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Stratification of hospitalized COVID-19 patients
into clinical severity progression groups by
immuno-phenotyping and machine learning
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Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19.

Although longitudinal studies to record the course of immunological changes are ample, they

do not necessarily predict clinical progression at the time of hospital admission. Here we

show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and

anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-

19 patients cluster into three distinct immune phenotype groups. These immune-types,

determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical

course. The identified immune-types do not associate with disease duration at hospital

admittance, but rather reflect variations in the nature and kinetics of individual patient’s

immune response. Thus, our work provides an immune-type based scheme to stratify

COVID-19 patients at hospital admittance into high and low risk clinical categories with

distinct cytokine and antibody profiles that may guide personalized therapy.
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The newly emerged SARS-CoV-2 virus has caused
the COVID-19 pandemic and infected >120 million people
over the world, resulting in >2.8 million deaths1. In the

absence of a highly effective therapy against COVID-19, there
remains an urgent need to understand both the pathological
mechanisms that lead to severe disease but to also identify clear
phenotypes that predict disease severity progression and outcome
as this may instruct a more personalized therapy. In an attempt to
understand the features of COVID-19 that associate with disease
severity, studies have aimed at capturing the perturbation of the
immune system and the associated inflammatory syndrome
observed. Some of these studies have applied high-dimensional
analysis using multiplex cytokines, flow or mass cytometry, or
scRNAseq to identify changes in cytokine profiles, peripheral
blood immune cell composition and/or gene expression related to
COVID-19 severity. Universally, however, these studies have
employed disease severity classification to identify immunotypes
that characterize mild, moderate or severe disease2–8. Although,
these studies have identified specific changes present in COVID-
19 patients compared with healthy individuals, identifying clear
immunotypes that strongly associate with or predict disease
severity has proven more challenging2–5. Defining, however,
immunotypes based on clinical severity is based on the assump-
tion that a single mechanism underlies all patients and that
kinetics are exclusively driven by days of infection. This approach
is, thus, hampered by the dynamic nature of the immune and
inflammatory response to SARS-CoV-2 virus, the very different
kinetics that individual patients may exhibit, and the likelihood
that very different immune mechanisms underlie the same clin-
ical severity.

By applying machine learning to a discovery and a validation
cohort, here we show that COVID-19 patients can be classified, at
hospital admittance, into distinct immune-phenotypes. These
immunotypes predict subsequent clinical progression and out-
come. Such immunotypes can guide the development of practical
biomarkers but may also instruct more personalized treatments.

Results
Distinct immunotypes are identified by machine learning in
acute COVID-19 disease. In this study, we chose to take an
unbiased approach in terms of clinical severity to identify
immunotypes by first defining immunotypes in COVID-19
patients and then examining if these relate to clinical severity
and progression. At time of hospital entry, we measured in the
serum of COVID-19 patients (Rotterdam discovery cohort;
n= 50, Table 1) modules of specific cytokines with pro-inflam-
matory, anti-inflammatory or anti-viral activities. We combined
these serum cytokines with the host adaptive antibody response
and applied machine learning using unsupervised hierarchical
clustering to identify immunophenotypes that capture both innate
and adaptive responses to SARS-CoV-2 infection. Investigators
were not involved in clustering or grouping of patients. Impor-
tantly, we did not use clinical severity as a clustering variable.
Using this approach, we identified three distinct immunotypes,
(labeled: balanced response immunotype: BRI, excessive inflam-
mation immunotype: EXI, and low antibody immunotype: LAI) in
acutely infected COVID-19 patients (Fig. 1A). To validate these
immunotypes, we applied the same machine learning approach on
a second independent cohort of patients from a hospital in Bar-
celona (Barcelona validation cohort; n= 88, Table 1) (Fig. 1B).
Principal component analysis (PCA) showed that measurements
of the Barcelona cohort data matched very well with the Rotter-
dam data (Fig. 1C). Independent unsupervised hierarchical clus-
tering of the measurements from the Barcelona cohort
consistently revealed a very similar classification of patients into

three distinct immunotypes BRI, EXI, and LAI, who exhibited
similar cytokine and antibody characteristics as those discovered
in the Rotterdam cohort (Fig. 1A, B).

We further tested the robustness of our immunotypes using
both cohorts and a multinomial model. The model showed a high
level of accuracy (100%) in predicting the immunotypes using the
input data. Next, we estimated the stratification accuracy from a
predictive perspective by cross-validation of the dataset into a test
and training set. We used increasing test percentages from 5%,
10%, 15%, 20%, and 25% and using 150 iterations. The latter
resulted in a median accuracy of 0.83, 0.80, 0.80, 0.80, 0.81,
respectively, which shows that the model prediction is marginally
depending on the training set size. The above confirmed the
robustness of our immunotypes.

