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1. Introduction

Let Zxy be the space of bounded linear mappings between two complex Hilbert
spaces X and Y (when X =Y, the shorthand notation #Bx = Zx x is employed) and
consider the operator pencil®

AN = Ao+ A1\, Ao, A€ Bxy, Ap,A1#0, AeQCC. (1.1)

Assume that Ag is neither one-to-one nor onto and that there exists p > 0 such that
A(X) is invertible for all A € D, \ {0}, where D, = {\ € C : |\| < p}. That is, 0 is an
isolated singularity of A(\).?

Under the assumption that the image of Ay is closed and that the resolvent A(\)~!
has a pole of some order m € N at 0, the present paper provides a construction of the
resolvent and of the logarithmic residues and a characterization of the image and null
space of those operators. The quantities are all expressed in terms of the image and
null space of certain operators defined recursively by a procedure called ‘local subspace
decomposition’, see Definition 2.2 below, which only requires knowledge of Ay, A;.

This recursive procedure was introduced in [12,13] for the finite dimensional case
X =Y = C? and it was called ‘local rank factorization’ Franchi and Paruolo [13]
also showed that the (extended) local rank factorization coincides with the ‘complete
reduction process’ in [6]; the latter builds on the results of [21] and on the reduction
technique in [20], [19] and delivers the order of the pole and the coefficients of the
resolvent. The book by [5] contains a thorough treatment of their approach and its many
extensions, see e.g. [22] and [1-4] for the infinite dimensional Hilbert and Banach space
cases. The local rank factorization was further employed in [14] and [11] for eigenvalues
of finite type in the (possibly infinite dimensional) Hilbert space case X =Y.

In the setup considered in the present paper, the notion of rank may not be well
defined and thus the name ‘local rank factorization’ is misleading. Because the procedure
depends only on the sequence of subspaces determined by the image and null space of
certain operators (and not on their dimensions), the name ‘local subspace decomposition’
is used here instead.

From the theory of essential singularities in Banach spaces in [2], it is well known that
the resolvent of (1.1) admits the Laurent series representation

AN =D RN, A€U,,={ eC:o<|A<p}, 0<o<p<oo, (12)
neZ

if and only if the operators R,, € %y, x are suitably bounded, i.e.

2 In the following, 0 and I respectively denote the zero and the identity in the different ambient spaces
(the relevant space should be clear from the context).

3 By the change of variable (A — Xo) — A, this setup handles isolated singularities at points Ao other
than zero. In fact, if A\g # 0 is such that A(Ag) = Ap + AoA1 is not invertible then A(\) = Ag + AoA1 +
A1) — XA = Ao + A1 (X — Xo), where Ao = Ao + AoA1 is singular. Hence there is no loss of generality in
assuming that Ao = 0 is the point at which A(\) is singular.
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: 1/n < . 1/n <
Jim [[Ro[[V" <oy lim |[R, 1Y < 1/p, (1.3)
and satisfy the ‘fundamental equations’
AoR, + A1R,_1 = 1,—01, R,Ao+ R,_1A1 = 1,1, néez, (14)

where 1,,—}, is the indicator function (equal to 1 if n = h and to 0 otherwise); these follow
from the identities A(N\)A(A)"! =T € By and A(N\)"LA\) =1 € Bx.

Albrecht et al. [2] show that (1.3) and (1.4) hold if and only if (i) P = R_14,
and P¢ = I — P = RgAg are complementary projections on X and Q = A;R_; and
Q° =1—-Q = AgRy are complementary projections on Y, (ii) A, = QA, P + Q°A, P¢,
n=0,1, (i) R, = PR,Q,n=—-1,-2,...,and R, = P°R,Q° n=0,1,...,

R _ { (=) "N Ry Ag) T Ry, m= 1 =2, (i)
(—1)n(RoA1)nRo, n = 0,17...
and (v) lim, e |[(R_140)"||Y™ < 0, lim, o0 ||(RoA1)"||*/™ < 1/p. The formulas in
(iv) extend those derived for the matrix case in [25,26], see also [28]. Note that A()\)
(and thus A(A\)~™1) is completely reduced by the complementary projections in (i) and
further observe that, when R_; A is nilpotent, the theory covers poles as a particular
case.

However, as observed in Remark 1 in [4], R,,, n € Z, is unknown; hence these formulas
cannot be used per se to calculate the complementary projections and the coefficients of
the resolvent because they are all expressed in terms of Ry, R_1. Albrecht et al. [4] define
infinite-length singular and regular Jordan chains that determine the complementary
projections P, P¢, @, Q°, and, when X,Y are separable, they find Ry, R_1 by solving
recursively the projected versions of the fundamental equations. They then employ (iv)
to calculate the resolvent.

The present paper considers the special case in which X and Y are Hilbert spaces and
the resolvent has a pole of some order m € N at 0, i.e. R_,, 20 and R_,,_,, = 0 for
n =1,2,.... As shown in [2], in this case the annulus of convergence of (1.2) becomes
the punctured disc Uy, = {A € C: 0 < |A| < p} = D, \ {0}; here we set Z,, = R_1n
forn =0,1,... and write (1.2) as

AN = f: Z A A€ D,\ {0}, Zy # 0. (1.5)
n=0

From the classical theory of poles in Banach spaces in Bart and Lay [10], see also
[16], [24], [29], [23], [27], it is well known that the resolvent has a pole of order m at 0
if and only if the ascent and the descent (defined therein in terms of certain subspaces
Ny By N, Zr, n=0,1,...) equal m. In this case, the direct sum decompositions

X =Ny & R, Y= ®X%,, (1.6)
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where Ny, Bom, N, and %, are closed subspaces, completely reduce A(\) (and thus
A(MN)71); that is, relative to them, A(\) admits the operator matrix representation

AN = (Aow + AN 0

, A, :Anﬁpm:ffml%&f;,
0 Aoz +A192)\> z |

where A, 4 denotes the restriction of 4, to 4, and maps A;, to A,/ and A, is the
restriction of A, to %, mapping %Z,, to Z.,; thus

[ Aoy + ANt 0
AN = < 0 : 1 (Ao + Am)\)_l) .

Because A;_y and Agg are invertible and N = (A;_4) "' Ag_4 is nilpotent with index m,
ie. N™ =0 and N™~! £ 0, the principal part is

(Aow + A1y N) Z Zuy NV, Dy = ()TN AL

where Z,,_4 is the restriction of Z,, to .4,/ mapping A4, to A;,, and the regular part is

(Aoz + A1z M)~ Z Znor A"
-1
Zm@/ _ . AO% n=m ’
Ay Zn_1gr n=m+1m+2,...

where Z, 4 is the restriction of Z,, to %/, mapping Z#!, to0 Zy,. This shows that, relative
to the direct sum decompositions in (1.6), the resolvent admits the operator matrix
representation

AN =Y <Z"O” ))\" m 4 Z (0 Zﬁ)xn—m, (1.7)

n=m
from which one can construct Z, in (1.5) by a change of bases. Finally recall that,

letting Py, Pp.y =1—Py g and Py gy Pgr. yr =1 — Py g be the projections
associated to the direct sum decompositions in (1.6), one has

1
— AN)TA =Zm_1A
i ()\) ld)\ m—1411,

oD,

Py g=

1
Pﬂ/7%1 = 2—7” / AlA()\)ild)\ == Alszla
oD,
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where 0D, is the boundary of D,. That is, P 4 2 coincides with the right logarithmic
residue of A(A) at 0 and Py g with the left logarithmic residue of A()) at 0, see [7—9)]
and references therein for general results on logarithmic residues and idempotents.

The results of the present paper are the following: first, necessary and sufficient con-
ditions for a pole of order m are given; these conditions are expressed in terms of certain
orthogonal direct sum decompositions

X=PBn BoBn#0, Y=CPan  agam#0,
h=0 h=0

where (B and «y, are closed subspaces defined recursively by the ‘local subspace decom-
position’, see Definition 2.2 below. This recursion employs the first m + 1 fundamental
equations, i.e.

AOZn +AZ, = 1n:m17 ZnAO +Zp 1A = ]-n:mIa n=0,...,m, (18)

and defines certain operators Sj whose images and orthogonal complements of the null
spaces, ap = Im Sy and 3, = (Ker Si)*, deliver the orthogonal direct sum decomposi-
tions that characterize the order of the pole.

The same recursion defines operators Mz € B x and M, € Xy that allow to construct
the factors in

where E()), F(A) are analytic and invertible on D, and D(X) describes the singularity of
A(X) at 0, see Gohberg and Sigal [17]. This in turn delivers chains that allow to construct
the subspaces in (1.6) as

This allows to compute the operators Z,, 4+, Z,g and the projections Py o, P v,
Py g, Pg ., 4, ie. it provides a construction of the resolvent and of the logarithmic
residues in terms of the quantities defined by the local subspace decomposition.

Further it is shown that the same quantities characterize image and null space of each
operator in the principal part of the resolvent, i.e.

m h—m+4n

m h—m+n
mZz,= @ P Ms, Kean:< D ngah> :
k=0 h

h=m—n
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where n =0,...,m — 1.

The last part of the present paper considers the special case of Ay being Fredholm of
index 0; it characterizes the rank of the operators in the principal part of the resolvent
and links the dimensions of the subspaces in (1.6) to the partial multiplicities and to the
algebraic multiplicity of A(X) at 0.

The rest of the paper is organized as follows: the remaining of this section reports
notational conventions and preliminaries, Section 2 presents definitions and main results
and Section 3 illustrates some of the results for the particular cases of poles of order
1 and 2. Section 4 considers a pole of order m € N and corresponding factorizations
of A(N), Section 5 describes chains and the associated subspaces that characterize the
principal part of the resolvent and the logarithmic residues and Section 6 considers the
particular case of Ag being Fredholm of index 0. Appendix A contains proofs.

