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Introduction

This thesis deals with variational models for systems governed by nonlocal interactions. In
particular, we analyze systems of hard spheres governed by attractive Riesz potentials, surface
energies related to fractional perimeters and gradient flows of such energies leading to local and
nonlocal geometric evolutions; eventually, we consider similar problems for densities governed
by Gagliardo-type seminorms, focussing on fractional heat flows.

The thesis is constituted by three - almost self-contained - chapters, corresponding to the
three articles written during my PhD studies, see [54], [36] and [31]. In the first chapter we
introduce a model for hard spheres interacting through attractive Riesz type potentials, and
we study its thermodynamic limit. In the second chapter we consider a core-radius approach to
nonlocal perimeters governed by kernels having critical and supercritical exponents, extending
the notion of s-fractional perimeter, defined for 0 < s < 1, to the case s > 1. We study
the I'-convergence and the convergence of the corresponding nonlocal geometric flows, as the
core-radius vanishes. In the third chapter we study the limit cases, as s — 07 and s — 1, for
s-fractional heat flows with homogeneous Dirichlet boundary conditions.

In the following we describe in more details the content of the three chapters of the thesis.

In the first chapter we introduce and analyze variational models for hard spheres inter-
acting through Riesz type attractive potentials. The model consists in minimizing nonlocal
energies of the type

> KP(|lzi — aj), (0.0.1)
i

over all configurations of N points {1, ... ,zy} C R? satisfying |z; — ;| > 2 for all i # j;
here KP : RT — (—o00,0] is a power-law attractive potential K?(r) ~ —Tip for large r, with
p € (0,d + 1). Eventually, we consider the thermodynamic limit N — +o0.

The thermodynamic limit is described by a nonlocal energy that is a Riesz type continuous
counterpart of for p € (0,d); in the case p € [d,d + 1) fractional perimeters arise
in the limit energy. In both cases p € (0,d) and p € [d,d + 1), the optimal asymptotic
shape is given (after scaling) by the Euclidean ball, and this is a consequence of the Riesz
rearrangement inequality and of the fractional isoperimetric inequality, respectively. These
results are obtained by providing a I'-convergence expansion of the energy.

The combination of the attractive potential together with the hard sphere constraint
provides a basic example of long range attractive/short range repulsive interactions. In this
respect, the proposed model fits in the class of aggregation [42] 20} 25] and crystallization [16]
problems, but with a substantial change of perspective due to the fundamental role played
in our model by the tail of the interaction energy. This is the case for both integrable and
non-integrable tails, referred to as wunstable potentials in the crystallization community [16].
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This is why in our model crystallization is replaced by the related but different concept of
optimal packing, while the microscopic structure does not affect the macroscopic shape, that
turns out to be the Euclidean ball.

To explain these new phenomena, we first provide an overview of the classical crystallization
problem, focussing on two basic models in two dimensions. They are based on minimization of
an interaction energy as in , for some potential K that tends to infinity as » — 0, has a
well at a specific length enforcing crystallization and fixing the lattice spacing (and structure),
and rapidly decays to 0 as » — +o00. The basic potential is provided by the Heitmann-Radin
model [51] which consists in systems of hard spheres whose pair-interaction energy is +o0o
if two balls overlap, it is equal to —1 if the balls touch each other, and 0 otherwise. In two
dimensions, and for fixed number N of discs, minimizers exhibit crystalline order: the centers
of the discs lie on a subset of an equilateral triangular lattice. Moreover, for large N the discs
fit a large hexagon. The first phenomenon is referred to as crystallization, the second as
macroscopic Wulff-shape. Crystallization is due to local optimization of the potential around
its well: almost each particle tends to maximize the number of nearest neighbor particles. In
view of the hard disc constraint, such a number is 6. The macroscopic Wulff shape is the
result of the minimization of the number of boundary particles that have the wrong number of
nearest neighbors. In this respect, the macroscopic shape minimizes an anisotropic perimeter
energy; under a volume constraint, this is nothing but the anisotropic isoperimetric problem,
whose minimizer is the Wulff shape [44]. Recently, these phenomena have been analyzed in
details in the solid formalism of I'-convergence [11], 37, [45].

A less rigid and most popular model in elasticity is given by the polynomial Lennard-Jones
type potential; the hard sphere constraint is replaced by a repulsive term which is infinite
only at 0; the only negative value in the Heitmann-Radin potential is replaced by a narrow
well, while the zero-long range interaction of the Heitmann-Radin potential is replaced by a
rapidly decaying tail energy. In [70] it is proved that, if the well of the potential is very narrow
and the tail is a small enough lower order term, then the crystallization property is preserved
in average, namely the regular triangular lattice is energetically optimal as the number of
particles diverges; furthermore, under Dirichlet or periodic type boundary conditions, the
minimality of the regular triangular lattice is proved, while the Wulff shape problem is still
open. Recently, it has been proved [I5] that a slightly wider well in the potential favours the
square lattice rather than the triangular one, while for three body potential also hexagonal
lattices may arise as energy minimizers [72, [41]. In higher dimensions the picture is much less
clear (see [43] for a relevant contribution in three dimensions).

We pass to describe our model; since the tail energy will be predominant, it is convenient
to change length-scale, introducing a parameter £ > 0, whose inverse % represents the size
of the body filled by the hard spheres. Then, in order to deal, in the thermodynamic limit,
with a finite macroscopic body, we scale the spheres with . After this scaling the potential
KP becomes integrable if and only if p € (0,d). We discuss first the integrable case: we write
p = d+ o for some o € (—d,0), and we introduce the corresponding potential which, up to a
prefactor, becomes the function f7 : Rt — R U {—o00,+00} defined by

+ oo for r € [0, 2¢),
£o(r) = 1 (0.0.2)

g for r € [2e,00).

In this case the I'-limit as ¢ — 0 of the discrete energy (0.0.1), with K? = f2, is nothing

£
but its continuous counterpart, defined on absolutely continuous measures, whose density is
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bounded from above by the density of the optimal packing problem in R? (see Theorem .
This I'-convergence result can be completed with suitable confining volume forcing terms,
ensuring compactness properties for minimizers. We prove that minimizers consist, in the
limit as € — 0, in optimal packed configurations of balls filling a macroscopic set F, which is a
ball whenever the volume term is radial.

The non-integrable case is much more involved. In this case both the tail and the core
of the energy blow up as € — 0, the first being the leading term. In order to provide a first
order expansion of the energy in terms of I'-convergence, we need to regularize the potential,
neglecting the core energy. More precisely, we introduce a mesoscopic length-scale r. > ¢
with r. = 0 as € — 0 (see ), and we regularize the potential cutting-off all short range
interactions at scales smaller than r.. The corresponding regularized Riesz type p-power-law
potentials, with p = d + o and o € [0, 1), are defined by

+00 for r € [0, 2¢),
f2r):=x0 for r € [2e,71.),

——t= forr € [r.,+00).

Then, only the tail of the interaction energy remains, and the microscopic details of the
potential are neglected in the limit as ¢ — 0. This is consistent with the integrable case
, where the core contribution vanishes as a consequence of the only integrability of the
potential. Dividing the energy by the diverging tail contribution, we obtain the zero order
term in the I'-convergence expansion of the energy. This zero order I'-limit still enforces
optimal packing on minimizing sequences, but does not determine the macroscopic limit shape.
Then, we look at the next term in the I'-convergence expansion. This consists in removing
from the total energy the infinite volume-term energy per particle, so that a finite quantity
remains, which turns out to detect the macroscopic shape. In fact, the first order I'-limit,
provided in Theorem is nothing but the o-fractional perimeter, introduced in [21] for
o € (0,1), and o = O-perimeter, introduced in [38]. Such an analysis has first been provided
in a continuous setting in [38]; our results represent its discrete counterpart. Since fractional
perimeters are minimized, under a volume constraint, by Euclidean balls, we deduce that, as
¢ — 0, minimizers are given by optimal packed configurations of e-spheres filling a macroscopic
ball. In this respect, our analysis shows how the tail energy plays against the formation of
macroscopic faceted crystals.

In the second chapter we have studied strongly attractive nonlocal potentials. Our analysis
is geometrical, so that the energy functionals are defined on measurable sets rather than on
empirical measures or densities, and can be understood as nonlocal perimeters, whose first
variation are nonlocal curvatures, driving the corresponding geometric flows.

We focus on power law pair potentials acting on measurable sets E C R?, whose corre-
sponding nonlocal energy is of the type

s 1

For —d < s < 0 the interaction kernel is nothing but Riesz potential; in such a case, the
functionals J® are nonlocal perimeters in the sense of [2§]. Such a geometric interpretation
is supported by the fact that, as a consequence of Riesz inequality, balls are minimizers
of J® under volume constraints; moreover, the first variation of J*, referred to as nonlocal
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curvature, is monotone with respect to set inclusion. The latter provides a parabolic maximum
principle which yields global existence and uniqueness of level set solutions to the corresponding
geometric evolutions [28] [26].

For positive s the kernel in is not integrable, and the corresponding energy is
infinite. Nevertheless, for 0 < s < 1, changing sign to the interaction and letting E interact
with its complementary set instead of itself, gives a finite quantity: the well-known fractional
perimeter [21]

- 1

In fact, fractional perimeters can been rigorously obtained as limits of renormalized Riesz
energies by removing the infinite core energy and letting the core radius tend to zero. This has
been done in [38], showing that the energies in and belong to a one parameter
family of nonlocal s-perimeters, with —d < s < 1 (see also [54]); in particular, for s = 0 the
0-fractional perimeter.

Remarkably, as s — 17, s-fractional perimeters, suitably scaled, converge to the standard
perimeter [17], (18| [34] 66, 9] 27], and the corresponding (reparametrized in time) geometric
flows converge to the standard mean curvature flow [49, [26].

For s > 1 fractional perimeters are always infinite. Nevertheless, as discussed above, the
critical case s = 1 corresponds, at least formally, to the Euclidean perimeter. Notice that for
s =1 the fractional perimeter can be seen, again formally, as the square of the (infinite) s
Gagliardo seminorm of the characteristic function of E. This fractional energy is particularly
relevant in Materials Science, for instance in the theory of dislocations. This is why much effort
has beeI} 1done to derive the Euclidean perimeter directly as the limit of suitable regularizations
of the H2 seminorm, mainly through phase field approximations [2].

We have introduced a core-radius approach to renormalize by scaling the generalized
s-fractional perimeters and curvatures in the critical and supercritical cases s > 1. We
show that, as the core-radius tends to zero, the I'-limit of the nonlocal perimeters is the
Euclidean perimeter, the nonlocal curvatures converge to the standard mean curvature, and
the corresponding geometric flows converge to the mean curvature flow. Moreover, we consider
also the anisotropic variants of such perimeters, with applications to dislocation dynamics.
Now we discuss our results in more detail.

In Section [2.1] we introduce the core-radius regularized critical and supercritical perimeters
(see ) In Theorem we show that, suitably scaled, they I'-converge to the Euclidean
perimeter. This analysis is very related with, and in some respects generalizes, many results
scattered in the literature, mainly for s > 1 [62] [14] [65].

Sections and are devoted to the proof of Theorem The proof of the lower
bounds providing compactness and I'-liminf inequality rely on techniques developed in [I] and
for s = 1in [46]. As a byproduct of our I'-convergence analysis, we provide a characterization of
finite perimeter sets (Theorem in terms of uniformly bounded renormalized supercritical
fractional perimeters. Analogous results for 0 < s < 1 have been obtained in [17} 34, 66} [55].

In Section we compute the first variations of the renormalized critical and supercritical
perimeters, and we show that they converge, as the core-radius vanishes, to the standard mean
curvature. The estimates are robust enough to apply the theory of stability for geomertic flows
developed in [26]. As a consequence, in Theorem we prove that the level-set solutions
of supercritical fractional geometric flows, suitably reparametrized in time, locally uniformly
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converge to the level set solution of the classical mean curvature flow. This result extends
somehow the analysis done in [35] for s = 1 and in [23] for 1 < s < 2; in the latter, the authors
consider a threshold dynamics based on the s-parabolic flow and, in turn, on the notion of
s-Laplacian, which is well defined only for 0 < s < 2.

In Section 2.5 we show that our renormalization procedures are robust enough to treat also
the double limit as s — 17 and the core-radius vanishes simultaneously (see Theorem [2.5.1)).

In Sectionwe generalize our results to the case of possibly anisotropic kernels (Subsection
and we present a relevant application to dislocation dynamics (Subsection . It is
well known that planar dislocation loops formally induce an infinite elastic energy that can be
seen as an anisotropic version of the (squared) H 2 seminorm of the characteristic function
of the slip region enclosed by the dislocation curve. As mentioned above, renormalization
procedures are needed to cut off the infinite core energy. In [35, 5 22], the authors consider
the geometric evolution of dislocation loops and face the corresponding renormalization
issues: their approach consists in formally computing the first variation of the infinite energy
induced by dislocations, deriving a nonlocal infinite curvature. Then, they regularize such a
curvature through convolution kernels, obtaining a finite curvature driving the dynamics. As
the convolution regularization kernel concentrates to a Dirac mass, they recover in the limit a
local anisotropic mean curvature flow. The main issue in their analysis is that the convolution
regularization produces a positive part in the nonlocal curvature (corresponding to a negative
contribution in the normal velocity), concentrated on the scale of the core of the dislocation,
giving back an evolution which does not satisfy the inclusion principle. Therefore, solutions
exist only for short time. Moreover, adding strong enough forcing terms, or assuming that the
positive part of the curvature is already concentrated on a point (instead of being diffused on
the core region), they show that the curvature is in fact monotone with respect to inclusion of
sets; as a consequence, they get a globally defined dynamics, converging, as the core-radius
vanishes, to the correct anisotropic local mean curvature flow. Here we show that, if one
first regularizes the nonlocal perimeters removing the core energy and then computes the
corresponding first variation, then the positive part of the curvature is actually concentrated
on a point (see Remark , so that the mathematical assumption in [35] is physically
correct and fully justified through the solid core-radius formalism.

Finally, in Subsection [2.6.2| we show that the convergence analysis of the geometric flows
done in [35] using the approach [69] can be directly deduced from the analysis developed in
Section and Subsection [2.6.1] providing then a self-contained proof relying on the general
theory of nonlocal evolutions and their stability developed in [28] 26].

In the third chapter we have studied the fractional heat equation
u + C(s)(—A%)u, s€(0,1)

posed in a bounded set  c R? with homogeneous Dirichlet conditions, and its asymptotic
analysis as s — 0" and s — 17.
The fractional heat equation may be in fact seen as the L?-gradient flow of the s-Gagliardo

seminorm )
u(y)|? 2
/Rd /]Rd y|d+25 dydx| ,

with the support of u contained in €2 when the equation is posed in a bounded domain. The
asymptotic behavior of s-Gagliardo seminorms has been studied by several authors. The case
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s — 17 has been first considered in [I7], where it is proven that the pointwise limit of the
squared s-Gagliardo seminorms multiplied by (1 — s) is given by (a multiple of) the Dirichlet
integral. Such a result is indeed proven for every exponent 1 < p < +oo ([]s corresponds
to p =2). For p = 1 only a control of the limit in terms of the total variation is provided,
allowing to characterize BV space; this has been extended in several directions, first by [66, 5]
for more general kernels, and then by [34], showing that the pointwise limit is exactly (a
multiple of) the total variation.

For what concerns the limit as s — 0T, in [6I] the authors show that, as s — 07, the
squared s-fractional Gagliardo seminorms multiplied by s pointwise converge to (a multiple of)
the squared L2-norm (see also [39] for a similar result in the context of s-fractional perimeters).
The corresponding asymptotic analysis in terms of I'-convergence has been developed in [38] in
the context of fractional perimeters (that is, restricting to characteristic functions, as recalled
above). A functional with more interesting properties is obtained in the limit s — 0" by
studying the next order term in the asymptotic expansion of the squared s-fractional Gagliardo
seminorms: in [38] it is shown, still restricting to fractional perimeters, that the corresponding
I'-limit a nonlocal energy the O-perimeter.

We have extended the results in [38] to the seminorms. In fact, we remove the constraint
on the admissible functions to be characteristic functions; in order to obtain a I'-convergence
result with respect to the L? topology we consider functions whose support is in a bounded
set 2. The next order result is Theorem [3.1.4] while the convergence of rescaled seminorms to
the squared L? norm is proven in Theorem

The analysis of the asymptotics of the s-Gagliardo seminorms is completed by Theo-
rem we study the I'-convergence of the s-Gagliardo seminorms multiplied by (1 — s) to
(a multiple of) the Dirichlet integral, thus giving the I'-convergence version of the result in[34].

These convergences, which are of independent interest, are employed here to study the
stability of the corresponding parabolic flows. Stability of gradient flows with respect to the
I'-convergence of the corresponding energies is a classical problem, which has been widely
investigated in recent years in increasing generality (we refer, for instance, to [68] (67, [10]). In
the present framework, we take advantage of the properties of the underlying energies. In fact,
we are able to prove that in all the three regimes we consider (zero order for s — 07 | first
order for s — 0, zero order for s — 17) the functionals are A\-convex uniformly with respect
to s.

The gradient flows of A-convex energies, namely energies which are convex up to a quadratic
perturbation multiplied by A, are uniquely determined. Moreover, they are well approximated
in terms of discrete time solutions, that is they coincide with the (unique) minimizing movement
solution: this is obtained, for every fixed s € (0, 1), by considering an implicit Euler scheme for
the s-fractional Gagliardo seminorm and passing to the limit as the time step of the scheme
vanishes. Basing on the general theory of minimizing movements (see for instance [7, 33} [64]),
we provide, in Theorem [3.3.6], an abstract stability result for gradient flows in Hilbert spaces
with respect to sequences of I'-converging uniformly A-convex functionals, suited for our
purposes. In this respect, it is crucial that the quadratic perturbation giving A-convexity
is of L? type, since the L? topology is that for which the gradient flows of the s-Gagliardo
seminorm is the s-fractional heat equation.

Actually, the abstract existence result for A-convex functions is in general expressed as a
differential inclusion of u; in the subdifferential of the underlying energy evaluated in u, which
could be multivalued; in our problems, we get exactly the fractional heat equations since the
s-Gagliardo seminorms are differentiable in the fractional Sobolev spaces H§(€2), which are
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dense in L?(Q) (cf. Proposition . This enforces uniqueness for the fractional heat flows,
assuming that the initial datum is just in the natural energy space for the problems. In the
setting of nonnegative solutions for fractional heat equation in R?, uniqueness has been shown,
in the context of a general Widder theory [73], in e.g. [12, 19, [71], with even not regular (but
nonnegative) initial datum.

Besides uniqueness, we also obtain in the abstract theorem an explicit expression of the
distance of minimizing movements from discrete time evolutions, in terms only of A and of the
time interval. This is a key point to guarantee stability for families of minimizing movements
associated to A-convex functionals.

For the zero order convergences, the A-convexity is direct for every A > 0, the Gagliardo
seminorms being convex; in the case of the first order convergence as s — 07, this follows by
differentiating twice the functionals on lines, and it strongly relies on the inclusion of L? into
L'. Moreover, without this inclusion at disposal, we are able to prove the I'-convergence result
for the first order in terms of L' N L?-topology. Due to this technical issue, we chose to set
our problems in a bounded (Lipschitz) domain 2.

In this framework, the energies in the three regimes fit in the abstract setting, so that we
get stability of their parabolic flows in s, in the enhanced formulation where the subdifferential
reduces to a singleton. This is contained in our main results, Theorems [3.4.4] [3.4.5] [3.4.6} the
limit evolutions are an exponential growth for the 0-th order as s — 0%, a O-fractional heat
equation for the first order as s — 07, and the classical local heat equation as s — 1~. The
stability consists in a weak convergence H' in time, which is proven to be strong if the limit
initial datum is well prepared, namely the approximating initial data are a recovery sequence
for the limit datum with respect to the I'-converging energies. Furthermore, in this case for
every time ¢ the approximating evolutions us, (t) are recovery sequences for u(t) with respect
to the I'-converging energies, namely there is convergence of the energies for every t.







Notation

We work in the space R? where d > 2 and we denote by {e; }j=1,...,d the canonical basis of
R?. We denote by R?*P the set of the matrices having d rows and p columns. The symbol
| - | stands for the Lebesgue measure in RY, M(R?) is the family of measurable subsets of RY,
whereas M (RY) € M(R?) is the family of subsets if R? having finite measure. We will always
assume that every measurable set E coincides with its Lebesgue representative, i.e., with the
set of points at which E has density equal to one. Moreover, for every p > 0, we denote by HP
the p-Hausdorff measure. M;(R?) denotes the space of (non negative) finite Radon measures
in R?. The Dirac delta measure centered in z is denoted by d,, while the Lebesgue measure
by L.

For every € R? and for every r > 0, we denote by B(z,r) the open ball of radius
centered at x and by B(x,r) its closure. Moreover, we set S¢~! := 9B(0,1). Following the
standard convention, we set wy := |B(z,1)| and we recall that H4~1(0B(xz,r)) = dwgrd!.
Sometimes, we will consider also subsets of R4~!. In such a case, we denote by B'(&,p) the
ball centered at ¢ € R and having radius equal to p > 0; we set wy_1 := HH(B'(£,1)) so
that HIY(B'(€,p)) = wa_1p* and HI72(OB' (€, p)) = (d— 1)wq_1p*~ 2. Furthermore, we set
Q = [—%, %)d and for every v € S%! we set Q" := RYQ, where R” is a (arbitrarily chosen)
rotation such that R"e; = v .

For every set E € M(RY) we denote by Per(E) the De Giorgi perimeter of E defined by

Per(E) := sup{/ Div®(z) dz : ® € CH(RY RY), ||®]o < 1}.
E

For every E € M(R?), the set 9*F identifies the reduced boundary of F and vg : 0*E — R?
the outer normal vector field. For all y € R% and for every v € S we set

H;(z) = {yeR’: v-(y—z) <0}, (0.0.5)
Hf(z) = {yeR: v-(y—z)>0}, (0.0.6)
HYz) = {yeR’: v (y—x)=0}. (0.0.7)

For every subset E C R? the symbol E¢ denotes its complementary set in R? | i.e., E¢ := R\ E .
Finally, we denote by C(x,---,%*) a constant that depends on %, --- ,%; such a constant
may change from line to line.
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Chapter 1

Attractive Riesz potentials acting on
hard spheres

In this chapter we introduce a model for hard spheres interacting through attractive Riesz
type potentials. We see the hard spheres as the finite subset of R? such that |z; — x;] > 2 for
all ¢ # j. The potentials is of the type

> KP(jzi — ),
i#j
where the asymptotic behaviour of K?(r) ~ —%p for large r, and we study its thermodynamic

limit. We show that the tail energy enforces optimal packing and round macroscopic shapes.

The reference for the following results is [54], joint work with Marcello Ponsiglione.

1.1 Hard spheres, optimal packing and empirical measures

Here we introduce the admissible configurations of the variational model proposed in this
chapter, and revisit some concepts on optimal packed configurations we will need in our
analysis.

1.1.1 Density of optimal packing

Definition 1.1.1. We denote by Ad? be the class of sets X C R such that |z; — x;| > 2 for all
x;, vj € X with x; # x;. The volume density of optimal ball packings in R? is the constant
C? defined by

XN
C?:= sup limsup#(—er)wd, (1.1.1)
XeAdd r—+oo r
where @ := [0, 1)d. Moreover, we say that T¢ C R? is an optimal configuration for the (centers
for the unit ball) optimal packing problem if T¢ € Ad? and
Td
i FIEOrQws g (1.1.2)

r—-+00 T’d

In [48] it is proved the existence of an optimal configuration, and that in defining C¢ and
T, Q can be replaced by any open bounded set A C R? with A # (.
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Now we want to provide a rate of convergence in (1.1.1]). To this purpose, for every r > 0
let Ad4(rQ) be the class of sets X C rQ such that |x; — x| > 2 for all ;, z; € X with z; # z;,

and set x
Cd:=  sup Ld)wd . (1.1.3)
XeAdd(rQ) r

It is easy to see that for all 7 > 0 there exists a maximizer, denoted by T\¢.
Lemma 1.1.2. There exists C(d) > 0 such that C? < C% < 04 + % for all r > 0.

Proof. For every r > 0 we have 2rQ = U?ilrQi where Q; = Q +v;, v; € {0,1}%. Let T¢ be
any maximizer of (|1.1.3), and set

T4 :={zeT?: dist (z,r0Q) > 1}, (1.1.4)
Td = U?ilf’,fl + v, v € {0,137
It is easy to see that there exists a constant ¢(d) such that #T% — #7177 < ¢(d)r?=1. Moreover,

max{#T¢ NrQ;, i=1,---,29} > =2r #

Then we have

#15, # - _
ricd = 2d27" <rlC? = #1¢ < ZT + e(d)yrd=t < rdCd + c(d)ri L.
Therefore, for every r > 0, n € N we have

c(d)

d
C2n < C2" 1 < Cognp + on—1,"

which by iteration over n yields

c(d)

k—1p"

cd.,.<cd  cl<cy., + Z
Sending n — +oo we deduce the claim. O

1.1.2 The empirical measures

We introduce the family of empirical measures
N
= {Zémz cxy #xjfori# j,N € N} C My(R%).
i=1

We consider the space M;(R?) endowed with the tight topology.

Definition 1.1.3 (Tight convergence). We say that a sequence {ji}.c(0,1) C My (R?) tightly
converges to i1 € My(R?) if pre = p and pe(RY) — p(R9), as e — 0F.

Definition 1.1.4. Let € > 0, we define the set EM, C EM as

N
EM; = {u €eEM: u= Zém with |z; — x| > 2¢ for all 75]}

=1
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Lemma 1.1.5. Let {ptefoc0,1) C EM with pe € EM, for alle € (0,1) be such that %ﬁdus S
for some p € My(R?), as ¢ — 0F (where C? is defined in (I.1.1)). Then, there exists

p € LY(R?,[0,1]) such that p = pLY.

