has been also proven to hold for some 
classes of quasi-linear operators, in the two-dimensional case by Kinderlehrer [23] and in 
general dimension by Ural’tseva [32,33].

However, for the general operators in (1.1) the one-sided continuity of the gradients 
is an open problem and the best available results in these regards have been obtained 
by Frehse in a pair of pioneering papers [13,14] which establish the continuity (with a 
logarithmic modulus of continuity) of the gradient of the solutions in dimension n = 1, 
and the continuity of the tangential derivatives to the thin obstacles in general dimension 
n ≥ 2. As far as we known, those by Frehse are still the most general results, while more 
refined theorems are known for some specific operators, such as the minimal surface 
operator (see, e.g., [1,6,12]).

In this article we establish the C1 and C1,α regularity results for a general class of 
nonlinear variational inequalities (1.1). The main assumption we consider (apart from 
the regularity of the fields F, F0) is the natural ellipticity condition:

(H) the matrix (∂kFi)ik is uniformly positive definite in compact subsets.

This hypothesis is necessary to the existence of solutions, e.g., for variational inequal-
ities arising from minimization problems this is nothing else than the convexity of the 
integrands in the last variable.

Building upon the pioneering works by Frehse [13,14] and on Ural’tseva’s approach 
based on De Giorgi’s method [32,33], in this paper we show the following result.

Theorem 1.1. Let Ω ⊂ Rn+1 be a bounded open set with C2 boundary, F : Ω ×R ×Rn+1 →
Rn+1 and F0 : Ω ×R ×Rn+1 → R functions of class C1 and the obstacle function ψ in 
K is of class C2. Assume that the ellipticity condition (H) holds. Then,
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(i) every Lipschitz solution u : Ω → R to the thin obstacle problem (1.1) with K given 
by (1.2) has one-sided continuous derivatives up to the thin obstacle Σ: i.e., u ∈
C1(Ω+ ∪ Σ) ∩ C1(Ω− ∪ Σ).

(ii) every Lipschitz solution u : Ω → R to the boundary variational inequality (1.1) with 
K given by (1.3) is C1,α(Ω) for some α ∈ (0, 1).

This is the first result on the continuity of the derivatives of the solutions to the 
thin obstacle problems for fairly general nonlinear variational inequalities. The case of 
linear operators Fi(x, z, p) =

∑n+1
j=1 aij(x)pj has been considered in [3,23,32] with weaker 

assumptions on the coefficients aij from time to time (e.g., aij ∈ W 1,q with q > n + 1
are allowed in the work of Uralt’seva [32]). In [33] Uralt’seva considered also the case 
of quasilinear operators Fi(x, z, p) =

∑n+1
j=1 aij(x, z)pj and proves C1,α regularity of the 

solutions to Signorini’s problem up to the boundary.
In this paper we combine and extend the ideas developed for the minimal surface 

operator by Fernández-Real and Serra [6] in the context of parametric solutions to thin 
obstacle problem according to De Giorgi’s theory of Caccioppoli sets, and by Focardi 
and the second author [12] in the nonparametric setting.

The starting point is Frehse’s general partial regularity result [14], which we use to 
perform a blowup analysis inspired by [12] in order to prove the C1 regularity of the 
solutions to the general variational inequality. We stress that in [12], as well as in the 
works by Uralt’seva [32,33] only the boundary obstacle problem is considered, where an 
additional constraint acts on the non-coincidence set of the solutions (i.e., the natural 
homogeneous Neumann condition on the co-normal derivative). The extension of this 
analysis to the general case needs the introduction of new ideas, which in particular 
employs a comparison principle with paraboloids introduced in [6]. With these ingredi-
ents, we prove that blowups to the variational inequalities are flat, one-dimensional and 
unique, thus leading to the C1 regularity around points of the free boundary.

Building upon it, we extend then the approach via De Giorgi’s classes introduced by 
Uralt’seva [32,33] in order to deduce the C1,α regularity for the solutions to the bound-
ary variational inequality. The reason why we prove such result only for the boundary 
variational inequalities lies in some limitations of De Giorgi’s method, which allows to 
control only certain super-level sets of the solutions to the variational inequality (see 
Section 4 for the details). Nevertheless, we think that the one-sided Hölder continuity 
of the gradients holds in this generality for the interior thin obstacle problems, albeit it 
should be approached by different techniques.

As far as we are aware, not much is known on the optimal regularity of the solutions 
and on the structure of the free boundary in the quasi-linear case, especially if compared 
to the linear case (see, e.g., [2,4,7,9–11,15,24,30]). The only available results are those 
proven for minimal surfaces with thin analytic obstacles in dimension n = 1 by Athana-
sopoulos [1] and in general dimension for flat obstacle by Focardi and the second author 
[12].
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2. Preliminaries

2.1. Reduction to flat boundaries and zero obstacles

We use the following notation x = (x′, xn+1) ∈ Rn ×R and for every r > 0 we set

Br = {x ∈ Rn+1 : |x| < r},
B+

r = Br ∩ {xn+1 > 0}, B−
r = Br ∩ {xn+1 < 0}, B′

r = Br ∩ {xn+1 = 0}.

In the following Σ denotes the hypersurface where the thin obstacle is prescribed: i.e.,

• for the thin obstacle problem Σ is a hypersurface splitting the domain Ω into two 
parts, Ω = Ω+ ∪ Ω−, with ∂Ω+ ∩ ∂Ω− = Σ;

• for the boundary value problem Σ = ∂Ω. In order to unify the following discussion, 
in this case we set Ω+ = Ω.

Given a point x0 ∈ Σ, without loss of generality we can assume that locally around 
x0 the hypersurface Σ is given by the graph of a function φ : Rn → R, i.e., there exists 
R > 0 such that

Ω+ ∩BR(x0) = {(x′, xn+1) ∈ Rn ×R : xn+1 > φ(x′)} ∩BR(x0).

In particular, the map Φ : Rn+1 → Rn+1 defined by

Φ(x′, xn+1) = x0 + (x′, xn+1 + φ(x′))

is a local diffeomorphism between a neighborhood of the origin, say Br, and a neighbor-
hood of x0, U0 = Φ(Br), such that

Φ(B+
r ) = Ω+ ∩ U0.

Since all the estimates we give are local, we always choose the coordinates according to 
the diffeomorphism Φ: given a solution u to the variational inequality (1.1), if we set 
ū(x) = u(Φ(x)), v̄(x) = v(Φ(x)), then

0 ≤
ˆ

Ω∩U0

〈F (y, u,∇u),∇v −∇u〉 + F0(y, u,∇u)(v − u) dy

=
ˆ

B+
r

〈F̄ (x, ū,∇ū),∇v̄ −∇ū〉 + F̄0(x, ū,∇ū)(v̄ − ū) dx ∀ v̄ ∈ K̄, (2.1)

with
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K̄ :=
{
w ∈ W 1,∞(B+

r ) : w|B′
r
≥ ψ̄, w|∂B+

r \B′
r

= ū|∂B+
r \B′

r

}
,

ψ̄(x′) = ψ(Φ(x′, 0)),

F̄ (x, z, p) = A(x)−1F (Φ(x), z, (A(x)−1)T p),

F̄0(x, z, p) = F0(Φ(x), z, (A(x)−1)T p),

A(x) = DΦ(x).

Note that the ellipticity condition (H) for the associate operator

H̄ū = −div
(
F̄ (x, ū,∇ū)

)
+ F̄0(x, ū,∇ū)

still holds true.
In a similar way, we can also subtract the obstacle from the solution ū: setting ũ(x) =

ū(x) − ψ̄(x′), we get
ˆ

B+
r

〈F̃ (x, ũ,∇ũ),∇ṽ −∇ũ〉 + F̃0(x, ũ,∇ũ)(ṽ − ũ) dx ≥ 0, (2.2)

for every ṽ ∈ K̃ =
{
w ∈ W 1,∞(B+

r ) : w|B′
r
≥ 0 w|∂B+

r \B′
r

= ũ|∂B+
r \B′

r

}
, with

F̃ (x, z, p) = F̄ (x, z + ψ̄(x′), p + ∇ψ̄(x′)),

F̃0(x, z, p) = F̄0(x, z + ψ̄(x′), p + ∇ψ̄(x′)),

still preserving the ellipticity condition (H).

2.2. Hypotheses on F and F0

In view of the discussion above, we can therefore assume what follows for the varia-
tional inequality (1.1):

(H0) F ∈ C1(U × R × Rn+1, Rn+1), F0 ∈ C1(U × R × Rn+1, R), where U = B1 in the 
thin obstacle problem and U = B+

1 for the boundary variational inequality;
(H1) for every M > 0 there exists λ = λ(M) > 0 such that

〈DpF (x, z, p)ξ, ξ〉 ≥ λ|ξ|2

∀ (x, z, p) ∈ B1 ×R×Rn+1, |z|, |p| ≤ M, ∀ ξ ∈ Rn+1.

The constants appearing in all the estimates of the subsequent sections might depend 
on the dimension n, the Lipschitz constant of the solutions u, the modulus of continuity 
of F and F0 and their first derivatives, and on the local ellipticity constant λ.
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2.3. Frehse’s results

We recall the results proven by Frehse in [14] which are relevant for our analysis.

Theorem 2.1 ([14]). Under assumptions (H0) and (H1), every Lipschitz solution u of the 
variational inequality (1.1) for either the thin obstacle problem or the Signorini problem 
has continuous tangential derivatives: ∂iu ∈ C(B+

1 ∪ B′
1) for i = 1, . . . , n with a local 

modulus of continuity ω,

|∂iu(x) − ∂iu(y)| ≤ ω(|x− y|) ∀ x, y ∈ B+
r ∪B′

r, (2.3)

where ω(t) = C| log t|−q with C = C(r, Lipu) > 0 and q = q(n, r, Lipu) > 0, r ∈ (0, 1). 
Moreover, if n = 1 the normal derivative is continuous too, thus implying that ∇u =
(∂1u, ∂2u) ∈ C(B+

1 ∪B′
1, R

2) with the same local modulus of continuity (2.3) for a suitable 
choice of the constants C, q.

We also need the H2 regularity of solutions proven by Frehse.

Lemma 2.4 ([14, Lemma 2.2]). Let u be a solution to the variational inequality (1.1)
for either the thin obstacle problem or the boundary variational inequality, under the 
assumptions (H0) and (H1). There exists C = C(Lipu) > 0 such that for every x0 ∈ B′

1
and 0 < 2r < 1 − |x0|, we have

ˆ

B+
r (x0)

|D2u|2 ≤ C

r2

ˆ

B+
2r(x0)

|∇u|2 + Crn+1.