The three immunotypes were characterized by distinct serum
cytokine profiles and anti-SARS-CoV-2 antibody responses
(Fig. 2). Anti-SARS-CoV- nucleocapsid protein (NC) antibodies
were measured since this CE-certified ELISA system allowed
detection of NC-specific IgM, IgG and IgA isotypes and this could
reveal isotype-specific differences. Compared to healthy controls,
all three immunotypes had increased pro-inflammatory cytokines
(Fig. 2A and Supplementary Fig. S1), displaying further
significant differences between them. Immunotype BRI was
characterized by low pro-inflammatory, anti-viral and anti-
inflammatory cytokines and normal TGFβ1 levels (Fig. 2A and
Supplementary Fig. S1). BRI exhibited robust IgM, IgG, and IgA
anti-SARS-CoV-2 NC antibodies (Figs. 1A, B and 2B). In
contrast, EXI had a much more pro-inflammatory profile, low
IFNα and normal TGFβ1 (Fig. 2A). Immunotype EXI was also
associated with IgM, IgG and IgA anti-SARS-CoV-2 antibodies
(Figs. 1A, B and 2B). Immunotype LAI exhibited a distinct
profile from the previous two and was characterized by the
presence of a strong IFNα response, reduced TGFβ1 (Fig. 2A),
and very low antibody immunity (Figs. 1A, B and 2B). Pro-
inflammatory cytokines were significantly higher in EXI com-
pared to both other immunotypes (Fig. 2A). IL-17A was
increased in some LAI and EXI patients, whereas IL-5 was
decreased in some LAI patients (Supplementary Fig. S1). Very
few patients had IL-2 or IL-12 in serum (Supplementary Fig. S1)
while IL-4 was undetectable (data not shown). To verify that anti-
NC responses is an appropriate surrogate for the overall anti-
SARS-Cov-2 antibody response, the anti-NC IgG response was
correlated with anti-Spike receptor-binding domain (RBD) Ig
response (Supplementary Fig. S2A, total anti-RBD Ig) and serum
neutralizing anti-SARS-Cov-2 titers (Supplementary Fig. S2B,
PRNT50) in the Rotterdam cohort. Anti-NC IgG responses
strongly correlated with both (Supplementary Fig. S2A, B).

As expected, we found that anti-SARS-CoV-2 IgM, IgG and
IgA antibodies correlated strongly with each other (Fig. 2C). The
strongest cytokine correlation with antibodies, was a negative
correlation with IFNα (Fig. 2C). This could indicate that
antibodies reduce viral loads and thus IFNα or conversely, high
IFNα levels delay or inhibit antibody production. Pro-
inflammatory cytokines correlated with each other (Fig. 2C).
Anti-viral cytokines IFNα and IFNγ correlated with each other,
while IFNα negatively correlated with TGFβ1 (Fig. 2C). Thus,
characteristics of the three immunotypes could be driven by
distinct cytokine networks in action.

COVID-19 immunotypes predict clinical severity progression.
We next investigated whether these distinct immunotypes asso-
ciated with clinical parameters (Table 2). As mentioned, clinical
severity was not used as a variable for the unsupervised hier-
archical clustering. At study entry, BRI and LAI did not differ in
WHO clinical severity scores9 while EXI was significantly higher
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(Fig. 3A). Thus at study entry, the immunotypes are not deter-
mined by disease severity. To assess clinical severity progression
during hospitalization, we examined the highest/worst clinical
score that patients exhibited within 30 days of admittance. During
hospitalization, EXI and LAI were characterized by clinical
deterioration and higher peak WHO clinical severity scores
(median peak score of 6 for both) (Fig. 3A). In contrast, BRI

improved after entry and clinical scores declined (the median
peak score of 3, was the score of entry) (Fig. 3A). Reflecting the
more severe disease scores during hospitalization, all mortality
occurred in EXI and LAI patients, while no patients died in BRI
(Figs. 1A, B and 3B). Furthermore, total days in hospital (Fig. 3C)
and total days in ICU (Fig. 3D) also differ significantly between
patients with the BRI immunotype and patients either in the EXI

Table 1 Clinical and laboratory characteristics of Rotterdam discovery and Barcelona validation cohorts.

Level Overall Barcelona Rotterdam

N 138 88 50
Immunotype BRI 33 (23.9%) 19 (21.6%) 14 (28.0%)

EXI 46 (33.3%) 33 (37.5%) 13 (26.0%)
LAI 59 (42.8%) 36 (40.9%) 23 (46.0%)

Gender Male 91 (65.9%) 58 (65.9%) 33 (66.0%)
Age Years 62 (54–70) 61 (50–70) 63 (57.25–69)
Days from symptom onset 8 (6–12)

[n= 134]
8 (6–10)
[n= 84]

9 (6–14.75)

WHO 8-point score at study entry 3 38 (27.5%) 34 (38.6%) 4 (8.0%)
4 60 (43.5%) 31 (35.2%) 29 (58.0%)
5 20 (14.5%) 12 (13.6%) 8 (16.0%)
6 12 (8.7%) 10 (11.4%) 2 (4.0%)
7 8 (5.8%) 1 (1.1%) 7 (14.0%)

Obesity Yes 43 (31.2%) 20 (22.7%) 23 (46.0%)
NA 6 (4.3%) 2 (2.3%) 4 (8.0%)

Diabetes mellitus Yes 32 (23.2%) 18 (20.5%) 14 (28.0%)
NA 2 (1.4%) 2 (2.3%) 0 (0.0%)

Heart disease Yes 48 (34.8%) 35 (39.8%) 13 (26.0%)
NA 2 (1.4%) 2 (2.3%) 0 (0.0%)

Lung disease Yes 30 (21.7%) 15 (17.0%) 15 (30.0%)
NA 2 (1.4%) 2 (2.3%) 0 (0.0%)

Kidney disease Yes 5 (3.6%) 3 (3.4%) 2 (4.0%)
NA 2 (1.4%) 2 (2.3%) 0 (0.0%)

Liver disease Yes 6 (4.3%) 5 (5.7%) 1 (2.0%)
NA 2 (1.4%) 2 (2.3%) 0 (0.0%)

Cancer Yes 7 (5.1%) 3 (3.4%) 4 (8.0%)
NA 2 (1.4%) 2 (2.3%) 0 (0.0%)

Fever (>38 °C) Yes 91 (65.9%) 68 (77.3%) 23 (46.0%)
NA 2 (1.4%) 2 (2.3%) 0 (0.0%)

C-reactive protein (mg/L) 102 (68–181)
[n= 127]

116 (73–192)
[n= 78]

96 (52–151)
[n= 49]

Ferritin (µg/L) 666 (382–1101)
[n= 116]