Proof. Tt is sufficient to prove that u(A) < |A| for all open set A. By the lower semi-continuity
of the total variation with respect to weak-star convergence, we have

ewy .o Al wa#{ANsupp (pe)}
g velA) = limint g B

T¢n4
<1A| lim LAJ

where the last inequality follows by (1.1.1)) and (1.1.2]) with @ replaced by A. O

Lemma 1.1.6. For every p € LY(R?,[0,1]) there eists a sequence {pic}ee(01) C EM with

pe € EM; for all e € (0,1) such that sg“fld e — pLe tightly in My(RY).

= |A’7

Proof. By a standard density argument, it is enough to prove the claim for p = ax 4 for some
—1

a € (0,1) and some open set A C R?. Let pic := Y ;c; 0y, Where I :=ea™@ TN A. Then, it

is easy to check that Eé“;d pe — axa L4 tightly in My (R%). O

For all yu:= "N, 6, in EM. we set

1 N
ﬁ, = @ZXBE(%)' (1.1.5)
=1

Lemma 1.1.7. Let {jc}ec01) C EM with p. € EM. for all e € (0,1), and let p €

LY(R?,[0,1]) be such that Eé“;’ld pe — pLe tightly in My(RY). Then, ji- — pL? tightly.

Proof. We observe that

o . edw
lim fi-(R%) = lim C—dd,ua(Rd) :/ p(x)dx.

e—0t e—0t Rd

Therefore, up to a subsequence fi. — g for some g € J\/lb(Rd). We have to prove that g = p£%.
To this purpose, notice that for all ¢ € C}(R?) we have

A d N etwy ety d
() = LU < |1e(0) = —57-1e(9)| + |57 1e(9) = PL ()
1 / &‘dwd d
= =d e(y) — p(z) dy‘ + [ —Lpe(p) — pLY )
mesgpjpus C4 JB.(a) Ccd
1 / adwd d
S =a lp(y) — (@) dy + | —=7-1e(p) — pLY ()
:BEs%p:p,u,E Cd Be() Cd

5dw Edw
< 2€Tfﬂe(Rd)!\V¢HLoo + ’Cddue(w) — pLYp)|.

Since Eé‘gd pte = pL? the claim follows. O
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1.2 Riesz interactions for o € (—d,0)

Here we introduce and analyze the Riesz interaction functionals in the integrable case o €
(—d,0).

1.2.1 The energy functionals
For every € > 0 and o € (—d,0), let fZ :[0,4+00) - RU{—o00,+00} be defined by

+ o0 for r € [0, 2¢),
fe(r) = {

i for r € [2e,00).

Let C? be the volume density of the optimal ball packing in R? defined in (T.1.1]).
Let X = {x1,--- ,xn} be a finite subset of R%. The corresponding energy F?(X) is defined

as
d~ 2
Wq€
F2(X) = 3 42 (i - i (25 )
— d
i#]
Clearly, there is a one-to-one correspondence, that we denote by A, between the family
of empirical measures and the family of finite subsets of R¢ . We introduce the energy
F7: Mp(R?) — RU{—00,+00} as a function of the empirical measure as follows:

FO(A(w) if p€ EM.,

(1.2.1)
+ o0 elsewhere.

Fo(u) = {

The functional F7 may also be rewritten as

o gdwd 2 .
Fo(u) = /Rd/Rdfg(lw—yl)( , > dp®@p if p € EMe,

£

+ 00 elsewhere.

We observe that the range of the functionals F? is (—oo,0] U {4+00}. Therefore, we do
not expect compactness properties for sequences with bounded energy. In fact, it is easy to
construct, adding more and more masses, a sequence {fic }.¢(0,1) C EM. with e (RY) = +o0
and FZ(ue) — —oo as € — 0. Moreover, tight convergence can also fail by loss of mass at
infinity, also for sequences with e?p.(R%) < C. Indeed, let T¢ be an optimal configuration for
the optimal packing, as in Definition . Let {2 }ee(0,1) C RY with |z.| — 400 as e — 0.
Setting pte = > ;c.1dnB(2. 1) Oy We have that e?ue(RY) < C for some C independent of ¢, but
in general %y, does not admit converging subsequences in the tight topology.

Now we perturb the energy functionals by adding suitable confining forcing terms that
yield the desired compactness properties.

Let g € CO(R?). Recalling that C is the volume density defined in (L.1.1), for all € € (0,1)
we introduce the functionals 7.7 : My(R%) — R U {—o00, 400} defined as

T (1) == F2 (n) + G2 (n), (1.2.2)

where

G2 () = [ gla) gtdn.
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1.2.2 Compactness

In this section we study compactness properties for the functionals 7 introduced in (1.2.2).
We assume that

g(z) > C1 + Calz| ™7, for some C; € R, Cy > 0. (1.2.3)

Theorem 1.2.1 (Compactness for 77). There exists a constant C*(o,d) > 0 such that, if g
satisfies (1.2.3) with Cy > C*(0,d), then the following compactness property hold: let M > 0
and let {ic}ce0,1) C Mp(R?) be such that

T (ue) <M,  foralle >0.

Then, up to a subsequence, séc;d pe — pL? tightly in My(RY), for some p € LY(RY,[0,1]).

Proof. In view of (1.2.3)), it is enough to prove the theorem for g(z) = Cy 4+ Cq|z|~7 with
Cy > C*(o,d) for some C*(o,d) > 0. We divide the proof in several steps.

Step 1. TFor all u € EM. set K.(u) = elwyu(R?) and let R:(u) > 0 be such that
R-(1)%wg = K.(u). In this step we prove that there exists C(c,d) > 0 such that for all
=N 18, € EM(R?) we have

d d—o

N
5 S > o d) () T

=1

Here and later on we will assume without loss of generality (and whenever it will be convenient)
that |z;| > ¢ for all ; € supp(u). Indeed, it is easy to see that T"(,ug) is uniformly bounded

pe — pL? tightly if and

swd

if and only if 7.7 (te[re\ p(0,e)) s uniformly bounded, and that

only if Eé%,ug lR4\B(0,e) pL? tightly. By triangular inequality we have |y| < |z;] + ¢ < 2|z
for all y € B(x;,¢). Then,

—0a ag 1 —0
wacfa 7= [ ez o [y,
B(zi.) 279 JB(xie)
Let Ac be the union of all the balls B(x;,e). We have

N

N _d
g Wq _ _
S > 7 d
i _i:12‘“Cd/B<wi,a>‘y’ !

i=1

1 1 1
= 5o Tdy = / 7 dy + / ~7d
2-oCd /A Wl dy = 55 A-NB(0,R- (1)) Ayt 5o AN\B(0,Re (1)) o™ dy
1 _ ~ 1-2
> ?dy = C(o,d)(K T,
2 57067 Jyo i V7 = OO D (E(0)

where in the last inequality we have used that |A.| = K.(u) = |B(0, R:(1))|, and that
91177 = [yo| 7 for all y1 € Ac \ B(0, Re(n)), y2 € B(0, Re(p))-

Step 2. Here we prove that there exists C/(o, d) > 0 such that, for all p € EM,,

223 %0 o, ay (s .

_ d+o —
i#j |x x]’ 7
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First, we observe that by triangular inequality |z; — ;| > %|x —y| for all (z,y) € B(z;,¢e) X
B(zj,¢). Then, there exists C'(o,d) > 0 such that

E wd 1
< &(o,d) / / . dxd
Cd 2 Z \a: — | dte Z (wi.6) JBlay) 1T — y|THO Yy

YA ppe—
() B(0,R-(uc)) JBO,R-(ue)) |z — y|¥e
<Cloa) [

a:/ s = C(o, d)(Ko() " F, (1.2.4)
B(O,R(e))  JB(02R-(e)) |27F7

dxdy

where the second inequality is nothing but Riesz inequality, see [57].
Step 3. Here we prove that there exists C*(o,d) > 0 such that, if Cy > C*(o,d), then the

following implication holds:

g
if lim supT () < 400, then lim SUp -~ g (RY) < +o0.

Cd /"LE

By Step 1 and Step 2 we have obtained that

> UK (ue) + (~Co, ) + Cali(o, d)) (Ke(pie))

T (pe) = C

It is then sufficient to choose Cy large enough, so that (—C(c,d) + CoC(0,d)) > 0

Step 4. We now prove the tight converge, up to a subsequence, of sequences {ji}.c(o,1)
with bounded energy. In Vlew of Lemma this step concludes the proof of the theorem.
By Step 8 we have that 6c,d pe(R%) < M for all € € (0,1) and some M > 0. Arguing by
contradiction, assume that there exists § > 0, £, — 07 and R,, — +00 as n — +o0, such that

E[Tilwd

G Fen (R\ B(0,R,)) > 48 Vn. (1.2.5)

Now let us split e, into two components: uén ‘= He, | B(0,R,) and ,ugn = U, LRd\B(O’Rn); then

T (pe,) =TE () + T2 (12)

1 ey (1.2.6)
2 () e e
B(0,Ry) JRO\B(O,R,) | — y|7Hd Hen = Hen:

From Step 2 we have that there exists C' > 0 independent of n such that

T2 (pt,) > —Clo,d)(Ke, (ut,)' "7 > —C. (1.2.7)

Again by Step 2, applied now to ugn, we have that there exists C' > 0 independent of n such

that
d

1 e wd>2
- dpie, @ pe, < C.
/Rd\B(O,Rn) /Rd\B(O,Rn) |z — y|dte ( cd ) e FH

Therefore, by (1.2.5) we have

d

- _ %y
T (112 >—C’—C’M+C/ R En
an(ﬂen) Z |C1 2 R\ B(0, ) Ccd €

> —C+CyR;°, (1.2.8)
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Finally, by Riesz inequality (or equivalently, arguing as in ((1.2.4)) we have that there exists
C > 0 independent of n such that

e\ 2
/ B(O,R /Rd\B 0,Rn) !a:—y|d+(’< ) dhien © prey (7,9) 2 =C (1.2.9)

Now plugging ((1.2.7] and (| into , we deduce that

M > ﬁi(usn) > —C+ CadR,7,

for some C' independent of n, which clearly provides a contradiction for n large enough. [

1.2.3 TI'-convergence

In this section we study the I'-convergence of the energy functionals defined in (1.2.1) and
(11.2.2).

Proposition 1.2.2. Let {ug}se 1) C My(RY) with p. € EM. for all € € (O 1) and let
p € LY(R%[0,1]) be such that e’ oitie = pL? tightly. Let moreover h(z,y) := W for all
z,y € R with x # y. Then,

Cd
Proof. The proof is divided in several steps:
Step 1. Here we prove that

d 2
(“"d) e ® pe(h) = pL2 @ pLo(h), s € = O

fie @ fic(h) — pLY @ pLYh), as e — 0T,
where [i. are defined as in (with p replaced by pi).
For all R > 0 we set
D(R):= |J ({z} x B(z,R)). (1.2.10)
z€RY
We have

/]Rd /]Rd |$— |d+ad,U«a®Ha /]Rd /Rd |x_ |d+g ( )p(y)da:dy‘

761 e & fle 1.2.11
/D(R | |d+cr K lu’ ( )
1
+/ ——p(x dxd 1.2.12
D) |x_y|d+0p( )p(y)dedy ( )
1 1
i / o= gre e @ F _/ T e drd ‘ 1.2.13
R20\D(R) |z — y|dte He & He R24\ D(R) |x7y|d+gﬂ($)0(y) Tay ( )

Moreover, we have

1 1
idwgw:/ dA/ e dj
/;(R ’$_y’d+g )U“E #E /-LE xR |$—y‘d+‘7 /’LE
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where w(R) — 0 as R — 0. This proves that the quantity in (1.2.11)) tends to 0 as R — 0,
uniformly in ¢; a fully analogous argument shows that the same holds true also for the quantity

in . Finally, the quantity in tends to 0 as € — 0 (for fixed R) since m is
continuous and bounded in R??\ D(R), and by Lemma we have that jio ® fie — pLi®@ pL?
tightly in R??, and hence also in R?¢\ D(R).

Step 2. Here we prove that

adw 2 R N
<Cdd> pe @ pre(h) = fie ® fiz(h) = 0 & — 0.

Let x;,x; € supp(ue), with ¢ # j; for all © € B(z;,¢), y € B(xj,¢), by triangular inequality
we have |z — y| < 2|z; — |, and hence

Edwd>2 1 d 1 1
<2 +“/ / dzdy. 1.2.14
( O fai — |t B(eee) IBGage) (CO2 Jo — yve Y (1.2.14)

Let D(R) be the set defined in (1.2.10). We obtain that

1 ey 2d / 1 di ® i
/de ‘.T,' _ ‘d-}—(f Cd ME ®/.L€ RQd ‘.%' —y‘d‘H’ ME :ue

’/ ! <€dwd>2d ® (1.2.15)

D(R ‘.CU _ y‘d+0 ME ,U’E .

1
n / . df ® fi. 1.2.16
‘ Dy o — e e @ R ( )
1 5dwd 2

+ / < ) dpe ® 1.2.17
de\D(R) |fL' o y|d+o- Cd :U’E HE ( )

[ —y
RZd\D(R) ‘.’L’ _ y‘d+0— /’LE /J'E .

By (1.2.14)) we deduce that the quantiy in (|1.2.15)) is, up to a prefactor, less than or equal to
the quantity in (1.2.16), which, as proved in Step 1, tends to zero as R — 0, uniformly with

respect to €. Finally, since m is continuous and bounded in R??\ D(R), by Lemma m
we easily deduce that, for any fixed R > 0, the quantity in tends to zero as ¢ — 0.
This concludes the proof of Step 2.

The proof of the claim is clearly a consequence of Step 1 and Step 2. O

We now introduce the candidate I'-limit F7 : My(RY) — R U {4+oc0} defined by

. < d
/Rd/Rd |z — ]d+"d'u®'u ifps L5

elsewhere.

Theorem 1.2.3. Let o € (—d,0). The following T'-convergence result holds true.

1. (T-liminf inequality) For every p € L*(R%,[0,1]) and for every sequence {#eteco) C
My(R?) with el it He — pL? tightly in My(R?) it holds

Fo(pL?) <liminf F7(p.).
e—0t
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2. (T-limsup inequality) For every p € LY(R%,[0,1]), there exists a sequence {#e}ee(o) C
My (RY) such that e’ odtie = pL? tightly in My(RY) and

Fo(pL?) > limsup F2 (uz).

e—0t

Proof. The I'-liminf inequality is a direct consequence of Proposition [1.2.2| while the I'-limsup
inequaility is a direct consequence of Lemma [I.1.6] and again of Prop081t10n 122 O

Now we introduce the T-limit 77 : My(R%) — R U {—o0,+00} of the functionals 7
introduced in ((1.2.2)), defined by

o . d
N (O | @) it < e

elsewhere.

Theorem 1.2.4. Let 0 € (—d,0), let g € CO(R?) satisfying g(x) > 0 for |z| large enough, and
let T2 be defined in (1.2.2)). The following I'-convergence result holds true.

1. (T-liminf inequalz’ty) For every p € LY(R%,[0,1]) and for every sequence {#e}ec(o) C
My (RY) with e artpe — pLY tightly in My(R?) it holds

T (pL?) < liminf T2 ().
e—0*t

2. (T- limsup inequality) For every p € L'(R%,[0,1]) there exists a sequence {jic}.e(0,1) such
that < wd e — pL? tightly in My(RY) and

T7(pL%) > limsup 77 (e ).

e—0t

Proof. We start by proving (1). It is easy to prove (see [8, Proposition 1.62]) that the term
Jra g(z)dp is lower semicontinuous with respect to tight convergence. Then, by Theorem m
we obtain that

T (o) = F (o) + [ g@)p(a)da

Edwd

<hm1nff (1e) —i—llmégf dg( T)—7 od dpie ()
<liminf (]:‘7( ) +/ (a:)&d (a:)) = lim inf 77 (p2c)
o e \He Rdg Cd He = amot Ve He )

We now prove (2). First consider the case p € CO(R?). Let R > 0 be such that
supp(p) C Br and let {ji}.c(0,1) be the recovery sequence provided by Theorem then,
it is easy to see that {u.x BR}se(o,l) provides a recovery sequence also for the functionals 77.
The general case follows by a standard diagonalization argument. Indeed, for any sequence
{ontnen € C°(R%[0,1]) converging to ¢ in L' we have F7(p, L) — F(¢L?) (see for
instance the proof of Proposition [1.2.2). Then, for any sequence {p,}nen C C2(B(0, R); [0, 1])
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converging to pxp(o, in L' we have T (pnL?) — TJ(pXB(07R)Ed). Moreover, since p is
nonnegative and g(x) is positive for |z| large enough, we have that

L s@r@xsp@idz— [ ga)pa)@)da
R R

as R — +o00. We deduce that T"(pXB((),R)Ed) — T°(pL?) as R — +oo. Therefore, there
exists a sequence {py, ymen C C2(R?) such that p,, — p in L' (R?) and T7(p L) — T (pL?)
as m — +o00. 0

1.2.4 Asymptotic behaviour of minimizers

Here we analyze the asymptotic behaviour of minimizers of the functionals 77 defined in
(11.2.2).

Proposition 1.2.5 (First variation). Let pL? be a minimizer of T°. For almost every x € R?
such that 0 < p(x) < 1 we have

1

—2
9@) =2 | s

Proof. Let h(z,y) := |z —y|™ 7. Let 0 < a < < 1 and set
Eop:={r€R%: a <p(z) < B}

Let E C E, g, and set u := xg. Then, for € small enough the function p + eu takes values in
(0,1). By minimality of p we deduce that

0<T%(p+eu)—T7(p)

=< [ o@pu@ydz =2 [ hayply)u(a) dydo +ofe),

where o(¢)/e — 0 as ¢ — 0. We deduce that

[ outeyde =2 [ hGep)py)ute) dydz = 0.
Rd R2d

Since the above inequality holds for ©w = yg where E is any measurable set contained in
{z € R?:0 < p(z) < 1}, by the fundamental lemma in the calculus of variations and an easy
density argument we deduce the claim. O

Theorem 1.2.6 (Behaviour of minimizers). Let 77 be defined in (1.2.2) with g satisfying
(1.2.3)) for some Cy > C*(0,d), where C*(0,d) is the constant provided by Theorem|1.2.1. Let

moreover [t be minimizers of TZ for all e > 0.

Then, up to a subsequence, %pg — xpL? tightly in My(R?), for some set E € Mf(]Rd).
Moreover, xgL% is a minimizer of T°. Finally, if g(z) := G(|z|) for some increasing function
G :RT = R, then E is a ball.

Proof. By Theorem |1.2.1, up to a subsequence, 52% pe — pL% tightly in My(R?), for some

p € LY(R%]0,1]). Moreover, as a consequence of the I'-convergence result established in
Theorem pL% is a minimizer of 77; we have to prove that p is a characteristic function.
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Let now p := Xgupp(p) and let u:= p — p. By (1.2.18) we have

0 < T (p+u) —T°(p)
— [ s@u(@)do =2 [ | bey)pu@)dyds [ hguly)ul) dy do
R R R

= [ ut)|gta) 2

Rd

i p(y)m dy} dz — /de u(z)u(y)h(z,y) dy dx

= — /de h(z,y)u(y)u(z) dy dz < 0.

We conlcude that the above inequalities are in fact all equalities, which in turns implies u = 0,
i.e., p = p and p is a characteristic function.

Finally, if ¢ is radial and increasing with respect to |z|, then denoted by E* the ball
centered at 0 with |E*| = |E|, we have

Fo(E LY <F7(ELY), (2)dz < /E g(x)dz, (1.2.19)

g
E*
where the first inequality is strict for every set E € Mf(Rd) that is not ball; this is a
consequence of the uniqueness of the ball in the Riesz inequality for characteristic functions
interacting through strict increasing potentials (see for instance [38, Theorem A4]). From

(1.2.19) we easily conclude that E must be a ball. O

Remark 1.2.7. Theorem establishes that minimizers of 7.7 tightly converge to a minimizer
of 77, which is a characteristic function of some set E, and that such a set F is a ball
whenever the volume force term g is radial and increasing with respect to |x|. This means
that minimizers of 77, for € small, consist in almost optimally packed configurations filling a
macroscopic set E, which is a ball whenever the volume term is radially increasing.

1.3 Riesz interactions for o € [0, 1)

Here we introduce and analyze regularized Riesz interaction functionals in the non-integrable
case o € [0,1).

1.3.1 The energy functionals

Let o € [0,1). For every € > 0 let r. > 0 be such that r. — 0 as ¢ — 0 and

e
— 0 ase — 0 for o € (0,1); (1.3.1)
Te
1 2
ellog(ra)l” ase =0  foro=0. (1.3.2)
Te

The regularized potentials are defined by

+00 for r € [0, 2¢),

f2r):=<x0 for r € [2¢,r.),

_7@% for r € [r., +00),
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As in (1.2.1]), we introduce the energy functionals

FO(A(w) if p€ EM.,

+ o0 elsewhere.

Fo(u) = {

We will also introduce suitable renormalized energy functionals. To this purpose, for all
o €[0,1) and r € (0, 1] we set

1
T = — —dz. 1.3.3
i /B(O,l)\B(O,r) |z]d+e (1.3.3)
Notice that
1—r=2 .
,Yg — de o lfU ;é O, (134)
dwglogr ife=0.

For o € [0,1) the renormalized energy functionals F7 : My(R%) — RU{—o0, 400} are defined

by

- o €dwd

FLAW) =7 =5 m
d

+ 00 elsewhere.

. RY) if y e EM.,
P20 = i

The functional F? may be also rewritten as

Edwd 2 Edwd d
) (g —y)) (=2 g — 97 L uRY)if pe EM.,
Fo(u) = /Rd o 12 yl)( Cd) nep =g HRY it p e EM

+ o0 elsewhere.

1.3.2 The continuous model

Here we give a short overview of the I'-convergence analysis of the continuous model for
non-integrable Riesz potentials developed in [38].

First, we introduce the fractional perimeters; for all o € (0,1), the o-fractional perimeter
of E € M(R?) is defined by

1
P°(F) = ——dxdy.
( ) /E/Rd\E ’x_y’d-f—o' xdy

For o = 0, a notion of 0-fractional perimeter has been introduced in [38] as follows.
First, for all R > 1 we set

1
Q.= —dz.
n /B<0,R>\B(o,1> EE

Then, the following definition is well posed (namely, the following limit exists, [38])

1
PY%E):= lim // —— dxdy — Y| E.
(E) = lm_ |, Baang e -yl Y Tl
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Now, we introduce the continuous Riesz functionals. For all 7 € (0,1) let JZ : My(R%) —
R U {—00, 400} be the functionals defined by

-1
JO(E) = / / T dzdy.
(8) e e\ [t -yl

The renormalized functionals J7 : M;(R%) — R U {—00, +00} are defined by
J2(E) = J2(E) - 2 |El,
where 77 is the constant defined in ((1.3.3]).

Now we introduce the candidate T-limits. For o € (0,1) we define the functional F :
Mp(R%) — R U {—o00, +00} as

2o P?(B) —=~°|E| if p=xpL?,
Fo(p) == (1.3.5)
+ 00 elsewhere,
where 77 = faa\ p0,1) e 47
Moreover, for o = 0 we define F0 : My(R%) — RU {00, 400} as
. PYE) if p=xpll,
#0n) = | T E) in=xe (1.3.6)
+ 00 elsewhere.

The following theorem has been proved in [38, Sections 5 & 6].
Theorem 1.3.1. The following compacntess and I'-convergence results hold.

Compactness: Let o € [0,1) and let r, — 0. Let U C R? be an open bounded set
and let {Ep}nen C Mp(R?) be such that E,, C U for alln € N. Finally, let C > 0.

If j;’n(En) < C for allm €N, then, up to a subsequence, xg, — xg in L*(R?) for some
E € M(R9).

I'-convergence: The following I'-convergence result holds true.

(i) (T-liminf inequality) For every E € M¢(R?) and for every sequence {Ey}nen with
XE, — XE strongly in L' (RY) it holds

Fo(E) < liminf J (E,).

n—+400

(ii) (T-limsup inequality) For every E € My(R?), there exists a sequence {Eyn }nen such
that xg, — xE strongly in L'(R?) and

F?(E) > limsup jfn (En).

n—-+o00
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1.3.3 Error estimates

Next proposition provides error estimates comparing the discrete functionals F? with its
continuous counterpart Jy7 .

Proposition 1.3.2. Let o € [0,1), and let {pec}.c(0,1) C EM be such that p. € EM. for all
€ (0,1) and = wdpE(Rd) < M for some M > 0.
Then, there exists {E:}-c(0.1) C Mf(R?) such that the following properties hold:

(i) Eé“édue —XE. —0ase—0;

B

(ii) ||| — St pe(RY)| < C(M, d)

r ’

L}

(i) |FZ (ne) — JZ(E2)| < Clo,d, M)y, | =
In particular, as a consequence of (1.3.1)), we have
(iii’) |FC(pe) — JS(E:)| =0 ase— 0.

Vice-versa, if { Ec}zc(0,1) C M (R?) is such that |E.| < M for some M > 0, then there evists
{#eteco,1) C EM with pe € EMe for all e € (0,1) and such that (i), (ii), (iii) and (iii’) hold.

Proof. For every e > 0, set p. := \/ér-. Let Q :=[0,1)¢ and set
QP = {p(Q +v), v e Z.

Let moreover 4
g Wq
ptis 3:{(]69%307 pe(q )_Ps}

For all ¢ € Qf’f we denote by ¢ the square concentric to ¢ and such that § = ¢ if ¢ € Br=,

while |g] = 80024 ue(q) if g € QF< \ Pr. By Lemma [1.1.2| and by easy scaling arguments we
deduce that

&g dwd

#P < MpZ?, 0< —ue(e) = 1g] < Cd)epe™"  forall g € Q. (1.3.7)

Indeed, since Ec‘jd pe(RY) < M, we have

plapes < a (U o) <M

qEBPre

and the first formula in ((1.3.7)) follows. The second formula in is trivial if ¢ € QP \ Pre;
for g € PP= we define X = {3'j : 2 € supp(pe)} N € Add(9), then, by the Lemma we
obtain

ebw 1 we#(X
0< “oitnee) ~ lal = ot o T 1]

£

< pg[éd (Cd + Cp(d)) - 1} C(d)ept1t.
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We define E. := Ugeqee¢. By (1.3.7) we have that

e, ) < MO() = MO E

Ee ;
1B b Vi

which proves property (ii).
Let us pass to the proof of (i). Given ¢ € C}(R%), by (1.3.7) we have

S dwd

e
[ e = X8, 9)| < C M) T@l e pe + ol 22 C(d, M)
€

which tends to 0 as e — 0.