3. C1 regularity

In this section we prove the C1 regularity for the solutions u ∈ Ag to the variational 
inequalities with thin and boundary obstacles:

ˆ

Ω

〈F (x, u,∇u),∇v −∇u〉 + F0(x, u,∇u)(v − u) ≥ 0 ∀ v ∈ Ag, (3.1)

and

• Interior thin obstacles: Ω = B1 and

Ag :=
{
v ∈ W 1,∞(B1) : v|∂B1 = g, v|B′

1
≥ 0

}
,

• Boundary obstacles: Ω = B+
1 and

Ag :=
{
v ∈ W 1,∞(B+

1 ) : v|∂B+\B′ = g, v|B′ ≥ 0
}
, (3.2)
1 1 1
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with g ∈ W 1,∞(Rn+1) is a given function.
The coincidence set and the free boundary of a solution u are respectively the sets

Λ(u) = {(x′, 0) ∈ B′
1 : u(x′, 0) = 0} ,

Γ(u) = {(x′, 0) ∈ Λ(u) : ∀ r > 0 ∃ (y′, 0) ∈ B′
r(x) u(y′, 0) > 0} ,

i.e., Γ(u) is the boundary of Λ(u) in the relative topology of B′
1.

The main result is the following.

Theorem 3.1. Let u be a Lipschitz solution to the variational inequality (3.1) for either 
the interior thin or the boundary obstacle problem. Then, u ∈ C1(B+

1 ∪B′
1).

It is clear that Theorem 1.1 (i) is a corollary of Theorem 3.1 by following the local 
straightening of the obstacle explained in the previous section.

The proof of the C1 regularity is made by a blowup analysis following the approach in 
[12]. In particular, we proceed in three steps: first we show that the rescaled solutions of 
the variational inequality have a profile which is one-dimensional; then, by the maximum 
principle, we prove that around points of the free boundary the blowups are actually flat 
and unique; and finally, we show how the C1 regularity follows from the existence of 
unique blowups.

The difference between the two obstacle problems is that for the boundary obstacle 
problem the natural homogeneous Neumann boundary conditions hold in the subset of 
B′

1 where the solution does not touch the unilateral constraint. In actual fact this is an 
additional constraint on the solutions which simplifies the analysis. This is what happens 
in [12], but this is not the case for the thin obstacle problems, which needs new ideas.

3.1. Classification of blowups: one-dimensional profiles

Let {zk} ⊂ Γ(u), {tk} ⊂ R such that 0 < tk < 1 − |zk|, tk → 0, zk → z0 ∈ Γ(u). We 
set

uk(x) = u(zk + tkx)
tk

∀x ∈ B1. (3.3)

We call uk a rescaling of u. Since we want to study the behavior of u around z0, we have 
to look at the limit of uk. When zk = z0 for all k and the limit of the rescalings exists, 
we call it a blowup of u at z0. Note that Lip(uk) = Lip(u), therefore by Ascoli-Arzelà’s 
theorem the set of rescalings is precompact in L∞.

The first lemma shows that the limits of the rescaled solutions depend only on the 
normal variable xn+1.

Lemma 3.2. Let uk be a sequence of rescalings as in (3.3) with zk → z0, tk ↓ 0 and 
assume that uk → u∞ uniformly. Then,
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• for the thin obstacle problem u∞(x) = w(xn+1), with

w(t) =
{
a+t t ≥ 0,
a−t t ≤ 0

for some a+ ≤ a−;

• for the boundary obstacle problem u∞(x) = axn+1 for some a ∈ R such that 
Fn+1(z0, 0, 0, a) ≤ 0.

Moreover, the function u∞ is a solution to the thin or the boundary obstacle problem
ˆ

Ω

〈F (z0, 0,∇u∞),∇v∞ −∇u∞〉 ≥ 0 ∀ v∞ ∈ Au∞ .

Proof. We start by rescaling the variational inequality (3.1): set Bk := Btk(zk) and let 
w ∈ Auk

, then we choose

v(y) =

⎧⎨
⎩u(y) y ∈ Ω \Bk,

tkw
(

y−zk
tk

)
y ∈ Bk,

recalling that Ω = B1 or Ω = B+
1 for the thin and boundary obstacle problem, respec-

tively. It is straightforward to verify that v ∈ Ag so that, after a change of variables, we 
get

ˆ

Ω

〈F (zk + tkx, tkuk,∇uk),∇w −∇uk〉+

+
ˆ

Ω

tkF0(zk + tkx, tkuk,∇uk)(w − uk) ≥ 0 ∀w ∈ Auk
.

Thus, uk is a solution to a rescaled problem and the associated rescaled operator is

Hkuk ≡ −div (F (zk + tkx, tkuk,∇uk)) + tkF0(zk + tkx, tkuk,∇uk). (3.4)

Now we fix v∞ ∈ Au∞ . For every k ≥ 1, we define

ϕk(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 |x| ≤ 1 − 1
k ,

k2 − k(k + 1)|x| 1 − 1
k ≤ |x| ≤ 1 − 1

k+1 ,

0 1 − 1
k+1 ≤ |x|.

We then choose w = (1 −ϕk)uk+ϕkv∞ ∈ Kuk
: from the variational inequality satisfied 

by uk we get that Ik + IIk + IIIk ≥ 0, with
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Ik = tk

ˆ

Ω

ϕkF0(zk + tkx, tkuk,∇uk)(v∞ − uk),

IIk =
ˆ

Ω

〈F (zk + tkx, tkuk,∇uk),∇ϕk〉(v∞ − uk),

IIIk =
ˆ

Ω

ϕk〈F (zk + tkx, tkuk,∇uk),∇v∞ −∇uk〉.

Now we want to compute the limits of the above quantities as k → +∞. First of all, 
since the integrand in Ik is bounded uniformly on k and tk → 0, we deduce that Ik → 0. 
Now we show that IIk → 0 as well. For every k ≥ 1, there exists xk ∈ B1 such that 
1 − 1

k ≤ |xk| ≤ 1 − 1
k+1 and

sup
1− 1

k≤|x|≤1− 1
k+1

|v∞(x) − uk(x)| = |v∞(xk) − uk(xk)|.

Thus we have

|IIk| ≤ C k(k + 1)
ˆ

1− 1
k≤|x|≤1− 1

k+1

|v∞(x) − uk(x)| ≤ Ck|v∞(xk) − uk(xk)|,

with Ck = C k(k+ 1)(|B1− 1
k+1

| − |B1− 1
k
|). Note that Ck → C(n + 1)ωn+1, therefore it is 

enough to show that |v∞(xk) − uk(xk)| → 0. For some subsequence (which we will not 
relabel) we have that xk → x∞ ∈ ∂B1. Since v∞ and u∞ are continuous and agree at 
the boundary, and since uk converges uniformly to u∞, we have that

|v∞(xk) − uk(xk)| ≤ |v∞(xk) − v∞(x∞)| + |u∞(x∞) − uk(x∞)| + |uk(x∞) − uk(xk)|
≤ Lip(v∞)|xk − x∞| + ‖u∞ − uk‖∞ + Lip(uk)|xk − x∞| → 0,

where we used that Lip(uk) = Lip(u).
Finally, we want to compute the limit of the quantity IIIk. For this purpose, we set

III′k =
ˆ

B1

〈F (zk + tkx, tkuk,∇uk),∇v∞ −∇uk〉,

and we notice that |IIIk − III′k| → 0 because the integrand is uniformly bounded and 
1 − ϕk is supported in B1 \ B1−1/k. To show that III′k converges, we need something 
better than uniform convergence. So we apply Lemma 2.4 to u so that, for every k ≥ 1
such that 2tk < 1 − |zk|, we have

ˆ
+

|D2uk(x)|2 dx = t2k

ˆ
+

|D2u(zk + tkx)|2 dx =

B1 B1
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= t1−n
k

ˆ

B+
tk

(zk)

|D2u(y)|2 dy ≤ C t−1−n
k

ˆ

B+
2tk

(zk)

|∇′u|2 + Ct2k ≤ C.

Therefore, {uk} is bounded in H2(B+
1 ), and thus it has a weakly convergent subsequence 

in H2(B+
1 ), which we will not relabel: uk ⇀ u∞ in H2(B+

1 ) and uk → u∞ in H1(B+
1 ). 

Up to pass to further subsequences, we can also assume that ∇uk → ∇u∞ a.e. in B+
1

and as a consequence

F (zk + tkx, tkuk,∇uk) → F (z0, 0,∇u∞) in L2(B1).

Indeed by (H0)
ˆ

B1

|F (zk + tkx, tkuk,∇uk) − F (z0, 0,∇u∞)|2 ≤

≤ C

ˆ

B1

|zk + tkx− z0|2 + |tkuk|2 + |∇uk −∇u∞|2 → 0.

Finally, since also ∇uk → ∇u∞ in L2(B1), we get

III′k →
ˆ

B1

〈F (z0, 0,∇u∞),∇v∞ −∇u∞〉.

We have indeed shown that u∞ is a solution to the thin or the boundary obstacle 
problem

ˆ

Ω

〈F (z0, 0,∇u∞),∇v∞ −∇u∞〉 ≥ 0 ∀ v∞ ∈ Au∞ ,

with associated operator

H∞u∞ = −div (F (z0, 0,∇u∞)) .

By Frehse’s Theorem 2.1 ∇′u(zk) = 0 and

|∇′uk(x)| = |∇′u(zk + tkx) −∇′u(zk)| ≤ ω(tk) → 0.

In other words, ∇′uk → 0 uniformly on B1, thus implying ∇′u∞ ≡ 0, i.e., u∞(x) =
w(xn+1) for some Lipschitz function w.

Considering the ellipticity condition (H1) (applied with ξ = en+1)

∂pn+1Fn+1(z0, 0,∇u∞) ≥ λ > 0,
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we infer that w is a linear function, i.e., there exists a+ ∈ R such that w(t) = a+t for all 
t ≥ 0.

As for the thin obstacle problem, we apply the same considerations to B−
1 , inferring

the existence of a+, a− ∈ R such that

w(xn+1) =
{
a+xn+1 xn+1 ≥ 0,
a−xn+1 xn+1 ≤ 0.