598 (314–1034) [n= 72] 738 (487–1171)
[n= 44]

Lactate dehydrogenase (U/L) 369 (293–472)
[n= 121]

369 (296–474)
[n= 72]

373 (286–461)
[n= 49]

Alanine aminotransferase (U/L) 29 (19–54)
[n= 137]

32 (18–54)
[n= 88]

25 (21–54) [n= 49]

Bilirubin (μmol/L) 9.8 (7.1–13.0)
[n= 122]

10.1 (7.8–13.2)
[n= 76]

8.5 (6.0–12.0) [n= 46]

D-dimer (mg/L) 0.40 (0.24–0.98) [n= 120] 0.30 (0.19–0.48) [n= 79] 0.97 (0.60–1.49) [n= 41]
Hemoglobin (mmol/L) 8.30 (7.51–9.06) [n= 136] 8.66 (7.88–9.18) [n= 86] 7.65 (6.60–8.30) [n= 50]
Leukocytes (x109/L) 7.45 (5.90–9.84) [n= 136] 7.62 (6.11–9.87) [n= 86] 7.00 (5.20–9.78) [n= 50]
Neutrophils (x109/L) 5.70 (4.16–8.01) [n= 133] 6.02 (4.60–8.03) [n= 86] 5.10 (3.70–7.70) [n= 47]
Lymphocytes (x109/L) 1.02 (0.83–1.41) [n= 133] 1.02 (0.83–1.38) [n= 86] 1.00 (0.80–1.50) [n= 47]
Monocytes (x109/L) 0.45 (0.30–0.64) [n= 133] 0.48 (0.33–0.66) [n= 86] 0.40 (0.29–0.60) [n= 47]
Thrombocytes (x109/L) 216 (163–294)

[n= 135]
209 (166–289) [n= 86] 229 (151–298) [n= 49]

Tocilizumab before study entry Yes 7 (5.1%) 0 (0.0%) 7 (14.0%)
NA 0 (0.0%) 0 (0.0%) 0 (0.0%)

Tocilizumab after study entry Yes 2 (1.4%) 0 (0.0%) 2 (4.0%)
NA 88 (63.8%) 88 (100.0%) 0 (0.0%)

Corticosteroids after study entry Yes 10 (7.2%) 0 (0.0%) 10 (20.0%)
NA 88 (63.8%) 88 (100.0%) 0 (0.0%)

Convalescent plasma after study entry Yes 29 (21.0%) 0 (0.0%) 29 (58.0%)
NA 88 (63.8%) 88 (100.0%) 0 (0.0%)

Data are n (%) or median (Q1–Q3). Complete data was available for the continuous values shown if not stated otherwise [n= ]; NA not available.
The clinical characteristics and laboratory measurements of Rotterdam discovery cohort, Barcelona validation cohort and the combination of both shown.
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or LAI immunotype group. These differences in severity between
immunotypes could not be attributed to age as these did not vary
significantly (Fig. 3E). Although sex distribution significantly
differs between the BRI and EXI group (Fig. 3F), no significant
difference was detected between BRI and LAI and EXI and LAI,
indicating that gender is not the predictive determinant of the
three immunotypes. To assess and emphasize the importance of
the distinct molecular markers and other variables, these variables
were directly compared within the three immunotypes using
Wilcoxon rank-sum/Mann–Whitney U-test. We additionally
applied a logistic regression model to each biomarker using both
a Uni- and Multivariate approach with gender, age, and DFSO as
additional variables for the multivariate analysis. Overall, no
striking difference between the non-parametric and the para-
metric tests were detected (Supplementary Table S1) and further
confirmed that gender, age, and DFSO were not defining para-
meters of the immunotypes.

Thus, despite immunotypes having a relatively mild disease at
study entry, the EXI and LAI phenotypes captured patients that
would clinically deteriorate after hospitalization with higher
mortality, longer hospital stays and increased ICU days, while
BRI identified patients that would improve clinically.

COVID-19 immunotypes are not defined by disease duration.
Although the three immunotypes differ at time of entry in the
number of days from symptoms onset (DFSO), with disease

duration shortest in LAI, differences in DFSO did not explain
these phenotypes (Fig. 4A–C). Cytokine and antibody levels did
not significantly correlate with DFSO, suggesting that immuno-
types are not determined by disease duration (Fig. 4B, C). More
importantly, the kinetics of antibodies and cytokines differed
between the three immunotypes with LAI even after DFSO of
10 days still having high levels of IFNα while the antibody
responses remained muted (Fig. 4B, C). IL-6 and TNFα, on the
other hand, were high in EXI patients already at DFSO of 5 days
(Fig. 4B). For the individual immunotypes, anti-SARS-CoV-2
antibody responses had different trajectories in terms of DFSO. In
BRI and EXI patients, antibodies come up early and stay up
(Fig. 4C). The frequency of patients positive for anti-SARS-CoV-2
antibodies was increased in BRI and EXI compared to LAI irre-
spective of time since symptoms onset (Fig. 4D). Thus, duration
of infection could not explain LAI’s high IFNα or low antibodies.
DFSO also failed to correlate with days of hospitalization and
days in ICU (Rs=−0.17, p= 0.08 and Rs=−0.18, p= 0.07,
respectively). This supports the notion that immunotypes reflect
the individual patient’s nature of the response and the rate of
development of immunity rather than a strictly linear chron-
ological relationship to duration of infection.

