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A B S T R A C T
LoRaWAN (Long Range WAN) is one of the well-known emerging technologies for the Internet of
Things (IoT). Many IoT applications involve simple devices that transmit their data toward network
gateways or access points that, in their turn, redirect data to application servers. While several security
issues have been addressed in the LoRaWAN specification v1.1, there are still some aspects that may
undermine privacy and security of the interconnected IoT devices. In this paper, we tackle a privacy
aspect related to LoRaWAN device identity. The proposed approach, by monitoring the network traffic
in LoRaWAN, is able to derive, in a probabilistic way, the unique identifier of the IoT device from
the temporal address assigned by the network. In other words, the method identifies the relationship
between the LoRaWAN DevAddress and the device manufacturer DevEUI. The proposed approach,
named DEVIL (DEVice Identification and privacy Leakage), is based on temporal patterns arising in
the packets transmissions. The paper presents also a detailed study of two real datasets: i) one derived
by IoT devices interconnected to a prominent network operator in Italy; ii) one taken from the literature
(the LoED dataset in [1]). DEVIL is evaluated on the first dataset while the second is analyzed
to support the hypothesis under the DEVIL operation. The results of our analysis, compared with
other literature approaches, show how device identification through DEVIL can expose IoT devices to
privacy leakage. Finally, the paper also provides some guidelines to mitigate the user re-identification
threats.

ntroduction
he Internet of Things (IoT) paradigm is nowadays
ted by many applications and it involves several com-
ication technologies. The IoT is revolutionizing the
ector, and the Low Power Wide Area Network (LP-

) technology is attracting several operators and service
iders thus expecting to have a significant impact.
rding to the IoT Analytics forecast, the number of
ected IoT devices is growing from the 7B in 2018
B in 2025 [2]. Moreover, in Europe, the ETSI TR

526 document [3] foresees that, in 2023, the density
reach 5582 devices per square kilometer and 3.5 gate-
/access points for square kilometer. Beside, the IoT
ytics forecast shows the LPWAN will be the fastest
ing IoT connectivity technology over the next years.
ws that four technologies account for about 92% of the

al installed base of LPWAN-connected devices, namely
aWAN, Sigfox, NB-IoT and LTE-M.
T context, LPWAN networks are often used for moni-
g applications like metering services related to energy,
r and gas. In general these applications are referred to
mation collected at home or in private spaces and as
sequence are sensible data. For instance, they might
oprietary business information that competitors could
o take advantage, or personal information regarding
ganization’s employees, customers or simply citizens.
, the confidentiality of these data must be protected to
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o); g.pillon@unidata.it (G. Pillon); p.pisani@unidata.it (P. Pisani)
ORCID(s): 0000-0001-6256-2752 (D. Garlisi)

maintain customers’ privacy.
In this paper, we consider LoRaWAN, a well know technol-
ogy for the IoT, and we look at the procedures to support
device anonymization: no identification between device
packets and associated user should be made available to third
parties that monitor or eavesdrop the wireless channel where
these packets are transmitted to.
LoRaWAN presents a basic architecture that involves simple
devices transmitting their data towards network gateways
(GWs). In LoRaWAN, several applications can be man-
aged from a central network server. Security protection
is provided through symmetric encryption at network and
application level. Different security issues, arose in the first
standard version, have been faced in the new LoRaWAN
v1.1 release specification [4], like authentication, integrity
protection, replay protection and encryption. However, there
are still some weaknesses in the device anonymization and
consequently have an impact on the privacy of the devices.
In this paper, we tackle the privacy threats in LoRaWAN
related to user re-identification, indeed, users identification
can disclose information about their behaviors, such as
presence of users and private practices.
We propose DEVIL (DEVice Identification and privacy

Leakage) and show how it can detect user identity; we also
provide some mitigations that can solve these issues. We
refer to LoRaWAN Specification v1.1, where, as for the
architecture, three main components are present (in Figure
1, from left to right):

1. End Device (ED): it is the simplest low-power device
typically deployed to sense and act in the environment;
it uses LoRa modulation to communicate with the

o Spadaccino et all: Preprint submitted to Elsevier Page 1 of 13
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e 1: LoRaWAN V1.1 network elements and DEVIL
ion. Representation of the security protection through
d/symmetric encryption at network and application level.

gateway. It collects measurements from sensors and
enforce commands to actuators;
Gateway (GW): it is the component that receives pack-
ets from the EDs and forwards them to the Network
Server and vice-versa; it is connected to the network
server through an IP backhaul. GWs can receive the
same ED packet when they are deployed in the same
geographical area and are in radio visibility of the
transmitting ED.
Network Server (NS): it is the component that receives
ED packets, it is responsible for de-duplicating and
decoding packets and to forward to the application
servers the application data. The same LoRaWAN
network can support different applications server to
implement their specific services.

LoRaWAN network has a star-of-stars topology and the
are not associated with a specific GW.
collect and forward to the NS any packet in the cover-

rea (including packets belonging to different operators),
fore any generic GW can monitor EDs packets to get
information and, in this case, privacy threats may occur.
her words, the incoming and outgoing traffic to and from
W can be monitored in order to acquire ED information
ding user activities of the entities/people that are related
e ED. One of these aspects is the identification, by
ly eavesdropping on the traffic, of the DeVEUI that is
bally unique identifier assigned by the manufacturer,

the owner, to the ED. During the communications,
ecurity and privacy reasons, the LoRaWAN protocol is
ned to use a temporary address, named DevAddress.
e the possibility to interpret this parameter is quite
al. Association between DevAddress and DevEUI pro-
s user identification, and the consequent monitoring
e traffic activity may allow to derive users sensible
mation. For example, in case of IoT devices in an home,
movement or presence of people can be associated to

the device generating them and hence to the home itself [5].
The DevEUI can be leveraged to infer information on the
ED (manufacturer, type, or the associated application and
sensor) that is only exposed during the association process.
By linking a DevAddress with a DevEUI, an adversary could
combine the information brought by each element and thus
increase its knowledge on the ED, including its activities and
the associated applications. In other words, an attacker will
be able to infer sensitive information such as presence or
absence of personnel within a building, etc. For example,
the forwarded consumption data can be analyzed using load
monitoring techniques to infer activities of the consumers
[6]. These are sensitive data that must be protected for
preserving the consumers’ privacy [7].
DEVIL is based on periodic sequence matching, where, in a
probabilistic way, it is possible to associate the DevAddress
of the on-air packets to the relevant ED. In Figure 1, DEVIL
is represented as a threat at GW level (adversary network
node that eavesdrop on the ISM band). DEVIL can have also
a positive use since its output can be used as a trusted service
that provides information to mitigate re-identification threats
or to optimize the resource utilization taking into account
external traffic.
The contributions of this work are the following:

