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Abstract

In this paper, we show that the Lipschitz-Killing Curvatures for the excursion sets of Arith-
metic Random Waves (toral Gaussian eigenfunctions) are dominated, in the high-frequency
regime, by a single chaotic component. The latter can be written as a simple explicit function
of the threshold parameter times the centered norm of these random fields; as a consequence,
these geometric functionals are fully correlated in the high-energy limit. The derived formulae
show a clear analogy with related results on the round unit sphere and suggest the existence of a
general formula for geometric functionals of random eigenfunctions on Riemannian manifolds.
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1 Introduction and general framework

1.1 Toral eigenfunctions and Arithmetic Random Waves

Arithmetic Random Waves (i.e., toral Gaussian eigenfunctions) were introduced nearly a decade
ago in [ORW08, RW08] and have been investigated very widely ever since, see for instance [GW18,
KKW13, MPRW16] and more recently [BMW17, BW16, Cam19, DNPR19, RW16, RWY16]; see
also [ADP19, APP18, BCP19] for related results on random trigonometric polynomials. Interest
in their investigation is motivated both by mathematical physics applications, and by the rich
interplay of probability, geometry and even number theory that characterizes the behaviour of
geometric functionals of their excursion sets.
Let us start recalling their definition; for an integer d ≥ 2, let f : Td := Rd/Zd → R be the

real-valued functions satisfying the eigenvalue equation

∆f + Ef = 0, (1.1)

where E > 0 and ∆ is the Laplace-Beltrami operator on Td; the spectrum of ∆ is totally discrete.
(For d = 2 we will often write T in place of T2.) Indeed, the eigenspaces of the Laplacian on the
torus are related to the theory of lattice points on (d− 1)-dimensional spheres: let

S := {n ∈ Z : n = n2
1 + · · ·+ n2

d, for some n1, . . . , nd ∈ Z}
1Corresponding author (e-mail address: marinucc@mat.uniroma2.it).
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be the collection of all numbers expressible as a sum of d squares. The sequence of eigenvalues,
or energy levels, are all numbers of the form En = 4π2n, n ∈ S. In order to describe the Laplace
eigenspace corresponding to En, we introduce the set of frequencies Λn; for n ∈ Sn let

Λn = {λ ∈ Z
d : ||λ||2 = n}.

Λn is the frequency set corresponding to En. Using the notation e(t) := exp(2πit) for t ∈ R, the C-
eigenspace En corresponding to En is spanned by the L2-orthonormal set of functions {e(〈λ, ·〉)}λ∈Λn

.
We denote the dimension of En

Nn = dim En = |Λn|,
that is equal to the number of different ways n may be expressed as a sum of d squares. In particular,
for d = 2, Nn is subject to large and erratic fluctuations; it grows on average [La08] as

√
log n, but

could be as small as 8 for an infinite sequence of prime numbers p ≡ 1 (mod 4), or as large as a
power of log n.
The frequency set Λn can be identified with the set of lattice points lying on a (d−1)-dimensional

sphere with radius
√
n, the sequence of spectral multiplicities {Nn}n∈S is unbounded. It is natural

to consider properties of generic or random eigenfunctions fn ∈ En, in the high-energy asymptotics
regime. More precisely, let fn : Td → R be the Gaussian random field of (real valued) En-functions
with eigenvalue En, i.e. the random linear combination

fn(x) :=
1√Nn

∑

λ∈Λn

aλe(〈λ, x〉), x ∈ T
d, (1.2)

where the coefficients {aλ}λ∈Λn,n∈S are complex-Gaussian random variables2 verifying the following
properties:

1. every aλ has the form aλ = Re(aλ) + i Im(aλ) where Re(aλ) and Im(aλ) are two independent
real-valued, centred, Gaussian random variables with variance 1/2,

2. the aλ’s are stochastically independent, save for the relations a−λ = aλ in particular making
fn real-valued.

By definition, fn is stationary, i.e. the law of fn is invariant under all translations

f(·) → f(y + ·), y ∈ T
d;

in fact fn is a centred Gaussian random field with covariance function

E[fn(x)fn(y)] =
1

Nn

∑

λ∈Λn

e(〈λ, x− y〉), x, y ∈ T.

Note that the normalizing factor in (1.2) is chosen so that fn has unit-variance.

2defined on some probability space (Ω,F ,P)
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1.2 Notation

We will use λ, λ1, λ2 . . . and in general λi, i = 1, 2, . . . to denote elements of Λn, while λ(ℓ) and λi,(ℓ)
with ℓ = 1, . . . , d, will denote the ℓ-th component of the vectors λ and λi ∈ Λn respectively. The
indices j, ℓ always run from 1 to d.
For ℓ = 1, . . . d, we denote with ∂ℓfn(x) the derivative of fn(x) with respect to xℓ. A straightfor-

ward differentiation of (1.2) gives

∂ℓfn(x) =
2πi√Nn

∑

λ∈Λn

aλλ(ℓ)e(〈λ, x〉), (1.3)

in view of [RW16, Lemma 2.3], see formula (C.105) below, the random field ∂ℓfn has variance

Var(∂ℓfn(x)) =
22π2(−1)

Nn

∑

λ1,λ2∈Λn

E[aλ1aλ2 ]λ1,(ℓ) λ2,(ℓ) e(〈λ1, x〉) e(〈λ2, x〉)

=
22π2

Nn

∑

λ∈Λn

λ2(ℓ) =
22π2n

d
=
En

d
,

we introduce then the normalized derivative fn,ℓ(x) defined by

fn,ℓ(x) :=
∂ℓfn(x)

2π
√

n
d

= i

√
d

nNn

∑

λ∈Λn

λ(ℓ)aλe(〈λ, x〉).

Note that fn,ℓ(x) is real-valued since f 2
n,ℓ(x) = fn,ℓ(x)fn,ℓ(x). Analogously, we denote with ∂

2
jℓfn the

second derivative of fn with respect to xℓ and xj

∂2jℓfn(x) = − 4π2

√Nn

∑

λ∈Λn

aλλ(ℓ)λ(j)e(〈λ, x〉). (1.4)

We note that conditions 1) and 2) in (1.2) immediately imply that

E[a2λ] = E[(Re(aλ))
2]− E[(Im(aλ))

2] = 0,

and that 2|aλ|2 has a chi-squared distribution with 2 degrees of freedom:

E[|aλ|2] = 1, E[(|aλ|2 − 1)2] = Var(|aλ|2) = 1, E[|aλ|4] = 2.

For some of the arguments to follow, we shall make a heavy use of results and notation recently
introduced in the number theory literature by [KKW13]. In particular, let µn be the probability
measure on the circle S1 := {z ∈ C : ||z|| = 1} defined by

µn :=
1

Nn

∑

λ∈Λn

δλ/√n ,

that is to say, the empirical measure for the distribution of integers corresponding to the eigenvalue
4π2n; an important role is going to be played by the fourth Fourier coefficient of this distribution,
i.e.

µ̂n(4) :=

∫

S1

z4dµn(z) =
1

n2Nn

∑

λ∈Λn

(λ1 + iλ2)
4. (1.5)

This coefficient will not appear in our statements, but inspection of the proof reveals its important
role.
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2 Main results

The purpose of this paper is to provide a full characterization for the asymptotic behaviour in the
high-energy limit of Lipschitz-Killing Curvatures computed on the excursion sets of two-dimensional
Arithmetic RandomWaves defined in (1.2) for d = 2, and to compare the results with those recently
derived in the case of random spherical eigenfunctions in [CM18]; see also [AT07, AW09, CX16,
EL16, FA17, MRW20, NPR19, PV20] and the references therein for background material and a
number of recent results on Lipschitz-Killing Curvatures in Euclidean settings or on the unit round
sphere.
It is well-known (see e.g., [KKW13]) that there exists a density-1 subsequence {nj}j ⊂ S such

that for every x, y ∈ T2

E[fn(x/
√
nj)fn(y/

√
nj)] → J0(2π‖x− y‖), nj → +∞, (2.6)

where J0 denotes the Bessel function of the first kind of order zero. To fix notation, let us recall
first that the excursion sets of fn are defined by

Au(fn;T) := {x ∈ T : fn(x) ≥ u}, u ∈ R.

In the two-dimensional case, it is well-known that the three Lipschitz-Killing Curvatures Lk, k =
0, 1, 2 correspond to the area functional k = 2, half the boundary length k = 1 and the Euler-
Poincaré Characteristic k = 0, i.e., the number of connected components minus the number of
“holes”. We are interested in these geometric functionals evaluated at excursion sets of Arithmetic
Random Waves: for u ∈ R,

Lk(n; u) := Lk(Au(fn;T)), k = 0, 1, 2; (2.7)

in particular in their asymptotic behavior as n → +∞ such that Nn → +∞. To the best of our
knowledge, all results concerning L0(n; u), i.e. the Euler-Poincaré characteristic, are new.
The expected values of (2.7) are given in the following lemma (see Appendix C). As usual, we

use φ, Φ to denote the standard Gaussian density and distribution function, respectively.

Lemma 2.1. The expected values for the Lipschitz-Killing Curvatures on excursion sets of Arith-
metic Random Waves are given by

E[Lk(n; u)] = mk(u)

(√
En

2

)2−k

, k = 0, 1, 2 (2.8)

for n ∈ S and u ∈ R, where

m2(u) := 1− Φ(u), m1(u) :=

√
π

8
φ(u), m0(u) :=

1

2π
uφ(u). (2.9)

The next Theorem, which is the main result of this paper, provides a full characterization of
asymptotic fluctuations (in the high-energy limit) around these expected values. Let us introduce
the following notation for centred functionals: for n ∈ S and u ∈ R

Lk(n; u) := Lk(n; u)− E[Lk(n; u)], k = 0, 1, 2;

4



we will need also the following subset of the set of frequencies: if n is not a square we set

Λ+
n := {λ ∈ Λn : λ(2) > 0},

otherwise Λ+
n := {λ ∈ Λn : λ(2) > 0} ∪ {(√n, 0)}. Note that, for every n ∈ S, {aλ}λ∈Λ+

n
are i.i.d.

random variables, and |Λ+
n | = Nn/2.

In order to state our main results, we will need some more notation. Let Q0,n := [0, 1/
√
En)

2, and
denote by L0(u;Q0,n) the Euler-Poincaré characteristic of the intersection between the excursion
set {fn ≥ u} and the square Q0,n.

Condition 2.2. For n ∈ S

E[L0(u;Q0,n)(L0(u;Q0,n)− 1)] = O(1), (2.10)

where the constant involved in the O-notation is absolute.

Note that Condition 2.2 only concerns the zero-th Lipschitz-Killing curvature.

Remark 2.3. The estimate (2.10) holds for a density-1 subsequence of eigenvalues in the high-
energy limit (thanks to (2.6) and [CMW16]), and we do believe (2.10) to be true for every n ∈ S.

Theorem 2.4. For k = 0, 1, 2, n ∈ S it holds that

Lk(n; u) =
ck(u)√
Nn/2

(√
En

2

)2−k
1√
Nn/2

∑

λ∈Λ+
n

(|aλ|2 − 1) +Rk(n; u), (2.11)

where

c2(u) :=
1

2
uφ(u), c1(u) :=

1

2

√
π

8
u2φ(u), c0(u) :=

1

2
(u2 − 1)uφ(u)

1

2π
, (2.12)

and under Condition 2.2

E[Rk(n; u)
2] = O

(
E2−k

n

N 2
n

)
, (2.13)

the constant involved in the O-notation only depending on k.

In particular, Theorem 2.4 (whose proof will be given in §4) shows that the “first order approxi-
mation” of Lk(n; u) for any k can be written as a simple explicit function (depending on k) of the
threshold parameter u times the centered norm of fn. Indeed,

‖fn‖2L2(T) − E

[
‖fn‖2L2(T)

]
=

1

Nn

∑

λ∈Λn

(|aλ|2 − 1) =
1

Nn/2

∑

λ∈Λ+
n

(|aλ|2 − 1), (2.14)

cf. (2.11). This has several important consequences, as discussed just below and in §3. Moreover,
for any u ∈ R, k = 0, 1, 2, as n→ +∞ such that Nn → +∞,

Var(Lk(n; u)) =
ck(u)

2

21−k

E2−k
n

Nn

+O

(
E2−k

n

N 2
n

)
, (2.15)

where the constant involved in the O-notation only depends on u and k. Let us now define Uk := {0}
for k = 1, 2 and U0 := {−1, 0, 1}; note that ck(u) defined in (2.12) vanishes if and only if u ∈ Uk. An
easy by-product of Theorem 2.4 is the following quantitative Central Limit Theorem in Wasserstein
distance3 (written dW ).

3Given X , Y integrable random variables, dW (X,Y ) := suph∈Lip(1) |E[h(X)]− E[h(Y )]| , where Lip(1) denotes
the space of Lipschitz functions h : R → R whose Lipschitz constant is ≤ 1.
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Corollary 2.5. As n→ ∞ such that Nn → +∞, for k = 0, 1, 2, u /∈ Uk under Condition 2.2

dW

(
L̃k(n; u), Z

)
= O

(
1√Nn

)

where

L̃k(n; u) :=
Lk(n; u)√

Var(Lk(n; u))
,

Z ∼ N (0, 1), and the constant involved in the O-notation only depends on k.

The proof of Corollary 2.5 will be given in §4. Theorem 2.4 also allows to deduce Moderate
Deviation estimates [DZ98, §1.2] for Lipschitz-Killing curvatures evaluated at excursion sets of
Arithmetic Random Waves, see also [MRT20, Remark 1.9].