Immunotypes differ in their clinical laboratory characteristics.
The three immunotypes differed significantly in terms of plasma
inflammation markers and blood cell numbers (Table 2). Plasma
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Fig. 1 Unsupervised hierarchical clustering identifies three distinct immunotypes in acute COVID-19 patients. Applying machine learning by
unsupervised hierarchical clustering solely to serum cytokines and anti-SARS-CoV-2 antibodies identifies three distinct immunotypes. Analysis was
performed on samples collected at study entry and without clinical data input. The three immunotypes, identified independently in two patient cohorts, are
depicted in A the heat map of the Rotterdam discovery cohort (n= 50) and B the heat map of the Barcelona validation cohort (n= 88) using row-based
log-transformed z-scores. C Principal component analysis (PCA) of serum cytokines and anti-SARS-CoV-2 antibodies shows that both Rotterdam and
Barcelona cohorts cluster together while they lie apart from healthy controls. The first two components with their percentage of variance are shown in
parentheses. Red-blue color depicts z-scores. Top banners of heatmaps show: immunotypes BRI, EXI and LAI, WHO clinical score at entry and the peak
during hospitalization, patient death and discharge, and days from symptoms onset (DFSO).
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levels of markers of inflammation C-reactive protein (CRP),
ferritin, d-dimer, Lactate dehydrogenase (LDH) were all sig-
nificantly higher in EXI (Fig. 5A). Strikingly, these were not
increased in LAI compared to BRI. Leukocytes and neutrophils
were highest in EXI, while lymphocyte levels trended to be lower
in EXI and LAI but were not significant (Fig. 5B). Thrombocytes,
however, were significantly lower in LAI patients (Fig. 5B and
Table 2). Viral loads in nasopharyngeal swabs were not sig-
nificantly different between immunotypes but trended to be
higher in LAI (Fig. 5C), while within LAI patients, viral loads did
not correlate with IFNα levels (Fig. 5D). Finally, we found no
correlation between viral load and DFSO (Rs= –0.18, p= 0.34).

Deep phenotyping of immunotypes reveals distinct cellular
changes in blood of COVID-19 patients. To acquire insight into
the potential mechanisms that are behind the described three
immunotypes we used 40-color spectral flow cytometry and iden-
tified the immune cell subset changes associated with these
immunotypes (Fig. 6). Although COVID-19 patients as a whole
differed clearly from healthy individuals, comparing immunotypes
at study entry found remarkably few differences between them.
COVID-19 patients compared to healthy individuals had increased
plasmablasts (Fig. 6B–D and Supplementary Table S2). The pro-
inflammatory intermediate monocytes 1 and 210 and pro-
inflammatory IgD-negative non-conventional memory B cells
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(IgD- CD27- B cells)11 were both increased in blood of patients
(Fig. 6C; Supplementary Fig. S3 and Supplementary Table S2). In
contrast, non-classical monocytes were reduced in blood of patients
(Fig. 6C; Supplementary Fig. S3, Supplementary Table S2), and loss
of these anti-inflammatory cells may further contribute to immune
activation12,13. Plasmacytoid dendritic cells (DC) and conventional
DC were also both reduced in patients (Fig. 6B–D and Supple-
mentary Table S2). When the three immunotypes were compared
with each other, remarkably few differences existed (Fig. 6E, F and
Supplementary Table S2). Only intermediate monocytes 2 were

strongly increased in EXI compared to LAI (Fig. 6F, G). Overall,
despite the large differences between COVID-19 patients and
healthy controls, the differences between immunotypes were subtle,
underscoring a disconnect between peripheral blood cells and sys-
temic plasma cytokines in the immunotypes.

Discussion
Our study does not aim to determine whether COVID-19 differs
from other respiratory infections but seeks to identify groups of

Table 2 Clinical and laboratory characteristics of BRI, EXI and LAI immunotypes.

Level BRI EXI LAI p-value

N 33 46 59
Cohort Barcelona 19 (57.6%) 33 (71.7%) 36 (61.0%) 0.367

Rotterdam 14 (42.4%) 13 (28.3%) 23 (39.0%)
Gender Male 15 (45.5%) 36 (78.3%) 40 (67.8%) 0.009
Age Years 57 (49–64) 63 (57–69.75) 65 (52.50–71) 0.059
Days from symptom onset 10 (8–13) 10 (6.50–14) [n= 43] 7 (5–10) [n= 58] 0.002
WHO 8-point score at study entry 3 17 (51.5%) 5 (10.9%) 16 (27.1%) 0.002

4 11 (33.3%) 20 (43.5%) 29 (49.2%)
5 3 (9.1%) 8 (17.4%) 9 (15.3%)
6 0 (0.0%) 8 (17.4%) 4 (6.8%)
7 2 (6.1%) 5 (10.9%) 1 (1.7%)

Outcome Deceased 0 (0.0%) 13 (28.3%) 14 (23.7%) 0.004
Discharged 33 (100%) 33 (71.7%) 45 (76.3%)

Obesity Yes 6 (18.2%) 13 (28.3%) 24 (40.7%) 0.192
NA 1 (3.0%) 3 (6.5%) 2 (3.4%)

Diabetes mellitus Yes 4 (12.1%) 11 (23.9%) 17 (28.8%) 0.113
NA 0 (0.0%) 2 (4.3%) 0 (0.0%)

Heart disease Yes 6 (18.2%) 20 (43.5%) 22 (37.3%) 0.034
NA 0 (0.0%) 2 (4.3%) 0 (0.0%)

Lung disease Yes 8 (24.2%) 11 (23.9%) 11 (18.6%) 0.311
NA 0 (0.0%) 2 (4.3%) 0 (0.0%)

Kidney disease Yes 0 (0.0%) 4 (8.7%) 1 (1.7%) 0.049
NA 0 (0.0%) 2 (4.3%) 0 (0.0%)

Liver disease Yes 1 (3.0%) 3 (6.5%) 2 (3.4%) 0.293
NA 0 (0.0%) 2 (4.3%) 0 (0.0%)