We pass to the proof of (iii). First notice that by construction |E.| < M + 1 for £ small
enough. Then, by rearrangement (see for instance Lemma A.6 of [38]) it is easy to see that
—J7 (Ee) < C(o,d, M)|y;7 |. Therefore, in order to prove (iii) it is enough to show that

— J7(E2) < =FZ(pe) (1 + Co, d)\/\/i) + C(o, d)]’y,‘fa]\/\/é, (1.3.8)
- P2 ) < — I BN+ Clond) Vo) + Clod | Y (1.3.9)

We will prove only (1.3.9)), the proof of (1.3.8) being fully analogous. For all p, ¢ € Qs with
p # q, set

I(p,q) == {(x,y) € supp(p) x supp(p) Np x g},

. ~ E7W,
Re(p,q) ==dist(p,q),  Re(p,q):= max dist(z,y),  me(q) = Cddﬂs( ).

z€p,y€q
By (1.3.7) we have that

mlD) gL o@E forall ge 0. (1.3.10)
|q] Pe

Moreover, since R.(p,q) < Re(p,q)+ C(d)p., it follows that there exists C(c, d) > 0 such that,

for € small enough,

Re(p,q)\d+o
<Ra(p7 C_I)) < (1+0(d)

Moreover, let

1<

Pe
for all ¢,p € Q¢ : R:(p,q) # 0. 1.3.11

27 .= {(p,q) € QP x 9 : R(p,q) > r:};
27 :={(p.q) € Q" x Q” : Re(p,q) < re};
27 =0 x Q" \ (2T U2).

Recalling that acd pe(R?) < M and (1.3.7)), it easily follows that, for £ small enough

s w d—o
d Y oo lz—yl™
(p,.9)€2= (z,y)€l(p,q)

< C(o,d)yrz % or® 1ty = C(o,d)r°

£

By

N < C(U,d)lmil\/‘/i. (1.3.12)
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By (1.3.10]), (1.3.11)) and ([1.3.12)) we have that, for ¢ small enough,

dw
—F) < (A Y Y =y + Cled)h

(p,9)€2F (z,y)€l(p,q)

< Y me(p)me(q)Re(p,q) 7 4+ Clo, )7

Sk

Lk

(p.g)e2*
< Y (ro@) (1 ced )|za||q*u?zg<p,q>-d—0+ Clo, g1
(pg)e2t Pe Re(p,q) VT

Ve Ve
Ve Ve
Finally, property (iii’) is an easy consequence of properties (ii), (iii) and of (1.3.1)), (1.3.2)),
(11.3.4]).

The proof of the final claim of the proposition is fully analogoug to the proof of the first

part of the proposition; we only describe how to define the measure p., corresponding to the
set E.. For all € € (0,1) and for all ¢ € QF< let
}

Cqn E .

€ i

L= AT

where T'% is the set defined in (T.1.4). Notice that the number of ¢ € Q7 such that n°(g) # 0
is finite. By the very definition of n°(q) it is always possible to find a set X (q) of n°(¢q) points
contained in ¢ with the following properties: For all ;,x; € X(q), i # j, we have |z; —x;| > 2¢;

< (14 Clo,d) Y= ) (=7 (E2) + Clovd, M) 7|

mﬁ&.

Ui(lq)B (x4,€) C q. Finally we define the measure

e 1= Z Z Og-

q€Qre zeX(q)

1.3.4 Compactness and ['-convergence

Here we prove I'-convergence and compactness properties for the functionals ﬁg defined in
(1.3.5) and ([1.3.6]). Conversely to what done for the integrable case o € (—d,0), here we will
present only the basic case, assuming as in [38] that there are no forcing terms; we enforce
compactness assuming that the empirical measures have uniformly bounded support.

Theorem 1.3.3. Let o € [0,1). The following compactness and T'-convergence results hold.

Compactness: Let U C R? be an open bounded set and let M > 0. Let {#e}ee(0,) C
My(R?) be such that

F2(ue) < M, supp(ue) C U Ve € (0,1). (1.3.13)

Then, Eé%ug — xeL? tightly, as € — 0T, for some measurable set E C U.

I'-convergence: The following I'-convergence result holds true.
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1. (T-liminf inequality) For every E € M;(RY) and for every {#e}ee(o) C My (RY)
with Ecd—fug — xpL? tightly in My(R?), we have

Fo(xeLl?) <liminf F7(u.).
e—0t

2. (T-limsup inequality) For every E € My(RY), there exists a sequence {#etecon)

with pe € EM, for all e € (0,1) such that Eé‘j’ld e — XpL? tightly in My(RY) and

ﬁ”(xgﬁd) > lim supﬁf(us).

e—0t+

Proof. In order to prove the compactness property, first notice that by we deduce
that u. € EM, for all € € (0,1). From Proposition We obtain that there exists g € (0, 1)
such that A .

|FZ (pe) — J7(E:)| <1 Ve < e,

where { E¢ }.¢(o,1) is exactly the sequence of sets provided by Proposition We deduce that
jﬁe (E:) is bounded; by Theorem there exists &' € My (R?) such that, up to a subsequence,

XE. — Xxg in L! for ¢ — 0. Therefore, again by Proposition [1.3.2 Eé";d e — XE tightly as

e—0t,
Let us pass to the proof of the I'-liminf inequality. By Proposition [1.3.2
and by Theorem [1.3.1] we obtain that

Fo(xpL?) <liminf J? (E.)
e—0t €

A

<liminf(J7 (E.) — FZ(pc)) + lim inf T2 (pe)
E—r

e—0t
<liminf F7 (u.).
e—07t

Hence the I'-liminf inequality holds.
We now prove the I'-limsup inequality.
Let {E:}.c(0,1) be the recovery sequence provided by Theorem we have

jfe (E.) — F(xpLlh as e — 0.

Let now {ug}ee(o,l) be the sequence provided by the second part of Proposition m Then,
we have

P2 (pe) = F7(xp L] < |FE (1) = I7 ()| + |I7(B) = F2 (xuL?),
which, in view of Proposition m(iii’), tends to 0 as € — 0. O

Remark 1.3.4. We have considered in this chapter the first order I'-convergence of the functionals

F?Z. The zero order analysis, i.e., the I'-limit of the functionals 710 FZ would give back less

information on the asymptotic behaviour of minimizers; one could ‘show that sequences with
bounded energy converge (up to a subsequence) to some characteristic function x g, while the
[-limit is nothing but the measure of E. In this respect, the zero order I'-limit still enforces
optimal packing on minimizing sequences, but does not determine the macroscopic limit shape.
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Chapter 2

The core-radius approach to
supercritical fractional perimeters,
curvatures and geometric flows

In this chapter we consider a core-radius approach to nonlocal perimeters governed by isotropic
kernels having critical and supercritical exponents, extending the the notion of s-fractional
perimeter to the case s > 1.

We show that, as the core-radius vanishes, such core-radius regularized s-fractional perime-
ters, suitably scaled, I'-converge to the standard Euclidean perimeter. Under the same scaling,
the first variation of such nonlocal perimeters gives back regularized s-fractional curvatures
which, as the core radius vanishes, converge to the standard mean curvature; as a consequence,
we show that the level set solutions to the corresponding nonlocal geometric flows, suitably
reparametrized in time, converge to the standard mean curvature flow.

Finally, we prove analogous results in the case of anisotropic kernels with applications to
dislocation dynamics.

The reference for the following results is [36], joint work with Lucia De Luca and Marcello
Ponsiglione.

2.1 Supercritical perimeters

Let s > 1. For every r > 0, we define the interaction kernel k7 : [0, +00) — [0, +00) as

1
s for0<t<r,
ki(t):==4q ™ (2.1.1)
prawy fort >r,
We note that
ks (lt) = l_d_sk% (t) for every r,1,t > 0. (2.1.2)

For all » > 0, we define the functional J¢ : M(R?) — [~o0, 0] as

BB = [ [ ke =y) dy da
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and for every E € M;(R?) we set
JE(E) := J:(E) + X3| B, (2.1.3)

where
d
AS ::/ k2 (|2]) dz = (d+s)wa
R4

Notice that for every E € My(R?)

srs

7Bz = [ [ k(e =yl dy de = ~X31B
E JRd

and hence J2 : My(R%) — [0,+0c). Moreover, by the very definition of .J¢ in (2.1.3), for every
E € Mf(R?Y) we have

J5(E) :ﬁE/E k3 (jz — y]) dy da. (2.1.4)

We first state the following result concerning the pointwise limit of the functionals jﬁ as
r — 0T. To this purpose, for every s > 1 we set

|log 7| ifs=1
a®(r) == Qs s o (2.1.5)

if s .

d+1s—1
Proposition 2.1.1. Let s > 1 and let E € M¢(R%) be a smooth set. Then,
JH(E)

li - = wq_1Per(F 2.1.6
A ey = warPer(®), (2.1.6)

where o° is defined in (2.1.5). In fact, for s > 1 formula ([2:1.6)) holds for every set E € M(R%)

of finite perimeter.

The proof of Proposition is postponed and will use, in particular, Proposition
below. For every E € M;(R?) we define the functionals

1
F(E ::// ——— dy dz, 2.1.7
(B = [ g W (21.7)
ci) = [ | k(2 — y)) dy de, (2.1.8)
E JENB(x,1)
and we notice that for every 0 < r < 1 it holds
JS(E) = F{(E)+ G(E) . (2.1.9)

Remark 2.1.2. It is easy to see that, for every E € Mf(]Rd), it holds

1 dwg
F(E <// ——dz = —|E]|.
VS o Sy T 27 51
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Let s > 1. For all » > 0 we define the function 7 : R%\ {0} — R? as

1
L if |z| € [r, +00),
sy =] Sl 2.1.10
T e dis e if || € (0,7) -
dridts  dsrs |z|d T
A direct computation shows that
Div(T?(x)) = ki (|z]). (2.1.11)

Lemma 2.1.3. Let F € Mf(Rd) be a set of finite perimeter. Then, for every 0 <r <1, we
have

d+ s _ y—x
G5 (E) = / a1 / y-r d
( ) dsrs S E (y) BB (y.r) ’x _ y!d VE(y) X
1

L de*l / —x)-v dax
drd+s /8*E @) ENB(yr) =2 vsl) (2.1.12)
1 ] - 1.

4= A1 / — v dz
s Jor ) EN(B(y,)\B(yr) |7 — y|*T* £lv)
1

S

- —/ HIYE°NdB(x,1)) dz,
E

where in the last addendum we recall that E coincides with its Lebesgue representative.

Proof. Let T7 be the function defined in (2.1.10)); then, by Gauss-Green formula and equation
[2.1.11)), for every = € E (and, in fact, for every z € R?%) we have

Lo me—ghdy= [ Div(Ty—a) dy
EenB(z,1) EenB(z,1)

1 (y — 1‘) ) VE(y) de—l(y)

s /8*Eﬂ(B(ac,1)\B(z,r)) |z — yld+s

d — ).
+ +85 / (y CE) Vg(y) derfl(y)
dsr 0*ENB(z,r) ‘33 - y‘

1 d—1
Trdts /8 *EOB(M)(y ) -vp(y) dH(y)

— %Hd_l(Ec NOB(z,1)).

The conclusion comes by integrating with respect to x € FE, noticing that xp( r)(y) =
XB(y,R) () for all x,y € R? R > 0 and exchanging the order of integration. O

For every s > 1 we set

= ifs=1
of = { a+l a1 (2.1.13)
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Lemma 2.1.4. Let E € Mf(Rd) be a set of finite perimeter. Then, for every 0 <r < 1, the
following formula holds true

J(E) =wq_1Per(E)(o°(r) + ®) + F{(E)
d —z)-
— +:/ d?‘ldil@/)/ ) (y — =) Vf(y)’ d
dsr® Jo-E (Bam, o @)nBwn |z =yl

1
bt [ | (v~ ) vo(y)| do
drdts Jorp (BoH, (\@)NByr)

1 _ (y —z) - ve(y)]
—f/a*E d#? 1(y)/ dz

s (Bam;  @)N(Bu\BE) |z =yl

VE

- 1/ W (EC A 0B(x,1)) da
S JE

Proof. First, we notice that, using polar coordinates, for every 0 < r < 1 and for every
v € S 1 it holds

X
/H,,(O)HB(O,T) [zl? Y dr = —war, (2.1.14)
_ Wd-1 d41
wvdr=—-m— ) 2.1.15
/HV(O)QB(O,T)(:L‘) Ve d+1 ( )
X
Jzld+s = —wi-17 2.1.1
/Hu_(o)ﬁ(B(O,l)\B(O,r)) || dts v de wa-17°(7) 4 ( 6)

where

|logr| ifs=1,
s ,_ _
)= { Pl s>,

Now we rewrite in a more convenient way the first three addends in the righthand side of

(2.1.12)). By (2.1.14)), we get

d+8/ de—l(y)/ (y_x)yg(y) dz
dsrs Jorg ENB(y,r) |z —yl

=d+j/ d%dq(y)/ wd
dsrs Joxg (E\H;E(y)(y))ﬂB(y,T) |5C - ?/|

T

d+s _ y—z) VElY
- dsr® /8*E ) /(H_ (1)\E)NB(y.r) W o
) vE () ’ (2.1.17)
N +SS / d%d—l(y)/ w@(y) da
dsrs Jorp H, . @)NBy.r) e
—— S [ [ e
dsrs Jorp (EAH;E(y)(y))ﬂB(y,r) [z —yl
+ wd,lPer(E)@rlfs .

ds
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Analogously, by (2.1.15)), we have

1 _

— g [, W [ =) () e
y,r
1
= dudt / —x)-Vv dx
Trds /a . (v) (B8E,  )rB ((y — =) - vE(y)] (2.1.18)
1

- Wd_lper(E)mrlis

Furthermore, by using (2.1.16f), we obtain

S Jo*E Eﬂ(B(y,l)\B(y,r)) |$_y| s

1 —z)-
=— 7/ d%d‘l(y)/ Iy — ) :fs(y” dz (2.1.19)
S JoE (Bam;,  @)N(BEN\BEN) 2=yl
1
+ wd_lPer(E)gvs(r) .
We notice that
d+s |, 1 1—s

s " aarn” o ntel

therefore, plugging (2.1.17)), (2.1.18)), (2.1.19) into (2.1.12)), and using (2.1.9), we obtain the
claim. O

1 S
37 (r) +

We are now in a position to prove Proposition [2.1.1

Proof of Proposition[2.1.1. 'We prove the claim under the assumption that E is smooth. For
s > 1, the same proof, with OF replaced by 0" F, works also for sets F € My (R%) having finite
perimeter. We will use the decomposition of j,f in Lemma Clearly the first contribution
wg—1Per(E)(c*(r) + &), once scaled by o°(r) converges to wy_1Per(E). Now we will prove
that all the other contributions, scaled by o*(r), vanish as r — 07 .

274 gddend: By Remark we have that
F(FE
i F1(E)

r—0t+ o%(r)

=0.

3" addend. By the very definition of ¢*(r) in ([2.1.2]) we have that ¢*(r)r*~! is uniformly

bounded from below by a positive constant for every 0 < r < %, so that by the change of

variable z = =¥ we have

os(r) dsr® Jog (Bam;  @)nBen |2 =yl

<C(ds) [ anty) | Uy =) ve) o

—C(d,s) [ an*(y / S
(d s) OF ) (E;yA(HJE(m(y)—%))mB(O’l) |2
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where the last integral vanishes as 7 — 07 in virtue of the Lebesgue’s Dominated Convergence

Theorem since X 5-y — X - (y)—L in Llloc.
T v (y) Y T

4™ gddend. Trivially, we have

1 L/ de,l(y)/ I(y—x)éVE(y)\ do
os(r)dr® Jog (BAH, (()NBy.r) r

< 1 1 2 (y / ’(9—33)"/5@)‘ d
os(r) dr® Jor (Bam; o @)nBEn [T =Yl

I

where the last integral vanishes as shown above.

5% addend. We first discuss the simpler case s > 1. In such a case, for every y € OF,

using again the change of variable z = =¥, we have
1 1/ Hd_l(y)/ ‘(y_m)VE(y” d
o*(r) s Jor (Bam_, @)0(Bw\Bwn)  |v =yl
r'=e 1 2 ve(y)l
= = ant(y) / L AN P
os(r) s Joe (Ezeam;  @)-9)n(BO\BOY)  |2]7F
1
<Cld,s) [ anty) | N —
OF (Ezeam,,  w)-9)\BO1) |27

where the last double integral vanishes as r — 07 in virtue of the Lebesgue’s Dominated

Convergence Theorem using that x s—y — X - (y)—L in LllOC as r — 0T and the fact that
T vE(y) T

the function h(z) := Mdﬁ is in LY(R?\ B(0,1)) for s > 1.

Notice that the reasoning above does not apply to the case s = 1 since for s = 1 the
function h(z) = ﬁ is not in L'(R%\ B(0,1)). Let now s = 1 and recall that o'(r) = |logr]|.
Since F has smooth boundary, there exists 0 < § < 1 such that for all y € JF the sets
B~ :=B(y — évg(y),d) and Bt := B(y + dvg(y),d) satisfy

B~ C E\OE, BT C E°\ OF, y € OB~ NOBT.

Therefore, we have that

EAH,, ((y) C (H, () \B")U(H, () \B"), (2.1.20)

where H(y) are defined in (0.0.6) and (0.0.5). Fix y € OF and let R, be a rotation of
R? such that Ryvg(y) = eq. Moreover, we denote by z = (2/, z4) the points in R?, so that
/

2" = (21,...,24-1) € R¥"1. Furthermore, we set R% := {z € R? : z; > 0}. By (2.1.20) we

have

1 dfl(y)/ |(y_m)VE(y)|
[log 7| Jor (Bon;  @)n(BwN\BE) T —y*!

1 de_l(y)/ ‘(y_x)VE(y)’ dx
~[logr| Jor (H; . W\B-)nB1) |z —yl4t!
vEW) (2.1.21)
1 derfl(y)/ |(y7x)VE(y)| dz
[logr| Jor (H} ,@\BH B |z =yl
2 Zd
| log r|Per(E RL0(BO)\B(ead)) (|2/|2 + 22)"F dza-

dx
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Therefore, in order to prove that the first double integral in (2.1.21]) vanishes as » — 0T, it is
enough to show that

Zd
(g i =00, (2.1.22)
/]Riﬂ(B(O,l)\B((Sed,(S)) (‘Z/P +z§)%

for some finite constant C(d,d) > 0. To this purpose, setting
As = {z= (¢, 24) € RL\ B(deg,0) : || < 3,24 <6},

we notice that
RY N (B(0,1)\ B(deq,8)) C (B(0,1)\ B(0,8)) U As. (2.1.23)

Moreover, there exists a constant c¢s (take, for instance, c¢5 = %) such that

As CAsi={z= (2, 2a) ERL : || <8, 24 < c5]2)?}. (2.1.24)

Therefore, by (2.1.23)) and (2.1.24), we get

/ B & dz
T S P
Rim( (0’1)\3(5%5)) (\z’|2 + zﬁ)%

2d Zd
§/~—d+1dzd+/ —— 7 dzd
A (|22 +23) 2 BO\B(0.S) (|22 4 23) 2

5—/52— |22 "2 1
S/ dz’/ 66,|z’1 dzd+/ — dz
B/(0,6) 0 ||+ B(0,1)\B(0,3) ||

<% 12274 d2’ + |log 6| =: C(d, 6),
0 JB(0,)
i.e., .
6 addend: We have that
051(7“) /E’Hd_l(EC NIB(x,1)) dz < (Tsl(r)dwdE| -0 asr—0".
Thus, the proof of Lemma [2.1.1]is concluded. O

We will show that the limit (2.1.6]) is actually a I'-limit.

Theorem 2.1.5. Let s > 1 and let {r,}neny C (0,+00) be such that r, — 07 as n — +oo.
The following I'-convergence result holds true.

(i) (Compactness) Let U C R? be an open bounded set and let {Ep}nen € M(R?) be such
that B, C U for every n € N and

JS (En) < Mo*(r,)  for everyn € N, (2.1.25)

for some constant M independent of n. Then, up to a subsequence, xXg, — XE Strongly
in LY(R?) for some set E € M;(R?) with Per(E) < +oc.

(ii) (Lower bound) Let E € M¢(R®). For every {Ep}neny C M¢(R?) with xg, — xE strongly
in LY(R?) it holds 3
Jr (En)

< lim inf & .
wg—1Per(E) < %Eirg 5 (ra)

(2.1.26)
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(iii) (Upper bound) For every E € M(R?) there exists {Epfnen C Mp(R?) such that xg, —
XE strongly in L'(RY) and

L (En)
Wd_lper(E) = nll)]:}»loo W .

The proof of Theorem will be done in Sections [2.2] and [2.3] below.
To ease notation, for every r > 0 we set J3(-) := jf((r)) . In view of (2.1.4)), for every
E € Mf(RY) we have

jg@):aj [ kst =gl dy da

msor fo L Ko~ oDlet) — xp(w)] dy .

2.2 Proof of Compactness

This section is devoted to the proof of Theorem [2.1.5(i). To accomplish this task we will need
some preliminary results that are collected in Subsection below.

2.2.1 Preliminary results

We first recall the following classical result (see also [8, Theorem 3.23]).

Theorem 2.2.1 (Compactness in BV). Let Q C R? be an open set and let {uy ynen C BViee(Q)
with

SUP{/ [up (z)] do + |Dun|(A)} < +oo VA CCQ open.
neN A

Then, there exist a subsequence {ny}ren and a function u € BVio.(Q2) such that un, — u in
LL () as k — +oo.

loc

Now we prove a non-local Poincaré-Wirtinger type inequality.

Lemma 2.2.2. Let 0 < r < [ be such that wgr?® < g. Let ¢ € R and let v € LY(IQ + €).
Then, for every s > 1 we have

/ 1 u(z) dz| dy
el UQ+€\B@,N (1Q+€)\B(y) (2:2.1)
<2d2P/) / (@)[k7(Jz = yl) dy dz.
ore gre

Proof. By translational invariance, it is enough to prove the claim only for & = 0. By
assumption, for every y € [() we have

d
1Q\ B(y,r)| > 1% — wgr? >%
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As a consequence, we have

e O~ T B sy ]
< o T BT mBymW@*‘“”““dy

1Q 1Q\ B(y,7)| Jig\B(y.r) \y—w\‘“s
d+s
L O
Q 1 Jig\By |y — x|t
<2050 [ [ July) — ula) k2 (ly — al) dy d,
1019
ie., 221). 0

Lemma 2.2.3. Let 0 < r < [ be such that war? < %. For every & € R* and for every
E € Mf(RY), it holds

10Q + )\ Bl(Q + &) n Bl
1

< / X X
1g+e | 1Q + &)\ B(x, )| Jugrenpen -

Proof. We can assume Without loss of generality that £ = 0. It is enough to prove ([2.2.2)
only in the case IQNE| > % ; indeed, once proven the inequality (2.2.2) in such a case, if
IQ\ E| >4 7, then the set E = 1Q \ E satisfies [IQ N E| > %, and hence E and, in turn, E

satisfy (2.2.2)).

Let IQNE| > ¥ - then, for every z € R? we have

(z) — (y) dy| dz. (2.2.2)

(1Q N E)\ B(x,r)| > 1Q N E| - war® > 1Q 1 B| ”Q;E| (22.3)
so that
1
— dy| d
-/ P_K@\B@r mm‘ /‘ (Q\ Bz, )N B
1QNE 1Q\ B( Qe |IQ\ B(z,r)|
>5( [ 0@\ Bl ) \Elds+ [ [0Q\ Ble,r) nE|do)
STAY/ - x,T x o\ x,r x
2
=51 [, 10QNB)\ Bl )| da
> lIQN B i@\ B
where in the last inequality we have used formula . O

The following result is a localized isoperimetric inequality for the non-local perimeters jf .
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Lemma 2.2.4. Let s > 1 and let Q € M;(R?) be a bounded set with Lipschitz continuous
boundary and || = 1. For every n € (0,1) there exist a constant C(n,d,s) > 0 and ro > 0
such that for every measurable set A C Q with n < |A| <1 —mn, it holds

/ / EX(lx —y|) dy dz > C(Q,d, s,n)o*(r) for every r € (0,7¢). (2.2.4)
AlJona

The proof of Lemma follows along the lines of [46, Lemma 15], with slight differences
due to the core radius approach adopted in this chapter. Before proving Lemma [2.2.4] we
state the following result which is a consequence of [?, Theorem 1.4].

Lemma 2.2.5 ([46]). Let Q € M;(R?) be a bounded set with Lipschitz continuous boundary
and |Q =1 and let p € CX(B (O 1);[0,400)) be such that [ ¢ dz =1 and ¢ > 0 in B(0, 3).
For every 0 > 0 we set ¢5(-) := 53 L(5). For everyn € (0,1) there exists a constant C(¢,n) > 0
such that for every measurable set A C Q with n < |A| <1—mn and for every ¢ € (0,1) it holds

1

The above lemma has been stated and proven in [46, Proposition 14] in the case d = 2
with 2 = (—5, 5) but in fact the same proof is not affected neither by the dimension d nor
by the specific shape of 2. We are now in a position to prove Lemma [2.2.4]

Proof of Lemma[2.2. Fixn € (0,1), » € (0,1) and let I € N be such that 27 /~1 < <271,
Notice that o ‘

k3(|2]) > (2d+s)min{i1} if0< |z <27, withieN. (2.2.5)
Let ¢ and ¢s (for every § > 0) be as in Lemma Now we claim that there exists a
constant C(¢, d, s) such that

I
kX (|z]) > C(¢,d, s) Z 25)ipy-i(z) for every z € R?. (2.2.6)
=0
Before proving the claim we show that (2.2.6]) implies (2.2.4). Indeed, first notice that
el g osr
log 2 - 7 log2
and hence ‘ ‘
I logr . o
S = I;ﬂlszl e o=t
=0 ( 23)1 1 ng 1_1 1f3>1

so that, recalling the very definition of ¢*(r) in - for r small enough we have
I

S > C(d, s)ot(r). (2.2.7)

i=0
Therefore, by applying (2.2.6)) and Lemma with & replaced by 2%, we get

/ / k(12 — y)) dy da
I

0, ¢,d,s) Y (2°71) / o $y-i(z —y) dy dw (2.2.8)

=0

I
(Q,b.d,s,m) > (2°71) > C(¢,d,s,m)a%(r),
i=0
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where the last inequality follows from ([2.2.7)).