Corollary 2.6. For k = 0, 1, 2, n ∈ S, u /∈ Uk, let {s(k)n;u}n∈S be any sequence of positive numbers
such that as Nn → +∞

s(k)n;u → +∞,
s
(k)
n;u√

logNn

→ 0. (2.16)

Under Condition 2.2 the sequence of random variables
{
L̃k(n; u)/s

(k)
n;u

}
n∈S

satisfies a Moderate Deviation principle with speed (s
(k)
n;u)2 and rate function I(x) := x2/2, x ∈ R,

i.e. for any Borelian set B ⊂ R

− inf
x∈B̊

I(x) ≤ lim inf
Nn→+∞

1

(s
(k)
n;u)2

log P

(
L̃k(n; u)

s
(k)
n;u

∈ B

)

≤ lim sup
Nn→+∞

1

(s
(k)
n;u)2

log P

(
L̃k(n; u)

s
(k)
n;u

∈ B

)
≤ − inf

x∈B̄
I(x),

where B̊ (resp. B̄) denotes the interior (resp. the closure) of B.

Corollary 2.6 is a refinement of the Central Limit Theorem in Corollary 2.5, its proof will be given
in §4. A further obvious consequence of Theorem 2.4 is the following asymptotic full correlation
result.

Corollary 2.7. Let k1, k2 ∈ {0, 1, 2} and u1, u2 /∈ U0. As n → ∞ such that Nn → +∞, under
Condition 2.2,

Corr (Lk1(n; u1),Lk2(n; u2)) = 1 +O

(
1√Nn

)
,

where the constant involved in the O-notation only depends on k1 and k2.

In words, Corollary 2.7 (whose proof will be given in §4) entails that in the “nondegenerate”
points where the leading term in the asymptotic variance (2.15) does not vanish knowledge of one
of the three Lipschitz-Killing curvatures at some level allows the derivation of the other two at any
level, up to a term which is lower order in the L2(P)-sense.
See §3 for further comments on our main result, its consequences and the comparison with the

spherical case.
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Remark 2.8 (Nodal case). The geometry of Arithmetic RandomWaves was initially investigated in
[ORW08, RW08] and subsequently in several works with a focus on the nodal case which corresponds
to the level u = 0. Concerning the (half) nodal length, the asymptotic variance was addressed and
fully solved in [KKW13]: as Nn → +∞,

Var(L1(n; 0)) =
1

4
· 1 + µ̂n(4)

2

512

En

N 2
n

(1 + o(1)) , (2.17)

where µ̂n(4) has been defined in (1.5). It is well-known that for any µ ∈ [−1, 1], there exists
a sequence of energy levels such that the corresponding sequence of fourth Fourier coefficients
converges to µ. The second order fluctuations of the nodal length were investigated in [MPRW16]:
as Nn → +∞ and µ̂n(4) → µ

L̃1(n; 0) :=
L1(n; 0)√

Var(L1(n; 0))

d→ 1

2
√

1 + µ2
(2− (1 + µ)Z2

1 + (1− µ)Z2
2), (2.18)

where Z1, Z2 are i.i.d. standard Gaussian random variables. A quantitative Limit Theorem in
Wasserstein distance is given in [PR18].
The “signed area” of Arithmetic Random Waves restricted to shrinking balls of radius above the

Planck scale has been recently investigated in [KWY20], the Euler-Poincaré characteristic of the
excursion set at level zero is currently under investigation.

3 Outline of the paper

3.1 On the proofs

Our approach to proving the results of this paper stated in §2 is broadly analogous to what was used
earlier to evaluate the Lipschitz-Killing Curvatures of excursion sets for random eigenfunctions on
the sphere or in Euclidean settings, see e.g. [KL01, MW11, MW14, MR15, EL16, CM18, NPR19,
DNPR19, PV20] and the references therein. The starting point is to derive the so-called chaotic
decomposition of our geometric functionals, that is, for k = 0, 1, 2, n ∈ S and u ∈ R, a series
expansion in L2(P) of the form

Lk(n; u) =

∞∑

q=0

Proj[Lk(n; u)|q], (3.19)

where Proj[Lk(n; u)|q] denotes the orthogonal projection of Lk(n; u) on the space spanned by mul-
tivariate Hermite polynomials of order q to be computed on fn in (1.2) and their derivatives up to
order two, and the random variables Proj[Lk(n; u)|q] and Proj[Lk(n; u)|q′] are orthogonal whenever
q 6= q′. Recall that Hermite polynomials {Hq}q∈N are defined as

H0 ≡ 1, Hq(t) := (−1)qφ−1(t)
dq

dtq
φ(t), t ∈ R, q ≥ 1, (3.20)

where φ still denotes the standard Gaussian probability function. A more complete discussion on
Wiener chaos is given in §4.1, see also [NP12, §2] for background and details.
The zero-th order term just amounts to the expected value of Lipschitz-Killing curvatures given

in Lemma 2.1, whereas the first order projection is easily seen to vanish identically due to the
oscillating properties of these random waves fn.

7



Lemma 3.1. For k = 0, 1, 2, n ∈ S and u ∈ R

Proj[Lk(n; u)|0] = mk(u)

(√
En

2

)2−k

, (3.21)

where mk(u) are as in (2.9), moreover for n ≥ 1

Proj[Lk(n; u)|1] = 0. (3.22)

It becomes then crucial to investigate the behaviour of Proj[Lk(n; u)|2].

Proposition 3.2. For k = 0, 1, 2, n ∈ S and u ∈ R it holds that

Proj[Lk(n; u)|2] =
ck(u)√
Nn/2

(√
En

2

)2−k
1√
Nn/2

∑

λ∈Λ+
n

(|aλ|2 − 1), (3.23)

where, as in (2.12),

c2(u) =
1

2
uφ(u), c1(u) =

1

2

√
π

8
u2φ(u), c0(u) =

1

2
(u2 − 1)uφ(u)

1

2π
.

From (3.23) it is clear that whenever ck(u) 6= 0 the variance of the second order chaotic projection
of Lk(n; u) is of order E2−k

n /Nn, otherwise Proj[Lk(n; u)|2] = 0. A careful investigation of higher
order chaotic components yields the following.

Proposition 3.3. For k = 0, 1, 2, n ∈ S, u ∈ R, as n → +∞ such that Nn → +∞, under
Condition 2.2

Var

(
+∞∑

q=3

Proj[Lk(Au(fn;T))|q]
)

= O

(
E2−k

n

N 2
n

)
, (3.24)

where the constant involved in the O-notation only depends on k.

Proposition 3.3 together with (3.23) proves Theorem 2.4, see §4, once setting

Rk(n; u) :=
+∞∑

q=3

Proj[Lk(Au(fn;T))|q].

The proofs of Corollary 2.5, Corollary 2.6 and Corollary 2.7 (postponed to §4) heavily rely on
(2.11), i.e. on the fact that, at least at “non-degenerate” levels, all Lipschitz-Killing Curvatures for
Arithmetic Random Waves behave (in the high-energy limit) as an element of a fixed order Wiener
chaos, in particular as a sum of i.i.d. random variables. Equation (2.13) quantifies the error made
when replacing Lk(n; u) with the empirical mean of centered squared Fourier coefficients {aλ}λ∈Λn

,
allowing to get the quantitative estimates stated in these corollaries.
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3.2 Discussion

The first few Hermite polynomials (3.20)

H0(u) = 1, H1(u) = u, H2(u) = u2 − 1, u ∈ R

will play a crucial role in the arguments to follow. For the sake of notational simplicity, let us set

H−1(u) := 1− Φ(u), u ∈ R.

For the moment, let us observe that we can rewrite the empirical mean on the right hand side of
(3.23) as

1

Nn

∑

λ∈Λn

(|aλ|2 − 1) =

∫

T

H2(fn(x)) dx. (3.25)

Of course,

1 =

∫

T

H0(fn(x)) dx. (3.26)

From (3.26), bearing in mind Lemma 3.1, we can rewrite (2.8) as

Proj[Lk(n; u)|0] = mk(u)

(√
En

2

)2−k ∫

T

H0(fn(x)) dx,

m2(u) = H−1(u), m1(u) =

√
π

8
H0(u)φ(u), m0(u) =

1

2π
H1(u)φ(u),

(3.27)

for every n ∈ S, k = 0, 1, 2 and u ∈ R. Analogously, from (3.25), we can rewrite (3.23) as

Proj[Lk(n; u)|2] = ck(u)

(√
En

2

)2−k ∫

T

H2(fn(x)) dx,

c2(u) =
1

2
H1(u)φ(u), c1(u) =

1

2

√
π

8
H1(u)

2φ(u), c0(u) =
1

2
H1(u)H2(u)φ(u)

1

2π
,

(3.28)

for every k = 0, 1, 2, n ∈ S and u ∈ R. In the next subsection, we will show that (3.27) and
(3.28) are in perfect analogy with the spherical case, suggesting the existence of a “second order”
Gaussian Kinematic formula à la Adler and Taylor [AT07]. The generalization of these expressions
to arbitrary dimensions are currently under investigation.

3.2.1 Random Spherical Harmonics: previous work

Random Spherical Harmonics are Gaussian eigenfunctions of the spherical Laplacian operator, that
is, the sequence {fℓ}ℓ∈N of zero mean, unit variance isotropic Gaussian fields on the unit round
sphere S2 which satisfies the Helmholtz equation

∆S2fℓ = −λℓfℓ, λℓ = ℓ(ℓ+ 1), ℓ ∈ N.

Here, ∆S2 is the spherical Laplacian operator. For the excursion sets of these fields

Au(fℓ; S
2) := {x ∈ S

2 : fℓ(x) ≥ u}, u ∈ R,

9



the following results hold4 (see [CM18] and the references therein):

Proj[Lk(Au(fℓ; S
2))|0] = mk(u)

(√
λℓ
2

)2−k ∫

S2

H0(fℓ(x)) dx+ 2H−1(u) · δ0k,

where the coefficients mk(u) are as in (3.27), and

Proj[Lk(Au(fℓ; S
2))|2] = ck(u)

(√
λℓ
2

)2−k ∫

S2

H2(fℓ(x)) dx+OL2(P)(1) · δ0k, (3.29)

where ck(u) are as in (3.28). Here, δji is the Kronecker delta, and OL2(P)(1) stands for a sequence of
random variables bounded in L2(P).

3.2.2 Some more remarks

Remark 3.4 (On Berry’s Cancellation). It should be noted that for all three Lipschitz-Killing
Curvatures the second-order chaos term disappears in the nodal case u = 0, see (3.28) and (3.29).
As a result, the asymptotic variance of these geometric functionals is of smaller order for this
value, thus providing an interpretation of the Berry’s cancellation phenomenon first noted (for
the case of boundary lengths of planar random eigenfunctions) in [Ber02] and then discussed by
[Wig10, MPRW16, CM18] and others.

Remark 3.5 (On Universality). It was shown in [KKW13] and later in [MPRW16], see also Remark
2.8, that some geometric features for the excursion sets of Arithmetic Random Waves are not uni-
versal, in the sense that they do not share a unique limit as the eigenvalues n diverge. In particular,
for the case of nodal length it turns out that both the variance (2.17) and the limiting distributions
(2.18) can vary quite substantially along subsequences characterized by different limiting values for
the coefficients µ̂n(4), n ∈ S introduced in (1.5). This is not the case for Lipschitz-Killing Curvatures
computed on excursion sets corresponding to a non-vanishing second-order chaotic component, see
§2: their expected values, their asymptotic variances and their (Gaussian) limiting distributions are
universal (in other words, they are invariant under subsequences of energy levels). The sequence of
parameters µ̂n(4), n ∈ S appears ubiquitously in the proofs that will be presented in the following
section.

Remark 3.6 (On Correlation). Corollary 2.7 is, heuristically, a consequence of the fact that the
fluctuations of all three Lipschitz Killing Curvatures are actually dominated by their centered norm,
see Theorem 2.4, (2.14) and (3.28),

‖fn‖2L2(T) − E

[
‖fn‖2L2(T)

]
=

∫

T

H2(fn(x)) dx =
1

Nn

∑

λ∈Λn

(|aλ|2 − 1).

Again, an analogous phenomenon occurs for random eigenfunctions on the sphere, see §3.2.1: in the
case of Arithmetic Random Waves, however, this is slightly more surprising, because isotropy does
not hold and hence one could expect the magnitude of the single random coefficients {|aλ|2}λ∈Λn

to
play a more relevant role.

4Note that
∫
S2
H0(fℓ(x)) dx = 4π.
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3.3 Plan

In §4.1 we will recall basic facts on Wiener chaos, the chaotic expansion (3.19) for Lispchitz-
Killing Curvatures will be stated in §4.2 while the proofs of our main results will be given in
§4.3. In particular, in §5 we will establish the chaotic expansion for Euler-Poincaré characteristic
of Arithmetic Random Waves. The second chaotic components of these geometric functionals will
be analyzed in §6 leading to the proof of Proposition 3.2. We will investigate higher order chaotic
components in §7 proving Proposition 3.3 along the way. Some technicalities and several tedious
computations will be collected in the four Appendixes A–D.
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4 Proofs of the main results

4.1 Wiener chaos

Let us recall some basic facts on Wiener chaos, restricting ourselves to the toral setting. Bear in
mind the definition of Hermite polynomials in (3.20). The family H := {Hk/

√
k!}k∈N is a complete

orthonormal system in L2(R,B(R), φ(t)dt) =: L2(φ), where φ still denotes the standard Gaussian
density on the real line.
The Arithmetic Random Waves (1.2) considered in this work are a by-product of a family of

complex-valued Gaussian random variables {aλ}λ∈Z2 , defined on (Ω,F ,P) and satisfying properties
(1) and (2) in (1.2). Let us define the space A to be the closure in L2(P) of all real finite linear
combinations of random variables ξ of the form

ξ = z aλ + z a−λ,

where λ ∈ Z
2 and z ∈ C. The space A is a real centered Gaussian Hilbert subspace of L2(P).

Definition 4.1. For q ∈ N, the q-th Wiener chaos associated with A, written Cq, is the closure in
L2(P) of all real finite linear combinations of random variables of the form

Hp1(ξ1) ·Hp2(ξ2) · · ·Hpk(ξk)

for k ∈ N≥1, where p1, ..., pk ∈ N satisfy p1+ · · ·+pk = q, and (ξ1, ..., ξk) is a standard real Gaussian
vector extracted from A (in particular, C0 = R).