Cancer Yes 2 (6.1%) 1 (2.2%) 4 (6.8%) 0.271
NA 0 (0.0%) 2 (4.3%) 0 (0.0%)

Fever (>38 °C) Yes 15 (45.5%) 29 (63.0%) 47 (79.7%) 0.004
NA 0 (0.0%) 2 (4.3%) 0 (0.0%)

C-reactive protein (mg/L) 82 (39–125) [n= 32] 159 (86–245) [n= 44] 94 (59–152) [n= 51] <0.001
Ferritin (µg/L) 434 (278–676) [n= 32] 887 (648–1883) [n= 38] 605 (313–1052) [n= 46] <0.001
Lactate dehydrogenase (U/L) 320 (257–381) [n= 32] 453 (362–599) [n= 39] 341 (296–454) [n= 50] <0.001
Alanine aminotransferase (U/L) 25 (18–54) 31 (18–57) [n= 46] 29 (21–53) [n= 58] 0.725
Bilirubin (μmol/L) 8.9 (6.9–13.0) [n= 31] 11.4 (8.0–14.8) [n= 44] 9.0 (6.0–12.2) [n= 47] 0.1
D-dimer (mg/L) 0.39 (0.30–0.61)

[n= 29]
0.89 (0.32–2.22) [n= 39] 0.30 (0.18–0.62)

[n= 52]
<0.001

Hemoglobin (mmol/L) 8.01 (7.45–8.69) 8.30 (7.60–9.05) [n= 44] 8.38 (7.70–9.12) 0.352
Leukocytes (x109/L) 7.35 (6.10–9.30) 9.70 (7.10–12.33) [n= 44] 6.50 (4.84–8.06) <0.001
Neutrophils (x109/L) 5.11 (4.16–7.69) 7.78 (5.69–10.05)

[n= 44]
4.78 (3.61–6.47) [n= 56] <0.001

Lymphocytes (x109/L) 1.40 (0.90–1.50) 0.99 (0.82–1.26) [n= 44] 1.00 (0.80–1.28) [n= 56] 0.067
Monocytes (x109/L) 0.48 (0.40–0.68) 0.50 (0.30–0.72) [n= 44] 0.38 (0.27–0.58)

[n= 56]
0.008

Thrombocytes (x109/L) 280 (208–343) 274 (176–320) [n= 44] 182 (152–229) [n= 58] <0.001
Tocilizumab before study entry Yes 0 (0.0%) 6 (13.0%) 1 (1.7%) 0.01

NA 0 (0.0%) 0 (0.0%) 0 (0.0%)
Tocilizumab after study entry Yes 1 (3.0%) 0 (0.0%) 1 (1.7%) 0.582

NA 19 (57.6%) 33 (71.7%) 36 (61.0%)
Corticosteroids after study entry Yes 3 (9.1%) 4 (8.7%) 3 (5.1%) 0.476

NA 19 (57.6%) 33 (71.7%) 36 (61.0%)
Convalescent plasma after study entry Yes 9 (27.3%) 5 (10.9%) 15 (25.4%) 0.356

NA 19 (57.6%) 33 (71.7%) 36 (61.0%)

Data are n (%) or median (Q1–Q3). Complete data was available for the continuous values shown if not stated otherwise [n= ]; NA not available. Significance between immunotypes for categorical
variables determined by Chi-squared test and for continuous variables by Kruskal–Wallis Rank-Sum Test.
The clinical characteristics and laboratory measurements of patients in each immunotype group are presented.
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patients within COVID-19 patients that present a different clin-
ical course. This study was conducted to find phenotypes or
identify patient groups and characteristics that can facilitate
biomarker discovery, at hospital admission of COVID-19
patients, that predict clinical outcome. These phenotypes or
biomarkers could also suggest evidence-based treatment
approaches for the patients that will become severely ill. The
phenotypes we identified could thus help discover practical bio-
markers. This focus on hospital entry is a very different approach
compared to other studies performed so far. Previous studies use
the approach of grouping COVID-19 patients on the basis of
severity to understand mechanisms of disease, which is based on
the assumption that one pathophysiological mechanism underlies
COVID-19 severity, and that patients respond uniformly to
infection and display a similar linear disease progression with
time. Using an unbiased analysis that only includes immune
parameters can thus provide a more comprehensive mapping of
the interplay between the immune response and SARS-CoV-2
virus in patients. Indeed, using this approach, we were able to
clearly demarcate immunotypes that predict clinical severity
changes and disease outcome. Importantly, the three immuno-
types are able to predict disease severity progression, recovery or
persistent severe disease. A previous study reported IL-6, IP-10
and IL-10 of first blood draw as predictors of COVID-19 clinical
deterioration while antibody responses negatively correlated with
deterioration7. However, in that study, 25% of patients that
clinically improve still have high levels of IP-10 and would be
classified as patients that will worsen7. Similarly, in our study, IL-
6 and IL-10 on their own, do not separate well the three
immunotypes as there is considerable overlap in serum levels.
Such overlap is also apparent in antibody responses where BRI
and EXI have similar anti-SARS-CoV-2 antibody levels but
clearly very different clinical courses. Thus, we argue that the

combined signature of multiple cytokines and antibodies has
more power to predict disease course and outcomes.