• it shows how, by eavesdropping on the LoRaWAN
packets, it is possible to derive the DevEUI of the
transmitting ED, and thus undermine the related pri-
vacy issue;

• it analyses different datasets from real application
scenarios to validate the proposed approach; moreover
a synthetic dataset has been built to test the robustness
of the proposed approach;

• it compares the proposed approach with literature
solutions;

• it provides a solution to mitigate the re-identification
threat.

The paper presents the following structure. In Section 2
we briefly overview the LoRaWAN standard and its security
aspects. The related work is in Section 3 while Section 4
describes real datasets used in our analysis. The model of
the considered attacker and the features used to implement
it are in Section 5. The core of the proposed approach is in
Section 6 and the relevant numerical results in Section 7.
Conclusions are reported in Section 9.

2. Security aspects in LoRaWAN
LoRaWAN is a Low Power WAN technology which

enables power-efficient wireless communications over very
long distances thanks to the LoRa modulation, originally
specified by Semtech [8]. It operates on scientific and medi-
cal (ISM) radio bands that in the European region is EU863-
870 in the frequency plan, providing 8 channels. LoRa
defines the physical layer and it is a proprietary technology

o Spadaccino et all: Preprint submitted to Elsevier Page 2 of 13
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e 2: LoRaWAN join-procedure representation according
e Over-the-Air Activation (OTAA).

In LoRa, EDs support multi-channel and multi-rate
unication. Seven different Spreading Factors (SFs) are

which are in principle orthogonal [9]. The combination
high SF and a small bandwidth produces a more robust
communication, where link distances can be very large,
e order of tens of km. LoRaWAN specification defines
etwork layer: this specification is publicly available
t is promoted by the open-source LoRa Alliance [10].
aWAN also provides optimization by Adaptive Data

(ADR) module. Starting, from the Signal to Noise
(SNR) perceived by GW, the ADR works to set the

SF and transmission power values for each ED that
ize network performance in terms of capacity and
y efficiency.

aWAN specification defines two different addresses.
DevEUI, is 64 bits unique during the ED’s life and
d on nonvolatile memory. As described in [11] and

arized in Figure 1 (low part), symmetric keys known
Ds, NS and application server are used to encrypt
sign packets sent over the air. These keys are: i) the
ication Session Key (AppSKey), used for encryption
ecryption of the payload (the payload is fully encrypted
een the ED and the Application Server); ii) the Network
ion Key (NwkSKey), used by the NS to validate the
rity of each message by its Message Integrity Code
check). These keys can be distributed in two different

, based on the two available activation methods. They
) Over-the-Air Activation (OTAA) and ii) Activation by
nalization (ABP).

OTAA, during the Join-procedure, security keys are
tiated with an ED, which receives a dynamic DevAddr.
join-procedure is shown in Figure 2. Each ED uses an
ication Key (AppKey) to sign the message. The Join
st message contains the JoinEUI and DevEUI of the
ollowed by a randomly generated nonce (DevNonce).
NS is then able to trust the ED through the sign and
evNonce to proceed to the next steps. The AppKey are

-128 root keys specific to the ED that are assigned to
D during fabrication. Whenever an ED joins a network
TAA, the AppKey is used to derive the AppSKey

on key at NS and application server. Afterward, the

Table 1
Key elements for the LoRaWAN security.

ELEMENT DESCRIPTION
AppSKey (128
bit)

Application Session Key, representing the
application session key that is used to
encrypt all payloads via AES 128-bi
algorithm.

NwkSKey (128
bit)

Network session key, representing the
network session key that is used to
compute a 32-bit cryptographic Message
Integrity Check (MIC) signature via AES
128-bit algorithm.

JoinEUI (64 bit) Unique ID of the Application serve
(named "AppEUI" in v1.0).

AppKey (128
bit)

is the encryption key between the source
of the message (behind the DevEUI) and
the destination of the message. This key
must be unique for each ED.

DevEUI (64 bit) Unique ID of the end ED. Announced
only during the join procedure

DevAddress (32
bit)

Temporary address assigned by network

NS concludes the Join procedure by sending the Join ac-
cept message to the ED and notify the procedure to the
application server. Join accept message provides the second
temporary identifier, the device address (DevAddress), a 32
bits identifier generated by the Network.

The second method is the Activation by Personalization
(ABP), in this case, each ED is already provided with De-
vAddr, NwkSKey and AppSKey, hence, the join-procedure
is not necessary. This strategy, although simpler, has some
drawbacks related to security. Table 1 lists the addresses and
keys with the relative description.

3. Related works
As reported in [12], [13] and [14], LoRaWAN v1.0

suffers from several security vulnerabilities. These security
breaches are partially solved in the LoRaWAN v1.1 specifi-
cation.

Both ways of activation, presented before, provide a
strong level of security using symmetric encryption in mes-
sage exchanges between ED and NS. But potential attackers
can steal the identity of the ED and enforce two different
activities, ED impersonation and privacy leakage.