Recalling that u∞ is a supersolution to H∞ in B1 we have that, for every ϕ ∈ C∞
0 (B1)

with ϕ ≥ 0,

0 ≤
ˆ

B1

〈F (z0, 0,∇u∞),∇ϕ〉 =
ˆ

B′
1

(Fn+1(z0, 0, 0, a−) − Fn+1(z0, 0, 0, a+))ϕ,

thus implying that

Fn+1(z0, 0, 0, a+) ≤ Fn+1(z0, 0, 0, a−),

and by ellipticity (H1) (∂pn+1Fn+1 > 0) we deduce a+ ≤ a−.
Finally note that, for the boundary obstacle problem, for every ϕ ≥ 0 we have that

0 ≤
ˆ

B+
1

〈F (z0, 0,∇u∞),∇ϕ〉 =
ˆ

B+
1

〈F (z0, 0, 0, a),∇ϕ〉 = −
ˆ

B′
1

Fn+1(z0, 0, 0, a)ϕ,

i.e., Fn+1(z0, 0, 0, a) ≤ 0 which conclude the proof of the classification of the blowups for 
Signorini’s problem. �
3.3. Construction of barriers

We say that a differential operator H satisfying (H0), (H1) is t-rescaled (t > 0) if for 
every M > 0 there exists L = L(M) > 0 such that

| − divxF (x, z, p) − 〈∂zF (x, z, p), p〉 + F0(x, z, p)| ≤ tL,

|DpF (x, z, p)| ≤ L, (3.5)

∀ x ∈ B1 |z| ≤ M |p| ≤ M.

We saw in the proof of Lemma 3.2 that, if u solves the thin obstacle problem with 
operator H, then uk solves the thin obstacle problem with operator Hk which from its 
very definition (3.4) turns out to be tk-rescaled.

In the next lemma, we follow [6] and construct suitable quadratic functions which act 
as barriers for t-rescaled operators.
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Lemma 3.4. For every m0, γ0 > 0, there exist K, t0, C > 0 depending on n, m0, γ0, λ
in (H1) and L in (3.5), such that for every

x0 = (x′
0, 0) ∈ B′

1/2 |m| ≤ m0 0 < γ ≤ γ0 0 < t ≤ t0

the function

η(x) = t
(
|x′ − x′

0|2 −Kx2
n+1

)
+ mxn+1 + γ

satisfies

max
{
‖η‖L∞(B1/2(x0)), ‖∇η‖L∞(B1/2(x0))

}
≤ 1 + m0 + γ, (3.6)

and

Ht(η)(x) ≥ Ct and Ht(−η)(x) ≤ −Ct ∀ x ∈ B1/2(x0), (3.7)

for every t-rescaled operator Ht.

Proof. We compute

∇η(x) = (2t(x′ − x′
0),−2Ktxn+1 + m) ∈ Rn ×R,

D2η(x) = 2t
n∑

i=1
ei ⊗ ei − 2Kten+1 ⊗ en+1,

and we estimate on B1/2(x0)

‖η‖∞ ≤ 1
4(1 + K)t + m0

2 + γ, ‖∇η‖∞ ≤ (1 + K)t + m0.

Therefore, setting t0 = 1
1+K > 0, we ensure the validity of (3.6). Setting M = 1 +m0+γ0, 

we have (F, F0 and their derivatives are computed in (x, η(x), ∇η(x)) and λ(M) is the 
function in (H1))

Htη = −divxF − 〈∂zF,∇η〉 − tr(DpF ·D2η) + F0

≥ −tL(M) − 2t
n∑

i=1
〈DpFei, ei〉 + 2Kt〈DpFen+1, en+1〉 ≥

≥ −(1 + 2n)tL(M) + 2Ktλ(M) ≥ tL(M),

provided

K ≥ (1 + n)L(M)
λ(M) .
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Similarly, computing the operator for −η (hence the arguments of F, F0 and their 
derivatives are (x, −η(x), −∇η(x)), we get

Ht(−η) = −divxF + 〈∂zF,∇η〉 + tr(DpF ·D2η) + F0

≤ tL(M) + 2t
n∑

i=1
〈DpFei, ei〉 − 2Kt〈DpFen+1, en+1〉 ≤

≤ (1 + 2n)tL(M) − 2Ktλ(M) ≤ −tL(M). �
3.5. Flatness of blowups for thin obstacle problem

Next, we prove a core result which is crucial in the classification of blowups for the 
thin obstacle problem: following [12] we show that all blowups around free boundary 
points need to be flat, by showing that edge-shaped profiles must correspond to points 
in the interior of the coincidence set.

We recall the notation:

w(t) =
{
a+t t ≥ 0,
a−t t ≤ 0

for some a+ ≤ a−. (3.8)

Proposition 3.6. Suppose a+ < a−. There exists ε = ε(n, a+, a−, λ, L) > 0 (λ is the 
ellipticity bound in (H1) and L is the bound of the rescaled operators in (3.5)) such that, 
if u is a solution to the thin obstacle problem in B1 with ε-rescaled operator H, such that

u(x) ≤ w(xn+1) + ε ∀x ∈ B1, (3.9)

then B′
1/2 ⊂ Λ(u).

Proof. Let m0 = max{|a−|, |a+|} and γ0 = 3 + 2m0 in Lemma 3.4 and let K and 
t0 > 0 be the corresponding constants. Fix x0 = (x′

0, 0) ∈ B′
1/2, m = a−+a+

2 and 
0 < ε < min{1, 14 t0} and define

η(x) = 4ε(|x′ − x′
0|2 −Kx2

n+1) + mxn+1,

A = {s > 0 : u(x) < η(x) + s ∀ x ∈ B1/2(x0)}.

By (3.6) we have that

u(x) − η(x) ≤ w(xn+1) + ε + 1 + m0 ≤ 2 + 2m0 < γ0 ∀ x ∈ B1/2(x0),

thus implying that γ0 ∈ A. Clearly A is an open half line: A = (γ, +∞) for some γ ≥ 0. 
We want to show that γ = 0.

Suppose by contradiction that 0 < γ ≤ γ0. By definition u ≤ η + γ and there exists 
x ∈ B1/2(x0) such that u(x) = η(x) + γ. If ε is small enough, we have that
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η(x) ≥ w(xn+1) + ε ∀ x ∈ ∂B1/2(x0). (3.10)

In fact, for x ∈ ∂B1/2(x0) we have |x′−x′
0|2 = 1

4 −x2
n+1, so the above inequality reduces 

to

w(xn+1) ≤ mxn+1 − 4(1 + K)εx2
n+1 for |xn+1| ≤

1
2 .

If xn+1 > 0, this amounts to show

a+ ≤ m− 4(1 + K)εxn+1 for 0 ≤ xn+1 ≤ 1
2 .

This is true if 0 < ε ≤ a−−a+

4(1+K) . Similarly, this same restriction on ε implies that a similar 
inequality holds when xn+1 < 0, i.e.,

a− ≥ m− 4(1 + K)εxn+1 for − 1
2 ≤ xn+1 ≤ 0,

so that we have (3.10).
Thus, we have

u(x) ≤ w(xn+1) + ε ≤ η(x) < η(x) + γ ∀ x ∈ ∂B1/2(x0).

This proves that x /∈ ∂B1/2(x0). We also notice that, if x ∈ B′
1/2(x0), we would have 

u(x) = η(x) + γ ≥ γ > 0. Thus, x ∈ B1/2(x0) \ Λ(u). This means that Hu = 0 in a 
neighborhood of x and u is touched from above in x by the function η + γ, which is a 
strict supersolution by Lemma 3.4. However, by Harnack’s inequality (see Corollary B.1) 
a solution to H = 0 cannot be touched from above by a strict supersolution at an interior 
point, which leads to a contradiction.

Thus, we conclude that γ = 0: in particular,

0 ≤ u(x0) ≤ η(x0) + s = s ∀ s > 0 =⇒ u(x0) = 0.

Since x0 ∈ B′
1/2 is arbitrary, we conclude that B′

1/2 ⊂ Λ(u). �
The main consequence of Proposition 3.6 is that all blowups of a solution to the 

thin obstacle problem at a free boundary point are flat, i.e., must be of form (3.8) with 
a− = a+.

Corollary 3.7. Let u be a Lipschitz solution to the thin obstacle problem (3.1) and let 
z0 ∈ Γ(u). Then, all blowups of u at z0 are of the form axn+1 for some a ∈ R.

Proof. Let uk denote the rescalings at z0: uk(z) = u(z0+tkx)/tk for some sequence tk ↓ 0. 
Since Lip(uk) ≤ Lip(u) and ‖uk‖∞ ≤ Lip(u), Ascoli-Arzelà’s Theorem and Lemma 3.2, 
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a subsequence of uk converges uniformly on B1 to a one-dimensional wedge w in (3.8)
with slopes a+ ≤ a−.

Suppose by contradiction that a+ < a−. We consider ε > 0 given by Proposition 3.6. 
Choose next k ≥ 1 big enough to guarantee tk < ε and to guarantee that (3.9) holds 
with uk in place of u. Since uk is a solution to the thin obstacle problem with operator 
Hk and the operator Hk is tk-rescaled (tk < ε), we can apply Proposition 3.6 and infer 
that B′

1/2 ⊂ Λ(uk). But 0 ∈ Γ(uk) by hypotheses, which leads to a contradiction. So the 
only possibility is that a+ = a− = a. �
3.8. Differentiability at free boundary points

Proposition 3.6 does not exclude that different subsequences of rescalings produce 
different blowup limits at the same free boundary points. This possibility is ruled out by 
the next result.

Proposition 3.9. Let a, m ∈ R and m0 > 0, |a| < m0 and |m| ≤ m0 and m < a. There 
exists ε = ε(n, m0, a, λ, L) > 0 with the following property. If u is a solution to the thin 
obstacle problem in B1 with an ε-rescaled operator H and u satisfies

u(x) ≥ axn+1 − ε ∀x ∈ B+
1 ,

then u(x) ≥ mxn+1 for every x ∈ B+
1/2.

Proof. Apply Lemma 3.4 with m0 and γ0 = 2, and let K, t0 > 0 be the corresponding 
constants. We fix x0 = (x′

0, 0) ∈ B′
1/2 and 0 < ε < {1, 14 t0, 

K−1

4 } and define

η(x) = 4ε(|x′ − x′
0|2 −Kx2

n+1) −mxn+1

A =
{
s > 0 : u(x) > −η(x) − s ∀x ∈ B+

1/2(x0)
}
.

We have that

u(x) + η(x) ≥ axn+1 − ε− 1 −mxn+1 > −2 = −γ0 ∀ x ∈ B+
1/2(x0),

where we used that a > m. Therefore, γ0 ∈ A; in particular, A is not empty and has 
the form A = (γ, +∞) for some γ ≥ 0. We want to show that γ = 0. Suppose by 
contradiction that 0 < γ ≤ γ0. Arguing as for Proposition 3.6 we infer that u ≥ −η − γ

in B+
1/2(x0) and there exists x ∈ B+

1/2(x0) such that u(x) = −η(x) − γ. Note that for ε
small enough we get

η(x) ≥ −axn+1 + ε ∀x ∈ (∂B1/2(x0))+.