The immunotypes described herein cannot be attributed to
strictly chronological differences of the duration of infection in
patients. Instead of time since infection, the identified immuno-
types reflect the variation in individual patient’s kinetics of
mounting innate and adaptive immunity to the virus. This notion
is supported by the large variation in kinetics with which different
hosts mount anti-SARS-CoV-2 immunity14. This variation could
be due to host factors such as different host genetics15, epigenetic
differences imposed by varying host immunological experiences
such as previous pathogen exposures or vaccination16, or
potential microbiome differences17. All these factors could lead to
varying kinetics of immunity and control of viral loads, which can
associate with disease severity and clinical course18,19. Non-host
related factors such as dose or route of infection may also play a
significant role in immunotype development20. These elements
could all influence the rapidity of mounting innate or adaptive
immunity or even the duration of different phases of innate
immunity. The question arises, whether there are more immu-
notypes that can be revealed in larger cohorts of patients. Our
finding that small subgroups of patients in our cohorts have
increased IL-17A or IL-5 in serum, points to additional immu-
notypes that may have distinct clinical characteristics in acute
infection or associate with post-recovery sequelae of long
COVID-19. Our study of 138 patients did not have the power to
reveal such rarer immunotypes, but larger cohorts may well be
able to do so.

The three identified immunotypes reflect different pathophy-
siological mechanisms for COVID-19. Based on serum markers
of inflammation such as CRP and d-dimer, BRI and LAI are less
inflammatory than EXI. However, LAI exhibits more thrombo-
cytopenia compared to BRI and EXI. EXI and LAI had a much
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worse clinical course compared to BRI yet the signatures of EXI
and LAI differed in terms of their anti-SARS-CoV-2 antibody
response, the level of pro-inflammatory cytokines and IFNα while
TGFβ1 was uniquely downregulated in LAI. Strikingly, these
immunotypes, identified at hospital entry, predicted which
patients were less likely to survive, would have clinical severity
scores increase, would have longer hospitalizations and would
spend more days in the ICU.

Gender is a known factor that can affect clinical severity in
COVID-19 with females generally having milder disease.
Although females were increased in BRI patients compared to
EXI patients, BRI and LAI immunotypes were not statistically
different in terms of gender. Univariate and multivariate analysis
further excluded that the immunotype differences could be
attributed to gender, age or DFSO. We included DFSO in our

analysis to exclude that the different immunotypes we identified,
despite being sampled at hospital entry, could be due to some
patients being very early in the infection and therefore have not
mounted an antibody response yet while other were later in the
course of infection. Furthermore, we also confirmed that the
immunotypes we identified remain stable over a range of DFSO.
Applying a number of different statistical approaches, we can
exclude that duration of infection determines immunotypes at
hospital admission.

Analysis of the salient association between select pro-
inflammatory cytokines, interferons and anti-SARS-CoV-2 anti-
bodies, revealed clear associations of immunotypes with the
adaptive immune response, inflammation and the anti-viral
response (Fig. 7). BRI appears to mount an early anti-SARS-CoV-
2 antibody response that controls viral replication, and dampens
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the IFN response and subsequent hyper-inflammation. EXI
mounts a vigorous inflammatory response. LAI arises as a result
of a delayed adaptive immune response against SARS-CoV-2 that
leads to sustained high viral loads accompanied by a type I IFN
response. Clearly an impaired type I IFN response is detrimental
to the clinical course of COVID-19 as indicated by individuals
with defects of IFN signaling and antibodies against IFN21–23.
However, increased type I IFN in serum has also been reported in
severe COVID-19 patients3,24 although others have reported low
responses25. Such differences may be due to varying patient
populations and grouping of different immunotypes. Employing
single cell sequencing on just 21 patients, one study reported that
anti- SARS-CoV-2 antibodies can hamper type I IFN responses in
severe COVID-19 patients26. Although this could be the case in
EXI patients, such results should be interpreted cautiously, as
others have reported that antibodies protect from severe COVID-
197. Additionally, we clearly show that high type I IFN and
absence of antibodies in LAI patients associates with disease
deterioration and markedly worse outcomes, while BRI patients
with high antibodies but no type I IFN do well clinically. The
increased IFNα and viral loads in LAI, but their failure to cor-
relate (Fig. 5D) indicates that in this immunotype their interac-
tion is potentially deregulated. Such correlations can be seen
in vivo in viral infections such as SIV infection, where uncon-
trolled viremia positively correlates with type I IFN at the chronic
phase, yet negatively correlates at early SIV infection27. On the
other hand, type I IFN can induce ACE2 receptor expression28.

This can set up a positive feedback loop between viral replication
and type I IFN in LAI patients and together with the anti-viral
effect of type I IFN may set up a complex non-linear interplay
between them.

We used 40-color spectral flow cytometry to identify the
immune cell subset changes associated with COVID-19 infection.
We find increased plasmablasts as previously described, but also
increases in pro-inflammatory cell types such intermediate
monocytes 1 and 2, and pro-inflammatory IgD- CD27- non-
conventional memory B cells10,11, while anti-inflammatory cells
such as non-classical monocytes were reduced12,13. This under-
scores the tipped balance towards inflammation in patients.
Plasmacytoid DC and conventional DC were both reduced in
patients and this could impair both anti-viral and adaptive
immune responses. Plasmablasts were increased in all three
immunotypes irrespective if they had antibodies, arguing they are
not a good predictor of anti-SARS-CoV-2 immunity. We found
only one difference between immunotypes, an increase in EXI
patients of pro-inflammatory intermediate monocytes 2 com-
pared to LAI patients. Thus, COVID-19 patients had significant
cellular variations compared to healthy controls, but such dif-
ferences between immunotypes were not apparent, indicating that
the blood cellular compartment does not directly reflect plasma
cytokines that may be produced locally in tissue such as lung.