1.1. Notation and preliminaries

%xy denotes the space of bounded linear mappings between two complex Hilbert
spaces X and Y (when X = Y, the shorthand notation Bx = ZBx, x is employed).
Image and null space of T' € Bx y are respectively denoted by InT = {y € Y : y =
Tr,z € X} and KerT = {x € X : Tx = 0}. Note that KerT is closed while Im T
may not be so. T* € Py x denotes the adjoint of T’; recall that KerT = (ImT*)*,
KerT* = (ImT)t and if Im7T is closed, ImT = (KerT*):, ImT* = (KerT)*. If
ImT is closed, its generalized inverse Tt € Py x exists and it is unique; recall that
THTTY =T, TTYT =T, TTT = Py, TTT = Pkerrys KerTT = (ImT)*, and
ImT+ = (KerT)*. A Hilbert space Z is said to be the direct sum of ¢ and ¢, written
Z=Copit (i) Z=C+e={u+v:ue€,veyptand (it) (N = 0. If ¢
and ¢ are closed subspaces and Z = ( @ ¢, one has the associated projection identity
I = P;, + P, ¢, where P, € %z denotes the projection of Z onto ¢ along ¢, i.e.
FPepo= PE,W Im P, = ¢ and Ker P, = ¢; similarly for P, .. When ¢ = ¢+, the direct
sum is said to be orthogonal and the shorthand notation P, = P .1 is employed for the
orthogonal projection onto (; similarly for ...

2. Definitions and main results

This section introduces the local subspace decomposition and presents the main re-
sults. The analysis is conducted under the following assumption.

Assumption 2.1 (Im Aq is closed and Ag is singular). Assume that (i) Im Ag is closed
and (i7) A # 0 is neither one-to-one nor onto.

Note that, under Assumption 2.1, Im Ag, (Im Ag)*, Ker Ay, (Ker Ag)* are all nonzero
closed subspaces. Hence one has the orthogonal direct sum decompositions
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1 1
Y=a00Dap, o, o # 0, ag = Im Ag,

X =Bo® By, Bo, By # 0, Bo = (Ker Ag)™*,

and the associated orthogonal projections identities

P, + Paoi =1, PD&O7Paé‘ € By, PaO’Paé‘ #0,

P/30+P50L =1, Pﬁo’PﬁOL € PBx, Pﬁovp,ﬁ(f #£0,
where

Im P, = Ker P+ = av, Ker Py, =Im P,; = ap,

Im Pg, = KeI'PBOL = B, Ker Pg, = ImPﬁoL — ﬂd—

Moreover, the generalized inverse Al of Ay is such that
AgAf = Pay,, Af Ao = Pg,.
Definition 2.2 (Local subspace decomposition). Let m € N,
So=Ag, ao=ImS,,  Bo= (KerSo)™",
and for h =1,...,m define
Sn=P,QnPyy, an=ImS,, B = (KerSy)",

where

h—1 h—1 Al hzl
ap = o, by = Bi, Qn= hlb .

Further let

m—1 m—1 *
Mﬁ = - Z S}erQthh Ma = <_ Z Qth]S}J{) .
h=0 h=0
Note that

ahgaﬁ:(ao@"'@ahfl)l7 /Bhgbﬁ:(ﬁo@"'@ﬁhfl)L7 hzl?"‘7m7

i.e. vy, is orthogonal to o; and f3y, is orthogonal to 3;, h # j. It turns out that for h # 0, m,
it is possible that a; = 0 and B, = 0. In what follows, every statement concerning ay,
or B, implicitly assumes that they are nonzero; the modifications required otherwise are
straightforward.



250 M. Franchi / Linear Algebra and its Applications 639 (2022) 243-281

Observe that 8, = (Ker S;)*, Bit = Ker S, and aj = (Im Sj,)* are closed subspaces
and also ap = Im S}, need to be so. Indeed, let &, be the orthogonal complement of ay,
in aﬁ, ie. aﬁ = ay, @ &; because the closed subspace &, complements the image «j, of
the bounded operator S} in the closed subspace aﬁ, it follows from Theorem IV.1.12 in
[18] that ay, = Im S), must be closed.

Hence ay, aﬁ, b, bﬁ, h =1,...,m, are all nonzero closed subspaces and one has the
orthogonal direct sum decompositions

h—1
Y:ah@a’i7 ahaaib_#o7 ah:@aj7
7=0
h—1
X = by, @by, bn.by #0, b =P8
=0

and the associated orthogonal projections identities

Poy, + Py =1, Pa,s Pop € By, Pay, s Poy # 0,
Py, + Py =1, Py, , Py € Bx, By, , Py # 0.
Moreover,
SpS;" = P,,, Sy Sy = Pg,,
Ker S = ajf, Im S = By, (2.1)
SiPy =St PuS; =5}

The first result links the order of the pole of the resolvent to the ayj, and S subspaces;
further it shows that Zy is the generalized inverse of S,,, i.e. Zg = S,}.

Theorem 2.3 (Pole of order m). The following statements are equivalent:

(i) A(N\)~! has a pole of order m > 1 at 0,

(i1) X = @, Bn, where B, is closed and By, Bm # 0,

(iii) Y = @), an, where ay, is closed and o, oo, # 0,

(Z”U) Z() = S;;

The second result provides two alternative constructions of the factorization A(\) =
E(A)D(AN)F(X), where E()X), F()) are analytic and invertible on D, and D() describes
the singularity of A(X) at 0.

Theorem 2.4 (Factorizations). Consider Definition 2.2 and let

BsN) =S Esad',  Ds() =S Pa X', Fy(\) =1 — My,
n=0 h=0
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Eo(N) =1 — M\, Da(\) =Y Py, A", Fa(\) =) Fan),
h=0 n=0

where

Egpn =P,y AME ' Bg m,

m
Ego=Fao0= Sh, ,
oo =S g AR,

h=0
and
Bgn =Y MiPs, _, ., Comn =Y Payy_ o (M2, n=0,...,m
k=0 k=0
Then
AN) = Ec(A)De(NFe(N),  C=a, B, (2.2)

where E¢(X), Fe(X) are analytic and invertible on D,.

This in turn allows to compute the resolvent and the logarithmic residues, see Corol-
lary 4.3 below.

The third result links these results with the classical ones based on ascent and descent
in Bart and Lay [10], showing how the subspaces in (1.6) can be constructed using the
quantities defined by the local subspace decomposition.

Theorem 2.5 (N, R, Ny, X, ). The subspaces in (1.6) can be constructed as

One can thus use these formulas to compute the restricted operators Z,, 4+, Z,4 and
the projections which deliver the resolvent and the logarithmic residues.

The next result characterizes image and null space of each operator in the principal
part of the resolvent.

Theorem 2.6 (Image and null space of Z,,, n = 0,...,m —1). Forn =0,...,m — 1,
tmage and null space of Z, are given by

m h—m+4n

m h—m+n
mZz,= @ P Ms, Kean:< ngah>
k=0 h

h=m—n
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The last part of the present paper considers the special case of Ay being Fredholm of
index 0; it characterizes the rank of the operators in the principal part of the resolvent
and links the dimensions of the subspaces in (1.6) to the partial multiplicities and to the
algebraic multiplicity of A(X) at 0.

Theorem 2.7 (Special case: Ag is Fredholm of index 0). If Agy is Fredholm of index 0, let
rp, =dimap =dim 8, h=1,...,m. Then

()0<r,<oo,h=1,....m—1, and 0 < 1y, < 00,

(ii) rank Z, = > _o(h+ 1)rp_pin < oo, n=0,...,m—1,

(4ii) dim A5, = dim A, = Y"1, hry, < 00,

(iv) the algebraic multiplicity of A(X) at 0 is equal to Y ;- hry < oo,

(v) the number of distinct partial multiplicities of A(X) at 0 is equal to >, | 1., >0,

(vi) there are exactly ry, partial multiplicities that are equal to h =1,...,m.

3. Poles of order 1 and 2

This section illustrates the main ideas behind the local subspace decomposition con-
sidering poles of order 1 and 2. The results in the present section are thus particular
cases of those in Section 2 but direct proofs are given here in order to illustrate the
working of the general case described in Section 4.

In the following, equations in system (1.8) are labelled according to the value of n; for
instance AgZy = 0 and ZyAg = 0 are equations 0 and the identities appear in equations
m, which is the order of the pole. The equations derived from A(A)AN)~! =1 € By
are called Y versions (and correspond to the first equation in (1.8)) and those that
derive from A(N)71A(N\) = I € Bx are called X versions (and correspond to the second
equation in (1.8)); for instance AgZy, + A1Zm—1 = I is the Y version of equation m.

Some implications of equations 0 and 1 are next derived; remark that these properties
hold for any value of m. From equations 0, AgZy = 0 and ZyAy = 0, one respectively
has

Im Zy C Ker Ao, Ker Zy O Im Ay,
i.e., letting 3y = (Ker Ag)* and oy = Im Ay, one has
Im Z gﬂd‘, Ker Zy 2 ayg.
The Lh.s. of the Y version of equation 1 reads AgZ; + A1Zy; use Pgi + Pg, =1 to
write A120 = Al(PﬁOL +Pﬁ0)ZO = A1P/30LZ0 +A1Pﬁ020 = AlPﬁ(J)‘ZO’ because PﬁoZO =0
follows from Im Zy C 33-. Applying P, on both sides of A1 Zy = AlPIBOL Z one has

Py AvZy = 512,

having defined 57 = Paé A1P50L; note that, by definition,
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ImS; CIm P%L = aé, Ker S; O KerPﬁoL = By,
i.e., letting a; = Im S; and 31 = (Ker S;)*, one has
ap € %L, B1 C ﬁol-
This shows that from the 1.h.s. of the Y version of equation 1, AgZ;, + A1 Zy, one has
P (AoZy + A120) = 517, (3.1)

because P%L Ay = 0 follows from Im Ag = ag.