In the case of ED impersonation, an attacker may inject
malicious EDs into the network in an attempt to take ad-
vantage of the network. In LoRaWAN, this translates into
the possibility for an attacker to emulate the identity of
an ED, resulting in the possibility of execution of typical
actions of an ED (for example sending false measurements
and generating false alerts).

A similar issue has been analyzed in [15] where a tech-
nique for identifying the DevAddress associated to a De-
vEUI is proposed. The approach is based on the time se-
quence of the Join request emitted by an ED and the first

o Spadaccino et all: Preprint submitted to Elsevier Page 3 of 13
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age emitted by the same ED after the Join request. This
temporal linking method. Differently from that paper,
rovide here a pattern-based approach that after a Join
cterizes an ED by the whole sequence of transmitted

ets and their pattern. Moreover, the temporal linking
een the Join and the first uplink is not always con-
. There could be the case that the NS asks the ED
mediately transmit a ReJoin request, via the MAC
and ForceRejoinReq. Since this is a MAC command,

ot visible by the application, being instead handled by
oRaWAN stack, thus the ReJoin message and the first
cation uplink may occur in different temporal periods.
emonstrate this consideration, we compare DEVIL with
lgorithm presented in [15] and we show that in the
case the accuracy with our approach is improved of
In the literature several papers were oriented to derive

c analysis. Traffic classification plays an important role
twork security and traffic attacks. [16] and [17] present

es of IoT traffic classification features extraction, also
ncrypted traffic. [18] and [19] propose a methodology
ocess LoRaWAN packets and perform profiling of EDs
clustering them according to their behavior. They an-

clusters’ contents and alerts on malfunctioning EDs,
rking the reliability of the proposed approach. In this
we focus on LoRaWAN scenario and to the user re-

ification threat.
oreover, as stated in the introduction, DEVIL can be

also in a positive manner, as an additional module that
orts the NS in the network mitigation and optimization
ations. DEVIL may be an external engine that monitors
etwork traffic (by eavesdropping) and generates pos-
mitigation strategy, as well as network optimization
rmance based on the externally EDs profiling.

nalysis of datasets from real application
cenarios
n this section we provide an analysis of different datasets
real application scenarios demonstrating that typical

pplication services, such as metering applications, pro-
traffic with periodic behavior.
r study, we consider four datasets, two real LoRaWAN
ets collected by the UNIDATA S.p.A. IoT operator (it
ges several application services in Italy), a real open
et named LoRaWAN at the Edge Dataset (LoED) [1],
synthetic dataset.

two real datasets are referred to two IoT applications, an
y meter application service with 130 EDs, and a water

r application service with 300 EDs. Both the services
ocate in Italy, and for both, we consider 18 months of
ation in the period ranging from January 2019 to April
. Energy metering EDs use tick-counters connected to
istributor energy meters to detect energy consumption,
r metering EDs have instead an embedded LoRaWAN
ceiver. The energy meter application is served from one
and each ED forwards the measurement 1 time per

, on average. The complete dataset contains 1,131,685

Jan 2019 Apr 2019 Jul 2019 Oct 2019 Jan 2020 Apr 2020
0

0.5

1

1.5

2

2.5

N
u
m

 D
a
ta

 p
a
c
k
e
ts

 p
e
r 

w
e
e
k

10
4

0

20

40

60

80

100

N
u
m

 J
o
in

 R
e
q
u
e
s
ts

 p
e
r 

w
e
e
k

Data

Join Requests

Figure 3: Number of received packets per week (blue line and
left y axis), and number of Join request packets per week (red
line and right y axis), in a period of 18 months for the energy
metering applications service.
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Figure 4: Number of received packets in a period of 18 months
for the water meter application service.

packets. Figure 3 depicts (blue line and left y axis) the
number of received packets per week of the whole network.
Figure 3 also shows the number of Join request packets
received per week (red line and right y axis). Regarding the
water meter dataset, each ED generates about 18 packets per
week. Two GWs cover the whole area where the 300 water
meters are placed. Figure 4 shows the number of received
packets for the first 130 EDs in the considered period (sorted
by SNR). The complete dataset contains 929,587 packets.
For our analysis, we consider EDs with a high average SNR
to exclude devices with error rate more than 5% that may
result in a wrong timing interpretation.

From the Figure 5 we can notice that the regular part has
a cycle of 9 packets, where the first seven present an inter-
arrival times of 12 hours. While the last 2 packets present
a smaller temporal distance, but their inter-arrival times
distance sum is equal to 12 hours (4 and 8 in the case of the

o Spadaccino et all: Preprint submitted to Elsevier Page 4 of 13
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e 5: Time evolution of the inter-arrival times for the
WAN water metering devices.
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e 6: Distribution of different values of the inter-arrival
per ED, in a period of 18 months (we consider 95% of

otal occurrences). We remark that the average number of
ts for each ED in the reference period is 2000.

e). The inter-arrival times of the eighth and ninth packet
in constant over time for the same device. The figure
shows the lack of a packet that has not been received
e NS (at 256 frame counter value). The transmission
rn also has a non regular part, the study carried out has
ed us to find the occasional existence of irregularities

e patterns, which however have a certain characteristic.
omly one of the packets of the regular pattern can be
ced by two or more packets. The Figure 5 shows one of
situations (at 275th and 276th frame counter values).

rom the above analysis, we deduce that the total number
fferent inter-arrival times is limited. In Figure 5 we show
ter-arrival times (56 packets, more than 3 weeks of

ation) and only 5 different inter-arrival times values.
o better show this inter-arrival behavior, we selected
rst 130 EDs (sorted by SNR). We isolated the packets
by a device and constructed a sequence, named inter-
al sequence, where the element i is the time elapsed
een packet i and i + 1, accounting for lost packets as
ribed in Section 5. Using this sequence, we can plot in
re 6 the distribution of the number of distinct values
ter-arrival times per ED (we consider 95% of the total
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Figure 7: CDF of the inter-arrival times in a period of 18
months for the water metering application.

occurrences). From the figure, we note that the maximum
number of different values of the inter-arrival times per ED
is 10, moreover, more than 85% the occurrence is in the range
between 3 and 7. Again, the higher bar is related to 5 different
values of the inter-arrival times per ED that happens for the
25% of EDs, this value confirms the above analysis.