Indeed, for x ∈ (∂B1/2(x0))+ we have |x′ − x′
0|2 = 1

4 − x2
n+1, so the above inequality 

reduces to
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a ≥ m + 4(1 + K)εxn+1 ∀ xn+1 ∈ (0, 1/2] ,

which is true if 0 < ε ≤ a−m0
2(1+K) ≤ a−m

2(1+K) . Hence, under this assumption we conclude 
that

u(x) ≥ axn+1 − ε ≥ −η(x) > −η(x) − γ ∀ x ∈ (∂B1/2(x0))+.

We deduce that x /∈ (∂B1/2(x0))+. Moreover, x /∈ B′
1/2(x0), because in this case u(x) =

−η(x) −γ ≤ −γ < 0, against the unilateral constraint. Thus, x ∈ B+
1/2(x0), which means 

that Hu = 0 around x. We reach then a contradiction by noticing that the solution u is 
touched from below by the function −η−γ which is a strict subsolution in a neighborhood 
of x (see Corollary B.1).

Thus, we conclude that γ = 0, so that for every x ∈ B+
1/2(x0) we have u(x) ≥ −η(x). 

In particular, for every 0 ≤ xn+1 ≤ 1
2 ,

u(x′
0, xn+1) ≥ −η(x′

0, xn+1) = 4εKx2
n+1 + mxn+1 ≥ mxn+1.

This conclusion being true for every x′
0 ∈ B′

1/2 and every 0 ≤ xn+1 ≤ 1/2, we conclude 
the proof of the proposition. �

Clearly, an analogue statement of Proposition 3.9 holds in B−
1 . The main consequence 

of the previous result is the uniqueness of blowups at any free boundary point both for 
the thin and the boundary obstacle problem.

Proposition 3.10. Let u be a Lipschitz solution to either the thin or to the boundary 
obstacle problem (3.1). Then, for every z0 ∈ Γ(u) there exists az0 ∈ R such that the 
linear function uz0(x) = az0xn+1 is the unique blowup limit at z0, i.e.

ut(x) = u(z0 + tx)
t

→ uz0(x) uniformly in B1, as t → 0.

In particular, by taking x = en+1, we have that u is differentiable at z0 and ∇u(z0) =
(0, az0) ∈ Rn ×R.

Proof. Suppose by contradiction that there are two different sequences t(i)k ↓ 0, i = 1, 2
such that the limit of the rescalings

u
(i)
k (x) =

u(z0 + t
(i)
k x)

t
(i)
k

are the functions a(i)xn+1 with a(2) < a(1). We choose m such that a(2) < m < a(1). Since 
the rescalings u(1)

k solve the thin obstacle problem with t(1)k -rescaled operators, for k big 
enough we have that the hypotheses of Proposition 3.9 are satisfied (with parameters 
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m0 = Lip(u), a = a(1), m) and therefore we get that u(1)
k (x) ≥ mxn+1 for every x ∈ B+

1/2
for k large enough, which means that

u(x) ≥ mxn+1 ∀x ∈ B+
s (z0),

for a suitable s > 0. This is a contradiction to the fact that

mxn+1 ≤ u
(2)
k (x) =

u(z0 + t
(2)
k x)

t
(2)
k

→ a(2)xn+1 < mxn+1 ∀ xn+1 > 0. �

3.11. On the value of the normal derivative on the free boundary

We show that the gradient of the solutions at free boundary points is prescribed by 
the Signorini boundary condition Fn+1(x0, 0, ∇u(x0)) = 0.

To this aim we start with the following lemma.

Lemma 3.12. Suppose m > a. There exists ε = ε(n, a, m, λ, L) > 0 such that, if u is a 
solution to the boundary obstacle problem in B+

1 with ε-rescaled operator H, such that

u(x) ≤ axn+1 + ε ∀ x ∈ B+
1 ,

∂n+1u(x) > m ∀ x ∈ B′
1 \ Λ(u),

then B′
1/2 ⊂ Λ(u).

Proof. Let m0 = max{|a|, |m|} and γ0 = 3 + 2m0 in Lemma 3.4 and let K and t0 > 0
be the corresponding constants. Fix x0 = (x′

0, 0) ∈ B′
1/2 and 0 < ε ≤ min{1, 14 t0} and 

define

η(x) = 4ε(|x′ − x′
0|2 −Kx2

n+1) + mxn+1,

A = {s > 0 : u(x) < η(x) + s ∀ x ∈ B+
1/2(x0)}.

It is immediate to verify that γ0 ∈ A because we have that

u(x) − η(x) ≤ axn+1 + ε + 1 + m0 ≤ 2 + 2m0 < γ0 ∀ x ∈ B+
1/2(x0).

We show that γ := inf A = 0. Suppose by contradiction that 0 < γ ≤ γ0. By definition, 
u ≤ η + γ and there exists x̄ ∈ B+

1/2(x0) such that u(x̄) = η(x̄) + γ. If ε < m−a
2(1+K) , then 

it is simple to verify that

η(x) ≥ axn+1 + ε ∀ x ∈ (∂B1/2(x0))+. (3.11)

Therefore x̄ /∈ (∂B1/2(x0))+. On the other hand, if x̄ ∈ B′
1/2(x0), then u(x̄) = η(x̄) +γ ≥

γ > 0. Thus, x̄ ∈ B′
1 \ Λ(u): i.e.,
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u(x) ≤ η(x) + γ ∀ x ∈ B+
1/2(x0), u(x̄) = η(x̄) + γ.

It follows then that necessarily ∂n+1u(x̄) ≤ ∂n+1η(x̄) = m, which contradicts our 
hypotheses. Finally, if x̄ ∈ B+

1/2(x0), than we contradict Harnack’s inequality (see Corol-
lary B.1) because Hu = 0 in a neighborhood of x̄ and u is touched from above by a strict 
supersolution η + γ.

Thus, we conclude that γ = 0 and therefore u(x0) = 0 for all x0 ∈ B′
1/2. �

As a consequence we deduce that the co-normal derivative must vanish at free bound-
ary points.

Proposition 3.13. Let u be a Lipschitz solution to the boundary obstacle problem (3.1). 
Then, for every z0 ∈ Γ(u) we have that Fn+1(z0, 0, 0, ∂n+1u(z0)) = 0.

Proof. Let a = ∂n+1u(z0). By Lemma 3.2 we know that Fn+1(z0, 0, 0, a) ≤ 0. Assume 
by contradiction that τ := 1

2Fn+1(z0, 0, 0, a) < 0 and fix any constant m > a such that 
Fn+1(z0, 0, 0, m) < τ . We can find such m since Fn+1(z0, 0, 0, ·) is strictly monotone 
increasing and continuous.

We consider ε > 0 given by Lemma 3.12. We want to apply that result to uk(x) =
ku(z0 + x/k) for k ≥ 1 big enough. To this aim, given x ∈ B′

1 \ Λ(uk), we note that 
z0+x/k ∈ B′

1\Λ(u). Since u is C1 around z0+x/k, by the Signorini boundary conditions 
we have that

Fn+1(z0 + x/k, uk(x)/k,∇uk(x)) = 0

Therefore, for every x ∈ B′
1 \ Λ(uk) we have that

− Fn+1(z0, 0, 0, ∂n+1uk(x))

= Fn+1(z0 + x/k, uk(x)/k,∇uk(x)) − Fn+1(z0, 0, 0, ∂n+1uk(x))

≤ ‖∇Fn+1‖∞
(

1 + ‖uk‖∞
k

+ ‖∇′uk‖∞
)

= o(1) for k → ∞,

where we use Frehse’s Theorem 2.1 to deduce that

|∇′uk(x)| = |∇′u(z0 + x/k) −∇′u(z0)| ≤ ω(1/k),

and supk ‖uk‖∞ < ∞. We can therefore choose k big enough to ensure that τ ≤ −ω(1/k). 
So that

Fn+1(z0, 0, 0,m) < τ ≤ −ω(1/k) ≤ Fn+1(z0, 0, 0, ∂n+1uk(x)) =⇒ m < ∂n+1uk(x).

Thus we have proven that m < ∂n+1uk(x) for every x ∈ B′
1 \ Λ(uk), if k is big enough. 

Moreover, since ∇u(z0) = (0, a), we have that uk(x) ≤ axn+1 + ε for every x ∈ B+
1 and 
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large enough k. Therefore, since uk is a solution to the boundary obstacle problem with 
ε-rescaled operator Hk (if k−1 < ε), we can apply Lemma 3.12 to get that B′

1/2 ⊂ Λ(uk), 
against the assumption that z0 ∈ Γ(u). �
3.14. Continuity of the normal derivative

Building upon the previous results, we are ready to prove the continuity of the deriva-
tives stated in Theorem 3.1.

We start with the following proposition.

Proposition 3.15. Let u be a Lipschitz solution to either the thin or the boundary obstacle 
problem (3.1). If {zk} ⊂ Γ(u), {tk} ⊂ R such that tk → 0, zk → z0 ∈ Γ(u), 0 < tk <

1 − |zk|, then

uk(x) = u(zk + tkx)
tk

→ ∂n+1u(z0)xn+1 uniformly on B1.

Proof. By Lemma 3.2 and Corollary 3.7, up to a subsequence we have that uk(x) →
axn+1 uniformly on B1, for some a ∈ R. We consider separately the two obstacle prob-
lems.

Thin obstacles. For every δ > 0 we define

wδ(xn+1) =
{

(∂n+1u(z0) − δ)xn+1 xn+1 ≥ 0,
(∂n+1u(z0) + δ)xn+1 xn+1 ≤ 0.

We then consider ε > 0 in Proposition 3.9 with ∂n+1u(z0) in place of a and ∂n+1u(z0) −δ

in place of m. By the uniqueness of blowups in Proposition 3.10, there exists 0 < tδ <

min{1 − |z0|, ε} such that

|ut(x) − ∂n+1u(z0)xn+1| ≤ ε ∀x ∈ B1, ∀ t < tδ,

where

ut(x) = u(z0 + tx)
t

.

By applying Proposition 3.9 to both sides of the ball, for small values of t we get that 
ut(x) ≥ wδ(xn+1) for every x ∈ B1/2. So there exists a small radius rδ > 0 such that 
u(x) ≥ wδ(xn+1) for every x ∈ Brδ (z0).