Using the orthonormality and completeness of H in L2(φ), together with a standard monotone
class argument (see e.g. [NP12, Theorem 2.2.4]), it is easy to show that Cq and Cm are orthogonal
in the sense of L2(P) for every q 6= m, and moreover

L2
A(P) := L2(Ω, σ(A),P) =

∞⊕

q=0

Cq;

11



that is, every real-valued functional F of A can be (uniquely) represented in the form

F =

∞∑

q=0

Proj[F |q] (4.30)

where Proj[F |q] stands for the projection of F onto Cq, and the series converges in L2(P). Plainly,
Proj[F |0] = E[F ].
From (1.3), for j, ℓ = 1, . . . , d the random fields fn, ∂jfn, ∂

2
jℓfn viewed as collections of Gaussian

random variables indexed by x ∈ Td are all lying in A, i.e. for every x ∈ Td we have

fn(x), ∂jfn(x), ∂
2
jℓfn(x) ∈ A.

4.2 Chaotic expansions of Lipschitz-Killing curvatures

The three geometric functionals of our interest are finite-variance functionals of A, hence applying
(4.30) we get the series expansion in (3.19). Let us be more precise.

4.2.1 Excursion area

For the second Lipschitz-Killing curvature we have the following integral representation

L2(n; u) =

∫

T

1{fn(x)≥u} dx (4.31)

entailing that L2(n; u) ∈ L2
A(P). The proof of the following result is simple (see also §3 in [MW11])

and hence omitted.

Lemma 4.2. For every n ∈ S and u ∈ R, the chaotic decomposition of L2(n; u) is

L2(n; u) =

+∞∑

q=0

γq(u)

q!

∫

T

Hq(fn(x)) dx, (4.32)

where γq(u) := Hq−1(u)φ(u), and the convergence of the series is in L2(P).

4.2.2 Boundary length

For the first Lipschitz-Killing curvature we have the following formal integral representation

L1(n; u) =
1

2

∫

T

δu(fn(x))‖∇fn(x)‖ dx, (4.33)

where δu is the Dirac mass in u, and ∇fn is the gradient of fn. For ǫ > 0, let us consider the
ǫ-approximating random variable

Lǫ
1(n; u) :=

1

2

∫

T

1

2ǫ
1[u−ǫ,u+ǫ](fn(x))‖∇fn(x)‖ dx.

12



Lemma 4.3. For every n ∈ S and u ∈ R it holds that, as ǫ→ 0,

Lǫ
1(n; u) → L1(n; u), (4.34)

where the convergence holds both a.s. and in L2
A(P).

The proof of Lemma 4.3 is analogous to the proof of the L2(P)-approximation result for the nodal
length of Random Spherical Harmonics in [MRW20, Appendix B] and hence omitted. In order to
state the next result we need to introduce two collections of coefficients {α2n,2m : n,m ≥ 1} and
{βl(u) : l ≥ 0}, that are related to the Hermite expansion of the norm ‖ · ‖ in R2 and the (formal)
Hermite expansion of the Dirac mass δu(·) respectively, cf. (4.33). These are given by

βl(u) := Hl(u)φ(u), (4.35)

where Hl still denotes the l-th Hermite polynomial (3.20), and

α2n,2m :=

√
π

2

(2n)!(2m)!

n!m!

1

2n+m
pn+m

(
1

4

)
, (4.36)

where for N ∈ N and x ∈ R

pN(x) :=
N∑

j=0

(−1)j · (−1)N
(
N

j

)
(2j + 1)!

(j!)2
xj,

the ratio (2j+1)!
(j!)2

being the so-called swinging factorial restricted to odd indices. The proof of the

following lemma is analogous to the proof of Proposition 3.2 in [MPRW16] and hence omitted for
the sake of brevity.

Lemma 4.4. For every n ∈ S and u ∈ R the chaotic expansion of L1(n; u) is

L1(n; u) =
1

2

√
En

2

+∞∑

q=0

q∑

u=0

u∑

k=0

α2k,2u−2kβq−2u(u)

(2k)!(2u− 2k)!(q − 2u)!
×

×
∫

T

Hq−2u(fn(x))H2k(fn,1(x))H2u−2k(fn,2(x)) dx,

where the convergence of the series is in L2(P), and fn,ℓ denotes normalized first derivatives defined
in (1.4).

4.2.3 Euler-Poincaré characteristic

The zero-th Lipschitz-Killing curvature has the following formal representation

L0(n; u) =

∫

T

det(∇2fn(x))1{fn(x)≥u}δ0(∇fn(x)) dx, (4.37)

where ∇2fn is the Hessian matrix of fn, and abusing notation δ0 denotes the Dirac mass in (0, 0).
For ǫ > 0, let us consider the ǫ-approximating random variable

Lǫ
0(n; u) =

∫

T

det(∇2fn(x))1{fn(x)≥u}
1

(2ǫ)2
1[−ǫ,ǫ]2(∇fn(x)) dx. (4.38)
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Lemma 4.5. For every n ∈ S, ǫ > 0 and u ∈ R

|Lǫ
0(u;n)| ≤ 4En. (4.39)

The proof of Lemma 4.5 is postponed to the Appendix A.

Lemma 4.6. For n ∈ S and u ∈ R it holds that, as ǫ→ 0,

Lǫ
0(n; u) → L0(n; u),

where the convergence is a.s. and in L2
A(P).

Equation (4.37) is justified by Lemma 4.6 whose proof is postponed to the Appendix A. In view
of Lemma 4.6, by letting ǫ tend to zero in (4.39) we find

|L0(n; u)| ≤ 4En

for every n ∈ S e u ∈ R, in particular L0(n; u) belongs to L
2
A(P). Obviously once the a.s. conver-

gence is proven, it suffices to apply Lemma 4.5 to get the convergence in L2(P).
The next result (whose proof will be given in §5) concerns the chaotic expansion of L0(n; u): we

will not need explicit expressions for chaotic coefficients but those corresponding to the zero-th and
second Wiener chaoses, see §4.3 and §6.2 respectively.

Lemma 4.7. For n ∈ S and u ∈ R, the chaotic expansion of L0(n; u) is

L0(n; u) =2En

+∞∑

q=0

∑

a+b+c+2d+2e=q

η
(n)
a,b,c(u)

a!b!c!

β2dβ2e
(2d)!(2e)!

∫

T

Ha

(
∂11fn(x)

k3

)

×Hb

(
∂12fn(x)

k4

)
Hc

(
∂22fn(x)

k5
− k2
k5k3

∂11fn(x)

)
H2d

(
∂1fn(x)

k1

)

×H2e

(
∂2fn(x)

k1

)
dx,

(4.40)

for some coefficients η
(n)
a,b,c(u) ∈ R, a, b, c ∈ N, where the series converges in L2(P),

βq := βq(0) = φ(0)Hq(0) (4.41)

as defined in (4.35), and k1, . . . , k5 are defined in (5.53).

4.3 Proofs

Proof of Lemma 3.1. From Lemma 4.2 we have

Proj[L2(n; u)|0] =
γ0(u)

0!

∫

T

H0(fn(x)) dx = 1− Φ(u),

that coincides with E[L0(n; u)] in Lemma 2.1. From Lemma 4.4, (4.35) and (4.36)

Proj[L1(n; u)|0] =
1

2

√
En

2

α0,0β0(u)

0!0!0!

∫

T

H0(fn(x))H0(fn,1(x))H0(fn,2(x)) dx

=
1

2

√
En

2

√
π

2
φ(u)

14



that is E[L1(n; u)] given in Lemma 2.1. Let us now focus on L0(n; u). Exploiting the proof of
Lemma 2.1 in Appendix C we have that for every n ∈ S and u ∈ R

η
(n)
0,0,0(u) =

1

4
uφ(u), (4.42)

hence from Lemma 4.7,

Proj[L0(n; u)|0] = 2En · η(n)0,0,0(u)β
2
0

=
1

2π
uφ(u) · En

2

that is equal to E[L0(n; u)] in Lemma 2.1. From Lemma 4.2 and n ∈ S, n ≥ 1, the first order
chaotic component of L2(n; u) is

Proj[L2(n; u)|1] =
γ1(u)

1!

∫

T

H1(fn(x)) dx = φ(u)

∫

T

fn(x) dx

=
φ(u)√Nn

∑

λ∈Λn

∫

T

e(〈λ, x〉) dx
︸ ︷︷ ︸

=δ0
λ

= 0.
(4.43)

The proof of (3.22) for k = 0, 1 is analogous to (4.43), hence we omit the details.

The proofs of Proposition 3.2 and Proposition 3.3 are long and technical, hence postponed to §6
and §7 respectively.
Proof of Theorem 2.4 assuming Proposition 3.2 and Proposition 3.3. From Lemma

3.1 and (3.19) we can write

Lk(n; u) =

∞∑

q=2

Proj[Lk(n; u)|q], (4.44)

where the convergence of the (orthogonal) series is in L2(P). Proposition 3.2 ensures that we can
rewrite (4.44) as

Lk(n; u) =
ck(u)√
Nn/2

(√
En

2

)2−k
1√
Nn/2

∑

λ∈Λ+
n

(|aλ|2 − 1) +

∞∑

q=3

Proj[Lk(n; u)|q],

where ck(u) are given in (2.12). In order to conclude the proof it suffices to set

Rk(n; u) :=

∞∑

q=3

Proj[Lk(n; u)|q] (4.45)

and recall Proposition 3.3.

Proof of Corollary 2.5. Let us bear in mind Theorem 2.4 and (2.15). For n ∈ S, k = 0, 1, 2
and u /∈ Uk, by triangle inequality,

dW

(
L̃k(n; u), Z

)
≤ dW

(
L̃k(n; u),

Proj[Lk(n; u)|2]√
Var(Lk(n; u))

)
+ dW

(
Proj[Lk(n; u)|2]√
Var(Lk(n; u))

, Z

)
. (4.46)
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For the first term on the right-hand side of (4.46) it suffices to note that, by definition of Wasserstein
distance and (3.19),

dW

(
L̃k(n; u),

Proj[Lk(n; u)|2]√
Var(Lk(n; u))

)
≤

√√√√√E



(

Rk(n; u)√
Var(Lk(n; u))

)2



= O

(√
1

Nn

)
,

(4.47)

where the last estimate follows from (2.13) in Theorem 2.4 and (2.15). The second term on the
right hand side of (4.46) can be controlled by Berry-Esseen’s bounds (see e.g. [Ess42]), indeed the
second order chaotic projection is a sum of i.i.d. random variables, see Proposition 3.2, recall also
(2.15):

dW

(
Proj[Lk(n; u)|2]√
Var(Lk(n; u))

, Z

)
≤ dW

(
Proj[Lk(n; u)|2]√

Var(Proj[Lk(n; u)|2])
, Z

)

+dW

(
Proj[Lk(n; u)|2]√

Var(Proj[Lk(n; u)|2])
,
Proj[Lk(n; u)|2]√
Var(Lk(n; u))

)

≤ dW


 1√

Nn/2

∑

λ∈Λ+
n

(|aλ|2 − 1), Z


 (4.48)

+

∣∣∣
√

Var (Lk(n; u))−
√
Var (Proj[Lk(n; u)|2])

∣∣∣
√
Var (Lk(n; u))

= O

(
1√Nn

)
.

Plugging (4.47) and (4.48) into (4.46) we conclude the proof.

Proof of Corollary 2.6. The proof is analogous to the proof of Theorem 1.7 in [MRT20].
Applying standard Large Deviation results [DZ98] for sums of i.i.d. random variables we have that
under (2.16) the sequence

{P̃roj[Lk(n; u)|2]/s(k)n;u}n∈S
satisfies a Moderate Deviation principle as Nn → +∞ with speed (s

(k)
n;u)2 and rate function I, where

P̃roj[Lk(n; u)|2] :=
Proj[Lk(n; u)|2]√

Var(Proj[Lk(n; u)|2])
.

Moreover, for every δ > 0, under (2.16),

lim sup
Nn→+∞

1

(s
(k)
n;u)2

log P
(∣∣∣L̃k(n; u)/s

(k)
n;u − P̃roj[Lk(n; u)|2]/s(k)n;u

∣∣∣ > δ
)
= −∞,

i.e. the two sequence of random variables {P̃roj[Lk(n; u)|2]/s(k)n;u}n∈S and {L̃k(n; u)/s
(k)
n;u}n∈S are

exponentially equivalent [DZ98, Definition 4.2.10] along subsequences of energy levels such that
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Nn → +∞. Theorem 4.2.13 in [DZ98] then ensures that {L̃k(n; u)/s
(k)
n;u}n∈S satisfies a Moderate De-

viation principle with the same speed and rate function as the sequence {P̃roj[Lk(n; u)|2]/s(k)n;u}n∈S.

Proof of Corollary 2.7. From Theorem 2.4 and (4.45) we can write

Corr (Lk1(n; u1),Lk2(n; u2)) =
Cov (Lk1(n; u1),Lk2(n; u2))√
Var(Lk1(n; u1))Var(Lk2(n; u2))

=
Cov (Proj[Lk1(n; u1)|2] +Rk1(n; u1),Proj[Lk2(n; u2)|2] +Rk2(n; u2))√

Var(Lk1(n; u1))Var(Lk2(n; u2))

=
Cov (Proj[Lk1(n; u1)|2]),Proj[Lk2(n; u2)|2])√

Var(Lk1(n; u1))Var(Lk2(n; u2))

+
Cov (Rk1(n; u1),Rk2(n; u2))√
Var(Lk1(n; u1))Var(Lk2(n; u2))

=
Cov (Proj[Lk1(n; u1)|2]),Proj[Lk2(n; u2)|2])√
Var(Proj[Lk1(n; u1)|2])Var(Proj[Lk2(n; u2)|2])

+O

(
1

Nn

)

+
Cov (Rk1(n; u1),Rk2(n; u2))√
Var(Lk1(n; u1))Var(Lk2(n; u2))

, (4.49)

where for the last equality we used (2.15). From Proposition 3.2 we get

Cov (Proj[Lk1(n; u1)|2]),Proj[Lk2(n; u2)|2])√
Var(Proj[Lk1(n; u1)|2])Var(Proj[Lk2(n; u2)|2])

= 1 (4.50)

and still from Theorem 2.4 and (2.15), and Cauchy-Schwatz inequality, we get

|Cov (Rk1(n; u1),Rk2(n; u2))|√
Var(Lk1(n; u1))Var(Lk2(n; u2))

≤
√

E[Rk1(n; u1)
2]E[Rk2(n; u2)

2]√
Var(Lk1(n; u1))Var(Lk2(n; u2))

=O

(
1

Nn

)
.