Similarly, starting from the l.h.s. of the X version of equation 1, Z;Ag + ZyA;1, and
using P,, + P%L = I one has ZpA; = Zo(Paé + P, )A = ZoPaéAl + ZyPyy AL =
ZOPQ&Al, because ZyP,, follows from Ker Zy O ap. Hence ZOAlP% = ZOPaoLAl.PﬂOL,
ie. ZOAlPIBOL = ZyS1. This shows that from the Lh.s. of the X version of equation 1 one
has

(ZIAO + ZOAI)PB&' = Z()Sl7 (32)
because AOP]BOL = 0 follows from Ker Ag = B;-.

3.1. Poles of order 1

Consider the case in which A(\)~! has a pole of order m = 1 at 0. In this case, (1.5)

reads
\ — ) P 9 )

and (1.8) reads

AoZo = 0, ZoAy = 0,
AoZi+ MZo= I,  ZiAg+ ZoAy, = 1.
Because the identity is in equations 1, (3.1) and (3.2) respectively imply
$1Zy=P,s.  ZoSi=Pyy. (3.3)
Recall that ag € Ker Zp and Im S7; = a7 C aé; from S17Zy = P%L one has
i

Ker Zy = Ker P,1 = o, ImS; =ImFP,1 = ap,

and recalling that Im Z, C ﬁOL and Ker S = Bf D By, from ZyS, = Pﬂ& one finds
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Im Zo = Im Pyy = fy, Ker Sy = Ker Pg1 = 3.
This shows that if m = 1 then
ar=oay,  Bi=0y,
i.e.
X = po @ b, Y =@ a.

Conversely, when m > 1 the identity is not in equations 1 and (3.1) and (3.2) respec-
tively imply

Slzo = 07 ZoSl =0.
From AgZy = 0 and S1Zy = 0 one has
Im Zy C (Ker Ag NKer Sy) = By N B = (6o @ B1)*. (3.4)

Recall that 81 C Bi; because 31 = 3 implies Im Zy = 0, if m > 1 then 3; C 83-. Thus
B1 = B3 holds if and only if m = 1.
Similarly, from ZyAy = 0 and ZyS; = 0 one has

Ker Zp O (Im Ag @ Im S1) = ap @ ay. (3.5)

Recall that a1 C aé; because a1 = 040L implies Ker Zy = Y, if m > 1 then a3 C aOL.
Thus a; = o holds if and only if m = 1.

When m = 1, (3.3) thus reads S1Zp = P,, and ZpS1 = Ps,. The former implies
Z0S1Zy = ZyP,, and because Zy = ZyP,, one finds ZyS1Zy = Zy; similarly, from the
latter one has 517051 = S1P3, and because S; = S1Pg, one finds 512,51 = Si. This
shows that, when the pole has order one, Z; is the generalized inverse of S.

This proves the following statement.

Proposition 3.1 (Pole of order one). Let

S() = Ao, Qo = Im 507 ﬂ() = (Ker So)L, (36)
Sy =Py Q1Psy, o =Im Sy, B1 = (Ker Sp)*, (3.7)

where Q1 = Ay. The following statements are equivalent:
(i) A(\)~! has a pole of order m =1 at 0,
(1) X = Bo @ 51, where By is closed and By, f1 # 0,
(#i1) Y = g ® a1, where ay, is closed and ag, a; # 0,
(iU) Zo = Sf_



M. Franchi / Linear Algebra and its Applications 639 (2022) 243-281 255

Thus, when the pole has order one, Z; is such that
Im ZO = ﬁl, Ker ZO = Q.

Observe that these quantities are all expressed in terms of Ag and A; via the defini-
tions in (3.6) and (3.7); further note that Proposition 3.1 is found by setting m = 1 in
Theorem 2.3.

Next we illustrate the derivation of the  factorization A(X) = Eg(A)Dg(A)Fg(A) in
Theorem 2.4 for m =1 (the a factorization is obtained similarly from the X versions of
the fundamental equations). From the above one has

Ps,Zo =0, Ps, Zy = ST (3.8)

and from AygZ, + A1Zy = I it follows that AngZl + AgAlZO = Ag; substituting
Al Ag = Pg,, see (2.1), and rearranging one finds

P, Zy =S — S @12y,  So=A0, Q1 =A. (3.9)
Hence
-1 PﬂOZO — n—1 = n—1
Boy AN = “EZ0 4 Y Boy ZuN"t = PagZy+ ) Pay Zu
n=1 n=2

=S5 = S§Q1Z0+ Y PayZnpa X",

n=1
Applying AS; Q1 to A(\)~! one has
(ASF QAN = 5§Q120 + i Sq Q1 Z,\",
n=1
and summing up the two expressions one finds
(Pgy + ASTQ1)AN) " =S + i(PﬁOZn+1 + S5 Q1Z,)\",
n=1

i.e., see Proposition 4.2 below,
Fy(MAN) ™! = Fo(N),

where Fy(X) = P, + ASFQ1, Fo(\) = SF 4+ 0% (Pgy Znt1 + S Q12,)A" is analytic
on D, and Fp(0) = Si # 0. Moreover,
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oo

Ps, Z O —
Ps, ANt = Bl 0 ZPBIZ e +Zpﬂlznv—1,
n=1

1

i.e., see Proposition 4.2 below,
FEVAN) T =2 TER (0N,

where F1(\) = Pg,, i\ = St+3"°° | Pg, Z,\" is analytic on D, and Fi(0) = S #0.
Hence one has

Fu(NAN) = AP E, (N, Fo(W) =S+, h=0,1,
where Im S;” = ), and Ker S} = aji, see (2.1). Summing over h one finds

1

=Y NEN), FN) =) Fu)
h=0 h=0

where F()) is analytic on D,, F(0) = Z}L:O Syt is invertible and

le M FL(\) = Pg, + A(Pg, + S5 Q).
On the other hand, letting
Dg(\) = Pg, + Pg, A, Fg(\) =1— Mg, Mg = —S;Qx,
one has Ps,Ms = —P5,S§ Q1 = —S4 Q1 and Pg, Mg = —Ps, S Q1 = 0 and hence
Dg(A)Fs(\) = Pp, + (Pa, — Pa,Mg) A — Pg, Ms)®

= Pg, + (P, + 55 Q1) A Z N FL (A

This shows that F(A)A(X) = Dg(A)Fz()), i.e., see Theorem 2.4, one has the 3 fac-

torization
AN = Eg(NDs(VF3(V),  Eg(\) = F(\) " =Y EgaA",

where Eg g = ﬁ( 0)~! = Z,ll 0 Sy and the formula for Eg,, n =1,2,..., is found from
Es(\) = A(\)Fz(\)"'Dg(A)~!, see the proof of Theorem 2.4.
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3.2. Poles of order 2

Consider the case in which A(\)~! has a pole of order m = 2 at 0. In this case, (1.5)
reads

Z oo
A(A)*l——o+—+ZZA"2 AeD,\{0},  Zy#0,

and (1.8) reads

A()ZO = O, Z()Ao = 0,
A()Zl + A120 = O, Z1A0 + Z()Al = 0,
A()ZQ + A121 = I, ZQAO + Z1A1 = 1.

Recall that m > 1 implies a; C apg and #; C B3 Let ag = ag ® oy and by = By D fi;
then one has the orthogonal direct sum decompositions

Y =ay @ ay, az,ay # 0, X = by @ by, by, by # 0,
and the associated orthogonal projection identities
I'=Pa, + Py, I'=P,+ Py, P, Per # 0, ¢ = ag, bs.
Recall that if m > 1 one has Im Zy C by and Ker Zy D as, see (3.4) and (3.5), so that
Zy = Py Zy, Zo = ZoP,y. (3.10)

Next observe that from the Y and X versions of equation 1, AgZ; + A1 Zy = 0 and
Z1Ag+ZyA1 = 0, one respectively has A8'A0Z1 = —AS‘AlZO and Z1 Ag A = —ZOAlAa';
hence, see (2.1),

Py 7y = —AY A1 Zy,  Z1Pay = —Z0 AL AL

The Lh.s. of the Y version of equation 2 reads AgZs + A1Z; = I; using Pﬁé +
Pgo = I one has A1Z; = Al(Pﬂd‘ + PBO)Zl = A1Pﬁd_Z1 + AngoZl = AIPBJ-ZI +
Q27Zy, having defined Q5 = —AlA(J{Al. From Paé + P,, = I one finds A1 7, = (Paé +
PaO)Al.PB(]Lzl + Q229 = S177 + PaoAlPﬁoLZl + Q2Zy, where S; = PD&(JLAIPBDL and
a1 = Im S. Applying Pa,j on both sides of 417, = S17; "‘PaoAlPﬁ& Z1+ Q27 one has
PaéAlZl = PQZLQQZO = 5979, having used Z, = szL Zy and defined Sy = Pa,j QszZL,
as = Im Sy and By = (Ker S3)*; note that Im Sy C ImP,; = ay = (ap ® a1)* and
Ker Sy O Ker Pb% =Im P, = by = By ® B1. This shows that from the Lh.s. of the YV
version of equation 2, AgZs + A1Z1, one has
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Pa% (AOZQ + A1Z1) = 5979, (3.11)

because Paé Ay = 0 follows from Im Ay = ag.
Similarly, starting from the 1.h.s. of the X version of equation 2, ZoAg + Z1 A1, and
using projections (the details are omitted) one finds

(Z140 + ZoAL) P,y = ZoSs. (3.12)
Because the identity is in equations 2, (3.11) and (3.12) respectively imply
S2Zy =P,y ZoSy = Py . (3.13)
From S;Zy = P, one has
Ker Zy = Ker P%L = as, Im Sy, =Im Pazl = azl,
and from ZyS; = PbQL one finds
ImZy =Im Py =by,  KerS; =Ker Py = b,.
This shows that if m = 2 then
ay = (0 @ ay) ™, B2 = (Bo® P1)*,
i.e.
X = Bo® b1 @ Ba, Y =a0®a; @ as.