Now let zk, tk and uk as in the statement. We want to show that a = ∂n+1u(z0). For 
k ≥ 1 big enough, indeed, we have |zk − z0| ≤ rδ/2 and tk ≤ rδ/2, so that Btk(zk) ⊂
Brδ (z0). Thus, uk(x) ≥ wδ(xn+1) for every x ∈ B1. Letting k → +∞, we then get 
|a − ∂n+1u(z0)| ≤ δ. Since δ was arbitrary small, the proof is complete.
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Boundary obstacles. We show that a = ∂n+1u(z0). Indeed, if a > ∂n+1u(z0), then by 
Proposition 3.13 we have that

Fn+1(z0, 0, 0, a) > Fn+1(z0, 0, 0, ∂n+1u(z0)) = 0,

which is a contradiction to Lemma 3.2. If instead a < ∂n+1u(z0), let

ûk(x) = ku(z0 + x/k).

By Proposition 3.10 we know that ûk(x) → ∂n+1u(z0)xn+1 uniformly and by Proposi-
tion 3.9 for every a < m < ∂n+1u(z0) we have that ûk(x) ≥ mxn+1 for every x ∈ B+

1/2
if k is big enough. So there exists a small radius r > 0 such that u(x) ≥ mxn+1 for 
every x ∈ B+

r (z0). If k is big enough, then |zk − z0| ≤ r/2 and tk ≤ r/2, so that 
B+

tk
(zk) ⊂ B+

r (z0). Thus, uk(x) ≥ mxn+1 for every x ∈ B+
1 . Letting k → +∞, we then 

get a ≥ m, which is a contradiction. �
Proof of Theorem 3.1. We consider separately the two obstacle problems.

Thin obstacles. We start observing that u is C1,α regular around points of B+
1 ∪B′

1 \
Λ(u) for every 0 < α < 1, since it solves a quasi-linear elliptic equation with C1-regular 
operator. If z0 is an interior point of Λ(u) with respect to the relative topology of B′

1, 
then we can find r > 0 small such that B′

r(z0) ⊂ Λ(u). In this case, u is a solution to 
the Dirichlet problem in B+

r (z0) with null boundary datum on the flat portion of the 
half-ball. Due to a result of Giaquinta and Giusti [16] (see Appendix B), u is then C1,α

around z0, for every 0 < α < 1. It is left to prove that u is C1 around points of Γ(u).
Let z0 ∈ Γ(u) and {yk}k≥1 ⊂ B+

1 ∪B′
1 be such that yk → z0. Without loss of generality, 

we may assume that the whole sequence {yk}k≥1 is contained either in Γ(u) or outside 
Γ(u).

Case {yk}k≥1 ⊂ B+
1 ∪ B′

1 \ Γ(u). For every k ≥ 1 we choose zk ∈ Γ(u) such that 
tk := dist(yk, Γ(u)) = |zk − yk| > 0. Set

τk = 2tk, pk = yk − zk
τk

, Bk = Btk(yk), Ck = B+
tk/2(yk), D = B+

1
8
(p).

Without loss of generality and upon extracting a subsequence, we may assume

τk < 1 − |zk|, pk → p ∈ ∂B 1
2
, |pk − p| < 1

8 .

Next, we set

uk(x) = u(zk + τkx)
τk

∀x ∈ B1.
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For every fixed k ≥ 1, either Bk ∩ Λ(u) = ∅ or B′
k ⊂ Λ(u) (depending on whether or 

not yk belongs to the interior of the coincidence set of u).
In both cases (using either De Giorgi’s Theorem [5] or the already quoted result of 

Giaquinta and Giusti [16], see Appendix B), we conclude that u ∈ C1,α(Ck) with uniform 
bounds, so that there exists a constant C > 0 such that

|∂n+1uk(x) − ∂n+1uk(y)| ≤ Cταk |x− y|α ∀x, y ∈ D.

Considering the uniform boundedness ‖∂n+1uk‖L∞(D) ≤ ‖∂n+1u‖L∞(B1), we can 
apply Ascoli-Arzelà’s Theorem to deduce that ∂n+1uk converges (upon extracting a sub-
sequence) uniformly in D. Moreover, since by Proposition 3.15, we have that uk(x) →
∂n+1u(z0)xn+1 uniformly on B1, necessarily it must hold that ∂n+1uk → ∂n+1u(z0).

We can repeat the same argument for the negative part of the balls to get that 
∂n+1uk → ∂n+1u(z0) (up to further subsequences) in the whole ball B 1

8
(p). Moreover, 

since the limit is independent of the subsequence, the entire sequence uk satisfies the 
same conclusion. In particular, |pk − p| < 1

8 implies that

|∂n+1uk(pk) − ∂n+1u(z0)| ≤ ‖∂n+1uk − ∂n+1u(z0)‖∞ → 0,

thus proving that ∂n+1u(yk) = ∂n+1u(zk + τkpk) = ∂n+1uk(pk) → ∂n+1u(z0).

Case {yk}k≥1 ⊂ Γ(u). By Proposition 3.10 we have that u is differentiable at yk, 
hence there exists 0 < tk < 1 − |yk| such that

∣∣∣∣u(yk + tken+1)
tk

− ∂n+1u(yk)
∣∣∣∣ ≤ 1

k
.

However by Proposition 3.15 we have that

u(yk + tken+1)
tk

→ ∂n+1u(z0).

We conclude that ∂n+1u(yk) → ∂n+1u(z0), thus completing the proof of the continuity 
of the normal derivative of the solution to the thin obstacle problems.

Boundary obstacles. We start noticing that at any z0 ∈ Γ(u) by the ellipticity hypoth-
esis (H1) the function

φ(t) = Fn+1(z0, 0, ten+1)

is monotone increasing and φ′(t) = ∂pn+1Fn+1(z0, 0, ten+1) ≥ λ(t), the constant λ being 
uniformly positive for t in any compact set. Moreover, using the result by Lieberman [27]
for the regularity of Neumann’s problem (see Appendix B), we have that u is C1,α(B+

1 ∪
B′

1 \ Λ(u)) and it follows from the variational inequality (3.1) that
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Fn+1((x′, 0), u(x′, 0),∇u(x′, 0)) = 0 ∀ (x′, 0) ∈ B′
1 \ Λ(u).

Therefore, if yk ∈ B′
1 \ Λ(u) with yk → z0, then ∇′u(yk) → 0 by Frehse result and

Fn+1(yk, u(yk),∇u(yk)) = 0;

hence, for any converging subsequence ∇u(ykj
) → (0, a) ∈ Rn ×R, we have that

Fn+1(z0, 0, (0, a)) = 0.

By the strict monotonicity of φ(t) = Fn+1(z0, 0, ten+1) we must have ∂n+1u(z0) = a, i.e., 
∂n+1u(ykj

) → ∂n+1u(z0). On the other hand, if yk ∈ Λ(u) with yk → z0, we can argue 
as for the thin obstacle problem, inferring that ∂n+1u(yk) → ∂n+1u(z0). This proves the 
continuity of the normal derivative at any free boundary point. �
4. C1,α regularity

In this section we prove the C1,α regularity for the solutions to the variational in-
equalities with boundary obstacles (3.1), which we recall here for readers’ convenience:

ˆ

B+
1

〈F (x, u,∇u),∇v −∇u〉 + F0(x, u,∇u)(v − u) ≥ 0 ∀ v ∈ Ag, (4.1)

Ag :=
{
v ∈ W 1,∞(B+

1 ) : v|∂B+
1 \B′

1
= g, v|B′

1
≥ 0

}
, u ∈ Ag.

We will prove the following result.

Theorem 4.1. Let u be a Lipschitz solution to the variational inequality (4.1) for the 
boundary obstacle problem. Then, there exists α ∈ (0, 1) such that u ∈ C1,α(B+

1 ∪B′
1).

Clearly, Theorem 1.1 (ii) is a corollary of Theorem 4.1 by following the usual local 
straightening of the boundary described in Section 2.

We will prove Theorem 4.1 by extending to the present nonlinear case the techniques 
developed by Uralt’seva [32,33] based on De Giorgi’s method.

4.1. Caccioppoli inequality for the tangential derivatives

We prove Caccioppoli-type inequalities for the tangential derivatives of u, namely 
±∂iu, i = 1, . . . , n. Before moving on with the proof, we show a simple lemma (see also 
[14]). Here, we introduce the following notation for the difference quotients:

Dh
i w(x) = w(x + hei) − w(x)

h
,
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whenever the above expression makes sense, i.e. for every i = 1, . . . , n, h �= 0 and 
x ∈ B+

1 ∪B′
1 such that x + hei ∈ B+

1 ∪B′
1.

Lemma 4.2. Let u ∈ Ag and ϕ ∈ W 1,∞(B+
1 ) such that suppϕ ⊂ B+

r ∪ B′
r(x0), where 

x0 ∈ B′
1 and 0 < r < 1 − |x0|. Then, for every 0 < h < 1−|x0|−r

2 and k ≥ 0, there exists 
ε0 = ε0(h, ‖ϕ‖∞) > 0 such that

v := u + εD−h
i (ϕ2(Dh

i u− k)+) ∈ Ag ∀ i = 1, . . . , n ∀ ε ∈ (0, ε0). (4.2)

Proof. If x ∈ B+
1 ∪ B′

1 with |x − x0| ≥ r + h, then ϕ(x) = ϕ(x − hei) = 0, so that 
v(x) = u(x); in particular, v|∂B+

1 \B′
1

= g and v(x) ≥ 0 for every x ∈ B′
1 \ Br+h(x0). 

Therefore, we need only to show that v(x) ≥ 0 for every x ∈ B′
r+h(x0). Note that

v(x) = u(x) + ε

h

(
ϕ2(x)(Dh

i u(x) − k)+ − ϕ2(x− hei)
(
u(x)
h

− u(x− hei)
h

− k

)
+

)

≥ u(x) − ε

h
ϕ2(x− hei)

(
u(x)
h

− u(x− hei)
h

− k

)
+

≥ u(x) − ε
‖ϕ‖2

∞
h2 (u(x) − kh)+ .

Thus v(x) ≥ u(x) ≥ 0 if u(x) ≤ kh and v(x) ≥ (1 − ‖ϕ‖2
∞

h2 ε)u(x) + ‖ϕ‖2
∞

h kε otherwise. 
Therefore, if ε is sufficiently small, then v(x) ≥ 0 in both cases. �

In the next proposition we will make use of the previous lemma to show that ∂iu
satisfy a Caccioppoli inequality.