(4.51)

Plugging (4.50) and (4.51) into (4.49) we conclude the proof.

5 EPC: chaotic expansion

5.1 Cholesky decomposition

Recall the definition of the ǫ-approximating random variable (4.38) and Lemma 4.6. In order to
prove Lemma 4.7 we first derive the chaotic expansion of Lǫ

0(n; u) and then let ǫ go to zero. The
integrand function

F ǫ
n(x) := det(∇2fn(x))1{∆fn(x)≤−Enu}

1

(2ǫ)2
1[−ǫ,ǫ]2(∇fn(x)), x ∈ T, (5.52)

defining the ǫ-approximating random variable (4.38) is a functional of ∂1fn, ∂2fn, ∂11fn, ∂12fn, ∂22fn
which are not point-wise independent random fields. For the sake of simplicity we first express F ǫ(x)
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in terms of independent random variables. Let us write σn = σn(x) for the 5× 5 covariance matrix
(see §B.1) of the Gaussian random vector

(∂1fn(x), ∂2fn(x), ∂11fn(x), ∂12fn(x), ∂22fn(x)).

We write it in the partitioned form

σn = σn(x)5×5 =

(
an bn
btn cn

)
,

where the superscript t denotes transposition, and (see Appendix B.1)

an = an(x) =
4π2

Nn

∑

λ

λλt = 2π2n I2,

bn = bn(x) =

(
0 0 0
0 0 0

)
,

since for stationarity for random fields second derivatives and first derivatives at every fixed point
are uncorrelated [see [AT07], page 114], and (recall (1.5))

cn = cn(x) = 2π4n2




3 + µ̂n(4) 0 1− µ̂n(4)
0 1− µ̂n(4) 0

1− µ̂n(4) 0 3 + µ̂n(4)


 .

Via Cholesky decomposition we can write the Hermitian positive-definite matrix σn in the form
σn = KnK

t
n, where Kn is a lower triangular matrix with real and positive diagonal entries, and Kt

n

denotes the conjugate transpose of Kn. By an explicit computation, it is possible to show that the
Cholesky decomposition of σn takes the form σn = KnK

t
n, where

Kn =




√
2nπ 0 0 0 0

0
√
2nπ 0 0 0

0 0
√
2π2n

√
3 + µ̂n(4) 0 0

0 0 0
√
2π2n

√
1− µ̂n(4) 0

0 0
√
2π2n 1−µ̂n(4)√

3+µ̂n(4)
0 4π2n

√
1+µ̂n(4)√
3+µ̂n(4)




=




√
En√
2

0 0 0 0

0
√
En√
2

0 0 0

0 0 En

2
√
2

√
3 + µ̂n(4) 0 0

0 0 0 En

2
√
2

√
1− µ̂n(4) 0

0 0 En

2
√
2

1−µ̂n(4)√
3+µ̂n(4)

0 En

√
1+µ̂n(4)√
3+µ̂n(4)




=:




k1 0 0 0 0
0 k1 0 0 0
0 0 k3 0 0
0 0 0 k4 0
0 0 k2 0 k5



. (5.53)
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We can hence introduce a 5-dimensional standard Gaussian vector

Y (x) = (Y1(x), Y2(x), Y3(x), Y4(x), Y5(x))

with independent components such that

(∂1fn(x), ∂2fn(x), ∂11fn(x), ∂12fn(x), ∂22fn(x)) = KnY (x)

= (k1Y1(x), k1Y2(x), k3Y3(x), k4Y4(x), k5Y5(x) + k2Y3(x)).

Hence the expression (5.52) can be rewritten as

F ǫ
n(x) = [k3Y3(x)(k5Y5(x) + k2Y3(x))− (k4Y4(x))

2] 1{ k3
En

Y3(x)+
k5
En

Y5(x)+
k2
En

Y3(x)≤−u}

× 1

(2ǫ)2
1[−ǫ,ǫ]2(k1Y1(x), k1Y2(x))

= [k3Y3(x)(k5Y5(x) + k2Y3(x))− (k4Y4(x))
2] 1{ k3

En
Y3(x)+

k5
En

Y5(x)+
k2
En

Y3(x)≤−u}

× 1

k21

1
(

2ǫ
k1

)21[
− ǫ

k1
, ǫ
k1

]2(Y1(x), Y2(x)). (5.54)

Let us now set

k̃i :=
ki
En

, i = 2, 3, 4, 5,

and note that maxi=2,...,5 k̃i = O(1), where the constant involved in the O-notation is absolute. From
(5.54) we can rewrite (4.38) as

Lǫ
0(n; u) =

∫

T

F ǫ
n(x) dx

=
2En(
2ǫ
k1

)2
∫

T2

(
k̃3Y3(x)(k̃5Y5(x) + k̃2Y3(x))− k̃24Y4(x)

2
)

×1{(k̃3+k̃2)Y3(x)+k̃5Y5(x)≤−u}1[
− ǫ

k1
, ǫ
k1

]2 (Y1(x), Y2(x)) dx. (5.55)

5.2 Proof of Lemma 4.7

We will need the following preliminary results.

Lemma 5.1. For every ǫ > 0, n ∈ S and x ∈ T, the chaotic expansion of

δǫ/k1(Y1(x), Y2(x)) :=
1

(
2ǫ
k1

)21[
− ǫ

k1
, ǫ
k1

]2(Y1(x), Y2(x))

is the following series

δǫ/k1(Y1(x), Y2(x)) =
+∞∑

q=0

q∑

q′=0

β
ǫ/k1
2q′

(2q′)!

β
ǫ/k1
2q−2q′

(2q − 2q′)!
H2q′(Y1(x))H2q−2q′(Y2(x)), (5.56)

where the convergence is in the L2(P)-sense, and for q ∈ N≥1,

β
ǫ/k1
0 =

1
2ǫ
k1

∫ ǫ/k1

−ǫ/k1

φ(t) dt, β
ǫ/k1
2q :=

1
2ǫ
k1

∫ ǫ/k1

−ǫ/k1

H2q(t)φ(t) dt. (5.57)
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Lemma 5.2. For every n ∈ S, x ∈ T and u ∈ R, the chaotic expansion of

pn(Y3(x), Y4(x), Y5(x))1{(k̃3+k̃2)Y3(x)+k̃5Y5(x)≤−u},

where pn(Y3(x), Y4(x), Y5(x)) := k̃3Y3(x)(k̃5Y5(x) + k̃2Y3(x))− k̃24Y4(x)
2, is

pn(Y3(x), Y4(x), Y5(x))1{(k̃3+k̃2)Y3(x)+k̃5Y5(x)≤−u}

=
+∞∑

q=0

∑

a+b+c=q

η
(n)
a,b,c(u)

a!b!c!
Ha(Y3(x))Ha(Y4(x))Hc(Y5(x)), (5.58)

where the series converges in L2(P).

We omit the proofs of Lemma 5.1 and Lemma 5.2. We are now in a position to establish Lemma
4.7.
Proof of Lemma 4.7. Let us first find the chaotic decomposition of F ǫ

n(x) in (5.52). Lemma
5.1 together with Lemma 5.2 gives

F ǫ
n(x) = 2En

+∞∑

q=0

∑

a+b+c+2d+2e=q

η
(n)
a,b,c(u)

a!b!c!

β
ǫ/k1
2d

(2d)!

β
ǫ/k1
2e

(2e)!

×H2d(Y1(x))H2e(Y2(x))Ha(Y3(x))Hb(Y4(x))Hc(Y5(x))

entailing that the chaotic expansion of L0(n; u) in (5.55) is

Lǫ
0(n; u) = 2En

+∞∑

q=0

∑

a+b+c+2d+2e=q

η
(n)
a,b,c(u)

a!b!c!

β
ǫ/k1
2d

(2d)!

β
ǫ/k1
2e

(2e)!

×
∫

T

H2d(Y1(x))H2e(Y2(x))Ha(Y3(x))Hb(Y4(x))Hc(Y5(x)) dx. (5.59)

Now note that, as ǫ→ 0, for every q ∈ N

βǫ/k1
q → βq

as defined in (4.41). Hence, bearing in mind the Cholesky decomposition in §5.1, Lemma 4.6
together with (5.59) allows to get (4.40) thus concluding the proof.

6 Second chaotic components

6.1 EPC: preliminary results

We compute now the projection coefficients of L0(n; u) on second Wiener chaos. From (4.40) in
Lemma 4.7 we can write more compactly

Proj[L0(n; u)|2] = 2En

∑

a+b+c+2d+2e=2

η
(n)
a,b,c(u)

a!b!c!

β2dβ2e
(2d)!(2e)!

∫

T

Ha

(
∂11fn(x)

k3

)
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×Hb

(
∂12fn(x)

k4

)
Hc

(
∂22fn(x)

k5
− k2
k5k3

∂11fn(x)

)
H2d

(
∂1fn(x)

k1

)

×H2e

(
∂2fn(x)

k1

)
dx (6.60)

=
5∑

i=1

i−1∑

j=1

hij(u;n)

∫

T

Yi(x)Yj(x)dx+
1

2

5∑

i=1

hi(u;n)

∫

T

H2(Yi(x))dx,

where for i, j = 1, . . . 5, i 6= j

hij(u;n) := lim
ε→0

E

[
k3Y3(k5Y5 + k2Y3)− (k4Y4)

2] 1l{ k2+k3
E

Y3+
k5
E

Y5≤−u} δε(k1Y1, k1Y2)YiYj
]
;

on the other hand, for i = 1, . . . 5,

hi(u;n) := lim
ε→0

E

[
k3Y3(k5Y5 + k2Y3)− (k4Y4)

2] 1l{k2+k3
E

Y3+
k5
E

Y5≤−u} δε(k1Y1, k1Y2)H2(Yi)
]
.

The following proposition provides analytic expressions for the coefficients hij and hi.

Proposition 6.1. It holds that hij(u;n) = 0 for all (i, j) 6= (3, 5) and

h35(u;n) =
En

2
√
2π

√
1 + µ̂n(4)

uφ(u)(1 + u2) + (3 + µ̂n(4))Φ(−u)
3 + µ̂n(4)

.

Moreover

h1(u;n) = h2(u;n) = −En

4π
u φ(u),

h3(u;n) =
En

4π

[
2u(1 + u2)φ(u)

3 + µ̂n(4)
+ Φ(−u)(1− µ̂n(4))

]
,

h4(u;n) = −En

4π
(1− µ̂n(4))Φ(−u),

h5(u;n) =
En

4π

u(1 + u2)(1 + µ̂n(4))φ(u)

3 + µ̂n(4)
.

The proof of Proposition 6.1 is postponed to the Appendix D.1. From equation (6.60) and
Proposition 6.1 it is then immediate to obtain the following expression:

Proj[L0(n; u)|2] = h35(u;n)A35(n) +
1

2

5∑

i=1

hi(u;n)Bi(n); (6.61)

where

Aij(n) =

∫

T

Yi(x)Yj(x)dx, Bi(n) =

∫

T

H2(Yi(x))dx. (6.62)

Our next step is then to investigate the behaviour of the integrals of stochastic processes in (6.62).

Proposition 6.2. We have that

A35(n) =
1

Nn

∑

λ

|aλ|2
[ 2

√
2

n
√

1 + µ̂n(4)

5− µ̂n(4)

3 + µ̂n(4)
λ22 −

1− µ̂n(4)

3 + µ̂n(4)

2
√
2√

1 + µ̂n(4)
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−
√
2

n2
√

1 + µ̂n(4)

8

3 + µ̂n(4)
λ42

]
,

and

B1(n) =
1

Nn

∑

λ

|aλ|2
2

n
λ21 − 1, B2(n) =

1

Nn

∑

λ

|aλ|2
2

n
λ22 − 1,

B3(n) =
1

Nn

∑

λ

|aλ|2
[

8

3 + µ̂n(4)
+

8

n2(3 + µ̂n(4))
λ42 −

16

n(3 + µ̂n(4))
λ22

]
− 1,

B4(n) =
1

Nn

∑

λ

|aλ|2
8

n2(1− µ̂n(4))
λ21λ

2
2 − 1,

B5(n) =
1

Nn

∑

λ

|aλ|2
[ 16

n2(1 + µ̂n(4))(3 + µ̂n(4))
λ42 +

(1− µ̂n(4))
2

(3 + µ̂n(4))(1 + µ̂n(4))

− 1− µ̂n(4)

n(3 + µ̂n(4))(1 + µ̂n(4))
8λ22

]
− 1.

The proof of Proposition 6.2 is technical hence postponed to the Appendix D.2.

6.2 Proof of Proposition 3.2

Proof. From Lemma 4.2 and (3.20) for q = 2 we have

Proj[L2(n; u)|2] =
γ2(u)

2!

∫

T

H2(fn(x)) dx

=
1

2
uφ(u)

1

Nn/2

∑

λ∈Λ+
n

(|aλ|2 − 1)

which is (3.2) for k = 2. Proposition 3.2 for k = 1 has been proved in the spherical case in
[Ros15, §7.3] via an application of Green’s formula, the proof for Arithmetic Random Waves is
analogous hence omitted for the sake of brevity. Let us now focus on the Euler-Poincaré character-
istic: plugging the results of Proposition 6.1 and Proposition 6.2 into (6.61) some straightforward
computations give Proposition 3.2 for k = 0.