Now we prove the claim (2.2.6). Suppose first that 0 < |z| < 27!, By applying (2.2.5)
with ¢ = I, we get

1 I 5
Z(QS)iQSQ—i (Z) < Sup¢2(2d+8)i — SUP¢Z (2d+£)17:(2d+5)1
1=0 i—0 e
o1 20+ 2.2.9
j=

<C(¢,d, s)k(|z]) -

Analogously, if 2771 < |2| < 277 for some 7 = 0,1,..., ] — 1, using that ¢—:(2) = 0 for every
i=1+1,...,1, we have

1 7

S (2 i(2) = 3 (2 ida i (2) < sup & 3 (24)'

=0 =0 =0

400 d+s
1 . 2 . (2.2.10)
Ssupé Y mary (21) = gam s e (277
j=0

<C(¢,d, s)k;(|z]),

where the last inequality is a consequence of (2.2.5)).
Finally, if |z| > 1 we have that ¢,—i(z) = 0 for every i so that

I

Y (2°) ba-i(2) = 0 < kS(2]) - (2.2.11)
i=0
Therefore, by (2.2.9)), (2.2.10) and (2.2.11f), we deduce ([2.2.6)), thus concluding the proof of
the lemma. 0

2.2.2 Proof of Theorem [2.1.5/i)
We are now in a position to prove Theorem [2.1.5[i).

Proof. We divide the proof into three steps.

Step 1. Let a € (0,1) and set I, := rg for every n € N. Let {Q} }ren be a disjoint family
of cubes of sidelength [,, such that |J,cy Q7 = R%. Since |E,| < |U|, there exists H(n) € N,
such that, up to permutation of indices,

14
Qy N E,| > 2 for every h=1,--- , H(n),
2 y (2.2.12)
|QZ\En|>§” for every h > H(n) + 1.

For every n € N, we set
H(n)

E, = U Q.
h=1
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Let nn € N be such that for all n > n the pair (r,, 1)) satisfies the hypothesis of Lemmas
and We claim that there exists a constant C(d, s) > 0 such that

|E,AE,| < C(d, s)I50° (rn) M for every n > n, (2.2.13)
where M is the constant in ([2.1.25)). Indeed,

|EnAE, |=|E \E |+ 1B \ En

—Z Q5 \ En| + Z [En N @

h=H (n)+1

H(n) 00

=2y LlQp\ Bl by 1B m@h\

h=1 1 h=H(n)+1 ™
<2hzld‘Qh\E wl| QR N By

1 n

+o0 1
<23 [ @) - oo X, () dy| do

,; ? Q5 \ B(x, )] Qp\B(z,rn)

I d+s
<Yosdwn [ [ k(e g dyde

h=1 hNEn JQ\En

<C(d, s)I5J5 (Ey) < CO(d, 8)l50% (1) M,

where the second inequality follows by formula (2.2.2)), the third inequality is a consequence
of (2.2.1]), whereas the last one follows directly by ([2.1.25)).

Step 2. For every n € N let [,, and E,, := UhH:(?) @} be as in Step 1. We claim that there
exists a constant C'(a, d, s) such that for n large enough

Per(E,) < C(a,d, s)J5 (E,) . (2.2.14)

To ease notation, we omit the dependence on n by setting r :=r, , l :=1,,, F := E,, Q) := Q},
H:=H(n),and E := E, .
We define the family R of rectangles R = Q U Q such that Q and Q are adjacent cubes (of
the type @), introduced above), Q C E and Q C E°.
Notice that
Per(E) <2dld_1jj72

J? / / EX(|lx —y]) dy dz .
(E) 2das 72 oo B = 9D dy

RER

(2.2.15)

We recall that, by Lemma for every rectangle R given by the union of two adjacent
unitary cubes in R%, there exists py > 0 such that

C(d,s) :—mf{ p // ky(lz —yl) dy dz
o R\F

0<p<po, FEMRY, FCR,

(2.2.16)
<|F| <

| W

o,

N
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Furthermore, by the very definition of ¢*(r) in (2.1.5]), using that [ = r® we have

|log(r'~*)| I
0’8(1")_ 1o ifs=1
ll*S - d _|_ S 7"(1_0‘)(1_5) f 1
d+1 s-—1 e
_ 11 of(rm) ifs=1
od(rtme) its>1,
so that
SO e (2.2.17)
os(r) ~ os(rt=e) o*(7) o

For every set O € M (R?) we set O' := €. By (2.2.15), @2.1.2), (22.17) and by applying
[2-2.16) with R = R! for every R € R, for r small enough we obtain

s d 2d / / s o
T () H S [ Bl =) dy ar

ReER

C k3 (|lz — dy dx
~ ringt Jri g 7(‘ y\) Y
Cla,d ld 1 g / / ‘2 T — dy dz
( ) % gt Jrog T | y|) Y

RG'R
>Cl(a, d)I"YWRC(d, s) > C(a,d, s)Per(E),

Step 3. Here we conclude the proof of the compactness result. We fix o € (1- %, 1) so
that, by (2.2.13)), |E,AE,| — 0 as n — +o00.
By assumption and by the very definition of E, in Step 1, we have that F, C U for all

n € N. Moreover, by formula (2.2.14) and by (2.1.25)) for n large enough we have
Per(E,) < C(a,d, $)JE (En) < Cla,d, s)M

It follows that the sequence {x R }nen satisfies the assumption of Theorem and hence
there exists a set E C R? with Per(E) < 400 such that, up to a subsequence, X, — XE in
L'(R%) as n — +oo. Since |E,AE,| — 0 as n — +oo we obtain that xg, — xg in LYU),
i.e., the claim of Theorem [2.1.5(i). O

The following result follows by the proof of Theorem [2.1.5(1)

Proposition 2.2.6. Let s > 1. Let {r,}nen C (0,+00) be such that rp, — 07 as n — +o0.
Let {Ep}nen C My (RY) be such that xg, — xg in LL(R?) as n — +oo, for some E € My(R?).
If
J3 (E
lim sup M

<M
n—4o0o O'S(Tn) B ’

then E has finite perimeter.
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Proof. The proof of this corollary is fully analogous to the proof of Theorem M(l), and we
adopt the same notation introduced there. Arguing as in the proof of Steps 1 and 2 we have
that for n large enough

- J3 (En
Per(E,) < C(a,d, s) limsup e (En)

n—too OF (Tn)

< Cla,d,s)M

and that if a € (1 — %, 1), then |E,AE,| — 0 as n — +oco. By assumption, this implies that
Xg, = XE, in Ll(Rd) n — 400,

and by the lower semicontinuity of the perimeter,

Per(E) < lig14i_nf Per(E,) < C(a,d,s)M .

2.3 Proof of the I'-limit

This section is devoted to the proofs of Theorem [2.1.5(ii) and (iii), which are the content of
Subsections and respectively.

2.3.1 Proof of the lower bound

The proof of Theorem [2.1.5[ii) closely follows the strategy used in [46]. We recall that for
every v € S| Q¥ is a unit square centered at the origin with one face orthogonal to v.
Moreover, we recall that H;f(0) = {x € R? : z-v > 0}.

The following result is the adaptation to our setting of [46, Lemma 18].

Lemma 2.3.1. Let s > 1. For every ¢ > 0, there exist 9,59 > 0 such that for every v € S',
for every E € M;(R?) with

(EAH(0)) N QY < 6. (2.3.1)
and for every r < rq it holds
/ / k(|2 —y)) dy dz > wa_1 (1 — £)o(r). (2.3.2)
QvnE JQvnEe
Proof. Up to a rotation, we can assume that v = —ey so that Q¥ = Q = [—%,%)d and

H;(0) =:R%. Let 0 < 7 < 1. We can assume without loss of generality that £ C Q. Using
the change of variable y = x + z we have

[ e[ ey dy
QnEe QNE

_ d:c/ k(| = 2|) dz
QNE*® {z€R?: x+2€E}

_ da:/ k(12 xm(@ + 2) dz (2.3.3)
QNE° Rd

= [ ke [ xeero()xs(e+2) de ds
R R

= [ BDIE N (B = 2)nQldz = [ k(lzhm(z) dz,
R R
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where we have set m(z) ;= |[E°N(E —2)NQ]|.
Let 2 <\ < 1and let 2 € R? be such that |z|o < 152 and 24 > 0. Since |(E — 2) N AQ| =
|EN ()\Q + 2)|, by triangular inequality, we get

(E=2nQ-1E0QI= [ xpde= [ xpde
AQ+z AQ

2/ dl’—/ dx—/ — dz
Aars ao Ogrmg ¥ x|

>Ny — / IxE — XRi’ dx,
A

where we have set U) ; 1= (A]2]00) @\ (A—|2|00) @ and we have used that (AQ+2)AANQ C Uy ;.
As a consequence, we deduce that
m(z) =|E°N(E—-2)NQ|>|E°N(E—2)NAQ|
2[E°NAQI+ [(E — 2) NAQ| — [AQ)|
SIECAAQ| + |ENAQ| + M2y — / e~ Xat | dr — [AQ) (2.3.4)

U)\,z

Xz = [ Ixe — xpa | o
U)\,z +

where the last equality follows by noticing that |[E N AQ| + |E€ N AQ| = [AQ)].
Let now 0 < dg < 6%1 to be chosen later on and set
do

A%::{zERd:|z|oo§\/2>,zd>0}.

We fix z € A} and we set J : L\/Ej We set A\g := 1 — 4y/§p and we cover (Ao +

El
2J|z]00)@ \ AoQ with J squared annuli of thickness 2|z|o, namely we set A; := Ao + 2j|2|c
and Uj := \;Q \ A\j—1Q for j =1,...,J. Moreover, we set Aj =X+ (2) — 1)|z]oo for every
j= 1,...,Jand we notice that % <Aj<1lforeveryj=1,...,J. Since z € A%, we have

that |2]e < 1_25“’ < 1729' for every j = 1,...,J. Therefore, for every j = 1,...,J we can
apply (2.3.4) with A = A; in order to get

m(z) szj\;l—l - /U IXE — XR1| dx
A (2.3.5)
22Xt = [ e~ xpa | o
Uj; +

where we have used also that \j — |z|loc = Aj_1 and \; + |z[c = A, so that Us,. = Ui

Summing (2.3.5) over j =1,...,J we get
2) deZAd ! / X — X | A,
J=
which, dividing by J and using discrete Jensen inequality (namely, convextiy), yields

1 _
>zd( Z)‘J 1) _J/Q‘XE_XRi‘ dz > 2gAd71 = 2|2]|00V/00, (2.3.6)
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where in the last inequality we have used (2.3.1) and the fact that J > % — 1. Therefore, we

have proven that (2.3.6) holds true whenever z € AJ&%, which combined with (2.3.3)), yields

[ode [ kel dy
QNE® QNE

2N [ wakila) de =205 [ [elekiel) dz (237)
A\/% A\/%

As for the first integral on the right hand side of (2.3.7)), by using polar coordinates z = pf
with p > 0 and 6 € S and using the very definition of o*(r) in ([2.1.5), for dy small enough
and for all r < dg we have

24 “d
zaky(|z]) dz Z/ dz+/ @
/A+ aky(12]) B(0.r)nEd pd+s (B(0,60)\B(0,r))NRE 2|4t

Vo
I [ g d—1
= d 0, d 0
Td+SA P p/SdlﬂR‘i d H ( )

do
+ / p~* dp / 04 dHI1(0)
r Sd—lﬂRi

,',.1—5 (50
=Wy _ =54
wd 1d+1+wgz 1/T P P

Ewd—las(r) - Wd_lc((s(), S) ’

(2.3.8)

where

C((So,s) = 5675

s —

|logdp| if s=1
if s >1.

Moreover, since |z|s < |z|, it holds

[ leleokilla dz< [ Jelki(e) dz
A\/(T B(0,1)
" (2.3.9)

1
— dz + / — -~ dz< Od,s)od(r),
rdts /Bw,r)‘Z' T Joanson 27T (d,5)o°(r)

for some C(d,s) > 0.
Now we define the function 7(t) := 1 — (1 — 4y/#)9~! | and we notice that n(t) — 0 as

t — 0. Therefore, by ([2.3.7), (2:3.8) and (2.3.9), using that A\' = 1 — 7(d) , we deduce

that
[ode [ kel dy
QNEe QNE

S 10°(r) (1= n60) — (1= n(60) Stz 05, C 10T,

os(r) Wd—1

(2.3.10)

so that, choosing dy > 0 such that

n(oo) + 21/ )
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and 7o > 0 such that (for every 0 < r < rg)

(7(50,5) (7(50, ) 9
— < < —
(1 n(50)) JS(T) = ( (50)) (TO) =9
by (2.3.10)) we deduce (2.3.2)), thus concluding the proof of the lemma. O

We are now in a position to prove the I'-liminf inequality in Theorem [2.1.5

Proof of Theorem [2.1.5(ii). We can assume without loss of generality that

J3 (Ep) = /Rd/ w7 =yl IxE, (2) = xE, (y)| dy dz < C, (2.3.11)

205

for some constant C' > 0 independent of n. Then, by Corollary we have that E has finite
perimeter. For every n € N let p,, be the measure on the product space R x R¢ defined by

pin (A x B) :=

//k = yDIxe. (2) = X, (y)] dy dz

205

for every A, B € M(R?). Then by (2.3.11)), up to a subsequence, uf — p® for some measure j°.
Now we show that u® is concentrated on the set D := {(x,z) : x € R%}, i.e., that u*(Q) =0
if QN D = (. Indeed, let ¢ € C.(R? x R% [0, 4+00)) be such that dist(supp ¢, D) = & for some
6 > 0; then

Lo #ay) du@.y)
RIxR4

: 1 s
= lim Lo @i, (o = yDixe, () — X, ()] dy do
R xRd

n—+o0 205(ry,)
1 1
/ p(r,y)dydz =0.
Ré xR

- REI—&I-IOO 205 (ry,) 69+s

Now we define the measure \* on RY as \*(A) = p*({(z,z) : € A}) and we claim that for
HI1 ~ae. xp € O*F it holds

lim inf M > lim inf lim inf 1n (Q (o) x Qf (x0))
1—0+ jd-1 10+ n—+oo a1

> i1, (2.3.12)

where we have set v = vg(xp) and Q] (z9) = xo + 1Q”. By and Radon-Nikodym
Theorem, using the lower semicontinuity of the total variation of measures with respect to the
weak star convergence, we get .

We conclude by proving the claim . We preliminarily notice that the first inequality
is a consequence of the upper semicontinuity of the total variation of measures on compact

sets with respect to the weak star convergence. We pass to prove the second inequality in
(2.3.12). For all xg € 0*E, we have

llir(% o IXE(z0 + %) — X (g) () dz = 0. (2.3.13)
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Fix such a zg € 0*E. We will adopt a blow-up argument. Consider the sequence of sets
{F, 1 }nen defined by F,; = ¢ + [E,. By the change of variable x = zo + £ and y = o + In

we have
1

st (@1 (20) x Qf (z0))
1
:208(rn)/u /QU 1S (1€ — InD)xr,, (&) — xF,, ()] d€ dn (2.3.14)
ll—s
=7t o o K 06 = DI (€) — X ()] .

where in the last equality we have used (2.1.2)). Let 0 < e < 1 and let dp,79 > 0 be the
constants provided by Lemma In view of (2.3.13]) for I small enough we have

0
/QV IxE(T0 +12) = X1 (0 (¥)] dz < 20 (2.3.15)
Fix such an [; then, there exists n(l) € N such that for n > n(l), it holds
1 5o
/ IXF,, (%) — xB(zo + lz)| dv = —d/ IxE, () — xp(z)| de < . (2.3.16)
Qv 1% ) Qv (20) 2

By (2.3.15)) and (2.3.16)), using triangular inequality, we obtain

(Pt HZO) Q= [k = X o 4 < 0.

Therefore, by applying Lemma with k; = k%, and E = F,,;, for n large enough (i.e., in
l
such a way that n > n(l) and r,, < rol) we have that

Tn
3 L = Dl (O ~ X g dn = w1 =20* (). @37)
Now, by the very definition of o* in (2.1.5)), we have that

1— logi+|logrn| ¢ . _
1-s 05(7;”): Togr] ifs=1
os(rn) ! 1 if s >1,

so that, in view of (2.3.14) and ([2.3.17)), we deduce that for every 0 < ¢ < 1 and for every [
small enough (depending on ¢), it holds

tm nf 4 (@4 () X Qf (20)) > wa1(1— ),

n—-+0o

whence the second inequality in claim (2.3.12]) follows by the arbitrariness of ¢. O

2.3.2 Proof of the upper bound

The I'-limsup inequality will be a consequence of Proposition [2.1.1] and of standard density
results for sets of finite perimeter.

We first recall the following fundamental approximation theorem (see, for instance, [60,
Theorem 13.8]).
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Theorem 2.3.2 (Approximation of set with finite perimeter by smooth sets). A set E €
M¢(R%) has finite perimeter if and only if there exists a sequence {Fj}ren C M¢(R?) of open
bounded sets with smooth boundary, such that

XF, — XE  (strongly) in LY(R?) as k — +oo,

(2.3.18)
Per(Fy) — Per(E) as k — +oo.

Proof of Theorem [2.1.5(iii). Let E € M;(R?) be a set with finite perimeter. By Theorem
there exists a sequence { Fj }ren of open bounded sets with smooth boundary satisfying
(2.3.18) . In view of Proposition we have that

. JS ()
lim 2
n—+oo 5(ry)

= wgq—1Per(Fy) for every k € N.

Therefore, by a standard diagonal argument there exists a sequence {E,, },cn with E,, = F) k(n)
for every n € N satisfying the desired properties. O

2.3.3 Characterization of sets of finite perimeter

As a byproduct of our I'-convergence analysis, we prove that a set E € Mf(Rd) has finite
perimeter if and only if for all s > 1

o
lim sup Jr(E)
rsot 0° (7")

We recall the following classical theorem.

< +00

Theorem 2.3.3 (Characterization via difference quotients). Let E € M(R?). Then E has
finite perimeter if and only if there exists C' > 0 such that

/Rd IxE(* + 2) — xEB(2)] dv < C|z] for every z € RY.

Specifically, it is possible to choose C' = Per(E).
Theorem 2.3.4. Let E € M;(R?). The following statements hold true.

JS(E
(i) If limsup TS( ) < 400 for some s > 1, then F is a set of finite perimeter.
r—0t O (7’)

Ji(E
(i) If E is a set of finite perimeter then lim sup TS( )
r—0t O (7”)

< 400 for every s > 1. More

precisely,
wq—1Per(E) < lim inf Jo(E) < lim sup J-(E) < M(s,d)Per(E), (2.3.19)
e B

where .
dwa e —1
M _ 5 if s
(5, ) { wg—1 ifs>1.

In particular, for s > 1 we have that

lim J (E)

r—0t o’ (7’)

= wg—1Per(E). (2.3.20)
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Remark 2.3.5. We notice that in the case s = 1 the constant M (1,d) = dwd > wg_1, so that
the existence of the limit (| is not proven in such a case.

Proof Theorem [2.3.4: We notice that (i) is an immediate consequence of Proposition m
taking E,, = E for every n € N. We prove (ii). The I'-liminf inequality Theorem [2.1.5((ii)
implies the first inequality in . Being the second inequality obvious we pass to the
proof of the last one. If s > 1 then, by Proposition we have

m J7 (E) = wq_1Per(E). (2.3.21)

r—0t o(r)

Let now s = 1. Let G be the functional defined in (2.1.8)); by Theorem we obtain

GHE) _ 1 / / 1
= kH(jz —y|) dy d
01(?”) |logr| EenB(e1) r(|33 y|) dy dx
1 [R—
z,logr, Joo fo D) = xR =) dy
—_— k) / +h dz dh 2.3.22
2,10g7«, o ErAD L, Dep(a+ ) = xp(@)] do (2:3.22)

PerE/ h|kX(|h]) dh
2,10gr| (E) B(OJ)! | (R])

dde r(E) (1 +

1
(d+1)] 10g7“!>'
Moreover, by Remark we have that
Fl
F(B)
r—0+ 0'1(7“>
where F} is the functional deﬁned in formula
Therefore by formulas m, and we have
JNE ! F:(E) _d
hmsupj o (B) —l'msqu o(E ) i ( ) wd
r—0+ ol (T) r—0t 0.1(7,) r—0+ ol (T’) 2

thus concluding the proof of (ii). By (2.3.21]) and (2.3.24)) we conclude the proof of (ii). [

=0, (2.3.23)

—4Per(E). (2.3.24)

2.4 Convergence of curvatures and mean curvature flows

In this section we study the behavior of the non-local curvatures corresponding to the
functionals jﬁ and of the corresponding geometric flows. Using the approach in [28, 26], it is
enough to focus on smooth enough sets. To this purpose, we introduce the class € as the class
of the subsets of R?, which are closures of open sets with compact C? boundary. Moreover, we
define a notion of convergence in € as follows. Let {E, },en C € we say that E, — F in € as
n — +oo, for some F € €, if there exists a sequence of diffeomorphisms {®,, } ,en converging
to the identity in C? as n — +o0, such that ®,(E) = E,, for every n € N. In the following, we
will extend this notion of convergence (in the obvious way) to families of sets {E,},¢(0,1) C €
as the parameter p — 07 .

Notice that if £ € €, then either F or E°¢ is compact. Therefore, in order to define the
supercritical perimeters and the corresponding curvatures on the whole €, it is convenient to
set J3(E) := J3(E°) for every set E € M(R?) with B¢ € M(R?).
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2.4.1 Non-local kj-curvatures

Let s >1,r>0and F € €. For every x € OF we define the k-curvature of E at x as

3 B) = [ (cee(v) = xs(w))k (o — ) dy. (24.1)

Although this fact may be immediate for the experts, we show that ICJ is the first variation of
the functional J;} in the sense specified by the following proposition.

Proposition 2.4.1 (First variation). Let s > 1, r >0, and E € €. Let ® : R x R? = R be a
smooth function, and let {®:}er be defined by ®u(-) := P(t,-) for every t € R. Assume that
{®:}ier s a family of diffeomorphisms with ®o = Id and that there exists an open bounded set
A C R? such that

{zeRY: z#£d(x)} CA forallteR. (2.4.2)

Setting Ey := ®,(E) and ¥(-) := %q)t(')‘tzo , we have

L rm)

ek = [ Ki(z,E)¥(z)-vg(z) dH (z). (2.4.3)

t=0 oK

Proof. By Taylor expansion for every = € R? we have that ®;(x) = x +t¥(z) +o(t). Therefore
the Jacobian J®; of ®; is equal to

T®i(z) = /det(Vi(2) Vi(2)*) = 1+ tDiv(¥()) + oft) ,

where, for every A € R™** (m, k € N), the symbol A* denotes the transpose of the matrix A.
By change of variable, it follows that

BE) =[] k(e yl) dyda
q%(E) ‘I’t(Ec)

= [ [ @) — Bu) DT @) Tuy) dy da
E JEc°
= [ [ k(@) = @) dy da (244
E JE°
—I—t/E/EC E(1@4(x) — @4(y)) (Divi(z) + Divi(y)) dy da
volt) [ [ k(i) - @i(y)) dy d.
Let (k%) : (0,+00) — R be the weak derivative of k£ : (0,4+00) — R, that is equal a.e. to

0 forO< h<r,

(k) (h) = { .

Notice that kf € W1(R). We set

W fOI'h>7".

|z —y
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and we claim that

lim —* =0. (2.4.5)
t—0 t

By the fundamental theorem of calculus, we have
L (Ex(i@u@) = @) = ki = o)) dy do
=[] [ /E 0 g = o (5 0 = ) v,

so that

K s (IDT(SU) — (I)T(y) 8(1)7' 8(1)7'
SRR A RCICEE ~ 2N ey (ar @ 5 ®)
— (Yl =)= j‘ (W(z) V() dy da] dr
1 [l , & (1) — D, oD, o®,
<i [ Lo —<I>T<y>|>q)TEx§ _@83‘ (B @) - L)

— (k) (]2 — y)) L (U(x) — U(y)) dy d

|z — y|
1/t|
Ut Jo

where in the last line for every 7 € R and for every (z,7) € R? x R? we have set

dr,

/E/Ec (fr(z,y) — fo(z,y)) dy dz

O () — D, 0d, 0P,
Frlan) = () ((a) ) = gn - () = o))
Notice that follows if we show that
/E/Ec fr(z,y) dy dx — /E/Ec folz,y) dy dz as T — 0. (2.4.6)

By change of variable, we get

[ o) dyda

= [ [ o) T8 @) T8 )07 (0). 071 y) dy o (247)
Setting C(J) := sup,¢(o,1) | T®- 1~ , by (2.4.2), we have that

| oz, )| T (2) TR (y)x iz (D7 (2), @7 (1))
< [CIPIfo(z, v)|xEna(®@; (2) + XEmAC( NixEena(®71(y)) + xEenac (y)]
< [C)Pfolx, v)|Ixa@) + xe@)]xaly) + xEe (1)),

where the right hand side term is clearly in L'(R??) . This fact together with ([2.4.7) and

T (@) T2 () xexee (07 (2), @7 (y)) = xexpe(z,y) ae asT—0,
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yields by Lebesgue Dominated Convergence Theorem, ([2.4.6) and, in turn, (2.4.5) . By (2.4.4)
and ([2.4.5)), and using the divergence theorem, we obtain that

t

/ [ @) L0 (o) - () dy do
+/E/E k(|2 — y)(Divi(z) + Div¥(y)) dy de

=/ /<wwm—ymxjﬂ-@uﬂ—wwndwm
E JEe T

—FEJ—/<>0z—m><> -

dz
4 [ ke = o) (o) - vipla) 410 w)| dy

x—y
ARG R
- R = ) V) vely) a0 (w)| da
oF
= [ W@ v@) [ xeeo) - xR — o)) dy 4 @)

oOF

= | K}z, E)¥(x) vp(z) dH (),
OF

dtr

whence (2.4.3)) follows. O

In Proposition we prove some qualitative properties of the curvatures KJ defined in
(2.4.1)), which imply in particular that K¢ are non-local curvatures in the sense of [28], 26].