The classification of COVID-19 patients by immunotype may
guide personalized therapeutic strategies. Pro-inflammatory
cytokines do not distinguish clearly BRI, EXI and LAI from
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each other and this may explain the relatively small benefit and
mixed results of anti-IL-6 antibody treatment29–31. Using
immunotypes to predict who will develop a hyperinflammatory
syndrome32,33 may enable pre-emptively blocking key drivers of
the pro-inflammatory cytokine network. This would provide the
maximal clinical benefit as dampening of the cytokine storm is
achieved when anti-cytokine treatment is applied early34–37. The
potential benefit of prophylactic anti-cytokine treatment for
COVID-19 is also suggested from autoimmune patients in which
anti-cytokine therapy associates with milder COVID-19
disease38–40. Longitudinal studies have shown anti-spike IgA
and antibody affinity can correlate with disease severity41,42 and
this could be driven by persistent antigen. In contrast, our study
that samples patients at hospital entry, reveals that patients with

muted antibody responses do worse clinically in the future. Such
patients may benefit the most from anti-SARS-CoV-2 antibody
therapy. Although convalescent plasma therapy has failed to show
clear benefit in COVID-1943,44, this could be due to most patients
already having antibodies. Treatment with convalescent plasma of
specific populations at risk very early in the disease course have
suggested benefit in terms of preventing clinical deterioration45.
Therefore, patients within the LAI group, that have no or low
anti-SARS-CoV-2 antibodies may stand to benefit from high
neutralizing antibody titer plasma or monoclonal antibodies.
Finally, the observation that very few patients in the BRI
immunotype progressed to more severe disease could help hos-
pitals overwhelmed with COVID-19 patients to triage which
patients could be transferred to step-down units outside the
hospital. Immunotypes, therefore, could guide the formulation of
personalized therapies for COVID-19 patients based on
mechanistic evidence.

Our study proposes immunotypes that are free from the pre-
sumption that clinical classification should dominate the analysis
and could be the basis for prospective studies. From a clinical
perspective, it is important to identify at an early stage which
patients may progress in disease severity as the clinical condition
of COVID-19 patients can rapidly deteriorate within days. Here,
we have identified immunotypes that predict disease progression
but also shed light on underlying pathways and suggest bio-
markers and therapeutic targets before severe COVID-19 devel-
ops. Our current study only addressed the immunotypes in the
context of acute COVID-19, but it also points towards employing
larger cohort studies that may reveal immunotypes that predict
long term post-COVID-19 complications. As immunotype
identification requires only serum analysis, these immunotypes
can be determined rapidly after patient admission and help
instruct personalized therapy.

Methods
Patients. Rotterdam cohort samples were collected from patients (n= 50) parti-
cipating in the ConCOVID nationwide multicenter open-label randomized clinical
trial in the Netherlands. Inclusion criteria were patient age of at least 18 years,
admittance to the hospital for COVID-19 and SARS-CoV-2 genome positive by
reverse transcription–polymerase chain reaction (RT-PCR) test in the previous
96 h. All patients entered the study and were sampled at a median of 2 days after
hospitalization (Q1, Q3: 1, 3.75 days). No exclusion criteria were applied. Healthy
controls were age and sex matched. The study was reviewed and approved by the
institutional review board of the Erasmus University Medical Center. Written
informed consent was obtained from every patient or legal representative. All
samples were processed and frozen within three hours of bleeding.

Barcelona cohort samples and data from patients included in this study were
provided by the Hospital Universitari Vall d’Hebron (HUVH) Biobank (PT17/
0015/0047), integrated in the Spanish National Biobanks Network. The collection
and secondary use of de-identified diagnostic samples and data for research was
approved by the Ethics Committee for Research with Medicines of HUVH and
consent was waived. Sample and data transfer to Erasmus MC for research purpose
was approved by the Ethics Committee for Research with Medicines of HUVH.
Patient inclusion criteria were an age of at least 18 years, having a confirmed SARS-
CoV-2 genome positive by RT-PCR test and having a serum sample on the day of
hospitalization. No exclusion criteria were applied. Clinical severity was classified
according to the WHO 8 point COVID-19 disease severity score (at study inclusion
for patients and during hospitalization) in which 0 is no clinical or virological
evidence of infection, 1 is no limitation of activities, 2 is limitation of activities, 3 is
hospitalized, no oxygen, 4 is oxygen by mask or nasal prongs, 5 is non-invasive
ventilation or high-flow oxygen, 6 is intubation and mechanical ventilation, 7 is
ventilation and additional organ support (vasopressors, renal replacement therapy,
ECMO), and 8 is death9. Clinical characteristics, laboratory measurements and
treatments for both cohorts are shown in Table 1.

Days from symptom onset (DFSO) were determined by asking patients at study
inclusion when they experienced the first symptoms of COVID-19 infection. None
of the patients were vaccinated against SARS-CoV-2 spike protein.

Cytokine measurements. The cytokines of interest (IL-6, TNFα, IL-1β, IL-8,
CCL2, IL-18, IL-10, IL-12, IFNγ, IL-5, IL-17A, IL-2, IL-4, IFNα, and TGFβ1) were
analyzed using the ELLA Simple Plex system (Protein simple, San Jose, CA). After
thawing serum samples on ice, they were centrifuged at 1300 x g for 5 min at room

Fig. 7 Unsupervised clustering defines three immunotypes at hospital
entry that predict clinical outcome. Anti-SARS-CoV2 nucleocapsid
antibodies (IgM, IgG, IgA) and the most prominent anti- and pro-
inflammatory cytokines out of n= 14 shown. BRI: balanced response
immunotype; EXI: excessive inflammation immunotype; LAI: low antibody
immunotype; SOC: standard of care.
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temperature. Twofold dilutions were prepared in low-protein-binding plates
according to the manufacturer’s instructions. For TGFβ1, samples were first acti-
vated with 1 N HCl and then neutralized with 1.2 N NaOH/0.5 M HEPES. Sub-
sequently, these samples were diluted in a factor 1:15. Diluted samples were loaded
into ELLA Simple Plex cartridges and analyzed with the ELLA Simple Plex system.