Proposition 4.3. Let u be a Lipschitz solution to the boundary obstacle problem. There 
exists c = c(n, ‖u‖∞, Lip(u)) > 0 such that the functions w = ±∂iu, i = 1, . . . , n satisfy

ˆ

A(k,r)

|∇w|2 ≤ c

(R− r)2

ˆ

A(k,R)

(w − k)2 + c |A(k,R)|, (4.3)

for every k ≥ 0, x0 ∈ B′
1, and 0 < r < R < 1 − |x0|, where A(k, s) = {w ≥ k} ∩B+

s (x0)
and |E| denotes the Lebesgue measure of a set E in Rn+1.

Proof. Let i = 1, . . . , n and ϕ ∈ C∞(B+
1 (x0)) such that ϕ ≡ 1 on B+

r (x0), ϕ ≡ 0 outside 
B+

R(x0) and |∇ϕ| ≤ c
R−r . We plug v as in (4.2) into (4.1) to get

ˆ

B+
1

〈Dh
i (F (x, u,∇u)),∇ζh〉 − F0(x, u,∇u)D−h

i ζh ≤ 0,
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where ζh = ϕ2(Dh
i u − k)+. We let h → 0+ to infer that

ˆ

B+
1

〈a∇∂iu− q,∇ζ〉 ≤ 0

with ζ := ϕ2(∂iu − k)+ and

a(x) := DpF (x, u(x),∇u(x))

q(x) := −∂xi
F (x, u(x),∇u(x)) − ∂zF (x, u(x),∇u(x))∂iu(x) + F0(x, u(x),∇u(x)) ei.

We notice that ‖a‖∞ + ‖q‖∞ ≤ C(‖u‖∞, Lip(u)) and 〈a(x)ξ, ξ〉 ≥ λ(‖u‖∞, Lip(u))|ξ|2. 
Standard calculations then lead to (4.3) for w = ∂iu. The case w = −∂iu is analogous. �
4.4. Normal derivative

Now we will deal with the co-normal derivative of u.

Proposition 4.5. Let u be a Lipschitz solution to the boundary obstacle problem. There ex-
ists c = c(n, ‖u‖∞, Lip(u)) > 0 such that the functions w(x) = ±Fn+1(x, 0, 0, ∂n+1u(x))
satisfy

ˆ

A(k,r)

|∇w|2 ≤ c

(R− r)2

ˆ

A(k,R)

(w − k)2 + c |A(k,R)|, (4.4)

for every k ≥ 0, x0 ∈ B′
1, and 0 < r < R < 1 − |x0|.

Proof. The case w(x) = Fn+1(x, 0, 0, ∂n+1u(x)) is straightforward since in this case 
{w > k} ∩B′

1 = ∅ and an elliptic differential equation is satisfied by u in B+
1 . Thus, we 

focus on the case w(x) = −Fn+1(x, 0, 0, ∂n+1u(x)). We divide the proof into steps.

Step 1. We can reduce to the case

∂pn+1F
′(x, u(x),∇u(x)) = 0 ∀ x ∈ Λ(u), (4.5)

where we write F = (F ′, Fn+1) ∈ Rn ×R. To this aim, we make a change of variables

y = Φ(x′, xn+1) = (x′ + b(x′, xn+1), xn+1) ,

with b ∈ C1(Rn × R, Rn) given by Whitney’s C1-extension Theorem applied to the 
functions bi : B′

1/2 → R and di : B′
1/2 → Rn+1 for i = 1, . . . , n,

{
bi(x′, 0) = 0,
di(x′, 0) = (0, Vi(x′)) ∈ Rn ×R,

∀ (x′, 0) ∈ B′
1/2 (4.6)
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where

Vi(x′) =
∂pn+1Fi(x′, 0, 0, 0, ∂n+1u(x′, 0))

∂pn+1Fn+1(x′, 0, 0, 0, ∂n+1u(x′, 0)) . (4.7)

We remark that ∂pn+1Fn+1 > 0 thanks to (H1) and by Theorem 1.1 Vi is continuous, 
so that we are in position to apply Whitney’s Theorem and get functions bi such that 
∇bi(x′, 0) = (0, Vi(x′)) for all x′ ∈ B′

1/2.
By definition Φ is a local C1-diffeomorphism between B1/2 and a neighborhood of the 

origin, such that Φ|B′
1/2

= Id and ū(x) = u(Φ(x)) solves a variational inequality

ˆ

B+
r

〈F̄ (x, ū,∇ū),∇v̄ −∇ū〉 + F̄0(x, ū,∇ū)(v̄ − ū) dx,

∀ v̄|B′
r
≥ 0, v̄|(∂Br)+ = ū|(∂Br)+ ,

for suitable r > 0 (depending on the diffeomorphism Φ) and

F̄ (x, z, p) = |detA(x)|A(x)−1F (Φ(x), z, (A(x)−1)T p),

F̄0(x, z, p) = |detA(x)|F0(Φ(x), z, (A(x)−1)T p),

A(x) = DΦ(x) =
(

Idn + D′b(x) ∂n+1b(x)
0 1

)
.

By direct calculations, we have that

F̄i(x′, 0, 0, 0, pn+1) = Fi(x′, 0, 0, 0, pn+1) − Fn+1(x′, 0, 0, 0, pn+1)Vi(x′).

Differentiating with respect to the pn+1 variable, we get

∂pn+1 F̄i(x′, 0, 0, 0, pn+1) = ∂pn+1Fi(x′, 0, 0, 0, pn+1) − ∂pn+1Fn+1(x′, 0, 0, 0, pn+1)Vi(x′).

Since for (x′, 0) ∈ Λ(u) we have that ∂n+1ū(x′, 0) = ∂n+1u(x′, 0), setting pn+1 =
∂n+1ū(x′, 0) we get

∂pn+1 F̄i(x′, 0, 0, 0, ∂n+1ū(x′, 0)) = 0.

Therefore, up to applying the local diffeomorphism Φ, we can always assume that (4.5)
holds.

Step 2. Let ζ ∈ C∞(B+
1 ∪B′

1) be such that

supp ζ ∩ (∂B1)+ = ∅, supp ζ ∩ B′
1 ⊂⊂ Λ(u). (4.8)

Then,
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ˆ

B′
1

Fn+1(x, u,∇u) ∂n+1ζ = −
ˆ

B+
1

div(F (x, u,∇u) ∂n+1ζ)

= −
ˆ

B+
1

〈F (x, u,∇u),∇∂n+1ζ〉 −
ˆ

B+
1

F0(x, u,∇u) ∂n+1ζ

=
ˆ

B+
1

〈∂n+1(F (x, u,∇u)),∇ζ〉 −
ˆ

B+
1

∂n+1〈F (x, u,∇u),∇ζ〉

−
ˆ

B+
1

F0(x, u,∇u) ∂n+1ζ

=
ˆ

B+
1

〈a∇∂n+1u− q,∇ζ〉 +
ˆ

B′
1

〈F (x, u,∇u),∇ζ〉,

where we have set

a(x) := DpF (x, u(x),∇u(x)),

q(x) := −∂xn+1F (x, u(x),∇u(x)) − ∂zF (x, u(x),∇u(x))∂n+1u(x)

+ F0(x, u(x),∇u(x)) en+1.

We have hence inferred that
ˆ

B+
1

〈a∇∂n+1u− q,∇ζ〉 +
ˆ

B′
1

〈F ′(x, u,∇u),∇′ζ〉 = 0. (4.9)

From the definition of w = −Fn+1(x, 0, 0, ∂n+1u(x)), we get that

∇∂n+1u(x) = − 1
∂pn+1Fn+1(x, 0, 0, ∂n+1u(x))∇w − ∇xFn+1(x, 0, 0, ∂n+1u(x))

∂pn+1Fn+1(x, 0, 0, ∂n+1u(x)) .

Therefore we can rewrite equation (4.9) as
ˆ

B+
1

〈ã∇w − q̃,∇ζ〉 =
ˆ

B′
1

〈F ′(x, u,∇u),∇′ζ〉,

where ã and q̃ are given by:

ã(x) := 1
∂pn+1Fn+1(x, 0, 0, ∂n+1u(x))a(x),

q̃(x) := −q(x) − 1
∂pn+1Fn+1(x, 0, 0, ∂n+1u(x))a(x)∇xFn+1(x, 0, 0, ∂n+1u(x)).
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Since supp ζ ∩ B′
1 ⊂⊂ Λ(u) and we assume (4.5), there exists a constant C > 0 such 

that
ˆ

B+
1

〈ã∇w − q̃,∇ζ〉 =
ˆ

B′
1

〈F ′(x′, 0, 0, 0, ∂n+1u(x′, 0)),∇′ζ(x′, 0)〉 dx′

= −
ˆ

B′
1

div′(F ′(x′, 0, 0, 0, ∂n+1u(x′, 0))) ζ(x′, 0) dx′

= −
ˆ

B′
1

divx′F ′(x′, 0, 0, 0, ∂n+1u(x′, 0)) ζ(x′, 0) dx′

≤ C

ˆ

B′
1

|ζ| ≤ C

ˆ

B+
1

|∇ζ|,

where in the last inequality we used the trace theorem for Sobolev functions W 1,1(B+
1 ). 

Thus, we get the existence of a constant c = c(‖u‖∞, Lip(u)) > 0 such that
ˆ

B+
1

〈ã∇w,∇ζ〉 ≤ c

ˆ

B+
1

|∇ζ|, (4.10)

for all ζ ∈ C∞ (and, hence, by a density argument for all ζ ∈ H1(B+
1 )) with support 

satisfying the conditions (4.8).
Thus, we can consider ζ = ϕ2(w − k)+ with k > 0 and ϕ ∈ C∞

c (B+
1 ) such that

ϕ ≡ 1 on B+
r (x0), ϕ ≡ 0 outside B+

R(x0) and |∇ϕ| ≤ c

R− r
.

Note that for 0 < k ≤ ‖w‖L∞(B+
1 ) we have that {w > k} ∩ B′

1 is open and compactly 
contained in the interior of Λ(u) (in the relative topology of B′

1), because u ∈ C1(B+
1 ∪B′

1)
by Theorem 1.1. Therefore ζ satisfies the conditions (4.8) on its support. From standard 
computations we deduce (4.4) for k > 0 (recall that the matrix ã is uniformly elliptic 
since λ ≤ ∂pn+1Fn+1 ≤ L). Finally, we pass to the limit for k → 0+ to prove the 
inequality holds for k = 0 too, the case k > ‖w‖L∞(B+

1 ) being trivial. �
4.6. Hölder continuity of the normal derivative

Finally, we are ready to prove our second main result, Theorem 4.1. The core of the 
proof is in Proposition 4.7, where we prove that the function

Φu(x′, 0) = Fn+1((x′, 0), 0, 0, ∂n+1u(x′, 0))

is Hölder continuous. In what follows we denote by Hn the Hausdorff measure of dimen-
sion n.
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Proposition 4.7. Let u be a Lipschitz solution to the variational inequality (4.1) for the 
boundary obstacle problem. Then, Φu ∈ Cβ(B+

1 ∪B′
1) for some β ∈ (0, 1).