Conversely, when m > 2 the identity is not in equations 2 and (3.11) and (3.12)
respectively imply

SQZO = 07 ZOSQ =0.
From AgZy =0, S1Zy = 0 and S2Zy = 0 one has
Im Zy C (Ker Ag N Ker S; NKer Sy) = Bol NBENBE = (6o ® P& Pa)t

and because 2 = (B9 @ f1)* implies Im Zy = 0, if m > 2 then By C (Bp @ B1)+. Thus
B2 = (Bo ® B1)* holds if and only if m = 2.
Similarly, from ZyAy =0, ZpS1 = 0 and Zy.S2 = 0 one has

KerZp O (ImAg @ Im S & Im So) = ap ® a1 & as

and because as = (ag ® ;)" implies Ker Zy = Y and hence Zy = 0, if m > 2 then
as C (g @ ap)t. Thus az = (ag ® a;)* holds if and only if m = 2.
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When m = 2, (3.13) thus reads S2Zy = P,, and ZySy = Pg,. The former implies
Z0S2Zy = ZoyP,, and because Zy = ZyF,, one finds ZyS2Zy = Zy; similarly, from the
latter one has S3ZpS2 = S2Pg, and because S; = S2P3, one finds S27ZyS2 = S3. This
shows that, when the pole has order two, Zj is the generalized inverse of Ss.

This proves the following statement.

Proposition 3.2 (Pole of order two). Let Sy, an, Br, h = 0,1, be as in (3.6) and (3.7) and
define

SQ = PazLQQszL’ Qg — Im 52, ﬂg = (Ker SQ)J_, (314)
where

az = ag oy, by = Bo ® B, Q2 = —Q155 Q1 Q1=

The following statements are equivalent:
(i) A(N\)~! has a pole of order m =2 at 0,

(i1) X = Bo ® 51 & P2, where Py, is closed and [y, P2 # 0,
(#11) Y = g ® a1 B aa, where ay, is closed and o, as # 0,
(iv) Zog = S

Thus, when the pole has order two, Zj is such that
ImZQZﬁQ, KeI‘ZQZOZQ@Oél.

Observe that these quantities are all expressed in terms of Ag and A; via the definitions
n (3.6), (3.7) and (3.14); further note that Proposition 3.2 is found by setting m = 2 in
Theorem 2.3.

Next we illustrate the derivation of the § factorization A(X) = Eg(A)Dg(A)Fg(A) in
Theorem 2.4 for m = 2 (the « factorization is obtained similarly from the X versions of
the fundamental equations). From the above one has

Ps,Zo =0,  P3Zo=0, Ps,Zo=S5], (3.15)
from AgZ; + A1Zy = 0 it follows that Al AgZ; + Af A1Zp = 0 and hence, see (2.1),
Ps,Z1 = =Sy Q1 20, So = Ao, Q1 = Ay, (3.16)
and from AgZs + A1Z1 = I one has AgAOZQ + A0+A1Z1 = Aar, ie.
Ps,Zy = S5 — S5 Q171 (3.17)
Moreover, because Sfrag =0, Sf(AoZg +A177) = SfrAlZl and from AgZy + A1Z1 =1

one has SfAlZl = S’f; because, see above, A1Z7 = S171 + PaoAl,PBd_ Z1 4+ Q22Zy, one
has STA1Z1 = Sf“SlZl + SrPaoAIPB&ZI + S;'_QQZO = P5121 + S;'_QQZO, i.e.
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Ps, Zy = Si — S Q2. (3.18)
Thus
Ps. Zy P32 >
-1 _ 18 0 B 1 n—2
P, AN = )‘\’2 + + + Pg,Zs + 7?:3 Pg, Zp A\

SHQ1 7 —

n=1

Applying AS;Q; to A(A)~! one has

_ Sq Q12

3 + Sy Q121 + Z Sa Q1 Zpp1 A"

n=1

(ASg QAN
and summing up the two expressions one has

(Psy +ASgADAN) ™" = 55 + D (P, Znra + S5 Q1Zn+1)A",
n=1
i.e., see Proposition 4.2 below,

Fo(MAWN ™ = Fy(\),

where FO()‘) = Pﬁo + )‘SS_AD ﬁo()‘) = S(—)i_ + Z;.],OII(PBOZN+2 + SS_QIZnJrl)/\n is analytic
on D, and Fy(0) = S # 0. Moreover,

Ps Zy P32 >
Po, AN = B0+ S Y Py 2, A"
n=2
St —85TQ.Z >
_ 1 /\1 Q2 0 + Z Pﬁlzn+2)‘n'

n=0

Applying AS; Q2 to A(A\)~! one has

(st A = TP

> St QaZna N
n=0

and summing up the two expressions one has

[Ch—
(P3, +ASTQ2) AN = = + > (P, Znga + ST QaZny1) A",

n=0

i.e., see Proposition 4.2 below,
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FLN)AN) T =ATTR (),

where Fy(\) = Pg, +AST Qa, i\ = SE4+307 (P, Zngo+ ST Q2 Zn 1) A" T is analytic
on D, and F;(0) = Si" # 0. Finally,

oo + o0
Pu At = Dl NS p g oane2 52 LN pyzan?
B2 )2 B2 4n )2 B24n
n=1 n=1

i.e., see Proposition 4.2 below,
EBNAN T = A2,

where Fy(\) = Ps,, Fo(\) = Sy +3°> | P, Z, A" is analytic on D, and Fy(0) = S5 #0.
Hence one has

FuWAQN) = A"F, (), Fo(N) =S,  h=0,1,2,

where Im S;” = ), and Ker S} = aji, see (2.1). Summing over h one finds
FOAQ) = SN0, FO) =S R,
h=0 h=0

where F()) is analytic on D,, F(0) = Zi:o Syt is invertible and

2
D NFR(A) = Psy + AP, + 57 Qu) + X (Ps, + 57 Q).
h=0

On the other hand, letting
1
Dg(\) = Pg, + Po, A+ P3, N, Fg(\)=I1—Mg),  Msg=—Y_ S Qu1,
h=0

one has Pg, Mg = —PBhS;QhH = —S,J[Qthh h=0,1, and P3, Mg = 0 and hence

Dg(AN)Fs(X) = Pg, + (Pg, — Ps,Mg) A + (P, — P, Mg) \* — Py, Mp\®
2
= P, + (Ps, + 57 Q1) A+ (Ps, + 57 Q2) A = ZAhFh()\)-
h=0

This shows that F(A)A(X) = Dg(A\)F3()\), i.e., see Theorem 2.4, one has the 3 fac-
torization

AQ) = Bs(Ds(NFs(N),  Bs(\) = F\) ' =Y B,
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where Ego = F(0)~! = Zi:o Sy, and the formula for Eg ,, n =1,2,..., is found from
Es(\) = A(\)Fg(\)"1Dg(A)~1, see the proof of Theorem 2.4.

As the results in the next section show, the same structure applies to poles of order m €
N. The key result is presented in Lemma 4.1: this provides the subspace decompositions
of the fundamental equations that describe the underlying structure.

4. Order of the pole and factorizations

This section reports results in Lemma 4.1, which is of central relevance in the analysis
and provides the subspace decompositions of the fundamental equations in (1.8), and in
Theorem 2.3, which characterizes the order of the pole in terms of the orthogonal direct
sum decompositions X = @} , 8, and Y = @), an. A construction of root functions
of A(A\)~! at 0 is provided in Proposition 4.2 and this leads to two alternative construc-
tions in Theorem 2.4 of the factorization A(A) = E(A)D(X)F()A), where E()\), F(A) are
analytic and invertible on D, and D(\) describes the singularity of A(A) at 0. This in
turn allows to provide formulas for the coefficients of the resolvent in Corollary 4.3.

The next statement reports consequences of system (1.8) that are derived using the
projection identities that correspond to the subspaces defined recursively by the local
subspace decomposition. This lemma motivates Definition 2.2 and plays a central role
in the analysis, as all the results in the paper are consequences of (4.1) and (4.2) below.

Lemma 4.1 (Subspace decompositions of (1.8)). Consider Definition 2.2 and let P,. =
Pbé =1 and Z_1 = 0; then the Y wversion of equation n+h < m in system (1.8) implies

Sth“FPaiQh—&-lZn—l = 1n+h:mPaﬁ7 h:()a"'amfn' (41)
Similarly, the X version of equation n+ h < m in system (1.8) implies
ZnSh + Zn,1Qh+1Pb# = 1n+h:mpbf;7 h=0,...,m—n. (4.2)

First note that for h = 0, (4.1) and (4.2) coincide with (1.8); in fact, because P, = I,
Py =1, So = Ap, Q1 = Ay, and Z_; = 0, one has

A()Zn + A1Zn_1 = 1n:mI7 ZnAo + Zn—lAl = 1n:m17 n = 0, oo,

More informative relations arise from (4.1) and (4.2) by setting, for example, n = 0
and h = m = 1,2; for instance, (4.1) respectively delivers (3.3) and (3.13), which led
to prove Propositions 3.1, 3.2. The same structure is found for poles of any order, i.e.
setting n = 0 and h =m in (4.1) and (4.2), one has

SmZO = Payina ZOSm = Pb#b

This leads to the statement in Theorem 2.3, see the proof in Appendix A; note that
from (iv) in Theorem 2.3 one has
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Im Zy = S5, Ker Zy = a#b.