Proposition 2.4.2. For every s > 1, 0 < r < 1 the functionals IC;} defined in (2.4.1)) satisfy
the following properties:

(M) Monotonicity: If E,F € € with E C F, and if x € OF N OE, then Ki(x, F) < Ki(x, E);
(T) Translational invariance: for any E € €, x € OF, y € RY, K3(z, E) = K(z + vy, E +v);

(S) Symmetry: For all E € € and for every x € OF it holds
Ki(z, E) = _Kf(m7Rd \E),
where E denotes the interior of E.

(B) Lower bound on the curvature of the balls:

Ki(z,B(0,p)) >0 for all z € 8B(0,p), p > 0; (2.4.8)

(UC) Uniform continuity: There exists a modulus of continuity w, such that the following
holds. For every E € €, x € OF, and for every diffeomorphism ® : R — R? of class C?,
with ® = 1d in R?\ B(0,1), we have

Co (2, B) = K (®(2), ®(E))| < wr([|@ —1d]|c2) -
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Proof. We prove separately the properties above.

Property (M): Let E, F € € such that E C F, then —xr < —xg and xpe < xge. Therefore
for all x € OF N JF, we have

3 F) = [ Ocrely) = xe ()i = ) dy
< [ (eme@) = xew)ki (o — o)) dy = K2, ).
Property (T): Let E € €, z € OF and y € R%. By the change of variable ¢ = 1 — y, we obtain
Kila+ 9. B+1) = [ (xeery(n) = Xy )i (2 +y =) dn
= [ 0ce(€) = X €Dk = ¢ d¢ = K (2, B).
Property (S): Let E € € and « € OF, then we have
3w B) = [ (e () = xe@)k(ly — o)) dy

- /Rd(XE(y) — X (y)k (|2 — y|) dy = —Ki(z,R?\ B).
Property (B): Let p > 0 and & € 9B(0, p) . Since B(2%,p) C B(0,p) = R\ B(0, p) , we get

K32, B0.0) = [ (b0 (0) = X0, ()3 (2 = ) dy .
249

> [ (a5 (®) = X80, WE(T — 3]) dy =0,

where in the last equality we have used the change of variable z = 2z — y and the radial
symmetry of k; to deduce that

[ sz k2 = o) dy= [ xsop(ki(E — ) d=.

Hence, by formula (2.4.9)), (2.4.8) follows.

Property (UC): Let ® : R — R? be a diffeomorphism of class C2, with ®(y) = y for all
ly —x| > 1. We set £ := ®(F). Let moreover fs : [0, +00) — R be the function defined by
Ok (n) = [p(0,y k7 (|2]) dz. Fix € > 0 and let 7z > 0 be small enough such that

2045 (:), Os (2n:) < % (2.4.10)
Notice that

[ () = xe )k~ o) dy| < () (2.4.11)
B(z,ne)

/ (xee(y) — xe())kr (12(2) = yl) dy’ < Ors (1) , (2.4.12)
B(®(x).n:)

/ (xee(y) — xe(W)EX([2(z) — y]) dy‘ < O (20e) - (2.4.13)
B(®(z),2n¢)
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By (2.4.11]), (2.4.12), and (2.4.10)), using triangular inequality, we have
K3 (2, E) = K3(®(x), ®(E))]

[ wel) = xs@)hi(e -yl dy
Be(wz,ne)

<4
-3

oo ()~ XeDRE((2) )

Be(®
<5+ [ ) =)l — o) dy "
o Ge) = xe @R (B() - o) dy
(B (x,me))

_l’_

[ (reelo) = xe)k(1B() — yl) dy
D (B¢(z,me))

o e) xR (G ~ o)
e(@(2)me)

By the change of variable z = ®(y) and using that ®(y) =y if |y — 2| > 1, we have

[ Gamew) =~ xa)hi(e - ) dy
(x,me)

o )~ ek ~ o)
(B (z,m¢))

[ weln) = xs)kile — ) dy
Be(zne)

—/ (x5e(2) = xE(2))k(|2(x) — 2(2)[) T (2) dz
Be(z,ne)

<
¢(z.me)
- /Bc(a:,l)

*),
B(z,)\B(z,ne)

kr(le —yl) = k2 (|2(x) - ‘1>(y)|)7<1>(y)’ dy

kile —yl) — kX (|2(x) —yl)’ dy (2.4.15)

k(e = yl) - k(@) - )T ()| dy.  (24.16)

Now, assuming that ||® — Id||2 is small enough, by using Lagrange Theorem one can show

that
/Bc(x,l)

g
<(|® - 1d]2) [ o
B

for some modulus of continuity w. Analogously, for ||® — Id||c2 small enough, one can easily
check that

k(2 = yl) = k(1) — y)| dy

1
c(1) |z — y|dtstl

(2.4.17)
dy <

/ k(i = 9l) = k(@) — () )T ()| dy
Bz, )\B(zne)

<),
B(%l)\B(iBWE)

+ k2 (|2(2) — ()L - T2()]| dy <
B(x71)\B($7775)

k(| = yl) = k(|9 () — o)) dy (2.4.18)

| ™
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Therefore, by (2.4.15), (2.4.16), (2.4.17)), (2.4.18) we deduce that

L Gowety) = xe@)kila — o)) dy
Be(a,me)

(2.4.19)
s 5
[ e - xe )k (@)~ y dy| < 5
B(B°(zn:)) 3
In the end, we observe that, for ||® — Id||o2 small enough, it holds
(B (2, 1)) AB(®(x), ) € B(®(x), 21e)
which, in view of ([2.4.13]), yields
Lo (eelw) - xe @)D () - ) dy
(B<(@,ne)) (2.4.20)

[ (reel) = XK (8(@) = ) dy| < 01s(20) <
Be(®(x),me)

w| ™

Plugging (2.4.19) and ([2.4.20) into (2.4.14)) , we conclude the proof of property (UC) and of

the whole proposition. O

2.4.2 The classical mean curvature

For every E € €, and for every = € OF, we denote by K!(x, E) the (scalar) mean curvature
of OF at z, i.e., the sum of the principal curvatures of OF at x. It is well-known that X!
is nothing but the first variation of the perimeter. Let EF € €, x € JF and assume that
vgp(z) = eq; then in a neighborhood of x = (2/,24) € OF we have that OF is the graph of
a C2- function f : B'(2/,7) — R, for some r > 0 with Df(z) = 0 so that B(z,7r) N E =
{(',zq) € B(z,7) : 4 < f(2’)}. In this case the mean curvature of OF at z is given by

[ -Df ~ 0’
K'(z, B) =Div( ——= | (2/) = = > = f(&
(@, E) < 1+|Df|2>(x> ;@c?f(x) (2.4.21)
_ 1 w2 ] d—2
- /SHQ D2 f(2")9 dHI2(6),

where 0* is the row vector obtained by transposing the (column) vector § and D2 f(z’) denotes
the Hessian matrix of f evaluated at .

Proposition 2.4.3. The standard mean curvature KC' satisfies the following properties:
(M) Monotonicity: If E,F € € with E C F, and if v € OF N OE, then K'(z,F) < K!(z, E);

(T) Translational invariance: For every E € €, x € OE, y € R%, it holds: K!(z,E) =
Kz +y, B +y);

(B) Lower bound on the curvature of the balls:

KXz, B(0,p)) >0 forallz € dB(0,p), p>0;
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(S) Symmetry: For every E € € and for every x € OF it holds
KMz, E) = K (2, R\ E).

(UC’) Uniform continuity: Given R > 0, there exists a modulus of continuity wr such that
the following holds. For every E € €, x € OF, such that E has both an internal and
external ball condition of radius R at x, and for every diffeomorphism ® : R4 — R¢ of
class C?, with ® = 1d in R?\ B(0,1), we have

K (@, B) = KH®(2), ®(E))| < wr(|® —1d||¢2) - (2.4.22)

Proof. We prove only the property (UC’), since the check of the remaining properties is
straightforward. Let R > 0 and let £ € € be such that F satisfies both an internal and
external ball condition of radius R at a point x € OF. In order to get the claim, we can
always assume without loss of generality that ||® —Id|c2 < 1.

By the Implicit Function Theorem we have that E N B(x,r) = {z € B(z,r) : g(z) <0},
for some r > 0 and g € C?(B(x,r)). Moreover, in suitable coordinates we have that z = 0,

Dg(0) = eq and, for all i # j, with 4, j =1,--- ,d, %69%(0) = 0. Then, it is well known that

d—
K(0, E) =Div (E)(O) - 1@(0) (2.4.23)
’ "\|Dg| — 02277

where Div, denotes the tangential divergence operator. Since the mean curvature is invariant
by translations and rotations, up to small perturbations of ® in C? we may assume, without
loss of generality, that ®(0) = 0 and that the normal to ®(E) at ®(0) = 0 is still e;. Since

®(E) N B(0,7) = {y € B(0,7) : g(®'(y)) < 0}
for some 7 > 0, setting h := g o ®~!, we have

1 o 1 on 8|Dh\

KH0,B(E)) = >~ 0). 2.4.24
O SE) =I5y 2 a2 ) ~ RO T 2 o5, %) oy 2429
Therefore, using that
Dh(0) =Dg(0) D&1(0) = ¢, D 1(0),
2 d—1 a2 -1 —1 2851
O d: i)
d’h :Za—g()aloalo+ado,
00y = 0z 9y, Oy, 0y Oy
we have
Pl |
\Dh p 022
d 1 92 1 d—1 d— _
Rl OP;
L -1
\Dh Z 32 2 .(0>(;(ayj ) )‘
IDA(0) — 1] ’ (2.4.25)
IDA(0)

0[||D2<1>—1||co + HD29||COHId — (D27)?[|co + [D%g|colf1d — D[ o]

<c(1+ %) 1d — ®||ce .
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Similar computations (that are left to the reader) show that

Z ayj

Therefore, (2.4.22)) follows from ([2.4.23)), (2.4.24)), (2.4.25) and (2.4.26)) . O

8|Dh|
8yj

1
< — — 2. 4.
|Dh TRIE (© )’ <o+ 5)ld-#jo (2.4.26)

2.4.3 Convergence of k;-curvature flow to mean curvature flow

We now prove that the viscosity solutions to the kJ-curvature flow converge to the classical
mean curvature flow as r — 0%. To this end, we will adopt notation and we will use results in
[26].

We preliminarily notice that since the curvatures K defined in satisfy property
(UC) in Proposition they also satisfy property (UC’) in Proposition m (with Kt
replaced by K$). As a consequence K! and K¢ (for every 0 < r < 1 and s > 1) satisfy the
following continuity property:

(C) Continuity: If {E),}peny C €, E € € and E,, — E in €, then the corresponding curvatures
of E, at x converge to the curvature of F at x for every x € 0F, NOE .

Such a property, together with properties (M) and (T) (see Propositions [2.4.3| and [2.4.2)),
implies that the functionals K! and K¢ (for every s > 1 and for every r € (0,1)) are non-local
curvatures in the sense of [26, Definition 2.1] (see also [28]).

Moreover, since by Propositions and K! and K¢ satisfy also properties (B) and
(UC) (referred to as (C’) in [26]), they both satisfy the assumptions of [26, Theorem 2.9] that
guarantee existence and uniqueness of suitably defined viscosity solutions of the corresponding
geometric flows. We refer to [26], Definition 2.3] for the precise definition of viscosity solution
in this setting.

Proposition 2.4.4. Let s > 1 andr > 0. Let ug € C(R?) be a uniformly continuous function
with ug = Cy in R\ B(0, Ry) for some Cy, Ry € R with Ry > 0. Then, there exists a unique
viscosity solution - in the sense of [26, Definition 2.3] - us : R% x [0,4+00) — R to the Cauchy
problem

w(z,0) = ug(z). (2.4.27)

Moreover, the same result holds true if K2 is replaced by (any multiple of) K.

{8tu($at)+|Du($7t)VCs< Ay uly,t) 2wz, 1)}) =0

We will show that, as r — 07, the scaled k-curvatures U%(T)Kﬁ converge to wy_1K! on

regular sets. In view of |26, Theorem 3.2], such a result will be crucial in order to prove
the convergence of the corresponding geometric flows. We first prove the following result by
adopting the same strategy used in [49, Proposition 2].

Lemma 2.4.5. Let M, N € RU=DX=D and let {M,},~0, {Ny}rso € REDXED) pe sych
that M, — M, N, — N asr — 07 . Then, for every § > 0 it holds

1
li — k; dy — ky d
i (g ULy o= [ i a0))

(2.4.28)
= /S LN =)o dHI2(0),
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where

Frs ={y =/ yq) € B(0,6) : ()" My <yq < (y)" Ny}
Fs={y=(¥,ya) € B(0,0) : (¥)'Nyy <wa< (y)'My'}.

Proof. For every a > 0 we set

Gh i ={y= (W ya) ER"' xR :y/ =ph, 0<p<a, 0 €82,
P20 M0 < yg < p*0*N,0}

Therefore, for r small enough,

Frs=0G;NB(0,6),  Fisn B, r) G, N B(0,r),
Frs\B(0,7) = ((G5 \ G;) N (B(0,6)) U (G} \ B(0,7)) .

It follows that

ks(lyl)

= / ) dy = [ K d
B(0,9)

1
=/ Kly dy—i—/ kX (ly / ——dy
/ (ls) (D) d GI\B(0,8) [y|®te
1

_ k5 (Jy dy—i—/ k5 (ly dy—i—/ gy
GINB(0,r) (lu) GI\B(0,7) (lu) gi\g, |y|dTs
1

dy 2.4.29
[]6\3(0 5) ly|*te ( )

1
o W+ / o Wt / s
GINB(O) T G1\B(0,) |y ghar |yl

Lo i ¢
- ——dy
GI\B(0,8) |y|**
1 1

=/ —d ——dq

/g; rd+s y+/gg\g; ly|dts

1 1 1
- - dy— / —dy+ / d
/g;\mo,a) I Y Jansom T Janson Iyl Y

We set

Al :={0es?? . 0" (M, — N,)§ <0}
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1 1
/g; pavs 4 F /gg\g; ly|+s w

1 a2y " a aa [P0
=7 dH™ (‘9)/ dp p™~ / dyaq

and we notice that

020% M0
d-2 aa (PO 1
+ dH / dpp /2 ——— dyg
0+ M,.0 (p2—|—y3) 2
_ ! "”dH 0* (N, — M,)0 dH (8 2.4.30
=y = M) (0) (2.4.30)
d—2 o d—2 9 Nr6 PQ
+ dH*™ 9/ d _/ ———dt
1—s
:£+ . 9*(Nr — M,)0 dH*2(6)

0* N0 1
d—
+ d’H2 /d—/ o,
A1 0* M,.0 (1 +p2t2)72

where in the last but one equality we have used the change of variable yq = p?t.
Moreover, trivially we have

/gé\Bm,é) e =) (2.4.31)

for some C(d§) > 0. Furthermore, it is easy to see that, for r small enough,
G\ B(0,7) C (B'(0,7)\ B'(0,7 — cr?)) x [—er?, er?]
for some constant ¢ > 0 independent of r; as a consequence,
G\ B(0,r)| < Cr?*2,

whence we deduce that

1 2—s
/gl\B(o r) rdts dy<Cr
P\ (2.4.32)

1 1
dy < / dy < Cr*=s.
/gl\B 0.r) lylP+s gI\B(O,) TS
Therefore, by (2.4.29), (2.4.30), (2.4.31) and (2.4.32), we obtain
1
ks d
) Jor D

,8

T,l—s

~(d+ 1)os(r)

1 0* N.,-0 1
[ MY / d 7/ S ]
o*(r) Jai 0M0 (14 p2t2) 5

+ [,

* o d—2
/A 6N, — My )0 AH'2(6) 245
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where f1(r) — 0asr — 0%.
Now we set
A2 :={0eS?: 0*(N, — M,)h <0};
by arguing as in the proof of (2.4.33)) we obtain
1 S
| k) ay
]:2

os(r) 2,
1—s

:ﬁ /A 07 (M, — N,)9 dH3(9)

1 d-2( orG 1
o*(r) Jaz 0*N:0 (1 + p2t2) 2

+ f2(r),

where f2(r) — 0 as r — 07. Therefore by formulas (2.4.33) and (2.4.34), using that
AU A2 =892 we get

(i (L o an= [, kel )
] Lo s e

1 de 2 0* N0 1
o*(r) Jgi-2 6*M:0 (1 + p2t2) 2

+ fHr) = f2(r).

(2.4.34)

Since . . .
_r ) @rnioen ifs=1
(d+1)os(r) % ifs>1,

and recalling that M, and N, converge to M and N, respectively, we get

T.lfs
1- - * Nr _ Mr d—2
0+ (d+ 1)os(r) /SH o )0 dHTO)
{0 if s =1, (2.4.36)
=4s—1
(N -M -1 if s>1.
d+S/SHe( )0 dHEN(0) if s >

Moreover, for every s > 1, using de I’'Hopital rule (i.e., differentiating both terms in the
product below with respect to ) and the very definition of o*(r) in (2.1.5)), we have

T 1 /‘S 1 1 d+1
m ——— P = )
r—ot os(r) Jr p* (14 thQ)% P d+s

which, by the Dominate Convergence Theorem, yields

1 i 2 0* N0 1
lim / dH "t / SR S—T]
r—0+ US( ) gd—2 6% M,.0 (1+p2t2)7
4

o Ny 191 1
— lim AH2(6) / - / - W (2.4.37)
r—0+ Jgd—2 0* M0 os(r) Jr p° (14 p2t2) =
d+1

O (N — M) dHY2(0) .
dH/SH ( 0 dH42()
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By formulas (2.4.35)), (2.4.36)) and ([2.4.37)) we obtain (2.4.28)). O

Theorem 2.4.6. Let s > 1. Let {E,},~o C € be such that E, — E in € as r — 07, for some
E € €. Then, for every x € OE NIOE, for everyr > 0, it holds

s ET‘
].im IC’I’ (x7 )

r—0t  os(r

= wyg1K'(z, B).

Proof. Let x € OE N OE, for all r > 0. By Proposition [2.4.2] we have that the curvatures
satisfy properties (S) and (T); moreover, it is easy to check that ICJ are invariant by rotations.
Therefore, we can assume without loss of generality that E and {E,},~¢ are compact, and
that z = 0, vg(0) = vg,(0) = eq4 for all r > 0. Since E, — F in € as r — 07 we have that
there exist § > 0 and functions ¢, ¢, : B'(0,8) — R such that ¢, — ¢ in C? as r — 07,
6(0) = 6,(0) = 0, DG(0) = D¢, (0) = 0 and

OENB(0,0) ={(y,¢(y)) : ¥ € B'(0,0)} N B(0,9),

OE, N B(0,6) = {(y/, é(y)) : ¥ € B'(0,0)} N B(0,9),
ENB(0,6) ={(¥,ya) : ¥' € B'(0,9), ya < ¢(y')} N B(0,9),
E, 0 B(0,0) ={(y,ya) : ¥ € B'(0,9), ya < ér(y)} N B(0,9).

Let n > 0 be fixed ; for § small enough we have

1 *
oY) — 5(3/) D%¢,(0)y| < nly/|> forevery 0 <r <1,y € B'(0,6). (2.4.38)

We define the following sets

A(r) :=={y = (¢',ya) € B(0,0) : =¢,(¢) <ya < &r(y)},
B(r) :=={y = (v, ya) € B(0,0) : é-(¥)
C(r) :=(E; \ B(r)) N B(0,6)

={y = (¥, ya) € B(0,0) : yg > max{¢,(y'), —or(y')}},
D(r) =(E, \ A(r)) N B(0,4)

={y = (v',ya) € B(0,6) : ya < min{¢, ("), —¢,(¥)}},

where the equalities above are understood in the sense of measurable sets, i.e., up to negligible
sets. We notice that

E,NB(0,8) = Ar)UD(r),  E°NB(0,8) = B(r)uC(r),
L b dy= [ k(i) du.
(r) D(r)
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whence we deduce that

K208 = [ (i) e WK ) dy
0 00~ W)
= [ (0 ® = xam @)k ly) dy
+ [ (e ®) = xom @)k () dy (2.4.39)
oo (xze(y) — xz. ()R (ly]) dy

- /R O () = Xy @)y dy

b ) - e )R ) dy.
B<(0,5)

Trivially,

—S

S .

[ )~ xR dy] < e
¢(0,9)

In order to study the limit

tim, [ (e ®) — xa) W)k(ol) dy.

r—0t+ o8(r)

we define the following sets

A~(r) = {y = (', va) € B(0,9) :

L 1
—5 W) D00y +ly'* < ya < 547 D6, 0y — nly'1*}

At(r) = {y = (/,ya) € B(0,9) :
—%(y’)*DQ%(O)y’ —nly'* < wa < %(y’)*D%r(O)y’ +ly' 1},

B™(r) == {y = (v, ya) € B(0,9) :
1

* 1 *
W) D6 (O)y +nly'* < ya < — 5 (4) D6, 0y — nly'1*}

B*(r) = {y = (¢/,ya) € B(0,9) :
1

* 1 *
W) D6 (0)y —nly'* < ya < ~5(4) D6, (0 + nly*} -

By (2.4.38]) we have that

A~ (r)c A(r) Cc AT(r), B (r) c B(r) c BT(r),
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and hence
» (X5~ (¥) = xa+r @ @)k (ly]) dy

< [ Oen 0 = xan @)kl dy (2.4.40)
Rd

</ d(xw)@ — X () )k (1)) dy

Then, by applying Lemma and using , we obtain

_ /S 0" (D?(0) + 2q1d)0 AH ()

[0 @) = X @) o)

A

<lim inf
r—0t od (’I")

| (2.4.41)
<timsup o | (60) 1) ~ X )3y d
< /S 67 (D?6(0) — 29Ld)8 AHT3(0)
Therefore, by (2.4.39) and (2.4.41]), we get
— /S . 0" (D2¢(0) + 2n1d)0 dHI2()
< lim inf () K30, Ey) < hﬁ?ﬁlp pr K30, Ey)
<= [, 0" (D%(0) — 2010 dH"2(0).
which, sending 7 to 0 and using implies the claim. O

We are now in a position to state the main result of this section.

Theorem 2.4.7. Let s > 1 be fized. Let ug € C(R?) be a uniformly continuous function
with ug = Cgy in R\ B(0, Rg) for some Co, Ry € R with Ry > 0. For every r >0, let
us : R% x [0, +00) — R be the viscosity solution to the Cauchy problem (2 . Then, setting
vy (w,t) = up(z, = 7")) for all z € R, t > 0, we have that, for every T > O vy uniformly

converge to u as r — 0% in R? x [0,T], where u : RY x [0, +00) — R is the viscosity solution
to the classical mean curvature flow

{&tu(x»t) + [Du(z, t)lwa—1 KM (@, {y + u(y,t) > u(2,t)}) =0
u(z,0) = up(z) .

Proof. We preliminarily notice that, by an easy scaling argument, the functions v; are viscosity
solution to

(2.4.42)

(x,0) = uo(z) .

By Theorem we have that , as r — 0% the scaled kj-curvatures — (T

wq_1K' on regular sets. Moreover, by Propositions [2.4.2/ and [2.4.3, K (for every r € (0,1))
and K! satisfy properties (M), (T), (S), (UC’). Furthermore, for every p > 0 and for every
x € 0B(0, p), by Proposition we have that K¢(x, B(0, p) > 0 whereas, by Theorem
we get that sup,¢ o1y K (x, B(0, p)) < +0c0. This trivially implies the following property:

{@v(m 1) + [Do(a, )| 22K, {y © v(y,) > v(z,8)}) =0

)ICS converge to
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(UB) There exists K > 0 such that inf,¢ (1) K5 (x, B(0,p)) > —Kp for all p > 1, 2 € dB(0, p)
and sup,.¢(o.1) K5 (2, B(0, p)) < 400 for all p> 0, z € dB(0,p) .

Properties (M), (T), (S), (UC’) (referred to as (C’) in [26]) and (UB), together with the
convergence of the curvatures on regular sets, are exactly the assumptions of [26, Theorem
3.2], which, in our case, establishes the convergence of v¢ to u locally uniformly in R? x [0, 7]
for every T'> 0. O

2.5 Stability as »r — 0" and s — 17 simultaneously

In this section we study I'-convergence and compactness properties for the s-fractional perime-
ters J# defined in when 7 — 07 and s — § (with § > 1) simultaneously. Moreover, we
study the convergence of the corresponding geometric flows in such a case. In fact, we will
consider only the critical case s = 1, the case 5 > 1 being easier.

Let {rp}nen C (0,1) and {s,}nen C (1,+0o0) be such that r,, — 01 and s, — 17 as
n — 400 . Recalling the definitions of ¢®(r) in and o in (2.1.13)), we set

d—{—snr,lL_S"—l 1

= g sn — 2.5.1
Blrn, sn) = o™ (m) + 0™ = =+ 00 (25.1)
and we notice that
O | 1
limB(rsa) > lm s = tim [ o7 dp
n——+oo n—+0o 8y — n—+oo J,
n (2.5.2)

1
> i “1dp= 1l — )
lim /rn p dp ngrfoo |log | = 400

T n—+4oco

2.5.1 TI'-convergence and compactness

In Theorem below we study the I'-convergence of the functionals ﬁjfg as n — +00.

Tn,

Theorem 2.5.1. Let {ry}nen C (0,1) and {sp}tneny C (1,+00) be such that r,, — 07 and
Sp — 17 as n — +o0o. The following I'-convergence result holds true.

(i) (Compactness) Let U C RY be an open bounded set and let {E,}nen C M(RY) be such
that E, C U for every n € N and

jff(En) < MB(ry, sn) for everyn € N,

for some constant M independent of n. Then up to a subsequence, Xg, — XE strongly
in LY(R?) for some set E € M;(R?) with Per(E) < +oc.