Finally, Figure 7 shows how the inter-arrival times values
are distributed. According to the CDF, the 27% of the
inter-arrival times are uniformed distributed in the range 10
minutes - 12 hours (720 minutes), while the remain 73% is
represented by the 12 hours value. This result remarks the
analysis of the pattern plotted in Figure 5. Same consider-
ation can be provided for the energy meter dataset, but we
avoid it for sake of space.

The third dataset is the LoED open dataset [1]. The
dataset collected packets generated by smart city application
and research deployment in a period time of 4 months. The
packets were collected by 9 getaways in central London.
During the acquisition time were collected 11,263,001 pack-
ets from devices with 145,023 different DevAddr. LoED is
an open dataset that exposes insights into how LoRaWAN
operates in real-world urban deployments. For our analysis,
we filter the total number of device based on the SNR values,
we consider EDs with high average SNR to avoid device with
error rate more than 5%. According to this characteristic,
we extract 500 EDs from the total number of EDs. In this
subgroup, we find out two types of behaviors, EDs that have
continuously transmissions, for example inter-arrival times
in the range 1-10 minutes, 60% EDs in the subgroup belong
to this type, and EDs with periodic behavior, 40% EDs in the
subgroup belong to this type. Figure 8 shows the CDF of the
inter-arrival times in the whole period for the EDs with the
periodic behavior, from the figure we can notice that 40%

o Spadaccino et all: Preprint submitted to Elsevier Page 5 of 13
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e inter-arrival times is equal to 60 minutes, other inter-
al times are multiples of 60 minutes and confirm the
dical behavior of the packets transmission.
ccording to the previous analysis we confirm that the
al traffic generated from LoRaWAN EDs perform a
dic behavior. Based on this result and to better validate
roposed approach, we build a synthetic dataset, the

e of it is to produce a suitable dataset that enables
eters modification. We use the synthetic dataset to

s DEVIL in different conditions, where we extract its
rmance. We use the synthetic dataset to provide the
t reported in Section 7.
he dataset is built by specifying the number of devices,
ted asN , and the maximum length of a periodic pattern,
ted as S. Each synthetic dataset generated is composed
106 packets. For each one of the N devices, we

rate the inter-arrival time between each packet i and
following this procedure: first we draw a time t̂i from

nter-arrival time distribution extracted from the LoED
et. Then we draw a random jitter uniformly distributed
een 0 and � ⋅ t̂i where � is a scalar. Finally, the inter-
al time is:
ti = t̂i + uniform (

0, � ⋅ t̂i
) (1)

scalar � is a noise parameter and regulates how much
enerated inter-arrival times follow the underlying dis-
tion extracted from the LoED dataset.

ttacker model and features identification
he relevant LoRaWAN fields used in DEVIL and the

ive description, are reported in Table 2. These fields
been extracted and pre-processed and represent the key
res considered in our analysis.
he targeted EDs should be LoRaWAN v1.1 compliant.
is scenario, an ED may sometimes send a Join or

Table 2
Key fields present in the datasets. Note that the field
DEV_EUI is not used by DEVIL algorithm. Its purpose is
to use it for cross checking and accuracy computation of the
predictions of DEVIL. All the other fields are sent in cleartext in
the LoRaWAN packet header and can be observed by passively
listening the traffic.

PARAMETER DESCRIPTION
DEV_ADDR Unique identifier of the ED in the network
DEV_EUI Unique identifier of the physical ED

(None if the ED is unknown)
FCnt Frame counter: counter (increased by 1

for each packet sent from an ED)
TMST Time of arrival of the packet
TYPE Type of packet, specifies if the packet is

data or Join request

ReJoin request to the NS, which replies with a Join accept
containing a new DevAddr for the ED.

The goal of the attacker is to associate a LoRaWAN
DevAddr to the real DevEUI of an ED, by passively mon-
itoring the traffic. More accurately, let e be a DevEUI, a be
a DevAddr and A(e) = {a1, a2,…} be the set of DevAddr
addresses assigned to the DevEUI e in a time span. The goal
of the attacker is to find which DevAddr addresses were
assigned to an ED DevEUI, i.e., to infer A(e) for a target
DevEUI e.

We started by analyzing the available data described in
Section 4. We isolated the packets sent by a device and
constructed a sequence, named inter-arrival sequence, where
the element i is the time elapsed between two consecutive
packets i and i+1. In order for two packets to be consecutive
it is necessary that FCnti+1 = 1+FCnti, where FCnti denotes
the value of the FCnt field of packet i. This ensures that
packet i+1 is the next packet sent after i by the same device.
In this way, the inter-arrival sequence does not contain inter-
arrival times related to packets that are not sent one after the
other, which could happen in case of lost packets. Moreover,
the attacker is able to only passively listen to the LoRaWAN
traffic, without accessing to encrypted information at NS-
level.

We found that many EDs send their packets following
periodic temporal patterns i.e. the inter-arrival sequence has
some periodicity. One example of such a temporal pattern,
could be sending one packet every hour during the day and
zero packets during the night. In the energy metering data,
we have found that the majority of the EDs sends 24 packets,
once every hour, then a 25-th packet after about 30 seconds,
and then this pattern repeats.