Further observe that (4.1) and (4.2) show how to linearly combine Z,, and Z,,_; in
order to get the zero operator; that is, they provide a construction of the root functions
of A(A\)~! at 0. In fact, applying S} to (4.1) and (4.2) to S, and using (2.1) one has

Pgh Zn + S;QhHZn_l = 1n+h:mS}T7 h=0,...,m—n, (43)
ZnPah + anlQh+1S;T = 1n+h:m5;7 h=0,...,m—n. (44)

Note that by setting m =1 and n = 0,1 in (4.3), one has
Ps,Zop =0, PﬂIZOZST, Pﬂozlzsg_SS_QlZO’

i.e. (3.8) and (3.9), which led to prove the j factorization when m = 1. Similarly, setting
m=2and n=0,1,2in (4.3), one has

PﬁOZ(J:O? Pﬁlz():(]a Pﬁ'zZO:S;_a
Py, Z1 = —S§ Q1 Zo, Py, Zy = St — ST Q22y,
Ps,Zo = Sg — S§Q171,

ie. (3.15), (3.16), (3.17), and (3.18), which led to prove the § factorization when m = 2.
The same structure is found for poles of any order and leads to the following statement.

Proposition 4.2 (Root functions). Consider Definition 2.2 and for h =0,...,m, let

Fu(N) = Ps,, + Mz S Qi1 En(N) = Pay, + AlngmQnia Sy (4.5)
Then for h=0,...,m, one has
FuNAN =X"F(N), AN T EN) = A E O, (4.6)
where Fy(\) and E,(X\) are analytic on D, and Fy,(0) = E,(0) = Sf # 0.

This shows that Fj(\) € Bx and Ej(\) € By are root functions of order —h of
AN)~! at 0. In fact, F,(\) and Ej,(\) factor out A™~" from Z(A\) = Y07, Z,\"
in A(\)™! = A"™Z(\) hence decreasing the order of the pole in Fy(A)A(N)~! and
ANTIEL,(N) to h=0,...,m — 1.

This leads to the statement in Theorem 2.4, see the proof in Appendix A. Theorem 2.4
provides two alternative constructions of the factorization A(A\) = E(A)D(A)F(X), where
E()), F(X) are analytic and invertible on D, and D()) describes the singularity of A(\)
at 0. The existence of the factorization A(X) = E(A)D(X)F(X) for an operator function
with values in the algebra of all bounded linear operators acting in a Banach space which
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are holomorphic in some neighbourhood of some point, except possibly at this point itself,
is discussed in Gohberg and Sigal [17] in the special case of Ay being Fredholm of index
0, i.e. dim Ker Ay and codim Im Ay = dim(Y/Im Ag) are finite and equal. The same kind
of factorization holds in the present setup and Theorem 2.4 provides two alternative
constructions of its factors.

Note that from Egg = Fao = Y5y Sk one has Ej¢ = F 5 = > 1" SF; further
observe that because S,S;" = P,, and S;}S, = Pﬁh one has SiPs, 8" = P,, and
S;PahSh = Pg,; hence

st (1) S
h=0

and thus

P, A (Z 5h> = Z S;F P, S = Dg(N)
h=0 h=0
AR = Es(NDs(NF5(N) = Es(\)Da(NE5(N),
where E3(0) = EB(O)EB_}) = I and F3(0) = E0F3(0) = > Sh. This illustrates that

the factors in (2.2) are not unique.
Finally note that from (2.2) one has

AN = Fe(N) T De(N) T E(N) ZZ AT (=

hence the following statement.

Corollary 4.3 (A formula for Z,,n=0,1,...). Forn=0,1,..., Z, can be computed as

Zn = Z Bﬁkaﬁ,nfk = Z Ba,nfkca,kv

k=0 k=0
where
n k
Bs., = Zk:o Mﬁpﬁmﬂwk
’ Mg mBﬂ7m
C — Z::O Panzfnﬁ»k- (M(;)k n= 07 ctt m
o Com(ME)—™ T on=m+1lm+2,...7
Con == Liee1 By g EpkCnt n=1,2...
Ba:n = - 22:1 Fo:(ljFa,kBa,n—k ’ T ’
and
_ Egp=P, AAM"'Bg .
C/@goiBa’O BO*FaO ZS 8, 0 B 8,

Fa,k = Ca7m(M;)k71A1PﬁOL '
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5. Chains and subspaces

This section presents the following results: Proposition 5.1 shows that Mgz and M, de-
liver chains for A(\) and A(M\)* at 0 and Theorem 2.5 links these chains to the subspaces
in the [10] direct sum decompositions. Theorem 2.6 characterizes the image and the null
space of the operators in the principal part of the resolvent via the same quantities and
Corollary 5.2 provides recursions for Im Z,, and Ker Z,,, n =0,...,m — 1.

From (2.2) one has A(\)Fz(A)~! = Eg(A\)Dg()) and Eo(A)"PAN) = Da(N)Fa(N);
direct manipulations of these equations allow to show that the operators Mg and M,
introduced in Definition 2.2 deliver chains for A(A) and A(\)* at 0.

Proposition 5.1 (Chains). Consider Definition 2.2 and for h = 1,...,m, let zp0 € B
and yno € ap be nonzero vectors and further define

Thn = MgTpn_1, Yhon = MaYhn—1, n=12....
Then
Aoxno =0, Aozhp + A1zh -1 =0, n=1,...,h—1,
ASyn,o =0, Aynn + Alynn—1 =0, n=1,....,h—1,
and
Aoxpp + Arxpp—1 # 0, Ay + Alyn,n—1 # 0.

Moreover, the vectors in the X and Y -chains

Th,05+++3sLhh—1, Yn,0y -+ - Yh,h—1, h = 17"'7m7
are linearly independent.

This shows that xp0,Zn1,..., %k k-1 is a chain in X of maximal length h =1,...,m
for A(X\) = Ap + A1\ at 0 and similarly, yp.0,Yn.1,---,Yn,n—1 is a chain in Y of maximal
length h = 1,...,m for A(A\)* = A + A} at 0. Remark that, because Ker Ag = 37, no
X-chain is associated to the subspace By and similarly, because Ker A5 = (Im Ag)* =
oz(J)-, no Y-chain is associated to the subspace ag; moreover, the orthogonal direct sum
decompositions Ker 49 = @), Bn and Ker Aj = (ImAg)t = )", a; isolate the
subspaces that deliver chains that have the same maximal length.

Consider the X-chains (the interpretation of the Y-chain is similar) and the orthogonal
direct sum decomposition Ker Ay = @Zl:l Br. Fix a nonzero vector xj9 € fp and
repeatedly apply the Mg operator to define zp,, = Mgzp, n = 1,2,.... Proposition
5.1 shows that such a chain ends after h — 1 repetitions, i.e. the chain associated to
Zh,0 € Br has maximal length h. Next take another nonzero vector 5 ¢ € 85 which is
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linearly independent of x5, o and construct in the same way the chain of maximal length
h associated to 5, ¢ € Bp. Proposition 5.1 shows that the vectors in these two chains are
linearly independent. This process is repeated as long as there are vectors in (3, from
which one can start a chain. Because of linear independence, the subspace defined by
the X-chains of maximal length h associated to the subspace §j is thus EBZ;(lJ Mg B
Collecting together the subspaces associated to the different (3, one has that the subspace
associated to Ker Ag = @), B is

m h—1

DD M5 s

h=1n=0

Similarly, the subspace defined by the Y-chains of maximal length h associated to the
subspace «ay, is @Z;(l) Moy, and the one associated to Ker Ay = (Im Ag)* = @), ax
is

m h—1

@@Mgah.

h=1n=0

This leads to the statement in Theorem 2.5, see the proof in Appendix A. Theorem 2.5
links the present results with the ones in Bart and Lay [10], showing how the subspaces in
(1.6) can be constructed using the quantities defined by the local subspace decomposition.
This allows to construct the operators Z, s+, Znz in (1.7) and the projections Py &,
P v, Py g, Py y associated to the direct sum decompositions in (1.6). It thus
provides a way to compute the resolvent and the logarithmic residues in terms of the
quantities defined by the local subspace decomposition.

The linear independence of the vectors in the X and Y-chains leads to the statement
in Theorem 2.6, see the proof in Appendix A. Note that for n = 0, Theorem 2.6 gives

Im Zy = B, Ker Zy = aﬂ;b,

which are already known from Theorem 2.3, and for n = m — 1,

m h—1 m h—1 €
I Zm 1 =P MBL = M,  KerZp,y = ( @M,ﬁah> = Ry,
h=1 k=0 h=1 k=0

which are already known from Theorem 2.5 since Py o = Zm—141, Pyr g = A1 Zm—1
and Im Py 5 =1Im Z,,,_1, Ker P y+ o = Ker Z,,,_;.
Further note that for n =1,...,m — 2, one has

Im Z; :Bm—l@ﬁm@Mﬁﬁma Ker Z; = (am—l @am@Maam)Lv
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m h—(m—2)+n m h—(m—2)+n +
mZ, o= P Miph, KerZ, = () & Mo
h=2 k=0 h=2 k=0
This shows in which way Im Z,, and Ker Z,,, n = 0,...,m — 1, respectively form an

increasing and a decreasing sequence of nested subspaces, see the next proposition.

Corollary 5.2 (Recursions for Im Z,, and Ker Z,, n=0,...,m —1). Let

n n
gﬁm :@Mgﬂm—n-i-lw §a7n :@Mgam—nﬁ-kv n=1,...,m—1
k=0 k=0

Then Im Zy = By, Ker Zy = a3 and

ImZ, =ImZ, 1 ®&,, KerZ,=kerZ, 1N&,, n=1...,m-1
Remark that, because 0 # Mg, C §s,n and 0 # Myam C {gn, one has the strict
inclusions

ImZ, >ImZ,_4, KerZ, C Ker Z,_1, n=1...,m—1
6. Special case: Ag is Fredholm of index 0

This sections considers the special case of Ay being Fredholm of index 0, i.e. dim Ker Ag
and codimIm Ay = dim(Y/Im Ap) are finite and equal.