(ii) (Lower bound) Let E € M¢(R®). For every {Ep}neny C Mp(R?) with xg, — xE strongly
in LY(R?) it holds 3
Jin (B
wscaPe(E) < o 500 5

(iii) (Upper bound) For every E € M¢(R?) there exists {Eptnen C Mp(R?) such that xg, —
xE strongly in L'(RY) and

Jin (En)

wq—1Per(F) = limsup —2>—~.
-t ( ) n—>+<xE) B(Tnasn)
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Proof of compactness

We start by proving the compactness property Theorem [2.5.1)(i). To this purpose, we first
prove the following lemma which corresponds to Lemma when both r and s vary.

Lemma 2.5.2. Let {rp}nen C (0,1) and {sp}nen C (1,+00) be such that r, — 07 and
$p— 1T asn — +o0o. Let Q € Mf(Rd) be a bounded set with Lipschitz continuous boundary
and |Q] = 1. For every n € (0,1) there exist a constant C(Q,d,S,n) >0 and n € N such that
for every measurable set A C Q with n < |A| <1 —n it holds

/ / k(e —y|) dy dz > C(2,d, S, 1) B(rn, 5n) for everymn > n,
o\A

where S 1= Sup,,cy Sn.-

Proof. The proof is fully analogous to the one of Lemma [2.2.4}) we sketch only the main
differences. For every n € N, let I, € N be such that 27/»=1 <, <27 Let ¢ and gbg (for

every 0 > 0) be as in Lemma By arguing verbatim as in the proof of (2.2.6 - see ,
(2:2:10), and (2.2:11)), for every n € N and for every z € R? we have

gdtsn _ 1 1 I,

0e) > s D2y (2)
P iz (2.5.3)
> 2°m -i(2).
5T T g 22 6 ()
Moreover, since
| log 7, | 1<, < | log 7, | 7
log 2 - 77 log2
setting m(9S) := inf,c(1 g 2SS,;ll_l,We get
In sn—11é (28"_1)In+1 -1 _ =1
> @) = >
2501 — | 2sn—1 — 1
i=0
_r,lfsn -1 s,—1 S m(S) d+1 <2d+ Sy TETS — 1)
Sp—1 2~ 117 2 d+s,\ d+1 s,—1 (2.5.4)

m(S)d-}-l(d-i-SnT}L_S”—l_i_ 1 }LS"—1>

- 2 d+S\d+1 s,-—-1 d+1 s,—1
m(S) d+ 1

>77

where in the last 1nequahty we have used that, in view of (2.5.1] -7 % > 1. Therefore, by

arguing as in , using ([2.5.3)) and (12.5.4] -, we get the claim. O

With Lemma [2.5.2] in hand, we can prove Theorem [2.5.1](i), whose proof closely follows
the one of Theorem [2.1.5(i). We sketch only the main differences.

Proof of Theorem [2.5.1|(i). We preliminarily notice that, up to a subsequence, the following
limit exists
lim (s, —1)[logr,| =: A; (2.5.5)

n—-+00
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clearly, A € [0, +00]. We first prove the claim under the assumption A\ # 0. Let a € (0,1) and
for every n € N we set I, :== r%(s, — 1) ; therefore, since A € (0, +o0],

l—«
. T . T
lim %= lim -2 =0.
n——+o00 ln n—+o00 5, — 1

By adopting the same notation as in Subsection [2.2.2] we set
= U QI
h=1

where {Q} }ren is a family of pairwise disjoint cubes of sidelength I,, which covers the whole

R? and satisfies (2.2.12)).

By arguing verbatim as in the proof of ([2.2.13]) one can show that there exists n’ € N such
that

|E,AE,| < Al B(rp, s,)M  for every n > n'. (2.5.6)
We observe that
d+ sy, ri=sn —1 1

_ Qasp _ 1\5n n

ngr—&r-lool B(Tmsn)_nll}-ir}oor (sn —1) (d—i—l Sp— 1 + d+ 1) (2.5.7)
d+s o
— 3 1—sp+asn n _ sp—1 —
= PSR 0.

Now, setting S := sup,,cy Sn, we claim that there exists a constant C(a, d, S) such that for n
large enough
Jir (Bn)
IB(r’Vh Sn) .
In order to prove , we argue as in Step 2 in Subsection [2.2.2) “ We define the famlly R of
rectangles R = Q” U Q such that Qh and Qh are adjacent, Q) C E, and Q" C EC

Notice that

Per(E,) < C(a,d, S) (2.5.8)

Per(E,) <2d1%~ 1ﬁR
I (En)

/ / K ) dy d (2.5.9)
"l — xX .
IB(T’mSn) Qdﬁ Tn,Sn ReR Y BNEn R\En, Y Y

Moreover, by Lemma for every rectangle R given by the union of two adjacent unitary
cubes in R?, there exists 7 € N such that

C(d, A 1nf{ // — dy dz :
@) =int] g [ ke dy

n>n, FeM;RY, FCR,

(2.5.10)
<|F| <

[\CR V]

b>o.

Furthermore, by the very definition of B(ry, s,) in (2.5.1)), we have

ﬂ(’f’n, Sn) -1 + (d + 1)([71175'” — 1)
I B (re ) (d+ sp)(ri7sm —11750) 4 (5, — D)5
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whence, using that I, = r%(s, — 1) and (2.5.5)), we deduce

’I’LEI-{I:IOO ﬂ(r'n 75n)

117

B, sn) :{ 1+ 5950 i A # 4oo

| if A = +o0. (2:5.11)

For every set _O € M;(R?) we set O := %. By (2.5.9), (2.1.2)), (2.5.11) and by applying
(2.5.10) with R = R'» for every R € R, for n large enough we obtain

ﬁ(rnasn)
Bl )™ / / ki (|a(x = y))) dy de
ﬁ(rnasn RGZT\’, RlnNEln Rln\Eln Tn(’ ( y)‘) Yy
llfsn
=C(d 141 / / K5 (15 — o) du da
( )B(Tn,sn 1%267:3 RlnNEn Rl’ﬂ\Eln m(’ y|) Y

C(a,d, )1 / / ki |z —y|) dy da
( ) b;% l ,Sn RinNEln Rln\E‘ln In ’ y|) Y

>C(a, d, NI YR C(d,\) > C(a,d, \)Per(E,),

i.e., (2.5.8]). Therefore, using (2.5.6)), (2.5.7) and (2.5.8)), by arguing as in Step 3 of the proof
of Theorem [2.1.5(i), we get the claim whenever (2.5.5) is satisfied.

Finally, if
lim (sp, —1)|logr,| =0,

n—-+0oo
taking l, = rf (with a € (0,1)), one can show that
lim 05"B(rp,sn) = 0,

n—-+o0o

IB(TTL) Sn) _ 1

e B s) | 1-a

Y

which used in the above proof, in place of (2.5.7) and ({2.5.11]), respectively, imply the claim
also in this case. O

The following result follows by arguing as in the proof of Proposition [2.2.6] using now the
estimates in the proof of Theorem [2.5.1fi) instead of the ones in the proof of Theorem [2.1.5]

().
Proposition 2.5.3. Let {E,}nen C Mp(R?) be such that xg, — xg in LY(RY) as n — +oo,
for some E € My(R?). If
lim sup Jri (En)
n—+oc B(Tn,sn)

then E is a set of finite perimeter.

< 400,

Proof of the lower bound

In order to prove the I-liminf inequality Theorem ii), we first need the following result,
which is the analogous to Lemma under our assumptions on {s, }nen and {r, }pen .
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Lemma 2.5.4. Let {rp}tneny C (0,1) and {sp}nen C (1,+00) be such that r, — 0T and
sp — 17 asn — +oo. For every e > 0 there exist 69 > 0 and i € N such that for every
v € S, for every E € My(R?) with

[(EAH, (0)) N Q"] < do

and for every n > n it holds

Lo ke =yl dyde 2 wa (i = 2)Blrmsa).
QVNE JQVNE®

Proof. By arguing as in the proof of Lemma [2.3.1] (see (2.3.10)) one can prove that

Lo ke =) dy da
QvnE JQvnEe

(G0) 61 1 (2.5.12)
1n(00) 0g -
>wy_ 1 —n(do) — —2C(d)V
Zwa1B (s sn) (1= n(00) = o AR = 20(d) V)
where 7(t) — 0 as t — 0. Notice that we can choose 0 < Jp < 1 such that

1(80) + 2C(d) /3o gg (2.5.13)
Furthermore, since

e
nll)rfoo o 1 |log dp| and nll)rfoo,@(rn,sn) = 400,

we have that there exists n € N such that

80) 8y 5" —

(%) Lo fonza. (2.5.14)

B(rn, Sp) Sp—1 2

Therefore, by (2.5.12)), (2.5.13) and (2.5.14)), we get the claim. O

Proof of Theorem [2.5.1|(ii). The proof closely follows the one of Theorem [2.1.5[(ii). We can
assume without loss of generality that

2B(7n, $n) /Rd /Rd (lz = yDIxe, (2) = xp, ()| dy dz < C, (2.5.15)

for some constant C' > 0 independent of n. Then, by Corollary we have that E has finite
perimeter. For every n € N let p,, be the measure on the product space R x R¢ defined by

pnl A x B) = o //k (1 = yl) x5, (2) — x5, (9)] dy do

for every A, B € M(R?%). By arguing as in the proof of Theorem M(u) we have that,
up to a subsequence, p, — p as n — +oo for some measure p concentrated on the set
D :={(x,2) : € R} . Therefore, by using the same Radon-Nykodym argument exploited
in the proof of Theorem M(ii), it is enough to show that for H?! - a.e. zg € O*FE

i inf AQ@0) X Q7o) oo Hn(QF (o) X Q@ (w0))
=0t [d-1 10+ n—+oo [d—1

> wa_1, (2.5.16)
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where we have set v := vg(zo) and Q! (xg) := zo + Q" . In order to prove (2.5.16) we adopt
the same strategy used to prove (2.3.12)). More precisely, setting F},; = x¢ + [E,, , in place of

(2.3.14]) we have
]' 14 14
Ja-1 1 (Q7 (o) x QF (x0))

llfsn
" 2B(rn, 5n)
and, in place of (2.3.17)),

//k (1€ = nDIxF,,. (&) = xF,, (W] & dn

(2.5.17)
A [, K (8 = nDlxs, (€)= X, (n)] € d,

> wg1(1— e)ﬁ(%", Sn), (25.18)

which is a consequence of Lemma [2.5.4 Therefore, since
[1sn T
lim 7ﬁ<—n,sn> =1,

n—+o0 B(ry, Sp) l

by (2.5.17) and (2.5.18]), we get

e (@ (o) X Qf(0))
lim inf = > (1 —e)wd-1,
whence (2.5.16|) follows by the arbitrariness of €. O

Proof of the upper bound

In order to prove the I'-limsup inequality, we need the following result which is the analogous
of Proposition [2.1.1] when both r and s vary.

Proposition 2.5.5. Let E € M¢(R%) be a smooth set. Then
= wq—1Per(E).

Proof. By Lemma and by formula (2.1.9) we have
Jin(B) 1

i — g i Per(E) + ——F(E
B(Tn, sn) wa-1Per(E) + B(Tn, sn) ! (&)
_ 1 ded—l(y)/ 1 ’(y_x)yE(y)‘(d"i'sn) dx
B(rn,sn) Jor (EAH, ( @)NB(yra) T’ |z — y|? dsp
1 1 |(y—z) vey)!
+ dH! / —dx
ﬂ(rny Sn) OF Y (EAHf ( NWNB(y,rn) Tn’" Tnd d
L1 -1 ((y —2) - vE(y)|
- B dH (y)/ ) g da
n:8n) snJop (BAH_, )N(BE\B(.rn)) y
1

1
e )S/E’Hd_l(EcﬂﬁB(:r,l)) dz

where H,, (y) is the set defined in (0.0.5). Therefore, by arguing verbatim as in the proof of
Proposition and using (2.5.2)), we deduce the claim. O
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With Proposition in hand, the proof of Theorem [2.5.1|(iii) is fully analogous to the
one of Theorem [2.1.5(iii) and is omitted.

2.5.2 Convergence of the k;-curvature flows to the mean curvature flow

Here we study the convergence of the curvatures K7 defined in to the classical mean
curvature ! in when 7, — 0" and s,, — 17 simultaneously. As in Subsection m
we use such a result to deduce the convergence of the corresponding geometric flows.

First we prove the following lemma which is the analogous of Lemma in the case
treated in this section.

Lemma 2.5.6. Let {sp}nen C (1,+0) and {ry}neny C (0,1) be such that r,, — 0T and
$n — 1t asn — +oo. Let M,N € RED*E=D g4nd let {M,}nen, {Nn}tneny € RE-D*(@=1)
be such that M, — M, N, — N asn — +oo. Then, for every § > 0, it holds

1
im_( L mtuhas— [ k20 ay))
n—r+00 IB(TTIJ STL) ( ]:71%5 ]‘—72175 ) (2519)
= 0* (N — M)O dH%(0),
Sd—2
where )
Fus =1y =(,ya) € B(0,9) : (v')"Mpny' <ya < (y)"Nuy'}
Fas =y =" ya) € B(0,6) : (¥)"Nny' <ya < () May'}.
Proof. By arguing verbatim as in the proof of (2.4.35)) one can show that
g [ e dy— g [ k() d
,B(T’n; Sn) ]:711,6 n Y Y ﬁ(’f'r“Sn) ]:721,6 n Y 4
r 1787,, /
— n 0*(N,, — M,)0 dH*2(6
(d+1)B(rn, sn) Jsi- ( ) ©) (2.5.20)
+ L/ dH2(0) /6 dp— /G*Nne S
B(rn, sn) Jsi-2 Tn ppsn 0*Mn6 (14 P2t2)d+% ’
+ M s
where 0, — 0 as n — 4o00. It is easy to see that
1-s
T
lim — =
”_lg"r'loo ,B(Tn, Sn) 0
whence we get
ry d—2
li o 0*(N,, — M,)0 dH*2(6) = 0. 2.5.21
Jim e [ )0 412 (0) (25.21)
Now we claim that for every ¢t € R
1 | 1
lim 7/ ———dp=1, (2.5.22)
n—+00 B(Tna Sn) rn P (1 + p2t2)d+Tn
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which in view of (2.5.20)) and (2.5.21]) and of the Dominate Convergence Theorem, implies
(2.5.19)). In order to prove (2.5.22f), we first notice that

1 01 1
B(rnssn) Jry pPr (1 4 p2¢2) 5"

SR Y P TR S P
B(rn, sn) Jr, pon B(rn, sn) Jr, pon (1+ p2t2)d+%

1 plem = gl 1 01
~ B(rn, sn) Sp— 1 B B(Tn, Sn) /r psn

e
nPM( (14 p2e2) 5™
so that, by the very definition of 8 in (2.5.1)), it is enough to show that

1 | 1
lim sup 7/ (1 — S) dp=0. 2.5.23
n—+oo B(Tn,sn) Jr, por (1+ ,02152)(”7” g ( )

As for the proof of (2.5.23)) we argue as follows. First we notice that, setting S := sup,,cy sn,

d+sn

(1+p%%) 72" <1+0(d,S,t)p?,

so that, for n large enough,

1 /(S 1 < 1 )
- [ I
ﬁ(rm Sn) rn P (1 + thQ)HTn

d+s

1 /51(1+ﬁﬁ)2"—1
=2 | T - dp
B(Tn,50) Jr, pon (1+ p2t2)d+2

1 9
Si/ C(d,S,t)p> " dp — 0 as n — 400,
Blrmon) ( )p P

thus concluding the proof of (2.5.23) and of the whole lemma. O
By using Lemma [2.5.6] in place of Lemma [2.4.5] in the proof of Theorem [2.4.6] one can

prove the following result.

Theorem 2.5.7. Let {rp}nen C (0,1) and s, C (1,400) be such that v, — 0% and s, — 17
asn — +oo. Let {E,}neny C € such that E,, — E in € as n — +oo, for some E € €. Then
for every x € OFE NOE, for everyn € N,

nﬁnfoo ﬂ(rm Sn)

Finally, by using Theorem [2.5.7]in place of Theorem [2.4.6|in the proof of Theorem
one can prove the following result which provides the convergence of the k;"-nonlocal curvature
flows when r, — 0T and s,, — 1.

= wyg 1 K'(z, B).

Theorem 2.5.8. Let {ry}nen C (0,1) and s, C (1,4+00) be such that v, — 0% and s, — 17
asn — 400 . Let ug € C(R?) be a uniformly continuous function with ug = Cy in R?\ B(0, Ry)
for some Cy, Ry € R with Ry > 0. For everyn € N, let us» : R x [0, +00) — R be the viscosity
solution to the Cauchy problem (with r and s replaced by r, and sy, respectively).
Then, setting vy (x,t) == u» (x, m) for allz € R, t >0, we have that, for every T >0,
vin uniformly converge to u as n — +oo in R? x [0, T], where u : R? x [0,400) — R is the
viscosity solution to the classical mean curvature flow (2.4.42)).
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2.6 Anisotropic kernels and applications to dislocation dynam-
ics
In this section we study the asymptotic behavior of supercritical nonlocal perimeters and the

corresponding geometric flows in the case of anisotropic kernels. Moreover, we present an
application to the dynamics of dislocation curves in two dimensions.

2.6.1 Anisotropic kernels

Let g € C(S%1; (0, +00)) be such that g(¢) = g(—¢) for every £ € S¥~!. For every s > 1 and
for every 7 > 0 we define the function k%° : R?\ {0} — (0, +00) as k() := g(‘i—l)kﬁ(m),
where k¢ is defined in (2.1.1)). Here we study the asymptotic behavior, as r — 0T of the
functionals J¢* : M;(R?) — [0, 4+-00) defined by

JP(E) = /E 5 k9% (y — x) dy dx . (2.6.1)

In Proposition below we will show that the functionals J¢* scaled by o*(r) converge as
r — 0T to the anisotropic perimeter Per? defined on finite perimeter sets as

Per?(F) := . oI (vp(z)) dH Y (x), (2.6.2)

where the density 9 is given by

WI(v) = g(&) € - v dHL(E), for every v € ST, (2.6.3)

/{fegd_l 1§v>0}
Proposition 2.6.1. For every s > 1 and for every set E € M(R?) of finite perimeter it holds

.
lim S (E)

r—0t o%(r)

= Per?(E).

Proof. First we claim the following anisotropic version of formula ([2.1.12)):

/ / k9*(y — x) dy dx
E JE°NB(z,1)

d+8/ d—1 / y— (y—.%')
= dH . d
el (y) EmB@,mg(u—ym_yw ve(y) dz

- dHd-1 / T (y—x)- d 2.6.4
g oy W [ () ) ) da (2.6.4)
1 _ y—x\(y—=x) vey)

+= dr! / d
s Jorp ) Em<B<y,1)\B<ym)>g<\w—y\) |z — yl|dts

1 y—x d—1
N / dH .
S ./E . E°ndB(z,1) g<|$ - y|) )

If g € CY(S?1), the proof of (2.6.4)) is identical to the proof of (2.1.12), noticing that
Vg(i&) - T:(z) = 0 for every x € R\ {0}, with T} defined in (2.1.10)). The case g € C(S%1)

el
follows by standard density arguments. O
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In Theorem below we will see that the functionals J¢* actually I-converge, as r — 07,
to Per?.

Theorem 2.6.2. Let s > 1 and let {ry}nen C (0,400) be such that r, — 0 as n — +o00. The
following T"-convergence result holds true.

(i) (Compactness) Let U C RY be an open bounded set and let {Ey,}nen C M(R?) be such
that E, C U for every n € N and

J95(E,) < Mo*(r,)  for everyn € N,

for some constant M independent of n. Then, up to a subsequence, xXg, — XE Strongly
in LY(RY) for some set E € M;(RY) with Per(E) < +oo0.

(ii) (Lower bound) Let E € M¢(R®). For every {Ep}nen C Mp(R?) with xg, — xg strongly
in L*(R%) it holds .
J&5 (B,
Per?(FE) < lim inf I (En) .
n—+oo  0%(ry)
(iii) (Upper bound) For every E € M¢(R?) there exists {Eptneny C Mp(R?) such that xg, —
xE strongly in L'(RY) and

Js (B,
Part(£) = i 5.
n—+oo 0°(Ty

Proof. The proof of the compactness property (i) follows by Theorem (i), once noticed
that there exist two positive constants ¢; < ¢z such that ¢; < g(0) < ¢ for every 0 € Sa-1,
As for the proof of the I'-liminf inequality in (ii) one can argue verbatim as in the proof of
Theorem [2.1.5[(ii), using the following inequality

Lo o= ke = shxe(e) — xol) dy do = (1= )" () (), (265)

|z — |

in place of (2.3.2)). The proof of (2.6.5) under the assumptions of Lemma is identical to
the proof of Lemma [2.3.1] (see (2.3.8))).

Finally, the T-limsup inequality (iii) follows as in the isotropic case Theorem [2.1.5[(iii)
using Proposition [2.6.1] in place of Proposition 2.1.1] O

We introduce the notion of k%* curvature and we study the convergence as r — 07 of the
corresponding geometric flows.
Let s > 1,r>0and FE € €. For every x € OF we define the k¥*-curvature of E at x as

2@, B) = [ Ocee(v) = xm()kE" (@ — v) dy, (26.6)
Remark 2.6.3. We notice that for every E € € and for every = € JF it holds
(o, B) = [ Ko=) dy—2 [ K- y) dy
Rd E

=/ k94(2) dz — 2k2° % xg(x) (2.6.7)
R

(=2 [ R(2) dz6o) o)
Rd
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where x denotes the convolution operator and g is the Dirac delta centered at 0. By
we have that K9 is exactly the type of curvatures considered in [35 formula (1.4)]. We
remark that the positive part of the curvature K9° is concentrated on a point. This is why,
as already observed in [35], the curvature K¢, although having a positive contribution, still
satisfies the desired monotonicity property with respect to set inclusion (see the proof of (M)

in Proposition [2.4.2)).

We first show that K2* is the first variation of J¢° in the sense specified by the following
proposition, which is the anisotropic analogous of Proposition [2.4.1

Proposition 2.6.4. Let s > 1,7 >0, and E € €. Let ® : R x RY — R? be as in Proposition
. Setting Ey == O4(E) and V(-) := %@t(-)]tzo, we have

d -
7B

ki = K95 (x, EYU(z) - vep(z) dH Y (z).

t=0 oK

Proof. If g € C', then the proof is fully analogous to the proof of Proposition . The
case when g € C? follows by a density argument, using that if {g,}neny € C1(S?71; (0, +00))
uniformly converges to g, E,, — F in € and z,, — =, then K9"*(z,, E,) converge to K9*(z, E) .
Such a continuity property can be proved as in Proposition (UC). O

By arguing as in the proof of Proposition [2.4.2 one can show that the curvatures K¢*°
satisfy properties (M), (T), (S), (B), (UC). Now we introduce the (local) anisotropic curvatures
K91 defined as follows. Let E € € and = € OF; in a neighborhood of z, F is the graph of
function f € CZ(HSE@) (x)) (see for the definition of H?(x)) with Df(x) = 0 (here and
below Df and D?f are computed with respect to a given system of orthogonal coordinates on
HSE (@) (x)). The anisotropic mean curvature of OF at x is given by

o (@, B) = - [ 9OED [ ()€ AH2(E). (26.8)
HBE(Z)(:E)OSCI—I
One can check that 9! is the first variation of Per? in the sense specified by Proposition
(we refer to [13] for the first variation formula of generic anisotropic perimeters, while we
leave to the reader the computations for the specific anisotropic density @9 considered here,
defined in ) Notice that if g = 1, then K%' = wy_1K! where ! is the classical mean
curvature defined in (2.4.21]). Moreover, one can check that K9 satisfies properties (M), (T),
(S), (B), (UC’) in Proposition [2.4.3]

In Proposition below we show that the curvatures K9 converge, as 7 — 07, to the
anisotropic curvature K91 .

Theorem 2.6.5. Let s > 1. Let {E,},~0 C € be such that E, — E in € as r — 07, for some
E € €. Then, for every x € OFE NOE, for all r > 0, it holds

g,s
lim Ko, Br)
r—0t  o%(r)

= K9z, E). (2.6.9)

Proof. The proof of (2.6.9) is fully analogous to the one of Theorem and in particular
it is based on a suitable anisotropic variant of Lemma In fact, Lemma [2.4.5] can be
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extended also to the anisotropic case with ([2.4.28)) replaced by

i (o / ooy )Reol) v~ | o (o) ay))

= Jun 90 o>e*<N — M)9 dHT2(0).

If vg(z) = eq, one can argue verbatim as in the proof of Theorem clearly using ([2.6.10)
in place of (2.4.28)). The same proof with only minor notational changes can be adapted also

to the case vg(x) # eq. O

(2.6.10)

We are now in a position to state our result on the convergence of the geometric flows of
K9* as r — 07, whose proof is omitted, being fully analogous to the one of Theorem m

Theorem 2.6.6. Let s > 1 be fized. Let ug € C(R?) be a uniformly continuous function
with ug = Cpy in R\ B(0, Ry) for some Co, Ry € R with Ry > 0. For every r > 0, let
uf : R x [0, +00) — R be the viscosity solution to the Cauchy problem

{@tu(ﬂ?at) + Du(z, )[KE* (2, {y « uly,t) > u(z,1)}) =0
u(z,0) = ug(x) .

Then, setting vi(z,t) := ui(z, —=— as @) ) for allz € RY, ¢t >0, we have that, for every T >0, v}

uniformly converge to u as r — 0% in R? x [0, T], where u : R? x [0, +00) — R is the viscosity
solution to the anisotropic mean curvature flow

{atU(l‘,t) + [Du(@, )| K9 (2, {y + u(y,t) > u(z,)}) =0
u(z,0) = up(z) .

2.6.2 Applications to dislocation dynamics

Here we apply the results in Subsection [2.6.1] to the motion of curved dislocations in the plane.
To this purpose, we briefly recall and describe, in an informal way, some notions about the
isotropic linearized elastic energy induced by planar dislocations; such notions are well known
to experts and we refer to classic books such as [50] for an exhaustive monography on this
subject.