7 Higher order chaotic components

In this section we investigate higher order chaotic components of Lk(n; u), k = 0, 1, 2. Let us start
studying the variance of the projection onto the third Wiener chaos.

Lemma 7.1. For k = 0, 1, 2, as Nn → +∞,

Var (Lk(n; u)[3]) = O

(
E2−k

n

N 2
n

)
, (7.63)

where the constant involved in the ′O′-notation does not depend on n.
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Proof. From Lemma 4.2 and properties of Hermite polynomials (see e.g. [NP12, Proposition
2.2.1]) we have

Var(L2(n; u)[3]) =
γ3(u)

2

3!

∫

T

rn(x)
3 dx

=
γ3(u)

2

3!
· 1

N 3
n

∑

λ,λ1,λ2∈Λn

∫

T

eλ+λ1+λ2(x) dx

=
γ3(u)

2

3!
· |S3(n)|

N 3
n

, (7.64)

where
S3(n) := {(λ, λ1, λ2) ∈ Λ3

n : λ+ λ1 + λ2 = 0} (7.65)

is the length−3 spectral correlation set. Reasoning as in [KKW13, p.31] it is immediate to check
that

|S3(n)| = O(Nn), (7.66)

hence from (7.64) we deduce that

Var(L2(n; u)[3]) = O

(
1

N 2
n

)
(7.67)

which is (7.63) for k = 2. From Lemma 4.4 we have

Var(L1(n; u)[3]) =
1

4

En

2

∑

a+2b+2c=3
a′+2b′+2c′=3

βa(u)α2b,2c

a!(2b)!(2c)!

βa′(u)α2b′,2c′

(a′)!(2b′)!(2c′)!

×
∫

T

E
[
Ha(fn(x))H2b(fn,1(x))H2c(fn,2(x))

×Ha′(fn(y))H2b′(fn,1(y))H2c′(fn,2(y))
]
dxdy. (7.68)

From Lemma 4.7 we have

Var(L0(n; u)[3]) = 4E2
n

∑

a+b+c+2d+2e=3
a′+b′+c′+2d′+2e′=3

ηa,b,c(u)

a!b!c!

β2dβ2e
(2d)!(2e)!

ηa′,b′,c′(u)

a′!b′!c′!

β2d′β2e′

(2d′)!(2e′)!
(7.69)

×
∫∫

T×T

E
[
Ha(Y3(x))Hb(Y5(x))Hc(Y4(x))H2d(Y1(x))H2e(Y2(x)) (7.70)

×Ha′(Y3(y))Hb′(Y5(y))Hc′(Y4(y))H2d′(Y1(y))H2e′(Y2(y))
]
dxdy. (7.71)

Consider the term for a = a′ = 3, b = b′ = c = c′ = d = d′ = e = e′ = 0. We have

4E2
n

η3,0,0(u)
2

(3!)2
β4
0

∫∫

T×T

E[Y3(x)Y3(y)]
3 dxdy

= 4E2
n

η3,0,0(u)
2

(3!)2
β4
0

∫∫

T×T

1

k63
E [∂11fn(x)∂11fn(y)]

3 dxdy

= 4E2
n

η3,0,0(u)
2

(3!)2
β4
0

∫∫

T×T

1

k63

(
16π4

Nn

∑

λ∈Λn

λ41 e
i2π〈λ,x−y〉

)3

dxdy
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= 4E2
n

η3,0,0(u)
2

(3!)2
β4
0

∫∫

T×T

1

k63

(16π4)3

N 3
n

∑

λ,λ′,λ′′∈Λn

λ41(λ
′
1)

4(λ′′1)
4 ei2π〈λ+λ′+λ′′,x−y〉 dxdy

= 4E2
n

η3,0,0(u)
2

(3!)2
β4
0

1

k63

(16π4)3

N 3
n

∑

(λ,λ′,λ′′)∈S3(n)

λ41(λ
′
1)

4(λ′′1)
4

= 4E2
n

η3,0,0(u)
2

(3!)2
β4
0

(
n

k3

)6

︸ ︷︷ ︸
≤1

(16π4)3

N 3
n

∑

(λ,λ′,λ′′)∈S3(n)

(
λ1√
n

)4(
λ′1√
n

)4(
λ′′1√
n

)4

︸ ︷︷ ︸
≤1

≤ 4(16π4)3
η3,0,0(u)

2β4
0

(3!)2
E2

n

|S3(n)|
N 3

n

. (7.72)

Plugging (7.66) into (7.72) and repeating a similar argument for the other summands on the right
hand side of (7.69) we get (7.63) for k = 0. The proof for (7.63) for k = 1 is similar. hence we omit
the details.

Lemma 7.1 ensures that Lk(n; u)[3] is asymptotically negligible with respect to Lk(n; u)[2] for
any k ∈ {0, 1, 2} (see Proposition 3.2), as happens for the remaining chaotic projections. All the
results to follow hold for every n when k = 1, 2, and for n ∈ S ′ for k = 0. For brevity’s sake we
avoid to repeat these conditions in the statements below.

Lemma 7.2. As Nn → +∞ under Condition 2.2

Var

(
+∞∑

q=4

Lk(n; u)[q]

)
= O

(
E2−k

n

N 2
n

)
, (7.73)

where the constant involved in the ′O′-notation does not depend on n.

The proof of Proposition 7.2 for k = 2 is simple, the proof for k = 1 can be treated analogously
as the proof of Lemma 2 in [PR18] hence we will omit both of them.
The proof of Proposition 7.2 for k = 0 is inspired by the proofs of Proposition 2.3 in [DNPR19,

§5] and Lemma 2 in [PR18]. Let us first decompose T as a disjoint union of squares Qk, k ∈ Z2,
each of side length 1/M , where

M = ⌈d
√
En⌉, d ∈ R>0 to be chosen later, (7.74)

obtained by translating along directions k/M , k ∈ Z
2, the square

Q0 := [0, 1/M)× [0, 1/M). (7.75)

In what follows we will often drop the dependence of k from Qk.

7.1 Singular squares

This part is inspired by [ORW08, §6.1] and [RW16, §4.3]. Let us fix 0 < ǫ ≪ 1 and choose d in
(7.74) such that d ≥ c/ǫ; write rn(x − y) = r(x − y) = E [fn(x)fn(y)], rn,1(x − y) = r1(x − y) =
E [∂1fn(x)∂1fn(y)], rn,2(x − y) = r2(x − y) = E [∂2fn(x)∂2fn(y)], and analogously for second-order
derivatives. A pair of points (x, y) ∈ T × T is said to be singular if either |r(x − y)| > ǫ or
|r1(x−y)| > ǫ

√
n or |r2(x−y)| > ǫ

√
n or |r11(x−y)| > ǫn or |r12(x−y)| > ǫn or |r22(x−y)| > ǫn.
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Definition 7.3. A pair of squares (Q,Q′) is said to be singular if there exists a singular pair of
points (x, y) ∈ Q×Q′.

For instance, (Q0, Q0) is a singular pair of squares. The following is Lemma 5.2 in [DNPR19].

Lemma 7.4. Let (Q,Q′) be a singular pair of squares, then for every (x, y) ∈ (Q,Q′) either |r(x−
y)| > 1

2
ǫ or |r1(x− y)| > 1

2
ǫ
√
n or |r2(x− y)| > 1

2
ǫ
√
n or |r11(x− y)| > 1

2
ǫ n or |r12(x− y)| > 1

2
ǫ n

or |r22(x− y)| > 1
2
ǫ n.

Let us now denote by SQ the union of all squares Q′ such that (Q,Q′) is a singular pair of
squares. The number of such squares Q′ is M2 · area(SQ), indeed the area of each square is 1/M2.
The following result is similar to Lemma 5.3 in [DNPR19] hence we omit the proof.

Lemma 7.5. We have

area(SQ) ≪
∫

T

r(x)4 dx. (7.76)

Recall that ∫

T

r(x)4 dx =
|S4(n)|
N 4

n

, (7.77)

where S4(n) := {(λ, λ′, λ′′, λ′′′) ∈ Λ4
n : λ + λ′ + λ′′ + λ′′′ = 0} is the length−4 spectral correlation

set, and [MPRW16, Lemma 5.1] (see also [KKW13, p. 31])

|S4(n)| = 3Nn(Nn − 1). (7.78)

From Lemma 7.5 and (7.78) we immediately have

area(SQ) ≪
1

N 2
n

, (7.79)

thus the number of squares Q′ such that (Q,Q′) is singular is ≪ En/N 2
n .

7.2 Variance and squares

Let us denote by L0(n; u,Q) the Euler-Poincaré characteristic restricted to Q. Since the squares Q
are disjoint we can write

L0(n; u) =
∑

Q

L0(n; u,Q) (7.80)

yielding

proj(L0(n; u)|C≥4) =
∑

Q

proj(L0(n; u,Q)|C≥4). (7.81)

From (7.81) we deduce

Var(proj(L0(n; u)|C≥4) =
∑

Q,Q′

Cov(proj(L0(n; u,Q)|C≥4), proj(L0(n; u,Q
′)|C≥4)) (7.82)

=
∑

(Q,Q′) sing.

Cov(proj(L0(n; u,Q)|C≥4), proj(L0(n; u,Q
′)|C≥4))

+
∑

(Q,Q′) non-sing.

Cov(proj(L0(n; u,Q)|C≥4), proj(L0(n; u,Q
′)|C≥4));

we are going to separately study the contribution of the singular part and the contribution of the
non-singular part, i.e. the two summands on the right-hand-side of (7.82).
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7.3 The contribution of the singular part

By Cauchy-Schwartz inequality and stationarity of the model we have
∣∣∣∣∣∣

∑

(Q,Q′) sing.

Cov(proj(L0(n; u,Q)|C≥4), proj(L0(n; u,Q
′)|C≥4))

∣∣∣∣∣∣

≤
∑

(Q,Q′) sing.

Var(proj(L0(u;Q0)|C≥4))

≪M2 En

N 2
n

Var(proj(L0(u;Q0)|C≥4)) ≪
E2

n

N 2
n

Var(proj(L0(u;Q0)|C≥4)),

(7.83)

where for the last two estimates we used (7.79) and (7.74) respectively. Now write

Var(proj(L0(u;Q0)|C≥4)) ≤ E
[
L0(u;Q0)

2
]

= E [L0(u;Q0)(L0(u;Q0)− 1)] + E [L0(u;Q0)] .
(7.84)

Lemma 7.6. For every n ∈ S and u ∈ R

E [L0(u;Q0)] = O(1),

where the constant involved in the O-notation is absolute.

The proof of Lemma 7.6 follows from the stationarity of the model and the fact that L0(n; u)
is bounded from above by En. Lemma 7.6 together with (2.10) entail that the right hand side of
(7.84) is O(1) hence

Var(proj(L0(u;Q0)|C≥4)) = O(1), (7.85)

where the constant involved in the O-notation is absolute, that together with (7.83) proves the
following.

Lemma 7.7. As Nn → +∞ under Condition 2.2
∣∣∣∣∣∣

∑

(Q,Q′) sing.

Cov(proj(L0(u;Q)|C≥4), proj(L0(u;Q
′)|C≥4))

∣∣∣∣∣∣
= O

(
E2

n

N 2
n

)
, (7.86)

where the constant involved in the O-notation is absolute.

7.4 The contribution of the non-singular part

In this part we prove the following.

Lemma 7.8. As Nn → +∞
∣∣∣∣∣∣

∑

(Q,Q′) non-sing.

Cov(proj(L0(u;Q)|C≥4), proj(L0(u;Q
′)|C≥4))

∣∣∣∣∣∣
= O

(
E2

n

N 2
n

)
, (7.87)

where the constant involved in the O-notation is absolute.
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Proof. As in the proof of Lemma 3.5 in [DNPR19] we can write

∣∣∣∣∣∣

∑

(Q,Q′) non-sing.

Cov(proj(L0(u;Q)|C≥4), proj(L0(u;Q
′)|C≥4))

∣∣∣∣∣∣

≤ 4E2
n

∑

q≥4

∑

a+b+c+2d+2e=q
a′+b′+c′+2d′+2e′=q

∣∣∣∣∣
η
(n)
a,b,c(u)

a!b!c!

β
ǫ/k1
2d β

ǫ/k1
2e

(2d)!(2e)!

η
(n)
a′,b′,c′(u)

a′!b′!c′!

β
ǫ/k1
2d′ β

ǫ/k1
2e′

(2d′)!(2e′)!

∣∣∣∣∣

× |V (a, b, c, d, e, a′, b′, c′, d′, e′)| ,

(7.88)

where V (a, b, c, d, e, a′, b′, c′, d′, e′) is the sum of no more than q! terms of the type

v =
∑

(Q,Q′) non-sing.

∫∫

Q×Q′

q∏

u=1

Rlu,ku(x− y) dxdy, (7.89)

with lu, ku ∈ {0, 1, 2} and where for l, k = 0, 1, 2 and x, y ∈ T we set

Rl,k(x− y) := E[Yl(x)Yk(y)]. (7.90)

For every integer q ≥ 4

|v| ≤
∑

(Q,Q′) non-sing.

∫∫

Q×Q′

|rn(x− y)|q dxdy

≤ ǫq−4
∑

(Q,Q′) non-sing.

∫∫

Q×Q′

rn(x− y)4 dxdy

≤ ǫq−4

∫

T

rn(x)
4 dx.

(7.91)

From (7.91) we deduce that

|V (a, b, c, d, e, a′, b′, c′, d′, e′)| ≤ q!

∫
T
rn(x)

4 dx

ǫ4
ǫq

= q!

∫
T
rn(x)

4 dx

ǫ4
(
√
ǫ)a+b+c+2d+2e(

√
ǫ)a

′+b′+c′+2d′+2e′ .