It is well known, see e.g. Chapter XI in [15], that if Ay is Fredholm of index 0 then
Zp,n=0,...,m— 1, has finite rank and Z,, is Fredholm of index 0. Moreover, in the
Gohberg and Sigal [17] factorization A(X) = E(A)D(X)F()\) one can choose

D()\) = DO =+ DlA’il 4+ 4 DSAKS,

where 0 < k1 < Ko < -+ < Kg < 00 are positive integers, Dy is Fredholm of index
0, Dy1,...,Ds have rank one, and Dy, D1, ..., D are mutually disjoint projections that
decompose the identity.

D()\) is the local Smith form of A(\) at 0 and E(\), F((\) are extended canonical
systems of root functions. The integers 0 < k1 < ko < -+ < kg < 00 are the partial
multiplicities of A(\) at 0; remark that they are uniquely defined and not necessarily
distinct. Their sum Y. _, k,, < 0o is the algebraic multiplicity of A(\) at 0 and it is
denoted by k(A).

The operator version of the logarithmic residue theorem, see [17], states that

_ 1 ~1 _ RS -1
k(A) = trace 57 / A(N)THApd)N | = trace 57 / A1 AN) " dA
oD, oD,
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Because Py 4 = ﬁfaDP AN)TrA1d\ and Py g = ﬁfaDp A1 A(N)7Ld), this
implies

k(A) =rank Py » = rank P g+ o = dim A5, = dim .A4}. (6.1)

Remark that if Ay is Fredholm of index 0, Im Ay is closed and af = (Im Ag)*,
B3~ = Ker Ay are finite dimensional; hence Assumption 2.1 is satisfied.
A direct consequence of Theorems 2.5 and 2.6 is the following.

Corollary 6.1 (Rank of Z,, n=0,...,m — 1, and dimension of Ny, N, ). Assume that
Ay is Fredholm of index 0 and let rp, = dimap =dim By, h=1,...,m. Then

0<r, <oo, h=1,...,m—1, 0<ry, <oo,
ranan:Z(h+1)rm_n+h < 00, n=0,....,m—1,
h=0

and
dim A, = dim .4, = Zhrh < 00.
h=1

This expresses the rank of the operators in the principal part of the resolvent and
the dimension of the subspaces in (1.6) in terms of the quantities defined by the local
subspace decomposition.

Combining (6.1) and Corollary 6.1, one can express «(A) as follows.

Corollary 6.2 (Algebraic multiplicity of A(N\) at 0). If Ay is Fredholm of index 0, then
the algebraic multiplicity of A(\) at 0 is equal to Y, | hry, < oo.

Finally it is shown that the local subspace decomposition fully describes the partial
multiplicities; this is a direct consequence of Theorem 2.4, which states that in the
Gohberg and Sigal [17] factorization one can choose D(A) = > ;- Pg, A" or D(\) =

Yoo Pan PUR

Corollary 6.3 (Partial multiplicities of A(\) at 0). If Ag is Fredholm of index 0, then the
number of distinct partial multiplicities of A(X) at 0 is equal to > - 1,, >0 and there
are exactly rn, < oo partial multiplicities that are equal to h =1,...,m.

Remark that r,, > 0 but r, can be 0 for some h = 1,...,m—1; in this case, no partial
multiplicities is equal to h. The results in Corollaries 6.1, 6.2 and 6.3 are collected together
in Theorem 2.7.
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Appendix A. Proofs

Proof of Lemma 4.1. The proof of (4.1) is by induction and consists in showing that the
Y version of equation n = 0,...,m in system (1.8) implies

Sth—h+Pa#Qh+1Zn—h—l = ln:mPaﬁv h:()alw"vna n=0,...,m; (Al)

replacing n with n—+h one finds (4.1). In order to show that (A.1) holds for h = 0, observe
that the Y version of equation n in system (1.8) reads AoZ, + A1Z,—1 = lp—mI. By
definition, P+ = I, Sy = Ap and @1 = A; and this shows that (A.1) holds for h = 0.
Next assume that (A.1) holds for h = 0,...,¢ — 1 and show that it also holds for
h = £ < n. First note that S;Sh = Pg, and S;[Pat = S;; hence applying S;Lr on
both sides of (A.1), by the induction assumption one has that the Y version of equation
n=0,...,m in system (1.8) implies

Py, Znn + Si Qni1Zn—h—1 = Loem Syl h=0,1,...,0—1, n=0,...,m.

Observe that, because n —f¢+h <n—1<mforh=0,1,...,/—1,in equation n— £+ h
one has 1,,_¢4r=m = 0 and hence

Pﬁ;LZn—Z = _S]TQ}H-IZn—@—la h=0,1,....0—1. (A2)
Next write (A.1) for h=4¢—1,

Se—1Zn—t41+ Pop QuZn—o=1n—mP,s ,

where Im Sy_1 = ay_1, see Definition 2.2; applying Pazh where ay = @f;t ay, on both
sides of this equation and using P, S,y =0 and F,1 P,. = P, one has

Py QZn—t = ly—mP,y. (A.3)

Next consider by = @2—210 Br, and use projections, inserting I = ij_ + P, between Qg
and Z,,_y; one finds

Pt QeZn—¢ = (P%L szb;) Zn—t+ Py QuPo, Zny.

Because Py, = i) Ps,, one has P, QuPy,Zn_¢ = P, QY _g Ps, Zn_y and by the
induction assumption, see (A.2), one finds
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£—1
PoyQePyZno=—Po | QuYS; Qi | Znva.
7=0

By Definition 2.2, one has PaéLQngéL = Spand Q11 = —Qy Zﬁ;é S;Qj+1 and hence
one rewrites (A.3) as

SeZn—t+ Py Quyr1Zn—t—1 = Ln=m Py

This shows that (A.1) holds for A = ¢ and completes the proof of (4.1). The proof of
(4.2) applies similar arguments to the X version of system (1.8) and it is omitted. W

The proof of Theorem 2.3 makes use of the following lemma.
Lemma A.1. Consider Definition 2.2. Then Im Zy C b} and a,, C Ker Zj.
Proof. For n =0, (4.1) and (4.2) read
ShZo = lh=m Py, Z0Sh = lh=mPy1 h=0,...,m, (A.4)
and imply
SnZo = ZpSp, =0, h=0,...,m—1

From Sy, Zy =0, h=0,...,m — 1, one has Im Z, C (ﬂzzol Ker Sh). By Definition 2.2,

L
KerS;, = S~ and hence Im Zy C () B = (@Z:ol Bh) = b, This proves the

first statement. From ZySy, = 0, h = 0,...,m — 1, one has @Z:Ol Im S}, C Ker Zy. By
Definition 2.2, Im S}, = a5 and hence @Z:ol ap = a,;, C Ker Zy. This completes the
proof. W

Proof of Theorem 2.3. First note that by definition, () holds if and only if the identity
is in equation m of system (1.8).

(i) < (4i): It is shown that (i) = (it) = (Im Zy = By) = (¢). Under (i), one has h =m
in (A4), ie. ZySm, = By, b # 0; by Definition 2.2, b,, C Ker S,, and because b,, C
Ker S,,, contradicts ZyS,, = Pbi, one has b,, = Ker S,,,. By Definition 2.2, Ker S,,, = B#L
and b, = B0 @ -+ ® Bm_1, and hence (ii). Moreover, by Lemma A.1, Im Zy C b;> and
because Im Z, C b#b contradicts ZyS,, = Py, one has Im Zy = b#l. Using b,ln = Bm, see
(i1), one finds Im Zy = S,,. Next let Im Zy = 3,,, and proceed by contradiction, assuming
that the identity is not in equation m, so that the first equation in (A.4) reads S, Zy = 0,
which implies Im Zy C Ker S,,, where Im Zy = f3,, and Ker S,,, = 8. Hence f3,, C 3%,
so that 3, = 0. This contradicts Zy # 0, i.e. that the pole has order m, and proves that
() holds.
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(i) < (iii): It is shown that (i) = (iii) = (KerZy = «;) = (i). Under (i), one
has h = m in (A4), ie. SnZo = Py, at # 0; by Definition 2.2, Im S,, C a;, and
because Im Sy, C a;, contradicts Sy, Zo = P, , one has Im S,,, = a;,. By Definition 2.2,
Im S, = a,, and a;; = (ag @ -+ ® ,y_1)+, and hence (iii). Moreover, by Lemma A.1,
am C Ker Zy and because a,, C Ker Zy contradicts S,, Zg = Pa#ﬂ one has a,, = Ker Zj.
Using a,, = a;, see (iii), one finds Ker Zy = a;,. Next let Ker Zy = a5, and proceed
by contradiction, assuming that the identity is not in equation m, so that the second
equation in (A.4) reads ZyS,, = 0, which implies Im S,,, C Ker Zy, where Im S,,, = .,
and Ker Zy = ;.. Hence oy, C a;h, so that oy, = 0 and thus a;, = Y. This contradicts
Zy # 0, i.e. that the pole has order m, and proves that (7) holds.