Let E be a bounded region of the plane R? = R® N {z € R? : z3 = 0}, representing a
plastic slip region with Burgers vector b = e; = (1,0,0). Formally, the elastic energy induced
by such a dislocation is given by

1+V 1-2v
/ /C P— 1711:52 0 x%) dy dz, (2.6.11)

where p > 0 and v € (—1, %) are the shear modulus and the Poisson’s ratio, respectively.
Formula can be deduced by [50, formula (4-44)], by integrating by parts. Clearly, the
energy J in is always infinite whenever F is non-empty. It is well understood that such
an infinite energy should be suitably truncated through ad hoc core regularizations, specific of
the microscopic details of the underlying crystal. The specific choice of the core regularization,
giving back the physically relevant (finite) elastic energy induced by the dislocation is, for
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our purposes, irrelevant. Here we adopt the energy-renormalization procedure introduced in
(2.6.1). First we set

1+v 1
G+

g(§) = ﬁ( __2;/5%) . for every £ € S!, (2.6.12)

8T\l —v

and we notice that the energy in (2.6.11)) can be (formally) rewritten as

J<E>:/E/cg(i:§r)|x—ly|3 dyde= [ [ W@y dyar,

where kY is defined by k9(z) := g(ﬁ)# . The core-regularization of J is given by the functional
jﬁ’l defined by , where the parameter > 0 plays the role of the core-size. Now, consider
the dynamics of a dislocation curve, enclosing a (moving) bounded set F, with Burgers vector
equal to ey, governed by a self-energy release mechanism. We consider a geometric evolution,
that can be formally understood as the gradient flow of the self-energy jﬁ’l with respect to an
L2 structure on the (graphs locally describing the) evolving dislocation curve. If the energy
were the standard perimeter, this evolution would be nothing but the standard mean curvature
flow. Notice that the energy considered here is nonlocal; moreover, although it is derived
from isotropic linearized elasticity, it has in fact an anisotropic dependence (induced by the
direction of the given Burgers vector) on the normal to the curve. Another possible source of
anisotropy is the so-called mobility, depending on the microscopic details of the underlying
crystalline lattice; here, for simplicity, we assume that such a mobility is in fact isotropic,
equal to one. The dynamics discussed above corresponds to the geometric evolution where the
normal velocity of the evolving dislocation curve at any point z is given by —KZ!, defined in
(12.6.6]).

In order to study the asymptotic behavior, as r — 0, of the dynamics described above we
use the results developed in Subsection First, we notice that that the function g defined
in is continuous (actually, it is smooth) and even, so that it satisfies the assumptions
required in Subsection Moreover, recalling and , for the choice of g in
(2.6.12)), an easy computation shows that

rn o 1+v 1-2v
(v) = m<1_y(1+y12)—|— 1_V(1+I/22)),f0reveryV€Sl,
1 1-2
KoYz, E) = %(1—1—5(1/]3@))%—}— 1_5(1/;;@))%),foreveryEEQﬁ,xG@E.

Therefore, by Theorem the unique (in the level set sense) dislocation dynamics
described above, converges, as r — 0T, to a degenerate evolution where the dislocation
disappear instantaneously. After a logarithmic in time reparametrization, the evolution
converges to the anisotropic mean curvature flow governed by the release of the line tension
energy Per? , corresponding to the anisotropic energy density (¢ defined above. Such
a dynamics is nothing but the evolution ¢ — OF;, where the normal velocity of the evolving
dislocation curve 0F; at any point z € JE; is given by the (opposite of the) anisotropic
curvature K91 (z, E;) defined above.
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Chapter 3

The variational approach to
s-fractional heat flows and the limit
cases s - 0" and s — 1~

In this chapter we study the limit cases for s-fractional heat flows in a cylindrical domain,
with homogeneous Dirichlet boundary conditions, as s — 0" and s — 1.

We describe the fractional heat flows as minimizing movements of the corresponding Gagliardo
seminorms, with respect to the L? metric. We provide an abstract stability result for mini-
mizing movements in Hilbert spaces, with respect to a sequence of I'-converging uniformly
A-convex energy functionals. Then, we provide the I'-convergence analysis of the s-Gagliardo
seminorms as s — 0" and s — 17, and apply the general stability result to such specific cases.
As a consequence, we prove that s-fractional heat flows (suitably scaled in time) converge to
the standard heat flow as s — 17, and to a degenerate ODE type flow as s — 0% . Moreover,
looking at the next order term in the asymptotic expansion of the s-fractional Gagliardo
seminorm, we show that suitably forced s-fractional heat flows converge, as s — 0T, to the
parabolic flow of an energy functional that can be seen as a sort of renormalized 0-Gagliardo
seminorm: the resulting parabolic equation involves the first variation of such an energy, that
can be understood as a zero (or logarithmic) Laplacian.

The reference for the following results is [31], joint work with Vito Crismale, Lucia De
Luca, Angelo Ninno and Marcello Ponsiglione.

3.1 T'-convergence of F*¥ as s — 07

In this section we study the convergence of s-Gagliardo seminorms as s — 0T, both in the
0-th and in the first order.

3.1.1 0-th order I'-convergence for the functionals F* as s — 0"

Let d € N, d > 1, and let s € (0,1). The Gagliardo s-seminorm of a measurable function

u: R? = R is defined by
O 4 a0’
s.— |:/]Rd/]Rd |1:_ |d+25 dydx| ,
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whenever the double integral above is finite. Let £ be an open bounded subset of R? with
Lipschitz continuous boundary. We denote by H§(€2) the completion of C2°(€2) with respect to
the Gagliardo s-seminorm defined above. For every measurable function u : 2 — R we denote
by 4 its extension to 0 on the whole R?, i.e., defined by @& = u in Q and @ = 0 in R? \ Q.

In [61, Theorem 2] it has been proven that there exists a constant C'(d) depending only on
the dimension d, such that for d > 2s

|u(z)?

I |.CU‘25

s(1—s)

m[ﬂ]z for every u € Hg(£2) .

dz < C(d)

It follows that H(2) C L2(Q) for every d > 1 and every s € (0,1): for 2s < d this comes from
the above estimate, being 2 bounded; for d < 2s it is enough to pass to suitable s’ < s with
25’ < d, recalling that [a]s, < C(d, s)[d]s, for 0 < s1 < s3 < 1 (see e.g. [40, Proposition 2.1]).

Along with [47, Theorem 1.4.2.2] (see also [63, Theorem 3.29]), the inclusion H5(Q2) C L2(Q)
gives that

H3(Q) = {u e L2(Q) : [a], < +o0} .
For every s € (0,1), we define the functional F* : L2(Q) — [0, +-00] as
Fé(u) = [u)? (3.1.1)
and the functional F? : L2(Q) — [0, +00) as

_ dwg

FOu) := <

ull?2, (3.1.2)

where wy is the measure of the unit ball of R%. The following result is a trivial consequence of
[61), formula (9)].

Theorem 3.1.1. Let § € (0,1). For every s € (0, %) and for every u € H§(Q2) we have

dwg [ |u(x)|? 228
— r<s
2 Jo |zl (1-96)?

FS(u). (3.1.3)

The following theorem follows easily from the above estimate.
Theorem 3.1.2. Let {sp}nen C (0,1) be such that s, — 01 as n — +oc.
(i) (Compactness) Let {u™}nen C L2(Q) be such that

sup s, F°" (u") < C,
neN

for some constant C € R. Then, up to a subsequence, u™ — u in L?(Q) for some
u € L2(9).

(ii) (U-liminf inequality) For every u € L2(Q)) and for every {u™}nen C L2(Q) with u™ — u
in L2(Q), it holds
0 < lim3i Sn (M
FP(u) < EE‘EQESHF (u"). (3.1.4)
(iii) (D-limsup inequality) For every u € L2(Q) there exists a sequence {un }nen C L2(Q) with
un — u in L2(Q) such that
FOlu) = lim s,F*(u"). (3.1.5)

n—-+0o00



3.1 I'-convergence of F* as s — 0% 79

Proof. Since €2 is bounded, there exists 0 < R < 400 such that 2 C Br. Therefore, in view
of (3.1.3)) and of the energy bound, for n large enough, we have that

/Q " ()2 da < /Q [ @F G < o). (3.1.6)

ol

1
Ran
It follows that |[u"||;2(q) is uniformly bounded and hence, up to a subsequence, u, — u in
L2(Q) for some u € L%(Q), proving (i).

Let us pass to the proof of (ii).
Let 0 € (0,1) be fixed. Using again
(3.1.3)), for n large enough, we have

(1—=0)2dwg [ |u(z)|? (1—-10)? dwg / )2
nFSn n > e > n
$ (U ) — 22sn 2 Q ‘$‘|25” d:U — 225 RQSn | | dZL‘

which, passing to the limit as n — +oo and using the weak lower semicontinuity of the L?
norm, yields

lim uf s, P (u") > 522 / lu(z) 2 da;

n—-—+00o
by the arbitrariness of ¢, the claim (ii) follows.
Now we show that also (iii) holds true. If u € C2°(€2), the claim is proven in [61, Theorem
3], with u, = u. Since C(Q) is dense in L2(Q), the general case follows by a standard
diagonal argument. O

3.1.2 The first order I'-limit of the functionals F* as s — 0T

In order to compute the I'-limit of the renormalized functionals F** — %F 0 as s — 07 we need
to rewrite the functional F** in a different manner.
Let s € [0,1). We define the functional G7 : LQ(Q) — [0, 400] as

|2
dyd 1.
//Bl \x— ‘d+25 Z, (3.1.7)

where B; := {(z,y) € R x R? : |2 —y| < 1}, and the functional J§ : L2(Q) — (—oc, +00) as

u(z)a(y)
- —————dydz. 3.1.8
//R?d\sl |z — y|d+2s Yy ( )
We notice that the functionals J; are well-defined in L?(€2) since, by Hélder inequality,
[ (@) < Jlullfr o) < 120l - (3.1.9)

It is easy to check that for every s € (0, 1)

A

1
F?(u) := F°(u) — gFO(u) = Gi(u) + Ji(u) for every u € L%(9). (3.1.10)
In analogy with (3.1.10), we define the functionals F° : L?(Q) — (—o0, +0c] as
FOu) = G9u) + JV(u), (3.1.11)
and we introduce the space

HO(Q) := {u e L2(Q) : G(u) < +o0}.
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Remark 3.1.3. Tt is natural to endow the space HJ(Q) with a 0-Gagliardo type norm

=

[u]o == (2G}(u))= .

We are now in a position to state our I'-convergence result for the functionals F's defined

in (3.1.10) .

Theorem 3.1.4. Let {sy}nen C (0,1) be such that s, — 07 as n — +oo. The following
I'-convergence result holds true.

(i) (Compactness) Let {uy}nen C L2(Q) be such that
o) + 200 oy < M, (3112)

for some constant M independent of n. Then, up to a subsequence, u"™ — u strongly in
L2(Q) for some u € HY(?) .

(ii) (U-liminf inequality) For every u € L2(Q)) and for every {u™}nen C L2(Q) with u, — u
in L2(Q), it holds
FO(u) < liminf F*» (u™) .

n—-+o0o

(iii) (T-limsup inequality) For every u € HY(Q) there exists {u™}nen C L2(Q) with u, — u
in L2(Q) such that
FO(uw) = lim E*(u™).

n—-+oo

Remark 3.1.5. By the Dominated Convergence Theorem, for every s € [0,1) the functionals
J; are continuous with respect to the strong L' convergence, and hence also with respect to
the strong L? convergence.

3.1.3 Compactness and I'-liminf inequality

In order to prove (i) of Theorem we recall the following result proven in [52] .

Theorem 3.1.6 (Local compactness [52]). Let k : R? — [0, 4+0c] be a radially symmetric
kernel such that

/ k(z)dz = 4+00 and / min{1, |z|*}k(2) dz < 400
Rd Rd

and let

WH(Q) 1= {ueL2 //d i(y) Pk — )dydx<+oo}
R
be the Banach space endowed with the norm
3
Julbwrcey = Nz + ( [[ 1362) — @(w) Pz — y) dy da)

Then, the embedding W¥(Q) < L2(Q) is compact.

With Theorem in hand, we are in a position to prove compactness.
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Proof of Theorem |3.1.4|(i). By (3.1.12)), (3.1.10) and (3.1.9)), we have that

M > F* (u") + 200 [[u"[F 20y = 12" [F2(q) + 224" [F2(q) = 19Ul [F2(q)

i.e., that [Jun|r2(q) is uniformly bounded. Therefore, by (3.1.10) we deduce

GY(u™) <G (u <M+// [T @I 4 42 < v + a2
() < o, Ty dyde <M O ey
<2M,
whence, by applying Theorem |3.1.6| with k(z) := Xﬁg 2) we deduce that, up to a subsequence,
u™ — u in L2(Q) for some u € L?(Q2). Finally, by (3.1.13)) and by the lower semicontinuity of
the functional GY with respect to the strong L? convergence, we get that u € H3(). O
Now we prove the I'-liminf inequality.
Proof of Theorem (3.1.4|(i7). By Fatou lemma we have
GY(u) < liminf G§" (u™) ; (3.1.14)
n——+o0o
moreover, by the Dominated Convergence Theorem we get
0 _ . Sn(,,N
Ji(u) = nEI—Poo Jim (). (3.1.15)
In view of (3.1.10) and (3.1.11f), we get the claim. O

3.1.4 TI'-limsup inequality

Here we construct the recovery sequence for the functionals F's . We start by showing that,
for smooth functions, the pointwise limit of the functional F'* as s — 0" coincides with the
functionals FY .

Lemma 3.1.7. For every u € C(2) we have that

lim F*(u) = FOu).

s—0+

Proof. In view of the definition of Fs in (3.1.10) it is enough to show

Jim, G5 (u) = GY(u), (3.1.16)
Slir& Ji(u) = J)(u). (3.1.17)

We start by proving (3.1.16]). To this end, we note that, since @ € C®(R?), for every x, y € R?
we have

la(y) — a(@)]” < || Valfele -yl
Let U C R? be an open set such that dist(Q,R?\ U) > 1 and let € € (0,1); we have
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G5~ G <5 [ do [ Jale) ~ w)P| | d
' S T2y (@) =yl " o=yl
1 1 1
+—// i(x) — a(y))? - dy dz.
3 18 = 8P| s — 1y e

By Dominated Convergence Theorem the second addend in the righthand side tends to zero (for
fixed €) as s — 0T, while the first addend is bounded from above by |U|[| V| [5. HH% dz,

which tends to zero as ¢ — 07. This clearly yields (3.1.16)). Finally, (3.1.17) is a trivial
consequence of the Dominated Convergence Theorem, once noticed that

u(y)
Ji :—/ / —=——dydz.
1(w) Qu(a?) NB () |z — y|dt+2s ydar
O

Lemma 3.1.8 (Density of smooth functions). For every u € HY(Q) there exists {u }ren C
C°(Q) such that u, — u (strongly) in L?
and
lim  JY(ug) = J(u) and lim GY(ur) = GY(u). (3.1.18)
k—+o0 k——+o0

Proof. This result is proven in [63, Theorem 3.29], for domains with a continuous boundary.
Up to a partition of the unity argument, one may assume §2 to be the subgraph of a continuous
function: thus it is enough to approximate first with us(x) := u(z’, z,, + §), for small §, whose
support is well contained in 2, and then to take wug * ¢, for a family of mollifiers {¢.}. and
small €. O

The limsup inequality in Theorem follows directly from the density proved above.

Proof of Theorem[3.1./(iii). Let u € H°(2). By Lemma there exists a sequence of
functions {u*}reny C CX(RY) such that u* — v in L2 and

limsup F0(u) = FO(u).

k——+o0

In view of Lemma we have

lim Fon(ub) = FO(uF) for every k € N.
n——+oo
Therefore, by a standard diagonal argument, there exists a sequence {u"},eny C C°(R%) with
u" = uF™ for every n € N satisfying the desired properties. O

3.2 TI'-convergence of F* as s — 1~

Here we study the I'-convergence of the functionals (1 — s)F® as s — 1, where F* is defined
in (3.1.1). The candidate I-limit is the functional F! : L2(€2) — R U {+o00} defined by

Wq 9 . 1
Flu) = ?/Q|Vu(:z:)| dz if ue Hy(Q), (3:2.1)

+ 00 elsewhere in L?(1) .
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Theorem 3.2.1. Let {sp}nen C (0,1) be such that s, — 17 as n — 4o00. The following
I'-convergence result holds true.

(i) (Compactness) Let {u™}nen C L2(Q) be such that

szg(l — sn) F (u™) + ”u"Hiz(m <M, (3.2.2)

for some constant M independent of n. Then, up to a subsequence, u™ — u strongly in

L2(Q) for some u € H () .

(ii) (T-liminf inequality) For every u € L2(Q) and for every {u™}n,en C L2(Q) with u™ — u
in L2(Q), it holds
1 : : _ Sn [,
Fi(u) < légligg(l sp) FPm (u™) . (3.2.3)
(iii) (D-limsup inequality) For every u € L2(Q) there exists {u™}nen C L2(Q) with u™ — u in
L2(Q) such that
F'(uw) = lim (1 —s,)F (u™). (3.2.4)

n——+oo

3.2.1 Proof of Compactness

This subsection is devoted to the proof of Theorem (1) To accomplish this task, we adopt
the strategy in [9] adapting it to our case. We first recall that for every function v € L2(Q)
and for every h € R? the shift 7,0 of v by h is defined by 7,v(-) := v(- + h) .We recall the
following two classical results.

Theorem 3.2.2 (Fréchet-Kolmogorov). Let {v"},eny C L2(Q) be such tha sup,,cy 0”12 (ray <
M , for some constant M independent of n. If

lim su vt — " =0
P SRl = e =0

then {v"},en is pre-compact in LE _(R?).

loc

Theorem 3.2.3. Let v € L2(R?). Then v € H'(RY) if and only if there exists C > 0 such
that

[7hv = vl[r2(y < Clh|  for every open bounded set Q' C R and for every h € R?.
For every A € R? and for every t > 0 we define the set
A= {z e RY: dist(z, A) < t}. (3.2.5)

The following result which allows to estimate the L? distance of a function from its shift has
been proven in [9, Proposition 5] in L' ; for the sake of completeness, we state and prove it
also in our case.

Proposition 3.2.4. There exists a constant C(d) > 0 such that the following holds true: for
every v € L2(RY), for every h € RY and for every open bounded set ' C R% we have

h 2
| Tho — v||ig(9,) < C’(d)))dJr2 /B |7y — vHiQ(Q/ ydy  for every p € (0, [h[], (3.2.6)

h
. [hl

with Qihl defined in (3.2.5)).
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Proof. The proof closely resembles the one of [0, Proposition 5]. Let ¢ € Cl(B;) be a
fixed function with ¢ > 0 and [5 ¢(xr)dz = 1. For every p > 0 we define the functions

Uy, V, :RT = R as

Ua@) = [, vatwe(L) v, Vo= [ @) ot e (2) ays

clearly, for every p > 0 and for every = € R?
v(z) =Uy(x) + V,(x), (3.2.7)
and hence
o (@) —v(@)[? < U (x + k) — Up(@)  + 3|V,(@)]? + 3V, (z + ). (3.2.8)

By Jensen inequality, for every ¢ € R? we have

VO < ey [, 1) ~ 7@ v (329)

P

Moreover, by the change of variable z = x + y, we have that

Unle) = pld /Bp(a:) v(z)w(z ; x) a

whence we deduce that

1 z—x
DU,(z) :—de/B ( )v(z)Dgo(p) dz
o (x
1

=— P /Bp(x)(v(z) - U(:B))Dg0<z ; x) dz

- pdl—i-l /B (v(z +y) — U(x))DsOC;) dy;

P

therefore, by the fundamental Theorem of Calculus and by Jensen inequality, we obtain

1
Uy (x + h) — Uy()[? < !hP/ IDU,(z + th)| dt
0

hp? . (3.2.10)
< wdﬁuwuim(&)/ / 7y 0( + th) — v(@ + th) | dy dt.
p 0o /B,
Now, by (3.2.8)), (3.2.9), and (3.2.10)), taking p < |h|, we have
h 2 1
v () — v()|? <3wd[|)d+2]DcpHgo/0 /B Imy0(z + th) — v(z + th)|? dy dt
p
’h 2 2 2
+ 3w gig el [ Ime(a) - vla)Pdy (3211)
P

|2
+ 3w aiglel [ (e ) oo+ Ry
Finally, by integrating :3.2.11} on ', by Fubini theorem, we obtain (3.2.6) with C(d) :=
3wa(2)ll e g,y + IDLIF e (,)) - M
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We recall the following version of Hardy’s inequality, that is proven in [9, Proposition 6].

Lemma 3.2.5. Let g : R — [0,4+00) be a Borel measurable function. Then for alll > 0 we
have

L [Mawarap< L [M9W >
/0 pd+l+1/0 g(t)dt p_d—_H/O prEs] t  for every r > 0.
The following result will be used in the proof of Theorem [3.2.1i). It is the L? analog of [9,
Proposition 4].

Proposition 3.2.6. There exists a constant C(d) > 0 such that for every v € L*(R%), for
every open bounded set ' C R?, for every s € (0,1), and for every h € R?, we have

2 2 5 Irye = n)
|mm—vmﬂgﬁ;mycuxy—g/ ey (3.2.12)
By Yy
Proof. For a fixed v € L2(R?), we define the function g : [0, |h|] — R as
- d—1
90 = [ lIm(0) = vl  aH ().
0By
By integrating in polar coordinates formula (3.2.6) we thus have
B2

By multiplying both sides of (3.2.13)) by /)1_2S and integrating in the interval [0, |h|], using
Lemma and the very definition of g, we obtain

s || 1 P
It = vl <20 = A [Ty Mo ata:

25 Ih] g(t)
<20((1 - s> [ S (3.2.14)
=2C(d)(1 28 I~ e )
=20 = [y,
which concludes the proof. O

We are now in position to prove Theorem [3.2.1{i).

Proof of Theorem|3.2.1|(i). By Proposition and by the upper bound (3.2.2) we obtain
that for every open bounded set Q' € R? and for every h € R¢

@™ — @120y < C(d, M)|AI*" (3.2.15)

where we recall @" is the extension of ™ to 0 in R?\ Q. Therefore, the sequence {@"},en
satisfies the assumption of Theorem and hence there exists a function v € L2(R%) with
v =0 in R?\ €, such that, up to a subsequence, @" — v in L?(R?). Now, sending n — +oc in
, we obtain that for every open bounded set Q' C R?

[Thv — vllL2@ry < C(d, M)|h| for every h € R?,

and hence by Theorem we obtain that Dv € L2(R%). Since v = 0 in R?\ Q, by the
regularity of 9§, we have that v is the extension to 0 in R%\ Q of a function v € H}(Q), thus
concluding the proof. O
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3.2.2 Proof of the I'-liminf inequality
Here we prove the I'-liminf inequality in Theorem [3.2.1]

Proof of Theorem [3.2.1)(ii). We can assume without loss of generality that holds true
so that the function u is actually in H}(Q). Claim 1. Let n € C(By) be a standard
mollifier, i.e., 1 > 0 and [ n(z)dz = 1. For every e >0, we set n:(-) :=n(;) . For every
€ (0,1)

F?(v.) < F*%(v) for every v € L2(Q) and for every e >0, (3.2.16)

where Ve 1= v * 1), .
Indeed, setting 9 := ¥ * 1. and Q. := {x € R? : dist(x,Q) < e}, we have that ¢ = 0 in
R?\ Q. ; therefore, by applying Jensen inequality to the probability measure 6%775 dz, we get

(x—2)—0(y— z)|2
"(ve) /]Rd /Rd /Rd y|d+2s ne(2) dzdy dz

\vx—z—v@ 2)?
dzdyd
Rd/Rd€d/Rd |z — 2z — (y _Z)’d+2s775() zdydx

FS

Claim 2. For every e > 0 and for every R > 0, it holds

% liminf [ |Val|?(dist(z, 0Bg))?1 ) de < liminf(1 — s,)F*" (u?), (3.2.17)

n—-4o00 Br n—+400

with ne as in Claim 1.
Indeed, by Taylor expansion, using that sup,,cy HU”H%Q < M we have that

~n ~n ~n r—y 2
@2 () = G2 ) = Va2 (@) [ e =yl = Cle Mo(lz — yI?).
Therefore, setting ¢ := dist(z, 0BR) , we get

a2 (x) — al(y)|” jaz (x) — al(y)[?
(15")/BR dy > (18")/35@) d

|ZL‘—y|d+2S” |l=_y|d+25n

P
|z -y
—C(e, M)(1 —sp) O</B |z — y‘2(1—sn)—d dy)

5\ T

S|V (@) - Cle, M, d)o(1),

2
Plo - g0ty

(3.2.18)

where in the last equality we integrated over spherical boundaries from 0 to §, using that

Jsa-1 VA2 (z) - 0] d§ = w4 . By integrating (3.2.18)) over Bp, we get (3.2.17).

By Claim 1 and Claim 2, for every € > 0 and for every R > 0 we have that

liminf(1 — s,)F* (u™) > L liminf [ |Va?(z)2(dist(z, 0Bg))2 ) da,  (3.2.19)
n—-+o0o n—-+o0o Br
whence, using that for every ¢ > 0 the sequence {a },en is equi-Lipschitz, and applying the
Dominated Convergence Theorem and Fatou lemma, we get that, up to a (not relabeled)
subsequence,
liminf(1 — s,)F* (u") > % liminf [ |Va™(z)[?da

n—+oo n—+0o0 JBp
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Therefore, since we have assumed that holds true, we have that, up to a further
subsequence, @? — v, in H'(Bg) for some v. € H'(Bg). In particular, 4% — v, in L2(Bg)
and hence v; = @, a.e. in Bg. In conclusion, by , using that . — @ in H'(R?) as
€ = 0, we deduce that
lim inf(1 — s,)F*" (u™) zliminf%/B V(@) de> 2 [ |Va(e)Pde,
R

n—-+o0o e—0 R

whence (3.2.3) follows sending R — +00. O

3.2.3 Proof of the I'-limsup inequality

The proof of the I'-limsup inequality relies on the pointwise convergence of (1 — s)F* to F'!
(as s — 1) for smooth functions with compact support and on the density of smooth functions
in H}(Q). As for the pointwise convergence we recall the following result, proved in [59] in a
more general setting.