For the scope of this work, we will treat the application
as a black box, not giving the algorithm any application-
specific information. An attacker carrying out the described
de-anonymization in this scenario, is forced to handle the cu-
mulative traffic composed by also non-targeted EDs, whose
packets are listened on the air and which do not have to
follow any temporal behavior. Such EDs create noise in the
data and the attacker should be able to deal with it, since it

o Spadaccino et all: Preprint submitted to Elsevier Page 6 of 13
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e 9: Example of modeling of the periodic sequence for the packet inter-arrival times. The line is the temporal axis, and the
squares are packets belonging to a single ED. The time di that occurs between two consecutive packets pi, pi+1 is distributed
ing a probability distribution f (�i, �i). The chain has period � = 3, with �i = �i+� and �i = �i+� . The inter-arrival times

ighted in red d1, d4, d7 follow the same distribution f (�1, �1), the ones in green d2, d5 follow another distribution f (�2, �2)
he ones in blue d3, d6 follow f (�3, �3).

o means a priori to know whether a packet belongs to
eted ED or not.
he temporal analysis of packets is therefore an im-
nt feature to be considered when characterizing the
c. More specifically, our analysis is focused on the time
ing between a packet and the next one from the same
in the uplink or in the downlink). Let ti be the timestamp
acket p with frame counter (FCnt) pFCnt = i, relative to

en DevAddr. Timestamp and FCnt are two packet fields
in our approach and reported in Table 2. The first is the

stamp added from the GW at the exact moment in which
acket has been received.
ince in LoRaWAN v1.1 the FCnt is a counter of the
frames, the time di = ti+1 − ti is the time between
consecutive packets, the inter-arrival time. Moreover,
Cnt field is sent as unencrypted both in uplink or
link and therefore could be observed by a third party.
assumption is that the values di have some periodic
vior. More precisely, we model each di as a random
ble having distribution di ∼ f (�i, �i). Let the integer
� be the period when the inter-arrival time has the same

ibution, that is di, d�+i, d2�+i,⋯ ∼ f (�i, �i), i.e. the
-arrival time distribution repeats after � inter-arrivals.
re 9 illustrates an example of the model where periodic
e identified (with period � = 3).
ince we do not know the value of � a priori, let us denote
the prediction of the real value of �. We now describe a
utine of DEVIL that extracts these temporal patterns
the inter-arrival sequence, estimating the period of

equence �̂. First, the procedure takes into account the
nce of lost packets, i.e. packets that were transmitted
device but were not received by the NS. To identify the
ackets, we observe which FCnt values are not present

e data. Let us define as L(a) the set of FCnt values not
rved for a DevAddr a, due to packet losses:

) = {i < z < j s.t. ∃ pFCnt = i,∃ pFCnt = j,∄ pFCnt = z}
(2)

The first step of the subroutine yielding the period of the
temporal sequence is to calculate inter-arrival times from
packets:

di =
{

ti+1 − ti if i, i + 1 ∉ L(a)
0 otherwise (3)

The value di is the time between the reception of two packets
p1, p2 with FCnt respectively p1,FCnt = i, p2,FCnt = i + 1,
if p1, p2 have been received. If either one of such packets
is not observed, di = 0. Notice that the value of zero is a
placeholder for the next step, instead of a real inter-arrival
time.

A period �̂ is fixed and the subroutine yields an estima-
tion metric which is low if �̂ is likely to be close to the true
value of �, and it is high otherwise. This is done by first
extracting the sequences:

sj = [dj , d�̂+j , d2�̂+j , d3�̂+j , ...], ∀j{∈ 1,… , �̂ − 1} (4)
Then it computes the standard deviation �sj for each of the
sequences sj . In the computation, the components di = 0 are
not considered and are discarded: in this way we are ignoring
the inter-arrival times of non-consecutive packets in case of
a packet loss. The values of the standard deviations are then
summed up:

��̂ =
∑

j∈{1,…,�̂−1}
�sj (5)

The quantity ��̂ is an estimation error for the prediction �̂.
The lower ��̂ is, the more likely �̂ = �. More accurate
aggregation and error functions could be used, for example
one that takes into account the standard deviation of a time
di, but for our purposes the sum of the standard deviations
expressed in Eq. 4 worked well. In Figure 10, the orange line
shows an example of the values ��̂ with different values of �̂.

The algorithm, which will be described in the next
section, will make its decision based on the estimation error
in Eq. (5). Since this error is the aggregation of standard
deviations, it requires some sort of periodicity of the inter-
arrival time of the packets. As hinted in Fig. 10, non-periodic

o Spadaccino et all: Preprint submitted to Elsevier Page 7 of 13
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e 10: Estimation error ��̂ obtained on a sequence of packet
arrival times with different values of period �̂. We observe
rror spiking to almost zero when the predicted period �̂ is
l to the true period �. Moreover, we have multiple spikes
rrespondence to the integer multiples of the period, since
the period of the sequence also k� is a valid period of the
nce, for any integer k. When associating a1, a2 DevAddr,
packets are concatenated and the sequence of inter-arrival
is extracted. The plot shows the error ��̂ as a function

in case a1, a2 are a correct matching, i.e. they belong to
ame device, and in case they are an incorrect matching,
sented by the orange and blue lines, respectively.

als will have a high estimation error, while in periodic
tions this error will be close to zero. In other words,
atching operated by DEVIL exploits the periodicity in

nter-arrival sequence of the devices. A possible coun-
easure of this attack could indeed be to add a random
onent, such a random jitter, to the time in which an
k packet is scheduled, as it is described in Section 8.

rocedure
n this section we describe the DEVIL algorithm that,

a DevAddr, derives the associated LoRaWAN De-
I. The procedure is structured in two steps. The first step
uces a mapping M where M(a1) → a2 if a device that
ssigned the address a1 gets assigned the address a2. In

econd step, it uses this information to infer the final set
dresses assigned to a DevEUI e, namely Ap(e), where
dicate as Ap(e) the output of the algorithm and as At(e)round truth. Notice how the two tasks carried out by the
teps are different: in the first step we identify that two

esses belong to the same device, in the second step we
ify precisely the DevEUI of that device.
e first introduce some notation. Let a be a LoRaWAN
ddr. Let us denote by S(a) and E(a) respectively the

stamp in which we receive the first packet by a and
ast packet by a. We state that two DevAddrs a1, a2 are
ecutive if the following holds:
S(a2) > E(a1) ∧ S(a2) <

[
E(a1) + Tw

] (6)

Algorithm 1 First step of DEVIL algorithm. It produces the
mapping M(a1) → a2, where a1 is a DevAddr assigned to a
device and a2 is the next DevAddr used by the same device
after a Join or ReJoin procedure.