Proof. Let x0 ∈ B′
1 and 0 < r < 1 − |x0|. Then either

Hn(Λ(u) ∩B′
r/2(x0)) ≥

1
2H

n(B′
r/2(x0)) (4.11)

or

Hn({Φu = 0} ∩B′
r/2(x0)) ≥

1
2H

n(B′
r/2(x0)). (4.12)

If (4.11) held, then

Hn({∂iu = 0} ∩B′
r/2(x0)) ≥

1
2H

n(B′
r/2(x0)) ∀ i = 1, . . . , n.

Therefore, by De Giorgi’s decay of the oscillation (see Theorem A.1 in the appendix) we 
have

oscB+
r/4(x0)∂iu ≤ κ oscB+

r (x0)∂iu + c r ∀ i = 1, . . . , n, (4.13)

for some κ = κ(n, Lip(u)) ∈ (0, 1). Similarly, if (4.12) held, then

oscB+
r/4(x0)Φu ≤ κ oscB+

r (x0)Φu + c r. (4.14)

We now follow Uralt’seva [33]: we set rj := 4−jr, fix ν ≥ 1 and we consider the 2ν + 1
radii r0, . . . , r2ν . Then either (4.14) holds with w = Φu for at least ν + 1 of these radii, 
or (4.13) holds with w = ∂iu, for every i = 1, . . . , n and for at least ν + 1 of these radii. 
Let rjh , h = 0, . . . , ν be the radii such that (4.14) holds with w = Φu. We label them so 
that 0 ≤ j0 < j1 < · · · < jν ≤ 2ν, and notice then that h ≤ jh for every h = 0, . . . , ν. 
We now set ϕ(ρ) = oscB+

ρ (x0)w for every 0 < ρ ≤ r. We have

ϕ(rjh+1) ≤ ϕ(rjh+1) ≤ κϕ(rjh) + 4−jhc r ≤ κϕ(rjh) + 4−hc r

for every h = 0, . . . , ν − 1. We then iterate the estimate to get

ϕ(r2ν) ≤ ϕ(rjν ) ≤ κν

(
ϕ(r) + c r

κ− 1
4

)
≤ κν(ϕ(r) + 4 c r),

where we have supposed without loss of generality that κ ≥ 1
2 . Note that the above 

inequality trivially holds for ν = 0. Hence, for r2ν+2 ≤ ρ < r2ν we have
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oscB+
ρ (x0)w = ϕ(ρ) ≤ ϕ(r2ν) ≤ κν(ϕ(r) + 4 c r) ≤ κ−1

(ρ
r

) | log4 κ|
2 (ϕ(r) + 4 c r) ≤

≤ c (r−βoscB+
r (x0)w + r1−β)ρβ ≤ c (r−βoscB+

r (x0)w + 1)ρβ ,

where we have set 0 < β = | log4 κ|
2 < 1. So for every ν ≥ 0 we have that

oscB+
ρ (x0)w ≤ c (r−βoscB+

r (x0)w + 1)ρβ , (4.15)

for every r2ν+2 ≤ ρ < r2ν , either with w = Φu or with w = ∂iu for every i = 1, . . . , n. 
Now we set k = max{0, inf

B+
ρ (x0)

w}. By (4.3) we get

ˆ

A
(
0, ρ2

)
|∇w|2 ≤ c

ρ2

ˆ

A(k,ρ)

(w − k)2 + cρn+1 ≤

≤ c ρn+1
(
ρ−2osc2

B+
ρ (x0)

w + 1
)
.

The same applies to −w, so summing up we have
ˆ

B+
ρ/2(x0)

|∇w|2 ≤ c ρn+1
(
ρ−2osc2

B+
ρ (x0)

w + 1
)
.

Combined with (4.15), this gives
ˆ

B+
ρ/2(x0)

|∇w|2 ≤ c ρn−1+2β
(
r−2βosc2

B+
r (x0)

w + 1
)

=: Cρn−1+2β , (4.16)

for every r2ν+2 ≤ ρ < r2ν , either with w = Φu or with w = ∂iu for every i = 1, . . . , n. 
However u satisfies an elliptic equation in B+

1 , so we can estimate ∂2
n+1u in terms of all 

the other second order derivatives of u. Thus we get

|∇Φu|2 = |∇xFn+1 + ∂pn+1Fn+1∇∂n+1u|2

≤ c
(
|∇∂n+1u|2 + 1

)
≤ c

(
n∑

i=1
|∇∂iu|2 + 1

)
a.e. in B+

1 .

Thus in any case
ˆ

B+
ρ/2(x0)

|∇Φu|2 ≤ Cρn−1+2β ∀ ρ ∈ (0, 1 − |x0|),

independently of (4.16) holding for Φu or for ∂iu, i = 1, . . . , n. By Morrey’s theorem, we 
conclude that Φu ∈ Cβ(B+

1 ) for some β ∈ (0, 1). �
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4.8. Proof of Theorem 4.1

Since u solves the boundary obstacle problem, the co-normal derivative

Nu : B′
1 � x �→ Fn+1(x, u(x),∇u(x))

is continuous by Theorem 3.1, vanishes on B′
1 \ Λ(u) and Nu(x) = Φu(x) for every 

x ∈ Λ(u) (because u(x) = |∇′u(x)| = 0). Therefore, (Nu)(·, 0) ∈ Cβ(B′
1): indeed, for 

(x′, 0) ∈ Λ(u) and (y′, 0) ∈ B′
1 \ Λ(u), there exists z′ = (1 − t)x′ + t y′ ∈ Γ(u) for some 

0 ≤ t < 1 such that

|Nu(x′) −Nu(y′)| = |(Nu)(x′, 0)| = |Φu(x′, 0) − Φu(z′, 0)| ≤ c |x′ − z′|β ≤ c |x′ − y′|β .

We are now in the hypotheses to apply Theorem 2 of [27] (see also Theorem B.3 in the 
appendix) and infer u ∈ C1,α(B+

1 ∪B′
1) for some α ∈ (0, 1). �

Appendix A. De Giorgi’s oscillation lemma

For readers’ convenience, we report here De Giorgi’s oscillation lemma [5] (e.g., we 
follow Chapter 7 of [21] with small changes). In this section w is any function on B+

1
satisfying a Caccioppoli inequality, namely

ˆ

A(k,r)

|∇w|2 ≤ Q

(R− r)2

ˆ

A(k,R)

(w − k)2 + Q |A(k,R)| (A.1)

for some Q ≥ 0 and for every k ≥ 0, x0 ∈ B′
1, and 0 < r < R < 1 −|x0|. Throughout this 

section, every constant in the statements will depend on n and on Q unless specified.
The first consequence of inequality (A.1) is the following.

Proposition A.1. There exists c > 0 such that

ˆ

A(k,r)

(w − k)2 ≤ c |A(k,R)| 2
n+1

⎛
⎜⎝ 1

(R− r)2

ˆ

A(k,R)

(w − k)2 + c |A(k,R)|

⎞
⎟⎠ (A.2)

for every k ≥ 0, and 0 < r < R < 1 − |x0|.

Proof. We fix k ≥ 0 and 0 < r < R < 1 − |x0| and set r′ := r+R
2 . Let ϕ ∈ C∞(B+

R(x0))
such that suppϕ ⊂⊂ Br′(x0), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on B+

r (x0) and |∇ϕ| ≤ c
R−r . If n ≥ 2, 

we have
ˆ

(w − k)2 ≤
ˆ

′

(ϕ (w − k))2 ≤

A(k,r) A(k,r )
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≤ |A(k,R)| 2
n+1

⎛
⎜⎝ ˆ

A(k,r′)

(ϕ (w − k))2
∗

⎞
⎟⎠

2
2∗

≤ c |A(k,R)| 2
n+1

ˆ

A(k,r′)

|∇(ϕ (w − k))|2 ≤

≤ c |A(k,R)| 2
n+1

⎛
⎜⎝ ˆ

A(k,r′)

(w − k)2|∇ϕ|2 +
ˆ

A(k,r′)

ϕ2|∇w|2

⎞
⎟⎠ ≤

≤ c |A(k,R)| 2
n+1

⎛
⎜⎝ 1

(R− r)2

ˆ

A(k,R)

(w − k)2 +
ˆ

A(k,r′)

|∇w|2

⎞
⎟⎠ ≤

≤ c |A(k,R)| 2
n+1

⎛
⎜⎝ 1

(R− r)2

ˆ

A(k,R)

(w − k)2 + c |A(k,R)|

⎞
⎟⎠ .

If n = 1 then 1∗ = 2, so in the above estimates we can replace the first two lines with
ˆ

A(k,r)

(w − k)2 ≤
ˆ

A(k,r′)

(ϕ (w − k))2 ≤

≤ c

⎛
⎜⎝ ˆ

A(k,r′)

|∇(ϕ (w − k))|

⎞
⎟⎠

2

≤ c |A(k,R)|
ˆ

A(k,r′)

|∇(ϕ (w − k))|2

and the rest of the proof is the same. �
Proposition A.2. There exists c > 0 such that

sup
B+

ρ/2(x0)
w ≤ c

⎛
⎜⎝  

A(k0,ρ)

(w − k0)2

⎞
⎟⎠

1
2 (

|A(k0, ρ)|
ρn+1

) γ
2

+ k0 + cρ,

for every k0 ≥ 0 and 0 < ρ < 1 − |x0|, where 0 < γ < 1 is such that γ2 + γ = 2
n+1 .

Proof. We set

φ(k, r) = |A(k, r)|γ
ˆ

A(k,r)

(w − k)2.

From Proposition A.1 we get
ˆ

(w − k)2 ≤ c

(
1

(R− r)2 + 1
(k − h)2

)
|A(k,R)|γ(1+γ)

ˆ
(w − h)2
A(k,r) A(h,R)
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|A(k, r)|γ ≤ 1
(k − h)2γ

⎛
⎜⎝ ˆ

A(h,R)

(w − h)2

⎞
⎟⎠

γ

=⇒ φ(k, r) ≤ c

(k − h)2γ

(
1

(R− r)2 + 1
(k − h)2

)
φ(h,R)1+γ

for every 0 ≤ h < k and 0 < r < R < 1 − |x0|. We then choose kj = h < k = kj+1 and 
Rj+1 = r < R = Rj , j ≥ 0, where

kj = k0 + d

(
1 − 1

2j

)
, Rj = ρ

2

(
1 + 1

2j

)
.