Anti-SARS-CoV-2 antibody measurements. Anti-SARS-CoV-2 IgM, IgG and
IgA antibodies against nucleocapsid protein (N-protein) were measured in serum
by ELISA using CE-certified COVID-19 IgG ELISA (Tecan, 30177447), COVID-19
IgA ELISA (Tecan, 30177446) and COVID-19 IgM ELISA (Tecan, 30177448)
according to the manufacturer’s instructions. Positive cutoff for these ELISAs was
11 units. The anti-nucleocapsid ELISA was chosen as it allows the detection of anti-
SARS-CoV-2-specific IgM, IgG, and IgA isotypes and circumvents SARS-CoV-2
spike vaccination status in future studies. Serum was tested for the presence of
SARS-CoV-2 total Ig and IgM antibodies against spike RBD by ELISA test (Wantai
Biological, Beijing) while neutralizing antibodies were measured by performing a
plaque-reduction neutralization test (PRNT) with the SARS-CoV-2 virus. Both
assays are described in Gharbharan et al.43.

High-dimensional flow cytometry. PBMC from patients and controls of the
Rotterdam cohort were stained with a 40-color antibody panel and collected using
a 5 laser Aurora spectral flow cytometer (Cytek Biosciences, CA). All samples were
stained as described previously46 with the adaptation of including annexin V to
exclude dead cells and all buffers contained all buffers contained 2.5 mM CaCl2.
Cleaning of flow data was performed in SpectroFlo (version 2.2.0) (Supplementary
Fig. S4). The unsupervised, and statistical inference portions of the flow cytometry
analysis were performed using OMIQ data analysis software(www.omiq.ai). We
used the unsupervised analysis methods based on surface markers without any 2D
gating we previously employed46. The workflow included running flowCut to check
for changes in channels over acquisition time, UMAP for dimensionality reduction,
flowSOM for clustering, and edgeR for statistical inference. For the statistical
comparisons of abundance, the Flow Cytometry Standard (FCS) files were sub-
sampled to ensure the same number of events were included per group (either
immunotype or disease state).

Unsupervised hierarchical clustering and principal component analysis.
Patient’s clinical and serum data from the Erasmus MC and Barcelona cohort were
loaded into R (v.4.0.4)47. Only cytokines positive in >20% of patients in both
cohorts were used in the analysis. Standardized scores (z-scores) for each cohort
were calculated based on the log10 transformed cytokine and antibody levels
measured in serum. Unsupervised hierarchical clustering was performed using
Ward’s Hierarchical Agglomerative Clustering Method (ward.d2) on the Euclidean
distances of the z-scores48. The optimal number of clusters for both cohorts was
assigned with the NbClust (v1.0.12) package in R49. NbClust provided 30 indices
that determined the best number of clusters for both datasets and proposed the
appropriate number of clusters using the majority rule. The majority rule indicated
three clusters as optimal for both cohorts. Subsequently, heatmaps were plotted
using the R package pheatmap (v1.0.12). Principal component analysis (PCA) was
performed and visualized based on the z-scores using the R function prcomp. The
grouping of patients in these different clusters was not influenced in any way by the
investigators.

We tested the reliability of our hierarchical clusters by constructing a
multinomial logit model50. The model describes ln(Prob(EXI) over Prob(BRI)),
and ln(Prob(LAI) over Prob(BRI)) in relation with the variables used in building
trees in Fig. 2. For a better coherence with the method used in building the three
categories, we log-transformed the 14 cytokines and antibody variables as we used
to construct the trees in Fig. 2, while removing the patients with no CCL2 data
(BRI= 32, EXI= 46, LAI= 58). The model was 100% accurate in predicting the
immunotypes based on the input data. We estimated the stratification accuracy
from a predictive perspective cross-validation by splitting the dataset into a test and
training set, increasing test percentages from 5%, 10%, 15%, 20%, and 25% using
150 iterations.

Statistical analysis. Statistical analysis was performed using R (v.4.0.4)47. Nor-
mality of the patients’ data was tested using a Shapiro–Wilk normality test. Sta-
tistically significant differences between immunotypes were calculated using two-
sided multiple Students t-tests for patient’s age and Wilcoxon rank-sum tests for all
the other variables. Subsequently, p-values were adjusted using Bonferroni cor-
rection. Adjusted p-values lower than 0.05 were considered statistically significant.
The number of asterisks indicate the level of significance of p-adjusted values:
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. Non-significant results are
not shown in figures. Correlations coefficients between the variables in each cohort
were calculated using a Spearman’s rank correlation coefficient and presented in
correlograms and DFSO correlations. A correlation was considered statistically
significant if the p-value was lower than 0.05. Non-parametric local polynomial
regression lines were plotted using the locally estimated scatterplot smoothing
(LOESS) method. We applied a Uni- and Multivariate analyses next to our Wil-
coxon rank-sum/Mann–Whitney U-test that directly compared cytokine, anti-
bodies and other variables in this study. We applied these analyses of the log-

transformed data using a univariate binary logistic regression of BRI vs. EXI, BRI
vs. LAI and EXI vs. LAI. In addition, we applied on the same variables a multi-
variate analysis with gender, age, and ln(DFSO+ 1) as additional variables. Two
patients with no CCL2 measurement were dismissed from analyses while two
patients with no DFSO indication were removed in the multivariate analyses.
Wilcoxon rank-sum/Mann–Whitney U-test p-values were adjusted using Bonfer-
roni correction on the three comparisons.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this study are available on request from the corresponding author PDK.
The data are not publicly available due to participant privacy/consent. Source data are
provided with this paper.

Code availability
The R-code used to cluster and the statistical analysis the cytokines, antibodies and
clinical data can be freely downloaded from https://bitbucket.org/immunology-emc/
covid_severity_publication/src/master/.
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