Finally note that S,,Zy = P,,, implies ZoSm,Zo = ZoP,,, and because Zy = ZoP,,,
one finds ZySy, Zy = Zp; similarly, from Z,S,, = Pg,, one has S,,ZyS,, = S»Ps,, and
because S, = Sy, Pg,, one finds S, ZyS,, = Sy,. Hence Zj is the generalized inverse of
Sm. N

Proof of Proposition 4.2. It is first shown that F,(A\)A(A) ™! = A"F,(A), h=0,...,m.
Applying Pg, on both sides of (1.5) one obtains

Py, A" = Ps, ZoATm N, (A.5)
n=0
First consider h = m; setting n = 0 and h = m in (4.3) one finds P, Zy = S;.
This shows that (A.5) implies Fy,(A)A(A)™* = A=™F,,()), where F,,(\) = Pg,, and
F,(0) = Si.
Next consider h = m — 1; setting n = 0 and h = m — 1 in (4.3) one finds Pg,, ,Zp =0
and setting n =1 and h =m — 1 in (4.3) one has Ps,, ,Zy =S, | — S} QnZo. This
shows that (A.5) implies

Ps, AN = (Sh_y — S _1QuZoA " 4 S Py ZaA T,

n=2

Applying AS;> @, on both sides of A(\)~! =37 ' Z,A"™*" one obtains

n=0

(ASH_1Qum)AN) ™t = SF 1 QumZoA ™ + Z S 1QmZp AT

n=1

and summing these two expressions one has

(P 4 A8 1 Q) AN = S5 N 43 (P Zu b S 1QuZ) X

n=2

This shows that (A.5) implies Fr_1()AN) ™" = A" Fy 1(A), where Fruo1()) =
Pﬂnlfl + )\S;:’;_lQm and Fm—l(o) = S+

m—1-
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Finally consider h =0,...,m — 2. Write A(A\)™' =>">° [ Z,A"™"™ as

m—h—1
AN =20+ Y Za AT AT Ry(N), Ro(0) = Zy,

n=1
and apply P, on both sides to find

m—h—1
AN =P, ZoA T+ Y Pg, ZuAT + AT Py, Ro(N).

n=1

Pg

h

Setting n = 0 in (4.3) one has Pg, Zy = 0 and hence

m—h—1

P, AN = > Pp, ZoAT"T 4 APy, Ry (M), (A.6)
n=1

Because 1p4p=m = 0forn =1,...,m—h—1, from (4.3) one has Py, Z,, = —S;Qh+1Zn_1
and hence

m—h—1

m—h—1
> =5 (3 2.
n=1 n=1

Next write
m—h—1
)\A(/\)*l = < Z Zn_l)\"”") + )\*th(x\), R1(0) = Zp—1,
n=1
so that
m—h—1
> P Zo AT = =S Quit AN T+ ATS Quia R (V).

n=1

Substituting this expression in (A.6) and rearranging one finds Fj,(\)A(\)~t =
A"hEL()), where

Fr(A) = Pg, + AS} Qui1,  Fu(\) = P, Ro(\) + S)f Qni1Ri(N).
Note that, because Ry(0) = Z and R;(0) = Zp_1, one has
F(0) = P, Zn + S Qui1Zn—1 = Sy,
where the last equality follows setting n = m — h in (4.3). This shows that

Fy(NAN) T =A""E,(\),  h=0,...,m,
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where Fj,(A) = Ps, + 1pzmS; Qnii X and F,(0) = Sy, ie. Fn(\) € Bx is a root
function of order —h of A(A)~! at 0. This completes the proof of the second equality in
(4.6). The proof of the first equality in (4.6) applies similar arguments to A(\)"1P,, =
>0 o Zn P, ™™™ using (4.4) and it is omitted. W

Proof of Theorem 2.4. It is first shown that A(A) = Eg(A)Dg(A)Fg(A). From (4.6) one
has

Ex(WAN) = N'F,(\),  Fa(0) =S,  h=0,...,m,

and summing over h one finds

FA)AN) = f: NE,(N),  F(\) = i EFi(N). (A7)
h=0 h=0

First it is shown that F(0) = 37", F(0) = Y37 S is invertible: because Im S; = 3,
and X = @), Bn, see (ii) in Theorem 2.3, F(0) is onto. Because Ker S;" = a;- and
Y =@, on, see (iii) in Theorem 2.3, one has

m L m m
0= (@ah> = ﬂocf;: ﬂKerSZ‘:KerF(O),
h=0 h=0 h=0

i.e. F(0) is one-to-one. This shows that F(0) is invertible and thus F()) is analytic and
invertible on D,. Note that

h=0 h=0 0 h=0
<Z 5;) (Z Sh> =3 SfS=> P =1,
h=0 h=0 h=0 h=0

(Z Sh> => St (A8)
h=0 h=0

Next it is shown that F(A\)A(A) = Dg(A)Fz()A). Consider the r.h.s. of (A.7); using the
definition of Fj(\) in (4.5), this can be written as

Z AhFh(/\) = Pg, + Z (Pﬁh + S;—lQh) A",
h=0 h=1
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On the other hand, the definitions of Dg()) and Fz(A) imply

Dg(N)Fs(A) = Ps, + > (Ps, — Ps,_, Mg) A" = Pg, MaA™ ™,
h=1

where Pg, Mz = —Ps,_, Y70 S5 Qi1 = —Ps,_,S;_1Qn = —Si_,Qn for h =
1,...,mand Pg Mg = —PFg, Z;':Ol S;'QjH = 0 because Im S;" = 8. Hence

Dg(N)Fp(A) = Pg, + Z Pg, + Sy ,Qn) A ZAhFh
h=1

This shows that F(A\)A(\) = Dg(N)F3(A), i.e. A(N) = Eg(A\)Dg(N)Fg(A), where

Es(\) = F(\) 7, Dﬁ(A)ZiPmAh, F(A) =1 — MgA.

Note that Eg(A\) and Fg(A) are analytic and invertible on D, because Fg(0) = I and
Es(0) = F(0)~! = (>, S;f)fl = > 4y Sh. This completes the proof of (2.2) for
¢ = B. The proof of A(A) = E4(A) Dy (X)Fy(A) applies similar arguments to A(A) Ep(\) =
M ER(N), Ep(0) =S, h =0,...,m, and it is omitted.

Next it is shown that the operators Eg , in Eg(\) = Y. | Eg , A" satisfy the formulas
given in the statement. From Eg(0) = > ;- S, one has Ego = >, S, and because
Eg(\) = AN Fs(A\)"'Dg(A\)~t = Y07  Egn A", the formula for Eg,, n = 1,2,...,
is found as follows. Let Bg()\) = Fs(\)"'Dg(N)7"; from Fg(\)~! = Y202  MEA" and
Dg(\) "t =Y", P3, A" one has

Bs(\) = Fz(\)"1Dg(N) (Z My A”) (Z Pﬁhxh> =Y B A",
h=0 n=0

n=0
where
SheoMEPs .. n=0,....m
Bgyn = SO . A9
P { Mg_mBB7m, n=m+1,m+2,... (A.9)
Hence
Bs(N) = ANEs(N T Ds(N) ™" = (Ag + AN Y By Am
n=0
implies
AoBgn + A1Bg 1 =0, n=0,...,m,

Eﬁ,n :AOBB,ern + AlBﬁ,m+n713 n=0,1,...,
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having defined Bg _1 =0, i.e.
Egn=(AoMg+ A)M; 'Bgm, n=12,....
Because Mg = —EZ:Ol S Qnt1, see Definition 2.2, Ker Ag = 1 @ -+ & B, and
ImS,JLr = [, one has AgMg = —AOSJQL Recall that Sop = Ap and Q1 = Ay, see

Definition 2.2, so that AOSS'Ql = P,,Ai; hence AgMpg + A1 = (I — Poy)Ar1 = PaéAl.
Thus

Egn =Py AAMS ' Bg o,  n=1,2,.... (A.10)
This completes the proof for Eg,, n = 0,1,.... The derivation of the formulas for

F, ., in the statement applies similar arguments to F,(\) = Do (A)71EL(N)7TA(N) =
>0 o FanA™ and it is omitted. It introduces the notation

Ca(N) = Da(N) ' Ea(N) ™ =) CandA™™™, (A.11)
n=0
where
ZZ—OPOL - +k(M*)k7 n=0,...,m
an — - mon o . . A.12
Ca, { Com (ME)™, n=m+1m+2,... ( )

Proof of Corollary 4.3. From (2.2) one has
AN = Ba()CH0N) = BaNCa(N) = 3 2™,
n=0
where
Bg(\) = Fs(\)"'Dg(\) ™ = iBﬁm/\"_m,
Cs(\) = Eg(\) ! = i@@a,nkn,
Bo(\) = F,(\)7' = i Bon\",

n=0

Ca(N) = Da(N)T'Ea(N) 7 =D CanA™™
n=0
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The expressions of Bg, and C, , are given in (A.9) and in (A.12) and those of Eg
and F, are taken from Theorem 2.4. Because Eg(0) = F,(0) = >.;" S, is invert-
ible, those of Cs, and B,, are found from Eg(A)Cs(\) = Fo(A)Ba(A) = I, ie.
k=0 BskCo.n—k = X—o FakBan-k = In=ol. W

Proof of Proposition 5.1. We first prove the statement for the X-chains. From (2.2) one
has A(X)F3(A)~! = Es(A)Dg()), and substituting Fz(A\) ™" = "2 ) MFA™ and Dg(\) =

Sor o Ps, A" one finds A(\) (ano Mg)\") = Eg(\) (X5, P3,A"), which implies

A) (i Mg&,)”) = \N"Eg(\) P, , (A.13)

n=0

where E(0)Ps, = Si,. Substituting A(A\) = Ap + AA; and rearranging, one rewrites the
Lh.s. of (A.13) as

(AO + )\Al (Z Mgpgh ) AOPBh + Z AOMB +A1M” I)Pgh)\n

n=0 n=1

thus (A.13) implies AgPs, = 0 and

0, n=1,...,h—1
AoME + A MG~ Ps, = v
(0 5+ 1 ﬁ )Bh {Sh7 n:h ?