1: for a1 ∈ all DevAddr do
2: a∗ ← NaN
3: ⟨�̂n,min⟩ ← ⟨∞⟩
4: for a2 ∈ C(a1) do
5: concatenate packets having DevAddr a1, a2
6: extract di sequence
7: compute ⟨�̂n⟩
8: if |{i s.t. ⟨�̂n⟩i < ⟨�̂n,min⟩i}| then
9: �̂n,min ← �̂n

10: a∗ ← a2
11: end if
12: end for
13: M(a1) ← a∗
14: end for
15: return M

where the time window Tw a parameter of DEVIL. With the
previous equation, we imply that the first packet of a2 should
occur inside a window which starts at the time of the last
packet of a1 and has length of Tw seconds. We denote by
C(a) the set of consecutive addresses of a. In other words,
C(a) is the set of Device Addresses which have sent their
first packet within a time window Tw after the last packet of
a is observed.

In the first step of DEVIL, the procedure iterates over all
DevAddr a1. For each a1, it iterates over all its consecutive
addresses a2 ∈ C(a1). The algorithm concatenates the
packets of a1, a2, considering them as they were gener-
ated by a single device. The inter-arrival times di of this
packet sequence is extracted, following Eq. 3. The subrou-
tine described in Section 5 is called, returning the values
of [��̂1 , ��̂2 ,…] for all periods �̂i of interest. Let n be an
integer and let ⟨�̂n⟩ the n smallest values obtained of ��̂i . Let
a∗2 the address that generated the lower values of ⟨�̂n⟩, the
final mapping is updated by setting M(a1) → a∗2. Figure 10
shows values of ��̂ in case ⟨a1, a2⟩ is a correct or incorrect
association. Notice that due to the periodic traffic of the
devices, a DevAddr a1 is always associated to a DevAddr
a2 ∈ C(a1). If this is not the case, a threshold on ⟨�̂n⟩ could
be applied, in this case the algorithm would be aware that
a1 stopped transmitting, i.e. there is no a2 ∈ C(a1) that is
associated to the same device. Moreover, other radio-space
features could be leveraged for refining the prediction, like
the Received Signal Strength Indicator (RSSI) experienced
at the gateways, physical layer information are always re-
trieved at GW. The pseudocode of the first step is reported
in Alg. 1.

The first step of DEVIL is concluded and it has yielded
the mapping M(a1) → a2, where a2 is the DevAddr that a
device gets assigned after a1.

o Spadaccino et all: Preprint submitted to Elsevier Page 8 of 13
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rithm 2 Second step of DEVIL. The output is Ap where
) = {a1, a2,…} is the predicted set of DevAddr values
h were assigned to the device having DevEUI e.
or a ∈ all DevAddr do
Ē ← set of all DevEUI
Ā ← {a}
while a ∈ M and |Ē ∩ J (a,M(a))| > 0 do
Ē ← Ē ∩ J (a, M(a))
a ← M(a)
Ā ← Ā ∪ a

end while
for e ∈ Ē do
Ap(e) ← Ap(e) ∪ Ā

end for
nd for
eturn Ap

or the second step of the algorithm, we denote as
, a2) = {e1, e2,…} the set of DevEUI values that per-
ed a Join or ReJoin request in a time window spanning
E(a1) to S(a2) i.e. from the time of the last received

et of a1 to the first received packet of a2. The second step
EVIL iterates on all DevAddr ai. It gets ai+1 following
pdate rule:
ai+1 ← M(ai) (7)

constructs the set Ap,i+1 = Ap,i ∩ J (ai, ai+1). The
ithm iterates following the update rule in Eq. 7. If for
value of i = i′ we have that ai′ ∉ M or |Ap,i′+1| = 0,

lgorithm stops updating and for all DevEUI e ∈ Ap,i′ it
tes the final solution:
Ap(e) = Ap(e) ∪ {ai, ai+1,… , ai′}, ∀e ∈ Ap,i′ (8)

ords, the second step of DEVIL checks for the De-
I of the EDs performing Join requests in a time frame
1), S(a2)], for any DevAddr addresses a1, a2 such that
1) → a2. The pseudocode for the second step of the
ithm is reported in Alg. 2.
DEVIL computational complexity
e analyzed the computational complexity of both the
nd the second step of DEVIL. In the first step, the outer
iterates over any observed Device Address a1. The
loop iterates over the set of all the consecutive Device

esses a2 ∈ C(a1). The number of iterations therefore
nds on the size of the consecutive device addresses,
h depends on the time window Tw and on the available
In general, the number of iterations of the inner for-loop

ual to the average size of the consecutive addresses |C|
ed as follows:

|C| = 1
|A|

∑
a

|C(a)|

e A is the set of all Device Addresses. On our dataset.
N = 150 devices and a time window Tw = 6 hours, the

Table 3
Parameters of the algorithm and characterization of the data.

Variable Value
Tw 3700 s
n 5
�lost 17.5%

average value of the consecutive addresses was |C| ≈ 90.
Then, for every pair ⟨a1, a2⟩ the algorithm computes cost
values for each possible length of the inter-arrival sequence,
from 1 to S, where S is the maximum length of a periodic
pattern in the inter-arrival sequence. Therefore, the final
computational cost of the first step is O(|A| ⋅ |C| ⋅ S).