Here k0 ≥ 0, 0 < ρ < 1 − |x0| and d > 0 is a positive number to be chosen later. If 
d ≥ cρ, then

φ(kj+1, Rj+1) ≤
c(41+γ)j

d2γρ2 φ(kj , Rj)1+γ
(
1 + d−2ρ2) ≤ DBjφ(kj , Rj)1+γ ,

where we have set B = 41+γ and D = cd−2γρ−2. Moreover, if

d ≥ c

⎛
⎜⎝  

A(k0,ρ)

(w − k0)2

⎞
⎟⎠

1
2 (

|A(k0, ρ)|
ρn+1

) γ
2

,

then φ0 ≤ D− 1
γ B

− 1
γ2 .

Now we apply the following fact (see [21, Chapter 7] for the simple proof by induction): 
if λ, D > 0, B > 1, and φj is a sequence of positive real numbers such that

{
φj+1 ≤ DBjφ1+λ

j ∀ j ≥ 0
φ0 ≤ D− 1

λB− 1
λ2 ,

=⇒ φj ≤ B− j
λφ0 ∀ j ≥ 0.

Therefore, if we consider

d = c

⎛
⎜⎝  

A(k0,ρ)

(w − k0)2

⎞
⎟⎠

1
2 (

|A(k0, ρ)|
ρn+1

) γ
2

+ cρ, φj = φ(kj , Rj),

we get

4j |A(kj , Rj)|γ
ˆ

A(kj ,Rj)

(w − kj)2 ≤ 4−
j
γ φ0

which yields
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|A(d + k0, ρ/2)|1+γ ≤ 4j

d2 |A(kj , Rj)|γ
ˆ

A(kj ,Rj)

(w − kj)2 ≤ 4−
j
γ
φ0

d2 ∀j ≥ 0,

so |A(d + k0, ρ/2)| = 0, i.e. w ≤ d + k0 a.e. in B+
ρ/2(x0). �

In the following, we set

M(r) = sup
B+

r (x0)
w, m(r) = inf

B+
r (x0)

w,

osc(r) = M(r) −m(r)

for every 0 < r < 1 − |x0|.

Proposition A.3. There exists C > 0 such that, if

Hn({w = 0} ∩B′
r/2(x0))n ≥ 1

2H
n(B′

r/2(x0)),
M(r) + m(r)

2 ≥ 0,

osc(r) ≥ 2N−1r

for some 0 < r < 1 − |x0| and N ≥ 1, then if we set

kj = M(r) − 2−j−1osc(r)

for every j ≥ 0, we have

|A(kN , r/2)|
rn+1 ≤ CN−n+1

2n .

Proof. For every 0 ≤ h < k with h ≤ M(r) − 1
2r, we let w be the function defined in 

B+
r/2(x0) by the law

w(x) =

⎧⎪⎪⎨
⎪⎪⎩
k − h if w(x) ≥ k

w(x) − h if h ≤ w(x) ≤ k

0 if w(x) ≤ h.

Since

Hn({w = 0} ∩B′
r/2(x0)) ≥

∣∣∣{w = 0} ∩B′
r/2(x0)

∣∣∣
n
≥ 1

2H
n(B′

r/2(x0))

we may use the Sobolev-Poincaré inequality to deduce
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(k − h)|A(k, r/2)| 1
1∗ ≤

⎛
⎜⎜⎝

ˆ

B+
r/2(x0)

w1∗

⎞
⎟⎟⎠

1
1∗

≤ c

ˆ

B+
r/2(x0)

|∇w| =

= c

ˆ

Δ

|∇w| ≤ c |Δ| 12

⎛
⎝ˆ

Δ

|∇w|2
⎞
⎠

1
2

where we have set Δ = A(h, r/2) \A(k, r/2). From (4.3) we have

ˆ

Δ

|∇w|2 ≤ c

⎛
⎜⎝ 1
r2

ˆ

A(h,r)

(w − h)2 + |A(h, r)|

⎞
⎟⎠ ≤

≤ c rn−1 ((M(r) − h)2 + r2) ≤ c rn−1(M(r) − h)2.

Thus

(k − h)2|A(k, r/2)| 2
1∗ ≤ c rn−1|Δ|(M(r) − h)2.

Now we choose h = kj−1 < k = kj for every j = 1, . . . , N . We set Aj := |A(kj , r/2)|. 
Since osc(r) > 0, we get

A
2
1∗
N ≤ A

2
1∗
j ≤ c rn−1(Aj−1 −Aj) ∀ i = 1, . . . , N.

Finally we sum on j to get

NA
2
1∗
N ≤ c rn−1(A0 −AN ) ≤ c rn−1A0 ≤ c r2n

which yields the conclusion. �
Finally, the following is the De Giorgi’s oscillation lemma.

Theorem A.1. There exist 0 < κ < 1 and c > 0 such that, if

Hn({w = 0} ∩B′
r/2(x0)) ≥

1
2H

n(B′
r/2(x0)),

then

oscB+
r/4(x0)w ≤ κ oscB+

r (x0)w + cr ∀ 0 < r < 1 − |x0|.

Proof. With the notations of the preceding proof, without loss of generality we may as-
sume that M(r)+m(r)

2 ≥ 0, since otherwise we can replace w with −w. By Proposition A.2
and A.3 with N ≥ 1 to be chosen later, we get
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M(r/4) − kN ≤ c

⎛
⎜⎝  

A(kN ,r/2)

(w − kN )2

⎞
⎟⎠

1
2 (

|A(kN , r/2)|
rn+1

) γ
2

+ cr ≤

≤ c (M(r) − kN )
(
|A(kN , r/2)|

rn+1

) 1+γ
2

+ 1
2r ≤ c (M(r) − kN )N− 1

2nγ + cr

if osc(r) ≥ 2N−1r. So if we choose N ≥ 1 big enough to have cN− 1
2nγ ≤ 1

2 , we get

M(r/4) − kN ≤ 1
2(M(r) − kN ) + cr.

By the very definition of kN and of oscillation, with elementary passages we come to

osc(r/4) ≤ (1 − 2−N−2) osc(r) + cr.

If instead we had had osc(r) ≤ 2N−1r, then we would have had

osc(r/4) ≤ osc(r) = (1 − 2−N−2) osc(r) + 2−N−2osc(r) ≤ (1 − 2−N−2) osc(r) + 1
8r

so we finish the proof by setting κ = 1 − 2−N−2. �
Appendix B. Regularity and Harnack’s inequality

In this appendix we recall the regularity theorems we have used throughout the paper. 
We still use notations and hypotheses on the functions F and F0 as in Sections 1 and 2.

Theorem B.1 ([31, Theorem 1.2]). Let u be a weak supersolution of

divA(x, u(x),∇u(x)) = B(x, u(x),∇u(x)) ∀ x ∈ B3r(x0),

such that 0 ≤ u < M in B3r(x0), x0 ∈ Rn+1, r, M > 0 and

|A(x, z, p)| + |B(x, z, p)| ≤ C0|p| + C0|z|, 〈A(x, z, p), p〉 ≥ |p|2 − C0u
2.

Then

⎛
⎜⎝  

B2r(x0)

uq

⎞
⎟⎠

1
q

≤ C min
Br(x0)

u(x)

for any 1 ≤ q < n
n−2 if 2 ≤ n, and for any 1 ≤ q ≤ ∞ if n < 2, and for some 

C = C(n, C0, q, M).
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From this result we deduce the following corollary.

Corollary B.1. Let v, w ∈ Lip(B3r(x0)) be respectively a weak subsolution and a weak 
supersolution of

divF (x, u(x),∇u(x)) = F0(x, u(x),∇u(x)) ∀ x ∈ B3r(x0) (B.1)

Suppose that v ≤ w in B3r(x0) and v(x0) = w(x0). Then v ≡ w in Br(x0).

Proof. We have that, for every ϕ ∈ C∞
0 (B3r(x0)), ϕ ≥ 0,

ˆ

B3r(x0)

〈F (x,w,∇w) − F (x, v,∇v),∇ϕ〉 + (F0(x,w,∇w) − F0(x, v,∇v))ϕ ≥ 0.

Write ut = tw + (1 − t)v for 0 ≤ t ≤ 1 and u = w − v. Then we have

F (x,w,∇w) − F (x, v,∇v) = a(x)∇u + d(x)u,

F0(x,w,∇w) − F0(x, v,∇v) = 〈b(x),∇u〉 + c(x)u,

where

aij(x) =
1ˆ

0

∂pj
Fi(x, ut,∇ut) dt, di(x) =

1ˆ

0

∂zFi(x, ut,∇ut) dt,

bj(x) =
1ˆ

0

∂pj
F0(x, ut,∇ut) dt, c(x) =

1ˆ

0

∂zF0(x, ut,∇ut) dt

are continuous functions. Thus, we have that u ≥ 0 is a weak supersolution of

Hu(x) = −div(a(x)∇u(x) + d(x)u(x)) + 〈b(x),∇u(x)〉 + c(x)u(x).

By Theorem B.1, applied to A(x, z, p) = a(x)p +d(x)z and B(x, z, p) = 〈b(x), p〉 + c(x)z, 
since u(x0) = 0 we have that u ≡ 0 in Br(x0), which concludes the proof. �

We also recall the boundary regularity for both the Dirichlet and the Neumann prob-
lem.

Theorem B.2 ([16, Theorem A]). Let u be a bounded Lipschitz weak solution of the 
Dirichlet problem

{
divF (x, u(x),∇u(x)) = F0(x, u(x),∇u(x)) ∀ x ∈ B+

r (x0)
u(x) = 0 ∀ x ∈ B′

r(x0)
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such that |u| ≤ M in B+
r (x0), where x0 ∈ Rn × {0}, r > 0. Then u ∈ C1,α(B+

r (x0) ∪
B′

r(x0)) for some 0 < α = α(n, M, λ, L) < 1 and norm ‖u‖1+α ≤ C = α(n, M, Lip(u),
λ, L).

Theorem B.3 ([27, Theorem 2]). Let u be a bounded Lipschitz weak solution of Neumann 
problem

{
divF (x, u(x),∇u(x)) = F0(x, u(x),∇u(x)) ∀ x ∈ B+

r (x0),
Fn+1(x, u(x),∇u(x)) = 0 ∀ x ∈ B′

r(x0),

such that |u| ≤ M in B+
r (x0), where x0 ∈ Rn × {0}, r > 0. Then u ∈ C1,α(B+

r (x0) ∪
B′

r(x0)) for some 0 < α = α(n, M, λ, L) < 1 and norm ‖u‖1+α ≤ C = α(n, M, Lip(u),
λ, L).
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