(7.92)

Plugging (7.92) into (7.88) we get

∣∣∣∣∣∣

∑

(Q,Q′) non-sing.

Cov(proj(L0(u;Q)|C≥4), proj(L0(u;Q
′)|C≥4))

∣∣∣∣∣∣

≤ 4E2
n

∫
T
rn(x)

4 dx

ǫ4

∑

q≥4

q!
∑

a+b+c+2d+2e=q
a′+b′+c′+2d′+2e′=q

∣∣∣∣∣
η
(n)
a,b,c(u)

a!b!c!

β
ǫ/k1
2d β

ǫ/k1
2e

(2d)!(2e)!

η
(n)
a′,b′,c′(u)

a′!b′!c′!

β
ǫ/k1
2d′ β

ǫ/k1
2e′

(2d′)!(2e′)!

∣∣∣∣∣

× (
√
ǫ)a+b+c+2d+2e(

√
ǫ)a

′+b′+c′+2d′+2e′ ;

(7.93)
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reasoning as in the proof of Lemma 3.5 in [DNPR19], for 5
√
ǫ < 1 we obtain

Z :=
∑

q≥4

q!
∑

a+b+c+2d+2e=q
a′+b′+c′+2d′+2e′=q

∣∣∣∣∣
η
(n)
a,b,c(u)

a!b!c!

β
ǫ/k1
2d β

ǫ/k1
2e

(2d)!(2e)!

η
(n)
a′,b′,c′(u)

a′!b′!c′!

β
ǫ/k1
2d′ β

ǫ/k1
2e′

(2d′)!(2e′)!

∣∣∣∣∣

×(
√
ǫ)a+b+c+2d+2e(

√
ǫ)a

′+b′+c′+2d′+2e′

≤
∑

a,b,c,d,e,a′,b′,c′,d′,e′

∣∣∣∣∣
η
(n)
a,b,c(u)

a!b!c!

β
ǫ/k1
d β

ǫ/k1
e

d!e!

∣∣∣∣∣

2

(a + b+ c+ d+ e)!

×(
√
ǫ)a+b+c+d+e+a′+b′+c′+d′+e′ (7.94)

≤
∑

a,b,c,d,e,a′,b′,c′,d′,e′

∣∣∣η(n)a,b,c(u)β
ǫ/k1
d β

ǫ/k1
e

∣∣∣
2

a!b!c!d!e!
5a+b+c+d+e(

√
ǫ1)

a+b+c+d+e+a′+b′+c′+d′+e′.

Let us now prove that

(a, b, c, d, e) 7→

∣∣∣η(n)a,b,c(u)β
ǫ/k1
d β

ǫ/k1
e

∣∣∣
2

a!b!c!d!e!
(7.95)

is uniformly bounded over ǫ and n. From (5.57), recalling that there exists C > 0 such that for
every q ∈ N and u ∈ R

|Hq(u)|φ(u) ≤ C
√
q!,

we have for every ǫ > 0, n ∈ S and d ∈ N,
∣∣∣βǫ/k1

d

∣∣∣
2

d!
≤ C2. (7.96)

Moreover from Lemma 5.2 we have

+∞∑

q=1

∑

a+b+c=q

∣∣∣η(n)a,b,c(u)
∣∣∣
2

a!b!c!
= E

[
pn(Y3(x), Y4(x), Y5(x)

21(k̃3+k̃2)Y3(x)+k̃5Y5(x)≤−u

]

≤ E
[
pn(Y3(x), Y4(x), Y5(x)

2
]
= O(1),

(7.97)

where the constant involved in the O-notation is absolute. Equation 7.95 together with (7.93),
(7.94) and (7.78) allows to conclude the proof of Lemma 7.8.

Proof of Lemma 7.2. The proof follows from Lemma 7.7, Lemma 7.8 and (7.82).

7.5 Proof of Proposition 3.3

Proof. It suffices to combine Lemma 7.1 and Lemma 7.2 to get

Var(proj(L0(n; u)|C≥4) = O(1), (7.98)

where the constant involved in the O-notation is absolute.
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A EPC: technical lemmas

By stationarity of the model the law of ∇fn(x) is independent of x ∈ T, it is centered Gaussian
with covariance matrix given by an in (B.103). Since det(an) 6= 0, Proposition 6.5 in [AW09] (with
Z = ∇fn) ensures that for every z ∈ R,

P(∃x ∈ T : ∇fn(x) = z, det(∇2fn(x)) = 0) = 0. (A.99)

In particular for z = 0, via a standard application of the inverse function theorem [AT07, p.136],
we have that the set of critical points of fn a.s. consists of a finite number of isolated points. By
Bézout Theorem we deduce that the number of critical points of fn is bounded from above by 4En,
and the Euler-Poincaré characteristic of any excursion set of fn so (see the Morse representation
formula below).
Now, in order to apply area formula as in [AW09, Proposition 6.1] (with f = ∇fn) we need to

be sure that the set of critical values of ∇fn a.s. has zero Lebeasgue measure. This follows from
Sard’s Lemma applied to ∇fn.
Proof of Lemma 4.5. From (4.38) we have

|Lǫ
0(u;n)| ≤

∫

T

|det(∇2fn(x))|
1

(2ǫ)2
1[−ǫ,ǫ]2(∇fn(x)) dx,

where the random variable on the right hand side approximates the number of critical points of fn.
Thanks to the previous discussion, we can apply the area formula [AW09, Proposition 6.1] obtaining

∫

T

|det(∇2fn(x))|
1

(2ǫ)2
1[−ǫ,ǫ]2(∇fn(x)) dx =

1

(2ǫ)2

∫

[−ǫ,ǫ]2
#{x ∈ T : ∇fn(x) = z} dz. (A.100)

By Bézout Theorem we have for every z

#{x ∈ T : ∇fn(x) = z} ≤ 4En. (A.101)

Substituting (A.101) into (A.100) we obtain the desired result.

By the Morse representation fomula [AT07, §9.3, §9.4] we obtain

L0(n; u) =

2∑

j=0

(−1)jµj

(
Au(fn;T), fn|Au(fn;T)

)
, (A.102)

where

µj

(
Au(fn;T), fn|Au(fn;T)

)
= #{x ∈ T : fn(x) ≥ u,∇fn(x) = 0, Ind(−∇2fn(x)) = j}
= #{x ∈ T : ∆fn(x) ≤ −En u,∇fn(x) = 0, Ind(−∇2fn(x)) = j},

(note that in the last equality we used the fact that ∆fn = −Enfn) Ind(M) denoting the number
of negative eigenvalues of a square matrix M . More specifically, µ0 is the number of maxima, µ1

the number of saddles, and µ2 the number of minima in the excursion region Au(fn;T). Hence we
can formally write

L0(n; u) =

2∑

j=0

(−1)j
∫

T

|det(∇2fn(x))|1{∆fn(x)≤−En u}1{Ind(−∇2fn(x))=j}δ0(∇fn(x)) dx
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which is (4.37).
Proof of Lemma 4.6. Thanks to Morse representation formula and then Theorem 11.2.3 in

[AT07] (whose assumptions are satisfied in particular thanks to (A.99) for z = 0) we have a.s.

lim
ǫ→0

Lǫ
0(n; u) = lim

ǫ→0

2∑

j=0

(−1)j

(2ǫ)2

∫

T

|det(∇2fn(x))|1{∆fn(x)≤−En u}1{Ind(−∇2fn(x))=j}1[−ǫ,ǫ]2(∇fn(x)) dx

=

2∑

j=0

(−1)jµj

(
Au(fn;T), fn|Au(fn;T)

)
= L0(n; u).

The latter together with Lemma 4.5 immediately establish the L2(P)-convergence thus concluding
the proof.

B Computation of covariance matrices

Let x, y ∈ T, and consider the Gaussian vector

(∂1fn(x), ∂2fn(x), ∂1fn(y), ∂2fn(y), ∂11fn(x), ∂12fn(x), ∂22fn(x), ∂11fn(y), ∂12fn(y), ∂22fn(y)).

It is convenient to write its covariance matrix in block-diagonal form, i.e.

Σn(x, y) =

(
An(x, y) Bn(x, y)
Bt

n(x, y) Cn(x, y)

)
.

In particular the An component collects the variances of the gradient terms, and it is given by

An(x, y) =

(
an(x, x) an(x, y)
an(y, x) an(y, y)

)
, an(x, y) =

(
r1,1(x, y) r1,2(x, y)
r1,2(x, y) r2,2(x, y)

)
.

It is easy to check that (cf. [KKW13, MPRW16]), for i = 1, 2,

ri,i(x, y) =
4π2

Nn

∑

λ

λ2(i)e(〈λ, x− y〉),

while for i 6= j, i, j = 1, 2

ri,j(x, y) = E[∂ifn(x)∂jfn(y)] =
4π2

Nn

∑

λ

λ(i)λ(j)e(〈λ, x− y〉) = rj,i(x, y).

The matrix Bn collects the covariances between first and second order derivatives, and is given by

Bn(x, y) =

(
0 bn(x, y)

bn(y, x) 0

)
,

where

bn(x, y) =

(
r1,11(x, y) r1,12(x, y) r1,22(x, y)
r2,11(x, y) r2,12(x, y) r2,22(x, y)

)
= −bn(y, x).
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and

r1,11(x, y) = E[∂1fn(x)∂11fn(y)] = E[− 22π2

√Nn

∑

λ∈Λn

aλe(〈λ, y〉)λ2(1) ×
2πi√Nn

∑

λ∈Λn

aλe(〈λ, x〉)λ(1)]

= −8π3i

Nn
E[
∑

λ∈Λn

aλe(〈λ, y〉)λ2(1) ×
∑

λ∈Λn

aλe(〈λ, x〉)λ(1)]

= −8π3i

Nn

∑

λ,λ′

E[aλaλ′ ] e(〈λ′2(1) λ′(1)

= −8π3i

Nn

∑

λ

E[aλa−λ] e(〈λ, x〉) e(〈−λ, y〉) (−λ(1))2 λ(1)

= −8π3i

Nn

∑

λ

λ3(1)e(〈λ, x− y〉),

so that for i = 1, 2

ri,ii(x, y) = E[∂ifn(x)∂iifn(y)] = −8π3i

Nn

∑

λ

λ3(i)e(〈λ, x− y〉),

and we notice that

ri,ii(y, x) = E[∂ifn(y)∂iifn(x)] = E[− 22π2

√Nn

∑

λ∈Λn

aλe(〈λ, x〉)λ2(i) ×
2πi√Nn

∑

λ∈Λn

aλe(〈λ, y〉)λ(i)]

= −8π3i

Nn
E[
∑

λ∈Λn

aλe(〈λ, x〉)λ2(i) ×
∑

λ∈Λn

aλe(〈λ, y〉)λ(i)]

= −8π3i

Nn

∑

λ,λ′

E[aλaλ′ ] e(〈λ, x〉) e(〈λ′2(i) λ′(i)

= −8π3i

Nn

∑

λ

E[aλa−λ] e(〈λ, x〉) e(〈−λ, y〉) λ2(i) (−λ(i))

=
8π3i

Nn

∑

λ

λ3(1)e(〈λ, x− y〉),

and in general for i, j, k = 1, 2

ri,jk(x, y) = −8π3i

Nn

∑

λ

λ(i)λ(j)λ(k)e(〈λ, x− y〉) = −ri,jk(y, x),

so that

bn(x, y) =

(
r1,11(x− y) r1,12(x− y) r1,22(x− y)
r1,12(x− y) r1,22(x− y) r2,22(x− y)

)
.

Finally, for the matrix Cn(x, y), we have

Cn(x, y) =

(
cn(x, x) cn(x, y)
cn(y, x) cn(y, y)

)
,

31



where of course cn(x, x) = cn(y, y),

cn(x, y) =




r11,11(x, y) r11,12(x, y) r11,22(x, y)
r12,11(x, y) r12,12(x, y) r12,22(x, y)
r22,11(x, y) r22,12(x, y) r22,22(x, y)




and

r11,11(x, y) = E[∂11fn(x)∂11fn(y)] = E[− 22π2

√Nn

∑

λ∈Λn

aλe(〈λ, x〉)λ2(1) ×− 22π2

√Nn

∑

λ∈Λn

aλe(〈λ, y〉)λ2(1)]

=
24π4

Nn

∑

λ

λ4(1)e(〈λ, x− y〉),

or, more generally

rij,kl(x, y) =
24π4

Nn

∑

λ

λ(i)λ(j)λ(k)λ(l)e(〈λ, x− y〉),

so that

cn(x, y) =




r11,11(x− y) r11,12(x− y) r11,22(x− y)
r11,12(x− y) r11,22(x− y) r12,22(x− y)
r11,22(x− y) r12,22(x− y) r22,22(x− y)


 = cn(y, x).

To sum up, we have:

Σn(x, y) = Σn(x− y) =

(
An(x− y) Bn(x− y)
Bt

n(x− y) Cn(x− y)

)
.

where

An(x− y) =

(
an an(x− y)

an(x− y) an

)
,

with

an =
En

2

(
1 0
0 1

)
, an(x− y) =

(
r1,1(x− y) r1,2(x− y)
r1,2(x− y) r1,1(x− y)

)
(B.103)

ri,j(x, y) =
4π2

Nn

∑

λ

λ(i)λ(j)e(〈λ, x− y〉).

Similarly

Bn(x− y) =

(
0 bn(x− y)

−bn(x− y) 0

)
,

where

bn(x− y) =

(
r1,11(x, y) r1,12(x, y) r1,12(x, y)
r1,12(x, y) r1,12(x, y) r1,11(x, y)

)
,

ri,jk(x, y) = −8π3i

Nn

∑

λ

λ(i)λ(j)λ(k)e(〈λ, x− y〉).