That is,

0, n=1,...,h—1

Al14
th}%o 7& 0, n=~h ’ ( )

Aoz =0, Aoxhm + A1Thp—1 = {

where x5, ¢ is a nonzero vector in 35 and zp, = Mgsch,o. This completes the proof of
the first part of the statement.

In order to prove the second part of the statement, we wish to show that the
vectors vi,vo,...,Um, where v, = 2221 ChnThn—1 for some scalars cj p, are lin-
early independent. Suppose not, i.e. assume that there exists a linear combination
w = Z;nzl by, such that w = 0 for some scalars by, ...,b, not all equal to 0. Let-
ting H={h=1,...,m: by # 0} be the set of indices of the nonzero scalars in the linear
combination, one has w =, 4, bpvn, by # 0.

Consider P%LAlw = > hew bnwn, where wy, = PaéAlvh, and observe that (A.14)
implies

0, n=1,...,h—1

A.15
Sh$h70 7é 0, n=~h ’ ( )

PorAizp -1 = {
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because P%LAO =0 and P%L ShL = Sh.

Hence wy, = P%LAlvh = ZZ=1 ch,nPaéAlth_l = ¢p,nShTh 0, see (A.15). From w =
0 it follows that 0 = P, Ajw = > hew bnwn, by # 0, and because the a-subspaces are
orthogonal and wy, € ay, this contradicts w = 0 unless wy, = 0. Since wy, = cp pSKTHo =
0 if and only if ¢ 5, = 0, it must be that v, = Zz;i ChonThn—1-

Then consilder PaéAlMﬁw = ZhheH brup, where u;, = Pa& A1 Mpgvyp; because

-1 ~1

Mgv, = > chnMpThn-1 = >.,._|ChnThn, One has u, = P AiMpgv, =
ZZ: ch,nPaéAlxh,n = Cph—15Th,0, see (A.15). From w = 0 it follows that 0 =
Poy AiMpw = ), 4 bnun, by # 0, and because the a-subspaces are orthogonal and
up, € oy, this contradicts w = 0 unless uy, = 0. Since up, = cp,h—1.5,Th,0 = 0 if and only
if ¢p p—1 = 0, it must be that vy, = ZZ;?
finds cpp—2 = -+ = ¢cp,1 = 0. This shows that 0 = w = Ehe?—t brup, by # 0, implies
vp, = 0 hence reaching a contradiction. This proves that the vectors vy, vs,...,v,, are

Ch.nTh,n- Iterating on the same reasoning, one

linearly independent and completes the proof of the statement for the X-chains.

The proof of the statement on the Y-chains (the explicit steps are omitted) applies
similar arguments to E,(X\)7LA(X) = Dy (A Fu(N), see (2.2), and arrives at P,, Ag = 0
and

\n T 0, n=1,....,h—1
Pay (M) Ao + (M) 1A1>—{sh, n=h L h=llm,
and taking adjoint one has A§F,, = 0 and
0, n=1,...,h—1

AXM™ A*Mn—l Pa — ) ) ) , hzl, \

( 0 a+ 1« ) h {S;;, n=~nh m
Hence

0, n=1,...,h—1

1,...
Ao =0,  Alynn+ Afypn_ ,
oYh,0 oYh,n 1Yh,n—1 { Sth,o # 0, n=h

where yp 0 is a nonzero vector in o and yp = Miyno. B

Proof of Theorem 2.5. Given n > 1 and vectors &, ...,&, in X, Bart and Lay [10] call
(€0, --,&n) is a chain of length n 4+ 1 if Apé; + A1€j4+1 = 0 for j = 0,...,n — 1. Here
we let pp—; = &, 7 = 0,...,n, and write the chain in reverse order (o, ...,¢n) =

(&ny .-, €0), so that Agpji1+Aipj =0for j =0,...,n—1. In the present notation, the
characterization of .4;, given in Bart and Lay [10] is as follows

Np ={xz € X : I chain (po, ..., ¢n) such that ¢, =z and o = 0}.

That is, the chains that are used to construct .4;,, n = 1,...,m, are such that



278 M. Franchi / Linear Algebra and its Applications 639 (2022) 243-281

Agp1 =0, Aopjt1 + Arp; =0, ji=1,....,n—1, n=1,...,m.
From Proposition 5.1, (replacing n with k) one has
Aoz =0, Aozpp + Arzp -1 =0, k=1,...,h—1, h=1,...,m,
where xj, o a nonzero vector in g, and zp, = Mg$h’0, and
Aoxpn + Arxp -1 # 0, h=1,...,m.

Hence ¢ can be chosen equal to zp for h = 1,...,m, i.e. 4 = @, Br, 2 can be

chosen equal to xp1 = Mpxpo for h = 2,...,m and to xp for h = 1,...,m (setting

o1 =0), ie. M = (D)o MaPh) ® M = @h 1 @mm(h L) MgaPh, @3 can be chosen

equal to xp 2 = ngh,o for h = 3,...,m, to 51 = Mgz for h = 2,...,m (setting

w2 =0) and to zp o for h=1,...,m (setting ¢1 = @2 = 0), i.e. S5 = (@Zn:s Mg,é’h) &)
— @, @t Mkﬂh, and so on. This shows that

m min(h—1,n—1)

%z@ @ Mgﬂh, n=1,...,m.
h=1 k=0

Hence

m h—1 m
N =D MBS, A= Art = A DD MEB

h=1 k=0 h=1 0

>
—

>
Il

Applylng a similar reasoning to A(N)* = A{ + AT A with decompositions Y = ] @@m,
X = JV’ © 4., where N, % correspond to ¥, Z in the Bart and Lay [10] construction,
one finds

min(h—1,n—1)

m
a k
:@ @ Moy, n=1,...,m,
k=0

h=1
and hence
m h—1 m h—1
i k Nz * * k
N = @ M ap, N = AT, = A @ M o,
h=1 k=0 h=1 k=0

Because Y = </17r; Y — =" EB%” and X = </V’ EB%)’ = N ® Ry, where </17r; (f@m)
is isomorphic to ;) (%,,) and </V' (%) is isomorphic to A, (%), one can take
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Proof of Theorem 2.6. From Corollary 4.3 one has
n n
Zn =Y BsiCsnr = BamirCoun n=01,...,
k=0 k=0

where

k J
Bsj = Zj:ok]t/{gpﬁm_wj ’
' Mg Bg,m

k %37
Cor = Zj=0 Pamfkﬂ' (Ma)j k=0,....m
“ Com(MXE=™ 7 k=m+1m+2,...°

Observe that, because of linear independence of the X and Y-chains, one has

ImZ, =@ mBsy, ImZ,=PImC;;, n=0...,m-1, (A.16)
k=0 k=0
where
k ) k
ImBsy = @ M)Bm-rs;,  ImCh =P Mom iy, k=0,...,m-1L
j=0 §=0

Thus

h—m+4n

@ Miah, n=0,....,m—1.
k=0

m h—m+4n

mZ,= @ P Mip, ImZzZ; = ETQ
k=0 —m—

h=m—n h n

Because Ker Z,, = (Im Z*)*, this completes the proof of the statement. B

n

Proof of Corollary 5.2. From Im Z,, = @;_,ImBgx, n=0,...,m — 1, see (A.16), one
has

n—1
Im Z,, = <@Im357k> ©ImBg,=ImZ, 1 ©&n, n=1...,m—1,
k=0

where g, = ImBg,, 2 Mgﬂm # 0 because of linear independence of the X-chains.
This proves the statement about Im Z,,. Similarly, from the second equation in (A.16)
one has

ImZ’;kL:ImZ:,fl@ga,na n:].,~..,7’n—]_7

where §on = ImC} ,, 2 Mya, # 0 because of linear independence of the Y-chains.
Hence
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(Im Z3)*" = (Im Z;_y ®&an)™ = (Am Z5_ )" NEL,,
i.e.
Keanzkeern_lﬁfl n=1,...m—1. N

a,n’

Proof of Corollary 6.1. Because of linear independence of the vectors in the X-chains,
one has dim(Mgﬁh) =dim 3, = r;, and

m h—m-+n m
dimImZ, = Y Y dim(Mfpy) = Y (h—m+n+1)r,
h=m—-—n k=0 h=m—n

ie rank Z, = >, _o(h+ 1)rm—nin, n = 0,...,m — 1. Because dim .4, = dim.4}, =
rank Z,, 1, this proves the statement. W

Proof of Corollary 6.3. Let ¢ be the number of distinct partial multiplicities of A()\) at
0 and for h =1,...,q, let my, be one of the distinct partial multiplicities. That is, write
0<kr <kp < <Rg<ooas<m <mg < -+ < my < oo, where m; = k1 and
mg = K, and let s, be the number of non distinct partial multiplicities x; that are equal
to my,. Consider D(\) = Dy + D1 A"t + -+ 4+ DA% and sum the projections that load
the same partial multiplicity into D()), i.e. let

Moy = Dy, My =D+ + Ds,,
M2:D51+1+"'+D31+52, Mq:DZZ;lshJ"l—‘r.”—'—Ds’

1

so that D(A\) = Mo+ MiA™ +- - -+ Mg\, where My, My, ..., M, are mutually disjoint
projections that decompose the identity, My is Fredholm of index 0, and rank M} = sp, <

00, h = 1,...,q. Remark that ¢, {m1,mqo,---,mq} and {s1,s2,---,8,} are uniquely
defined. By Theorem 2.4 one can take D(A) = >_}"  Pg, A" (or D(X) = Y1 Pa, A"),
where dim o, = dim 3, = 73,; hence one has that ¢ = >}" | 1, 501, {m1,ma,- -+ ,mg} =

{h=1,...,m:ry, >0} and {s1,82, -+, 84} = {rn,h = 1,...,m : rp, > 0}. Thus the
statement. W

Proof of Theorem 2.7. See the proofs of Corollaries 6.1, 6.2 and 6.3. W
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