In the second step, the algorithm goes through all de-
vice addresses a and examines the Join Request messages
observed within a time frame from the last packet of the De-
vAddr a to the first packet of the DevAddr M(a). Iteratively,
the algorithm follows the change of DevAddr by updating
a ← M(a) until the M chain is finished or there are no Join
Request messages between a and M(a). This procedure is
executed for each address a, making the final computational
cost of the second step O(|A|2). The reason of the squared
term is that an address is analyzed multiple times: once in the
outer loop as a and possibly several times while following
the change of DevAddr M . We also tried a variation of
the algorithm in which we analyzed a DevAddr only once,
bringing the computational cost down to O(|A|). However,
we observed a reduction in terms of accuracy, since errors
made in the first step for the computation of the mapping M
had more influence on the final result.

7. Results evaluation
In this section, we report the results of the application of

DEVIL to data generated by a real LoRaWAN application.
Table 3 reports the numerical value of parameters used in
our experiments. The time Tw is the length of the time
window in which two DevAddr can possibly be consecutive,
following the definition given in Sec. 6. The integer n is a
threshold used in the first step of the algorithm. The ratio
�lost is the fraction of packets that were lost during the
communication session. The algorithm is aware of which
packets were lost, following the definition of di in Eq. 3 and
its further processing. The high value of �lost is not negligible
and justifies the processing of the missed packets. If this is
not done, phase-shifts would have certainly been verified
in the temporal analysis of the traffic, which would have
invalidated the results. Moreover, the application does not
always respect the periodicity assumption and causes noise
to the system.

We evaluated the accuracy of the two steps of DEVIL
separately. The final accuracy of DEVIL is the one in the
second step, inferring the DevAddr assigned to a DevEUI.
Nonetheless, the first step of DEVIL is a powerful tool to
know whether two consecutive DevAddr were assigned to

o Spadaccino et all: Preprint submitted to Elsevier Page 9 of 13
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e 11: Accuracy of the first and second step when varying
arameter Tw. For low values of Tw, the algorithm does not
he correct matching of a DevAddr and the accuracy of the
e algorithm is low. This happens since, given a DevAddr a,
hort window causes the set of consecutive addresses C(a)
t contain the good match of a. For Tw ≥ 3600s we observe
values of accuracy. This is due to the majority of devices
ng an uplink packet roughly every hour. Moreover, when
greater than 3600s we observe a slight decrease in the
acy. This happens since the unnecessarily wide window
s the set of consecutive addresses C(a) to include an
asing number of addresses that are not a match for a
ore, thus increasing the possibility of a wrong match.

ame ED, even if this step does not derive the exact De-
I. Moreover, generally speaking we can expect to know
her or not two consecutive DevAddrs were assigned to
ame ED with higher accuracy than the exact DevEUI of
D.
or evaluating the accuracy of the first step, constructing
apping M , we simply computed all the pairs ⟨a1, a2⟩that M(a1) → a2, and considered the ratio of the

ber of correct predictions against the number of total
ictions. For evaluating the accuracy of the second step,
ccounted for the case that a DevAddr a could be associ-
to one or more DevEUIs, i.e. it could be that a ∈ Ap(e1)
∈ Ap(e2). This occurs when the algorithm is uncertain

t the DevEUI to be associated to the address a. We
fore considered as indicator the variable ia, with value
he prediction is correct and 0 otherwise, and the number

es a appears in the solution na = |{e s.t. a ∈ Ap(e)}|.
the accuracy is expressed as the quantity ia

na
averaged

ll a.
n Figure 11 the accuracy of the first and second step of
IL is reported as a function of the Tw parameter. From
nalysis we extract the best value of the Tw parameter
0s), reported in Table 3.
inally, Table 4 reports the accuracy of the two steps of
lgorithm, separately. The first step achieves an accuracy
ore than 95% in the construction of the mapping M .

Table 4
Accuracy of the two separate steps of DEVIL algorithm using
the water metering dataset.

Algorithm Description Accuracy
First step Construct mapping M(a1) → a2

from a DevAddr a1 to the next
DevAddr a2 utilized by the same
device

0.959

Second
step

Produce Ap(e) → {a1, a2,…} re-
constructing the set of addresses
which were assigned to DevEUI e

0.936

Final Accuracy 0.936

This demonstrates that the algorithm is able to process the
data of a real LoRaWAN application and to understand, with
high confidence, the change of DevAddr happening for an
ED. The second step of the algorithm scores an accuracy
of 93% in finding all the LoRaWAN addresses assigned to
a specific DevEUI, successfully reconstructing the hidden
mapping between a DevAddr and its DevEUI.

In Table 5, we have reported the accuracy of DEVIL
compared with the algorithm presented in [15]. The compar-
ison is done at the second step of DEVIL, since it is this step
of DEVIL that gives as output the final de-anonymization.
In all scenarios, DEVIL obtains a higher accuracy, with an
increase of 58% in case of water and energy metering devices
and 26% in case of the synthetic dataset. Note that we did not
evaluate the algorithms on the LoED dataset, since it does
not contain the information on the DevEUI of the packets
which is used as ground truth to compute the accuracy.

We have analyzed the running time of the procedures,
both DEVIL and the algorithm proposed in [15]. The total
execution times are reported in Table 5, reporting one entry
per dataset and algorithm. The algorithms were executed on
a laptop equipped with an AMD Ryzen 7 4800U CPU and
were implemented with 14 parallel execution threads. The
reported time is the effective CPU time. From the results,
it is clear that DEVIL requires more time for its execution
when compared to the comparison algorithm, which does
not consider the timings of the inter-arrival times: its com-
putational complexity could be approximated as O(|A| ⋅ |C|)
which is lower than DEVIL’s one, as shown in Sec. 6.1.