Likewise

Cn(x− y) =

(
cn cn(x− y)

cn(x− y) cn

)
,
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where

cn =
E2

n

8




3 + µ̂n(4) 0 1− µ̂n(4)
0 1− µ̂n(4) 0

1− µ̂n(4) 0 3 + µ̂n(4)


 , (B.104)

cn(x− y) =




r11,11(x− y) r11,12(x− y) r11,22(x− y)
r11,12(x− y) r11,22(x− y) r11,12(x− y)
r11,22(x− y) r11,12(x− y) r11,11(x− y)


 ,

and

rij,kl(x, y) =
24π4

Nn

∑

λ

λ(i)λ(j)λ(k)λ(l)e(〈λ, x− y〉).

B.1 The special case x = y

The previous expressions are greatly simplified for x = y; we apply here the following lemma from
[MPRW16, §4.1].

Lemma B.1. For every n ∈ S, we have

1

n2Nn

∑

λ∈Λn

λ4(1) =
1

n2Nn

∑

λ∈Λn

λ4(2) =
1

8
(3 + µ̂n(4)),

1

n2Nn

∑

λ∈Λn

λ2(1)λ
2
(2) =

1

8
(1− µ̂n(4)) .

It is then immediate to check that, by symmetry (see [RW08], Lemma 2.3)

E[∂1fn(x) ∂2fn(x)] =
4π2

Nn

∑

λ

λ1λ2 = 0 ;

similarly we have

E[∂1fn(x) ∂1fn(x)] =
4π2

Nn

∑

λ

λ21 = 4π2n

2
= 2π2n.

On the other hand, for second order derivatives we have:

E[∂11fn(x) ∂11fn(x)] =
24π4

Nn

∑

λ∈Λn

λ4(1) = 24π4n21

8
(3 + µ̂n(4))

= E2
n

1

8
(3 + µ̂n(4)).

E[∂11fn(x) ∂12fn(x)] =
24π4

Nn

∑

λ∈Λn

λ3(1)λ(2) = 0.

E[∂11fn(x) ∂22fn(x)] =
24π4

Nn

∑

λ∈Λn

λ2(1)λ
2
(2) = 24π4n2 1

8
(1− µ̂n(4))

= E2
n

1

8
(1− µ̂n(4)).
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E[∂12fn(x) ∂12fn(x)] =
24π4

Nn

∑

λ∈Λn

λ2(1)λ
2
(2) = E2

n

1

8
(1− µ̂n(4)).

E[∂12fn(x) ∂22fn(x)] =
24π4

Nn

∑

λ∈Λn

λ(1)λ
3
(2) = 0.

E[∂22fn(x) ∂22fn(x)] =
24π4

Nn

∑

λ∈Λn

λ4(2) = E2
n

1

8
(3 + µ̂n(4)).

We have hence shown that the 5 × 5 covariance matrix of the vector of gradient and second
derivatives is

σn(x) =

(
an(x) bn(x)
btn(x) cn(x)

)
,

where

an = an(x) =
En

2

(
1 0
0 1

)
, bn(x) =

(
0 0
0 0

)
,

cn = cn(x) =
E2

n

8




3 + µ̂n(4) 0 1− µ̂n(4)
0 1− µ̂n(4) 0

1− µ̂n(4) 0 3 + µ̂n(4)


 .

C Proof of Lemma 2.1

Throughout this paper, we will exploited some results in the number theory literature (see [KKW13])
that we report here for completeness. Recall once again that

µ̂n(4) :=

∫

S1

z4dµn(z) =
1

Nn

∑

λ∈Λn

∫

S1

z4δ λ√
n
(z)dz =

1

n2Nn

∑

λ∈Λn

λ4 =
1

n2Nn

∑

λ∈Λn

(λ1 + iλ2)
4

=
1

n2Nn

∑

λ∈Λn

(λ41 + 4iλ2λ
3
1 − 6λ21λ

2
2 − 4iλ1λ

3
2 + λ42) .

Now, since Λn is invariant under the group W2 of signed permutations, consisting of coordinate
permutations and sign-change of any coordinate we have

µ̂n(4) =
1

n2Nn

∑

λ∈Λn

(λ41 − 6λ21λ
2
2 + λ42)

=
1

n2Nn

∑

λ∈Λn

(λ21 + λ22)
2 − 8

n2Nn

∑

λ∈Λn

λ21λ
2
2 = 1− 8

n2Nn

∑

λ∈Λn

λ21λ
2
2,

so that
1

n2Nn

∑

λ∈Λn

λ21λ
2
2 =

1

8
(1− µ̂n(4)) .

Moreover
1

n2Nn

∑

λ∈Λn

λ41 =
1

n2Nn

∑

λ∈Λn

λ42,
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and therefore

1

n2Nn

∑

λ∈Λn

λ41 =
1

2n2Nn

∑

λ∈Λn

(λ41 + λ42) =
1

2n2Nn

∑

λ∈Λn

(λ21 + λ22)
2 − 2

2n2Nn

∑

λ∈Λn

λ21λ
2
2

=
1

2
− 1

8
(1− µ̂n(4)) =

1

8
(3 + µ̂n(4)).

For i, j = 1, 2 with i 6= j, and n,m = 0, 1, 2, . . . , since Λn is invariant under the sign-change of any
coordinate, we have ∑

λ∈Λn

λ2n+1
i λmj =

∑

λ∈Λn

(−λi)2n+1λmj = 0.

Using invariance under Wd in [RW16, Lemma 2.3] the following lemma is proved :

Lemma C.1. For any subset O ⊂ Λn which is invariant under the group Wd, we have

∑

λ∈O
λ(j)λ(k) = |O|n

d
δj,k. (C.105)

We note that using the invariance of Λn under the group Wd, we also immediately obtain that

∑

λ∈Λn

d∏

i=1

λαi

(i) = 0,

if at least one of the exponents αi is odd.
It is now possible to focus on the derivation of the expected values. Actually the result for the

excursion area is immediate and the result for the boundary length was given already, for instance,
in [ORW08], [MPRW16]. We can then focus on the EPC.
In general, a very powerful tool for the derivation of expected values of Lipschitz-Killing Curva-

tures is provided by the Gaussian Kinematic Formula (see [AT07], Chapter 11), which was indeed
exploited to derive the analogous result in the case of random spherical harmonics. However arith-
metic random waves are not isotropic processes, which makes the application of the GKF possible
but more complicated; because of this, we prefer to give here a proof from first principles.
Proof of Lemma 2.1. By Kac-Rice formula we can write

E [L0(Au(fn;T))] =

∫

T

K1(x; I)dx

where
K1(x; I) = K1;n(x; I) = φ∇fn(x)(0) E[detHfn(x) · II(fn(x)) | ∇fn(x) = 0] ;

here we have

φ∇fn(x)(0) =
1

2π

2

En

,

E[detHfn(x) · II(fn(x)) | ∇fn(x) = 0] = E[detHfn(x) · II(fn(x))]

=
E2

n

8
E

[
(Z1Z3 − Z2

2) · I{Z1+Z3√
8

∈I}

]
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where (Z1, Z2, Z3) is a Gaussian vector with covariance matrix (see Section B)



3 + µ̂n(4) 0 1− µ̂n(4)
0 1− µ̂n(4) 0

1− µ̂n(4) 0 3 + µ̂n(4)


 .

Now consider the transformation W1 = Z1, W2 = Z2, W3 = Z1 + Z3, so that the vector W is given
by

W =




1 0 0
0 1 0
1 0 1


Z

with covariance matrix

ΣW =




1 0 0
0 1 0
1 0 1






3 + µ̂n(4) 0 1− µ̂n(4)
0 1− µ̂n(4) 0

1− µ̂n(4) 0 3 + µ̂n(4)






1 0 1
0 1 0
0 0 1




=




3 + µ̂n(4) 0 4
0 1− µ̂n(4) 0
4 0 8


 .

Under the obvious notation we write

Σ(W1,W2) =

(
3 + µ̂n(4) 0

0 1− µ̂n(4)

)
, ΣW3 = 8,

so that the conditional distribution of (W1,W2)|W3 =
√
8t is Gaussian with covariance matrix

Σ(W1,W2)|W3
=

(
3 + µ̂n(4) 0

0 1− µ̂n(4)

)
−
(

4
0

)
1

8

(
4 0

)
=

(
1 + µ̂n(4) 0

0 1− µ̂n(4)

)
,

and expectation

E[(W1,W2)|W3 =
√
8t] =

(
4
0

)
1

8

√
8t =

( √
2t
0

)
.

We have that

E

[
(Z1Z3 − Z2

2) · I{Z1+Z3√
8

∈I}

]
= E

[
(W1(W3 −W1)−W 2

2 ) · I{W3√
8
∈I}

]
.

After the change of variable w3√
8
= t

E

[
(W1(W3 −W1)−W 2

2 ) · I{W3√
8
∈I}

]

= E(W1,W2)

[
E

[
(w1(W3 − w1)− w2

2) · I{W3√
8
∈I} |(W1,W2) = (w1, w2)

]]

= E(W1,W2)

[∫

R

(w1(w3 − w1)− w2
2) · I{w3√

8
∈I}

1√
2π8

e−
w2
3

2·8 dw3 |(W1,W2) = (w1, w2)

]

= E(W1,W2)

[∫

R

(w1(t
√
8− w1)− w2

2) · I{t∈I}
1√
2π8

e−
(t
√

8)2

2·8

√
8dt |(W1,W2) = (w1, w2)

]
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=
√
8

∫

R

E

[
(W1(t

√
8−W1)−W 2

2 )
]
· I{t∈I}

1√
2π8

e−
(t
√

8)2

2·8 dt

=
√
8

∫

I

E

[
(W1(t

√
8−W1)−W 2

2 )
] 1√

2π8
e−

(t
√

8)2

2·8 dt

=
√
8

∫

I

E

[
(W1(t

√
8−W1)−W 2

2 )
]
φW3(t

√
8)dt

=
√
8

∫

I

E

[
(W1(W3 −W1)−W 2

2 )|W3 = t
√
8
]
φW3(t

√
8)dt .

Now note that

φW3(
√
8 t) =

1

4
√
π
e−

t2

2

and

E

[
(W1(W3 −W1)−W 2

2 )
∣∣∣W3 =

√
8t
]

= E

[
(W1

√
8t−W 2

1 −W 2
2 )
∣∣∣W3 =

√
8t
]

= E

[
((X1

√
1 + µ̂n(4) +

√
2 t)

√
8 t− (X1

√
1 + µ̂n(4) +

√
2 t)2 −X2

2 (1− µ̂n(4)))
]

= E
[
(2t2 − (X2

1 +X2
2 ) + µ̂n(4)(X

2
2 −X2

1 ))
]

= E
[
(2t2 −X2

1 (1 + µ̂n(4))−X2
2 (1− µ̂n(4)))

]
,

for X1, X2 standard independent Gaussian. Hence

E[L0(AI(fn;T)))] =

∫

T

dx
1

πEn

E2
n

8

√
8

∫

I

1

4
√
π
e−

t2

2 E
[
2t2 − (X2

1 +X2
2 ) + µ̂n(4)(X

2
2 −X2

1 )
]
dt

=
En

8π

√
8

4
√
π

∫

T

dx

∫

I

e−
t2

2 E
[
2t2 − (X2

1 +X2
2 ) + µ̂n(4)(X

2
2 −X2

1 )
]
dt .

=
En

8π

√
8

4
√
π

∫

I

e−
t2

2 E
[
2t2 − (X2

1 +X2
2 ) + µ̂n(4)(X

2
2 −X2

1 )
]
dt.

where we have exploited the fact that Area(T) = 1. Writing Ξ = X2
1 +X2

2 and Θ := X2
1 −X2

2 we
observe that E[Ξ] = 2, E[Θ] = 0, so

E[L0(AI(fn;T)))] =
En

8π

√
8

4
√
π

∫

I

e−
t2

2 E
[
2t2 − Ξ + µ̂n(4)Θ

]
dt

=
En

8π

√
8

4
√
π

∫

I

e−
t2

2

[
2t2 − 2

]
dt.

For I = (u,∞)

E[L0(Au(fn;T)))] =
En

8π

√
8

4
√
π

∫ ∞

u

e−
t2

2

[
2t2 − 2

]
dt =

En

2
√
8
√
ππ

ue−
u2

2 ,

which completes the proof.
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D EPC: second chaotic component

D.1 Proof of Proposition 6.1

Let

αn =
k2 + k3
E

=

√
2√

3 + µ̂n(4)
, βn =

k5
E

=

√
1 + µ̂n(4)√
3 + µ̂n(4)

,

note that α2
n = 2

3+µ̂n(4)
and α2

n + β2
n = 1. Now let

ϕa = lim
ε→0

E[Ha(Y )δε(λ1 Y )], a = 0, 1, 2.

θab(u) = E
[
YaYb1l{αnY3+βnY5≤−u}

]
, a, b = 3, 4, 5,

ψabcd(u) = E
[
YaYbYcYd1l{αnY3+βnY5≤−u}

]
, a, b, c, d = 3, 4, 5.

Note first that, as in [CM18]

ϕa(ℓ) =





1√
2πk1

, a = 0,

0, a = 1,

− 1√
2πk1

, a = 2.