We remark that, in comparison with the algorithm in
[15], where 94% of the DevEUI are matched, DEVIL reaches
about the same performance but, differently from [15], it can
work with a more flexible network monitoring without rely-
ing on the presence of messages (Join requests) sent by the
EDs. In other words, if some Join requests messages are not
observed the approach in [15] fails, while DEVIL continues
to work successfully deriving the correct matching. The first
step of DEVIL can work with different not overlapping Tw,
that not necessarily include Join request packets. Finally in
the second step it is sufficient to capture only once a Join
request in one of the Tw to map the correct DevEUI to the
ED.

o Spadaccino et all: Preprint submitted to Elsevier Page 10 of 13
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taset # packets Period DEVIL time Ancian et al. time Step DEVIL Ancian et al.

ter metering 0.9 × 106 15 months 43.97s 16.01s First 0.959 0.592Second 0.936

ergy metering 1.1 × 106 20 months 266.62s 5.66s First 0.946 0.576Second 0.913

nthetic (N=1500) 1.1 × 106 10 months 3137.75s 64.34s First 0.965 0.596Second 0.824

5
racy of DEVIL in the water metering, energy metering and synthetic datasets. We reported the accuracy of both the first and
econd step of DEVIL. The accuracy of the first step is always higher than the accuracy of the second step, due to the fact
the second step uses as input the output of the first step. In this way the accuracy of the first step serves as upper bound
e accuracy of DEVIL. In the rightmost column of the table we reported the accuracy of the de-anonymization algorithm
nted in [15]. Also, we have reported the CPU time of the procedures.

e 12: Accuracy of DEVIL and [15] with different values of
tter � in the synthetic dataset and with different number
vices related to the evaluation of the countermeasure.

he choice of the Tw parameter should be related with
ata on which the algorithm is applied. A low duration
e Tw window, the lower the accuracy of the algorithm.
is due to the lower number of devices being in the

idered time frame: with a small Tw the it could be
ase that the right device is discarded by the algorithm
its first packet after the change of DevAddress happens
after a time Tw starting from its last packet with the
evAddress. In theory, selecting Tw to be as large as
aximum inter-arrival time possible for an application

ld be enough to ensure that the correct DevAddress
nsidered by the algorithm. In reality, however, packet
s may occur, therefore an observed inter-arrival time
device could be higher than the maximum estimated
-arrival time and the value of Tw should be increased
rdingly. On the other hand, the lower Tw the faster the
ithm will run. Indeed, Tw influences the number of
idered devices in the selection of next DevAddress in the
step of the algorithm: since the algorithm has to check
r candidates it is able to run in less time.

Figure 13: Accuracy of DEVIL with different values of pattern
length S in the synthetic dataset and with different number of
devices.

8. Countermeasures
As hinted in Section 5, DEVIL requires some periodic

behavior in the sequence of the inter-arrival times. There-
fore, one possible countermeasure could be to add a random
component disrupting the periodicity. In our experiments,
we added a jitter which is uniformly distributed in [0 , � t̂]
as described in Eq. (1) to randomize, to some extent, the
scheduling of the uplink packets.

However, the added jitter could cause the a disturbance
of the overlying application. For example, if our application
is composed by smart sensors logging the temperature every
hour, with the addition of this jitter the ED must be able
to bufferize and/or delay packets, even if this should impact
only few packets at most.

We express the random jitter in terms of �, and not in
absolute terms, to remark that this jitter should be related to
the current value of the non-jittered interarrival time. This
gives a measure on how much the jitter impacts the ED
behavior and ultimately the application.

Figure 12, we have reported the accuracy of DEVIL
using different values of � and with different numbers of

o Spadaccino et all: Preprint submitted to Elsevier Page 11 of 13
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es. We have used the synthetic dataset to stress the
osed approach and evaluate the robustness of it as a
tion of the jitter value. As expected, the accuracy of
IL decreases when increasing �, since the higher it is
arameter the higher the disruption of the DEVIL time
sis. We also plot the accuracy of the algorithm in [15]
e same dataset; since this algorithm does not depend on
emporal analysis of the inter-arrival times, its accuracy
ins constant when varying �.
n Figure 13 we report the accuracy of DEVIL with
rent values of maximum periodic pattern length S in
ynthetic dataset. We can observe that the performance of
IL is unchanged when varying the length of the patterns
e known inter-arrival times. Moreover, we observe that
ccuracy of DEVIL is constant when increasing the

ber of devices N , scoring an accuracy of more than 90%
all values N = 150, N = 600 and N = 1500.
ummarizing, the introduction of a specific jitter value to
ystem can be considered as a countermeasure technique
st the device de-anonymization operated by DEVIL.
ble jitter values can be evaluated by DEVIL and sug-
d to the NS to make more robust some devices in terms
ivacy.

onclusions and future work
his work presents an algorithm that reconstructs which
orally varying LoRaWAN DevAddr addresses are as-
d to the unique identifier DevEUI. Our algorithm is

d on temporal traffic analysis, gathering information
t the timings in which uplinks traffic is generated by IoT
es. Our methodology is organized into two steps. In the

step we find a matching between a DevAddr utilized by
and the next DevAddr that the same ED gets assigned

a successful Join or ReJoin operation. In the second step
ad we utilize the result found previously to map every
ddr to its DevEUI, observing the sequence of the Join
eJoin messages.
e perform an analysis of 3 real LoRaWAN datasets:

o metering services, energy and water, provided by
l LoRaWAN application, supplied by the UNIDATA

ator; ii) one open dataset relevant to a mix of application
ces. We use these datasets to evaluate the accuracy of
roposed algorithm in comparison with other approach
nt in literature. We evaluate the two steps differently
ound that our system reconstructs the assignment of a
ddr to an ED DevEUI with high accuracy. In compari-
ith the literature approach, we show that in the best case

ccuracy of our approach is improved of 58%. Another
tiality for DEVIL is to support the NS in the network
ization strategy. We use a synthetic dataset to evaluate
bustness of the proposed algorithm as the transmission
changes. The jitter values found by DEVIL algorithm,

be introduced to the system to produce a mitigation
iques. Jitters are supplied to the NS.

re research will be dedicated to improve the algorithm
dding more features to fingerprint and extract EDs

behavior. For example, radio parameters such as SNR and
RSSI could be leveraged to refine the association. Thus, the
output of DEVIL can be used as input to the NS to optimize
the network and to apply mitigation strategies [20].
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