(D.106)

We hence immediately have h1j(u;n) = 0 for all j > 1 and h2j(u;n) = 0 for all j > 2 since ϕ1 = 0.
Moreover, by some straightforward but tedious manipulations we obtain

h34(u;n) = [k3k5 ψ3345(u) + k2k3 ψ3334(u)− k24 ψ3444(u)]ϕ
2
0 = 0,

h35(u;n) = [k3k5 ψ3355(u) + k2k3 ψ3335(u)− k24 ψ3445(u)]ϕ
2
0

=
nπ

√
2
√

1 + µ̂n(4) [uφ(u)(1 + u2) + (3 + µ̂n(4))Φ(−u)]
3 + µ̂n(4)

,

and moreover

h45(u;n) = [k3k5 ψ3455(u) + k2k3 ψ3345(u)− k24 ψ4445(u)]ϕ
2
0 = 0,

h1(u;n) = h2(u;n) = [k3k5 θ35(u) + k2k3 θ33(u)− k24 θ44(u)]ϕ0ϕ2

= −nπu φ(u),

h3(u;n) = [k3k5 ψ3335(u) + k2k3 ψ3333(u)− k24 ψ3344(u)]ϕ
2
0

− [k3k5 θ35(u) + k2k3 θ33(u)− k24 θ44(u)]ϕ
2
0

= nπ

[
2u(1 + u2)φ(u)

3 + µ̂n(4)
+ Φ(−u)− µ̂n(4)Φ(−u)

]
,
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h4(u;n) = [k3k5 ψ3445(u) + k2k3 ψ3344(u)− k24 ψ4444(u)]ϕ
2
0

− [k3k5 θ35(u) + k2k3 θ33(u)− k24 θ44(u)]ϕ
2
0

= −nπ(1 − µ̂n(4))Φ(−u),

h5(u;n) = [k3k5 ψ3555(u) + k2k3 ψ3355(u)− k24 ψ4455(u)]ϕ
2
0

− [k3k5 θ35(u) + k2k3 θ33(u)− k24 θ44(u)]ϕ
2
0

=
nπu(1 + u2)(1 + µ̂n(4))φ(u)

3 + µ̂n(4)
;

In the previous steps, we have used a number of auxiliary functions ψabcd(u), for a, b, c, d = 3, 4, 5,
whose exact expressions and derivations are given in Lemmas D.1 and D.2 below.

Lemma D.1. We have that

θ33(u) = Φ(−u) + u φ(u)
2

3 + µ̂n(4)
, θ35(u) = u φ(u)

√
2
√

1 + µ̂n(4)

3 + µ̂n(4)
, and θ44(u) = Φ(−u).

Proof. Let X , Y and Z be three independent standard Gaussian random variables; with the
same arguments as in [CM18], Lemma 12, Lemma 13 and Lemma 14, we have

θ33(u) = E
[
Y 21l{αnY+βnX≤−u}

]
=

∫ ∞

−∞
y2φ(y)Φ

(−u− αny

βn

)
dy

= Φ(−u) + α2
nuφ(−u)

θ35(u) = E
[
XY 1l{αnY+βnX≤−u}

]
=

∫ ∞

−∞
yφ(y)dy

∫ −u−αny

βn

−∞
xφ(x)dx

= −
∫ ∞

−∞
yφ(y)φ

(−u− αny

βn

)
dy = αnβnu φ(−u)

θ44(u) = E
[
Z21l{αnY+βnX≤−u}

]
=

∫ ∞

−∞
φ(y)Φ

(−u − αny

βn

)
dy = Φ(−u).

The next computations involve moments of four random variables and are hence a bit more
involved.

Lemma D.2. We have that

ψ3333(u) = 3Φ(−u) + 4 u φ(u)
6 + u2 + 3µ̂n(4)

(3 + µ̂n(4))2
, ψ4444(u) = 3Φ(−u),
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ψ3355(u) = Φ(−u) + u φ(u)
3 + µ̂n(4)

2 + 2u2(1 + µ̂n(4))

(3 + µ̂n(4))2
,

ψ3555(u) = u φ(u)
√
2

√
1 + µ̂n(4)

(3 + µ̂n(4))2
(6 + u2(1 + µ̂n(4))),

ψ3335(u) = u φ(u)
√
2

√
1 + µ̂n(4)

(3 + µ̂n(4))2
(3 + 2u2 + 3µ̂n(4)),

and moreover

ψ3344(u) = Φ(−u) + u φ(u)
2

3 + µ̂n(4)
, ψ4455(u) = Φ(−u) + u φ(u)

1 + µ̂n(4)

3 + µ̂n(4)
,

ψ3445(u) = u φ(u)
√
2

√
1 + µ̂n(4)

3 + µ̂n(4)
.

The following remaining terms are identically zero:

ψ3334(u) = ψ3345(u) = ψ3444(u) = ψ3455(u) = ψ4445(u) = 0.

Proof. In the sequel we shall use X , Y and Z to denote three independent standard Gaussian
random variables. The computations to follow are then just standard evaluations of Gaussian
integrals. In particular, applying [CM18] Lemma 12, Lemma 13 and Lemma 14, we have

ψ3333(u) = E
[
Y 41l{αnY+βnX≤−u}

]
=

∫ ∞

−∞
y4φ(y)Φ

(−u− αny

βn

)
dy

= 3Φ(−u) + u φ(−u)
[
3α2

n + 3α4
nβ

2
n + 3β4

nα
2
n + α4

nu
2
]
.

ψ4444(u) = E
[
Z41l{αnY+βnX≤−u}

]
= 3E

[
1l{αnY+βnX≤−u}

]
= 3Φ(−u).

Now we observe that ∫ q

−∞
x2φ(x)dx = Φ(q)− q φ(q),

and we obtain

ψ3355(u) = E
[
Y 2X21l{αnY+βnX≤−u}

]
=

∫ ∞

−∞
y2φ(y)dy

∫ −u−αny
βn

−∞
x2φ(x)dx

=

∫ ∞

−∞
y2φ(y)Φ

(−u− αny

βn

)
dy −

(−u− αny

βn

)∫ ∞

−∞
y2φ(y)φ

(−u− αny

βn

)
dy

= Φ(−u) + α2
n u φ(−u) + β2

n u φ(−u)(−2α4
n + β4

n − α2
nβ

2
n + α2

nu
2).

Likewise

ψ3555(u) = E
[
Y X31l{αnY+βnX}≤−u

]
=

∫ ∞

−∞
yφ(y)dy

∫ −u−αny

βn

−∞
x3φ(x)dx

= −
∫ ∞

−∞
yφ(y)φ

(−u − αny

βn

){(−u− αny

βn

)2

+ 2

}
dy = αnβn u φ(−u)(3α2

n + β2
nu

2),
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ψ3335(u) = E
[
Y 3X1l{αnY+βnX≤−u}

]
= αnβnu φ(−u)(3β2

n + α2
nu

2).

Moreover
ψ3344(u) = E

[
Z2Y 21l{αnY+βnX≤−u}

]
= E

[
Y 21l{αnY+βℓX≤−u}

]
= θ33(u),

ψ4455(u) = E
[
Z2X21l{αnY+βnX≤−u}

]
= E

[
X21l{αnY+βℓX≤−u}

]
= θ55(u)

= Φ(−u) + β2
n u φ(−u),

and finally

ψ3445(u) = E
[
Z2XY 1l{αnY+βnX≤−u}

]
= E

[
XY 1l{αnY+βℓX≤−u}

]
= θ35(u).

The fact that ψ3334(u), ψ3345(u), ψ3444(u), ψ3455(u) and ψ4445(u) are identically equal to zero, it is
enough to note that they are all of the form

E
[
ZpXqY r1l{αnY+βnX≤−u}

]

where p = 1, 3 is odd.

D.2 Proof of Proposition 6.2

We have to deal with the following integrals of squares:

I00(n) =

∫

T

f 2
n(x)dx, I11(n) =

∫

T

{ex1fn(x)}2 dx, I22(n) =
∫

T

{ex2fn(x)}2 dx; (D.107)

we shall also study the cross-product integral

I0,22(n) =

∫

T

fn(x)e
x
2e

x
2fn(x)dx,

and finally we shall consider

I12,12(n) =

∫

T

{ex1ex2fn(x)}2 dx, I22,22(n) =
∫

T

{ex2ex2fn(x)}2dx.

We have

A35 = − En

k3k5

{
1 + 2

k2
k3

}
I0,22(n)−

E2
nk2
k23k5

I00(n)−
1

k3k5

{
1 +

k2
k3

}
I22,22(n),

B1 =
1

k21
I11(n)− 1 , B2 =

1

k21
I22(n)− 1, B3 =

E2
n

k23
I00(n) +

1

k23
I22,22(n) +

2En

k23
I0,22(n)− 1,

B4 =
1

k24
I12,12(n)− 1,

B5 =
1

k25

(
1 +

k2
k3

)2
I22,22(n) +

E2
nk

2
2

k23k
2
5

I00(n) + 2
Enk2
k3k

2
5

(
1 +

k2
k3

)
I0,22(n)− 1.

Our next step is then to investigate the behaviour of these integrals of stochastic processes; this
task is accomplished in the following Lemma.
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Lemma D.3. The following identities hold:

I00(n) =
1

Nn

∑

λ

|aλ|2, I11(n) =
4π2

Nn

∑

λ

|aλ|2λ21, I22(n) =
4π2

Nn

∑

λ

|aλ|2λ22,

I0,22(n) = −4π2

Nn

∑

λ

|aλ|2λ22, I12,12(n) =
16π4

Nn

∑

λ

|aλ|2λ21λ22, I22,22(n) =
16π4

Nn

∑

λ

|aλ|2λ42.

Proof. By Parseval’s identity it follows that

I00(n) =
1

Nn

∑

λ

|aλ|2,

and similarly

I11(n) = −4π2

Nn

∑

λ,λ′

aλaλ′λ1λ
′
1

∫

T

e(〈λ, x〉)e(〈λ′, x〉)dx =
4π2

Nn

∑

λ

|aλ|2λ21 ,

I22(n) =

∫

T

{ex2fn(x)}2 dx =
4π2

Nn

∑

λ

|aλ|2λ22 .

Likewise

I0,22(n) =
1

Nn

∑

λ,λ′

aλaλ′

∫

T

e(〈λ, x〉)(2πiλ′2)2e(〈λ′, x〉)dx = −4π2

Nn

∑

λ

|aλ|2λ22 ,

and finally

I12,12(n) =
16π4

Nn

∑

λ,λ′

aλaλ′λ1λ2λ
′
1λ

′
2

∫

T

e(〈λ, x〉)e(〈λ′, x〉)dx =
16π4

Nn

∑

λ

|aλ|2λ21λ22

I22,22(n) =
16π4

Nn

∑

λ,λ′

aλaλ′λ22λ
′
2
2

∫

T

e(〈λ, x〉)e(〈λ′, x〉)dx =
16π4

Nn

∑

λ

|aλ|2λ42.

We are now in the position to complete the proof.
Proof of Proposition 6.2. Note that
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A35(n) = − En

k3k5

{
1 + 2

k2
k3

}
I0,22(n)−

E2
nk2
k23k5

I00(n)−
1

k3k5

{
1 +

k2
k3

}
I22,22(n)

= − 1√
2π2n

√
1 + µ̂n(4)

5− µ̂n(4)

3 + µ̂n(4)
I0,22(n)−

1− µ̂n(4)

3 + µ̂n(4)

2
√
2√

1 + µ̂n(4)
I00(n)

− 1√
2π4n2

√
1 + µ̂n(4)

1

3 + µ̂n(4)
I22,22(n)

=
1

Nn

∑

λ

|aλ|2
[

4π2

√
2π2n

√
1 + µ̂n(4)

5− µ̂n(4)

3 + µ̂n(4)
λ22 −

1− µ̂n(4)

3 + µ̂n(4)

2
√
2√

1 + µ̂n(4)

− 16π4

√
2π4n2

√
1 + µ̂n(4)

1

3 + µ̂n(4)
λ42

]

=
1

Nn

∑

λ

|aλ|2
[

2
√
2

n
√

1 + µ̂n(4)

5− µ̂n(4)

3 + µ̂n(4)
λ22 −

1− µ̂n(4)

3 + µ̂n(4)

2
√
2√

1 + µ̂n(4)

− 8
√
2

n2
√
1 + µ̂n(4)

1

3 + µ̂n(4)
λ42

]
.

On the other hand

B1 =
1

2nπ2

4π2

Nn

∑

λ

|aλ|2λ21 − 1 =
1

Nn

∑

λ

|aλ|2
2

n
λ21 − 1

B2 =
1

Nn

∑

λ

|aλ|2
2

n
λ22 − 1

B3 =
E2

n

k23
I00(n) +

1

k23
I22,22(n) +

2En

k23
I0,22(n)− 1

=
8

3 + µ̂n(4)

1

Nn

∑

λ

|aλ|2 +
1

2π4n2(3 + µ̂n(4))

16π4

Nn

∑

λ

|aλ|2λ42 −
4

π2n(3 + µ̂n(4))

4π2

Nn

∑

λ

|aλ|2λ22 − 1

=
1

Nn

∑

λ

|aλ|2
[

8

3 + µ̂n(4)
+

8

n2(3 + µ̂n(4))
λ42 −

16

n(3 + µ̂n(4))
λ22

]
− 1

B4 =
1

k24
I12,12(n)− 1

=
1

2π4n2(1− µ̂n(4))

16π4

Nn

∑

λ

|aλ|2λ21λ22 − 1

=
8

n2(1− µ̂n(4))

1

Nn

∑

λ

|aλ|2λ21λ22 − 1.
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B5 =
1

k25

(
1 +

k2
k3

)2
I22,22(n) +

E2
nk

2
2

k23k
2
5

I00(n) + 2
Enk2
k3k25

(
1 +

k2
k3

)
I0,22(n)− 1

=
1

π4n2(1 + µ̂n(4))(3 + µ̂n(4))

16π4

Nn

∑

λ

|aλ|2λ42 +
(1− µ̂n(4))

2

(3 + µ̂n(4))(1 + µ̂n(4))

1

Nn

∑

λ

|aλ|2

− 2(1− µ̂n(4))

π2n(3 + µ̂n(4))(1 + µ̂n(4))

4π2

Nn

∑

λ

|aλ|2λ22 − 1

=
1

Nn

∑

λ

|aλ|2
[ 16

n2(1 + µ̂n(4))(3 + µ̂n(4))
λ42 +

(1− µ̂n(4))
2

(3 + µ̂n(4))(1 + µ̂n(4))

− 2(1− µ̂n(4))

n(3 + µ̂n(4))(1 + µ̂n(4))
4λ22

]
− 1.

which concludes the proof.
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