Theorem 3.2.7. For every v € CX(RY) it holds

(v)[? 2
Tim (1- 5 /Rd/Rd |x_y|d+25 dwdy = [ V()P da.

With Theorem in hand we can prove Theorem [3.2.1)(iii) using standard density
arguments in I'-convergence.

Proof of Theorem[3.2.1|(#i). Tt is enough to prove the claim only for u € H}(2). For every
u € H}(Q) there exists {uF}reny € C(Q) such that ¥ — u (as k — +o0) in HY(Q). In view
of Theorem we have that for every k € N

: O VFSR () — 1 _ |a*(z) — a*(y)|?
lim (1—s,)F*(u") = lim (1—sy, /Rd/]Rd ‘x_y‘d+25n dz dy

n—-+o00 n—)-‘,—oo

:ﬁ/ Vit (2)[2 da ”d/\v )2 da.
2 JRrd

Therefore by a standard diagonal argument there exists {k, }nen such that

lim wfn =, limsup(l — sn)F* (ub) < %/ Vu(z)2de = F'(u),
Q

n—r+00 n——+00

ic., (32 0

3.3 Minimizing movements for A-convex functionals defined
on a Hilbert space

In this section we develop the general theory that will allow us to study the stability of the
s-fractional heat flow as s — 0 and s — 17 . Throughout this section .57 is a generic Hilbert
space, (-, ) » is the inner product of 5 and || is the norm induced by such a scalar product.
In the abstract setting of this section, we denote by © the time derivative of any function v
from a time interval with values in 7.
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Definition 3.3.1 (A-convexity, A-positivity, A-coercivity). Let A > 0. We say that a function
F 1 H# — (—00,+00] is A-convex if the function f(-) + 3| - |4, is convex. Moreover, we say
that F is A-positive if F(x) 4+ %\xﬁf > 0 for every x € 7, and we say that F is A-coercive if
the sublevels of the function F(-) + 3| - |2, are bounded.

Remark 3.3.2. We notice that if F is A-positive, then F is A-coercive for every A > \.

Proposition 3.3.3. Let F : 7 — (—o0,+00] be a proper, strongly lower semicontinuous
function which is A-convex and A-positive for some A > 0. Then for every 0 < 7 < % and for
every y € J€ the problem

1
min{}"(:v) + §|x —yl%: we %”} (3.3.1)

admits a unique solution.

Proof. We preliminarily notice that, since F is Ad-convex and strongly lower semicontinuous,
then the function F(-) + % -2, is strictly convex and strongly lower semicontinuous and, in
turn, weakly lower semicontinuous. Clearly, this implies that also F(-) + % - —yl%, is weakly
lower semicontinuous. Moreover, by Remark we have that F is %—coercive.

Since F is proper,
. 1 2
0 < inf f($)+?|$_y|ﬂi xeH <M,
T
for some M > 0. Let {x}ren C F be a sequence such that

1 1
lim F(z)+ Z’mk —y|% = inf{f(ac) + Z’m —yl%: ze %”} . (3.3.2)

k—+o00

By triangular inequality, for k sufficiently large, we have

1 1 1
2M >F(xy) + Zm —yl%y > Flap) + Eymk@f - E\y@f (3.3.3)

whence, in view of the %—coercivity of the function F, we deduce that, up to a subsequence,

Tk X oo for some 200 € H . Therefore, by (3.3.2)) and by the weak lower semicontinuity of
the function F(-) + 5| - —y|%, , we obtain

2
H

1
inf{f(m) +—|z—y

1
2 _ i _
5 W xG%}—kETm.F(xk)+2T|xk y

1
2 (@) + 5 [@oc = yl%, (3.3.4)

i.e., that 2o is a minimizer of the problem in (3.3.1).
Finally, the uniqueness of the solution is a consequence of the strict convexity of the
functional F(-) + 5| - —y|%. O

27T

For every function F : % — (—o0, +00] we denote by D(F) the set of all x € . such
that F(x) € R.
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Definition 3.3.4 (Fréchet subdifferential). For F : 7 — (—o0, +oc] and x € D(F), the Fréchet
subdifferential of F at x is defined as

OF () == {’U € J : liminf Fly) = F@) = vy —w)n > 0} )
yow ly =l

Remark 3.3.5. Whenever F is a A-convex function it holds that
OF (z) = {v cH: Fly)—Fx)— v,y —x)p > Ny —x|% foreveryy e %”} . (3.3.5)

Indeed, for a convex function ¢, v € d¢(x) if and only if ¢(y) — ¢(x) — (v,y — ) > 0 for
every y € J, namely the FrAIchet subdifferential coincides with the usual subdifferential of

convex analysis. Then, being F A-convex and since 8(¢ + Al Bf) = 0¢ + 2\ -, it holds that
v € 0F(x) if and only if

Fy) + MylZp — F(a) = Ml — (v + 20,y —a)r 20 for every y € 7,

which coincides with the condition in (8.3.5)) since |y — z|%, = |y|% — 2|3 — 2(x,y — z)

Let F : # — (—00,400] be a proper, strongly lower semicontinuous function which is
A-positive and A-convex, for some A\ > 0, and let g € D(F). For every 0 < 7 < %, we denote
by {27, }ren the discrete-in-time evolution for F with initial datum xg, defined by

1
xf =z, Tiq € argmin{]—"(x) + 2—]1“ - acﬂif} for every k € NU{0}. (3.3.6)
T

Since zg € D(F), then x}, € D(F) for every k € N. Furthermore, we define the piecewise-affine
interpolation z7 : [0, 4+00) — H of {x] }ren as

27(t) == o] + @(t k), telkn(k+ 1)) (3.3.7)

Theorem 3.3.6. Let F : A — (—o0,+00| be a proper, strongly lower semicontinuous function
which is A-convexr and \-positive, for some A > 0. Let moreover xo € D(F). Then, there
exists a unique solution x € H'([0,400);5¢) to the following Cauchy problem

{:'v(t) € —0F(x(t)) for a.e. t € [0,+00), (3.3.8)

z(0) = x0 .

Moreover, for every T > 0, 27 — x in H'([0,T]; ), where " is defined in (3.3.7) for
0<1< % . Furthermore,

Hiu%ﬂ((o,T);Jf) < ABNTH(F(20) 4+ MNzo|%y) for every T >0, (3.3.9)
lz(t) — 27 (t) % < COr 48’\t(f(x0) + )\|ajo\§f)(1 + ¥ for every t >0, T < %ﬁ.&l@)

for a universal constant C > 0.
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Proof. Uniqueness. Let T > 0 and let z1,20 € H'([0,T]; 5#) satisfy the Cauchy problem
(13.3.8]) up to time T

(y1 — y2,v1 — v2) s < 2\ |y1 — ygl?yf for every y1,y2 € A, —v; € OF (y;) fori =1,2.

(3.3.11)
Indeed, by (3.3.5)), we have
Fy) = Fy) + o,y =) = Ay —wly, yeit,
which, for y = y9 implies
Fly2) = Fly) + (01,92 — vi)oe = —Xy2 — % (3.3.12)
analogously
F(yr) — F(y2) + (v2,91 — v2) e > —Ny2 — 1% - (3.3.13)

Therefore, (3.3.11)) follows by summing (3.3.12)) and (3.3.13]).
Finally, by formula (3.3.11)) we have

%Ml(t)—xg(t)@f 2y ()= (t), 21 (D) —22(1)) g < AN |21 (D) —2a()%  for ace. £ € [0,7],

which, by Gronwall’s Lemma, implies
|z1(t) — 22(t)

ie., z1(t) = z2(t) a.e. t € [0,T]. We notice that the solution is in C’O’%([O,T];%ﬂ) by the
Sobolev embedding of H([0, T]; #) into C’O’%([O, T); ), so that x1(t) = x2(t) when passing
to the continuous representatives.
Existence. We first prove that for every T' > 0 the functions z7 defined in converge
(as 7 — 0) weakly in H!([0,T]; #) to some function x € H'([0,T]; #) and then we show
that the limit x satisfies up to time T'.

By (3.3.6) we have that

1
F(rhyr) + ;\xﬁﬂ —2}|% < F(z]), forevery k € N, (3.3.14)

2, <|wo — xo|wexp(4Xt) =0  for a.e. t € [0,7],

which together with the A-positivity of F implies that

K

1 K
> =l = ailly <230 (F@h) - Flaghn)
k=0 k=0

=2(F(25) = F(¥x41))

\ N (3.3.15)
=2(F(af) + Flaksr3 = Flakia 3 — Flakein)

A
<2 (F(wo) + 2]x}+1]3f> for every K € N.

Set T' = é and let 0 < 7 < ﬁ. We set K := [%W ; by (3.3.15]), we have

T K A
=T T T 2 T
| o a <3 2ot —aflly <2 (Fla) + 55 ) - (3.3.16)
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Moreover, by triangular and Jensen inequalities and using again (3.3.15)), we get

1 T T
§’$k+1\,2;f — |zol3 < 2% — zol%
A K+l 1 2 N K 1 2
<r(K+1) Z - |z, — 27 _4]5, = T(K +1) Z - 271 — 2k, (3.3.17)
k=1 k=0
. AL
<XT +27)(Flwo) + Ik, )

which, recalling that 0 < 27 < é =T, implies that

2
% 415 < 5 (o) + Aol - (3.3.18)

By (3.3.16]) and (3.3.18]), we have that, for every 7 small enough,

1871122 0.y < A(F (o) + Nzol3) (3:3.19)
Iterating the estimates in ((3.3.18) and (3.3.19)), we deduce that for every j € N

o vl
[T < 47 (5 F (o) + laol3).
< 4T3 F(xo) + MNzol%) .

T2
127N L2 0,07y,

In particular, for every T' > 0, we have that
18712 02y,) < 4T HH(F (o) + Aol %) - (3.3.20)

Therefore, for every T' > 0, |27 g1(jo,7},) is uniformly bounded and hence, up to a subse-
quence, 7 — x in H'([0,T]; #) for some x € H'([0,T); ##); this, in particular, implies the
convergence in CO’%([O, T); 7€) and hence that z(0) = z¢. Passing to the limit in we
readily get .

Now we aim at proving that x solves (3.3.8]) up to time T,
for every T' > 0, that is

&(t) € —0F(z(t)) for almost every t € (0,7T). (3.3.21)

To this end, we define the piecewise-constant interpolation 7 : [0, +00) — . of {2] }ren
as
T7(t) =wxp, telkr,(k+1)1), (3.3.22)

and we notice that, by minimality, for 7 small enough,
7(t) € —OF(Z7(t)) for almost every ¢ € [0, 400) . (3.3.23)

We claim that
i A i L2((0,T); 5¢), for every T > 0. (3.3.24)
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Indeed, by triangular inequality, we have that

127 = 2P 2(0,1).2) < 20|27 = 220,17y + 20ET = 27 E2((0,1),) (3.3.25)
< 2la7 = zlFa 0y + 27 1T IR 2 0,1y - -

where in the last inequality we have used that

2T(t) —T7(t) = M(t —(k+1)71)=2"@t)(t— (k+ 1)), foreveryte (kr,(k+1)7).

-
Therefore, by (3.3.25)), (3.3.10) and (3.3.9), we get

127 =1 20,7y < 167TANTTH(F (o) + Ao l5) (14420243 H4(F (o) + A o5 ) |

which, sending 7 — 0, implies (3.3.24)).
With (3.3.24) in hand, we are in a position to prove (3.3.21)). Let ¢o € (0,7) be a Lebesgue
point of the function & : [0,7) — . By (3.3.23), we have that

Fly) 2 F@ (1)~ (00— O — Sl F(OF  Torevery ye A (3:3.26)

Let y € 2 and h > 0; by integrating (3.3.26)) in the interval (¢, to + h) and dividing by A,

we obtain

1 [toth 1 [toth to+h )\
Vo dt — — /

f(y)ZEt F(z ())dt—g (@7(t),y — &7 (t 5ly = (1) 5 dt,

which, sending 7 — 0, and using the strong lower semicontinuity of F , the weak L2-convergence
of £™ to &, and (3.3.24)), yields

1

}_(y)ZEt

:0+hf( (1)) dt — /t0+h (@(t),y — x(t))r dt — /tﬁh Ay o)l at.

Now, since x € CO’%([O, T); 7€) and since tg is a Lebesgue point for &, sending h — 0 in the
formula above, and using again that F is strongly lower semicontinuous, by the arbitrariness

of y, we get (3.3.21)).

Finally, we prove that (3.3.10) holds true. Let 7] : [0, 400) — (0, 7] be the function defined

by n7(t) = (k + 1)7 — t for every ¢ € [k7, (k+ 1)7). By (3.3.23),
7 (t) € —OF(z" (t + nT(t))) for every t > 0, (3.3.27)
which, using and , yields
Loty — O = 2al) —a7(0).40) ~ (D)0
= 2(x(t) —a"(t+n" (1)), &(t) — 27 (1))
+2(a7(t + 07 (1) — 27 (), 2(t) — 27 (1))
< AN (t) =T (0T ()5 + 20T+ 07 (8) — 2T (1) elE(t) — i (8]
< 8Aa(t) —aT ()5 + AT (t + 07 () — T(t)@f
2l (t + 07 (1) — 27 ()] (12(t) e + 127 ()] )
< 8Afx(t) — 2" (t )|W+T(8AT+3)(|!ET(t)|§f+|l‘(7f)|;f),
< 8Aa(t) —aT ()5 + 57(12T (1) 5 + |2() %),
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where in the last inequality we have used that 7 < & (recall also |7 (t + 77 (t)) — 27 (t)| s =
n (|27 ()| < 7IE7(8)])-
We now apply Gronwall Lemma with (3.3.9) and (3.3.20)). For

aft) := 107 - 43N F(20) + Mzol%),

we get
t
l2(t) — 27 (t) % < alt) + 8)«38)‘/ as)ds < Ca(t)(1 + M)
0
for a universal constant C' > 0, which gives (3.3.10]). O

Let ¥ be a vector space, with a standard notation we denote with ¥ the algebraic dual
space of 7.

Proposition 3.3.7. Let F : # — (—o0,+00] be a proper lower semicontinuous function
which is A-convex, for some A > 0 and let x € D(F). Let F be a dense subspace of 7 . If

A

there exists T € (H€)* such that

i T+ t0) = F(@)

lim . =T(y) for every ¢ € A, (3.3.28)

then, either OF (x) = 0 or OF (x) = {v}, where v is the (unique) element in F satisfying

A

T(p) = (v,@) . for every ¢ € . In particular, T € (A°) and v is its unique continuous
extension to .

Proof. Since # is dense in #, in order to get the claim it is enough to prove that for every
v e OF(x)
(v.p)w =T(p)  forevery p € H . (3.3.29)

To this purpose, we notice that every v € 9F (x) satisfies

A .
Flx +to) — F(x) — t{v, @) p > —t2§|<p\?;/f for every p € ', t € R,

which, dividing by ¢, yields

lim F(x+tp) — F(x)
t—0 t

therefore, in view of ([3.3.28]), we get (3.3.29). O

We conclude this section by showing how we can use the results here collected in order
to prove a convergence result for the Minimizing Movement type solutions to gradient-flow
equations associated to a I'-converging sequence of functions satisfying the assumptions of

Theorem [3.3.6]

Theorem 3.3.8. Let {F"}pen with F* @ A — (—o0, +00] for every n € N be a sequence
of proper, strongly lower semicontinuous functions which are A-convexr and A-positive, for
some X\ > 0 independent of n. Let {z{ }nen C H be such that xij € D(F™) for everyn € N,
S = sup,en F(25) < 400 and xf — x for some xF € A . Assume that one of the
following statements is satisfied:

= (v, Q) » for every p € A ;
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(a) The functions F™ I'-converge to some proper function F°° with respect to the weak -
convergence (as n — +00). Moreover, the T'-limsup inequality is satisfied with respect to
the strong S -convergence, i.e., for every y € A there exists a sequence {y" }nen with

y" A y such that F"(y") — F>*(y) as n — 400

(b) The functions F™ T'-converge to some proper function F°° with respect to the strong
J-convergence (as n — +00) and every sequence {y"}neny C H with sup, ey F"(y") +
%|y"|if < 400, admits a strongly convergent subsequence.

Then, x5° € D(F>°) and, for every T > 0, the solutions x™ to the Cauchy problem

{m‘(t) € —0F"(z(t))  fora.e. t€(0,T), (3.3.30)

x(t) € —0F>®(x(t)) for a.e. t € (0,T), (3.3.31)
x(0) = x8°. o
Furthermore, if
then, we have that
" — ™ (strongly) in H'([0,T]; )  for every T >0, (3.3.33)
x"(t) A x(t) and F'(x"(t)) = F>(z>(t)) for every t > 0. (3.3.34)

Proof. We preliminarily notice that, if either (a) or (b) is satisfied, then the function F*°
is strongly lower semicontinuous, A-convex and A-positive and z§° € D(F>°). Moreover, by

Theorem for every n € N there exists a unique solution ™ to (3.3.30)).
Let 0 < 7 < 55 and let {2;°7 }en denote the discrete—ir;—time evolution in ([3.3.6) for
zo = xy° and F := F>°. Analogously, for every n € N, let {«}"" }cn denote the discrete-in-

time evolution in (3.3.6) for z¢ := z{f and F := F". By Proposition [3.3.3, {2 }ren and
{#}"" Yken are uniquely determined. Furthermore, for every k € N we set

1

() = () + E‘ ik for every n € N,
00,T 00 1 o0, T
() = Fr()+ 27_‘ =715 -

We first show that, if either (a) or (b) is satisfied, then for every k € N
F'ap") = FP(x") and |z — a7 | — 0 as n — +00. (3.3.35)

By finite induction, it is enough to show (3.3.35)) for k = 1. We distinguish the two cases
in which either (a) or (b) holds true.
Assume first that (a) holds true. By the assumptions on z , we have that

I (2)7) < F(ag) < S,
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whence, using that for % > )\ the functions Z7""(+) are weakly equi-coercive, we deduce that,

up to a subsequence, z}"" X yp for some y; € . Moreover, since |zg — x5°|» — 0 as
n — +o0o and since the functions F™ I'-converge to the function F°° with respect to the weak
F¢-convergence, we have that

1
27 (y1) < liminf F*(2)7) + = liminf |27 — 202, < liminf 27 (2]77) . (3.3.36)

n—-+4oo T n——+oco n—-+oo

Furthermore, since the I'-limsup inequality is satisfied with respect to the strong #-convergence,
there exists {Z]"" }nen C J# such that

7 E 2T and  Fr@EhT) — FaoT), (3.3.37)

where 27”7 is the unique solution to the problem (3.3.6) with 7 = 7> and k = 1. Therefore,
by (3.3.36) and (3.3.37)), we get

1
00, T <1 . n( Nn,T iR . n,T __ .n|2 .
I (y1) <liminf P (277" + o liminf |27 — a5

<Timi T (BT < ]G T (1T

_%r_r}iggll (x77) < 1117,13—?—2?11 (x1") (3.3.38)
< T T (=TT 00, (),00,T

< lm Zi(at) =10 (a),

whence, by the minimality of 27", we deduce that all the inequalities above are in fact
equalities and, in particular, that y; is a minimizer of Z;™'"; in view of the uniqueness of the
minimizer of Z;”"", we deduce that y; = 27°" . By Urysohn Lemma, this implies that the
whole sequence {z]"" },en weakly converges to 27”7 . Moreover, using that

1 1
Fo(@5) + 5o — 2B = liminf F7(27) + o limnf 27 — %

since

1 1
F(>x5°T) < liminf F*(z"7 and — 27 — 2°12, < — liminf |27 — 273,

we deduce that

FREET) = dim P and T afle = lm 27 - ol
which implies (3.3.35)) (for £ = 1 and then for all k£ € N).
Assume now that (b) holds true.
As above (recall A < 5=) we have that

FrayT) + MNalT — a5 <77 (@)7) < S,

whence, by the strong compactness property of the functions F"(-) + %] -|%, we deduce that, up

to a subsequence, z|"" A y1 for some y; € . Moreover, since |z{ — z3°|» — 0 as n — 400,
we have that the functionals Z;"" I'-converge with respect to the strong-7# convergence to the
functional Z7*" . By the fundamental theorem of I'-convergence and by the uniqueness of the
minimizer of the problem (3.3.6) with 7 = F> and k = 1, we get that y; = 27”7, that the
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whole sequence {z]"" },,en strongly converges to 7", and that (3.3.35)) is satisfied for k = 1.
This concludes the proof of (3.3.35) for both the cases (a) and (b).

Now we show that for every T'> 0, 2™ — 2 in H*([0,T]; ), where x*° is the unique
solution to (3.3.31). To this end, we first notice that by (3.3.9), for n large enough,

1™ 17 20,7y, < 4TS + 2X[ol5)

so that, up to a subsequence, ™ — 7 in H'([0,T); #), for some & € H'([0,T]; #). Now
we show that T = x*°
For every 0 < 7 < % , let x°°7 and ™7 (n € N) denote the piecewise affine interpolations

defined in (8.3.7), of {7 }xen and {z"" }ren, respectively. By (3.3.37), we have that
1
: n,T 00,7 ) — -
nll}rfoo |7 (t) — 2% (t)| =0 for every t > 0,0 < 7 < e (3.3.39)
Let t > 0. For every 0 < 7 < % , by triangular inequality and by (3.3.10] , for a universal
constant C' > 0 we have that
2" () — 2™ () <[a"™(t) — 2" 7 ()l + ™7 (1) — 27 (8) e + Iw T(t) = x> ()]
<SCOT4(S + 2X[wo|5) (1 + ) + [T (1) — 27 (8) | 5
(3.3.40)
therefore, sending first n — 400 and then 7 — 0 in (3.3.40) and using (3.3.39)), we get that

x"(t) A x*°(t) as n — 400 . By the uniqueness of the limit we deduce that z = 2° and that
the whole sequence {z"},en weakly converges in H'([0, T); ) to x>

Finally, we prove that (3.3.33) and ([3.3.34)) hold true. By (3.3.40]), the first part of (3.3.34))

is satisfied. Moreover, by [67, formula (1.10)] (notice that, as observed in [67], the formula
applies also for A-convex energies), we have that, for every ¢ > 0,

F(zg(t)) — F (2" (t)) = 1/t |27 (s)|%, ds for every n € N,
(3.3.41)
PR 0) - FEa0) = 5 [ 106 ds,

which, using (3.3.32)), the I'-liminf inequality (that holds true in both the cases (a) and (b))
and the weak H'-convergence of 2" to 2°°, implies

FE(0)  lmint F"(0) < FG0) - F2ee0) = 3 [ 6 ds

1 rt 1 rt
gliminff/ \a’c”(s)]i«fdsglimsupf/ 127(s)|% ds (3.3.42)
n—+oo 2 Jg n—+oo 2 J0

<limsup F"(xq(t)) — iminf F" (2" (t)) = F(23°(t)) — iminf F" (2" (¢)) .

n—s—+o0o n——+0o0 n——+oo

Therefore, all the inequalities above are actually equalities; in particular,

/ |2°°(5)|%p ds = hm / |£™(s)% ds, (3.3.43)
which, together (3.3.32)) and m, ), yields
FE@(0) = lm_ Fa().

thus obtaining also the second part of (3.3.34)). Finally, by (3.3.43)), we obtain also ([3.3.33]),
thus concluding the proof of the theorem. O
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3.4 Convergence of the s-fractional heat flows

This section is devoted to the proof of the stability of the s-fractional heat flows as s — 0%
and s — 17. In the first part, we define the s-fractional laplacian for s € (0,1) and for s =0.
The second part contains the convergence theorems, which are the main results of the chapter.

3.4.1 The s-fractional laplacian for s € (0,1) and for s =0
For every s € (0,1) and for every ¢ € Cgo(Rd) the s-fractional laplacian of v is defined by

(-ayu) = [ 205 w(fz ‘*;;L‘ VE2) g, Lemrt. (3a)

In [40, Lemma 3.2] it is proven that the above integral is finite, that (—A)%) € L>®(R?), and

that
Y(z) — Pz +2)

(—A)*(x) =2 lim Erz=

r—=0% JRA\B,(0)

dz. (3.4.2)

For every u € H{(§2) we define the s-fractional laplacian of u by duality as
((=A)’u, @) = (u, (=A)*p), for all ¢ € C°(92). (3.4.3)

Here and below (-, -) denotes the standard scalar product in L.
Clearly, the s-fractional laplacian is nothing but the first variation of the squared Gagliardo
s-norm, as shown below.

Proposition 3.4.1. Let s € (0,1). For every u € H§(Q) and for every ¢ € CX () we have

lim F*(u+tp) — F*(u)
t—0 t

= ((—A)°u, p). (3.4.4)
Proof. We have

P utte) = Fi(u) (a(z) — a(y))(¢(x) — &(y))

lim = /Rd /Rd dy dz

t=0 t |z — y|d+2s
_ / u(z) lim o) =~ 2) . gy
Q = ro0tJrip )  [2]MT
: p(y) — Py —2)
+/ u(y) lim dzd
Q (y) r—0t JRA\ B,.(0) |Z|d+25 Y
= (u,(=A)°@) = ((-A)°u, ¢),
where we have used the change of variable z =y — z, (3.4.2) and (3.4.3)). O

For every ¢ € C2(RY) we define the O-fractional laplacian of 1 as

0. [ 2@ —YEt+z)—p—2) Y(z +2) d
(=A) Y(x) := /B1 PE dz —2 oz, A dz, =z eR”.
(3.4.5)
We notice that (—A)%) is well-defined for every ¢ € C2°(R?) since
2 _ _ _ _
JRECEIC T Py U T PR
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and

S dz < 1.
/‘i\l |Z’d Z > HwHL

Remark 3.4.2. In [29] the notion of logarithmic laplacian L has been introduced as follows

Lath(z) := cg1 (=) () + cagt(z) ,

where cq 1 and cq 2 are specific constant depending only on the dimension d. Such a logarithmic

laplacian would correspond to renormalizing the Gaghardo s-seminorm of ¢ by removing all

but a finite amount of the blowing up quantity —1= W”

For every u € HJ(2) we define 0-fractional laplacian of u by duality as
(—=A) %, @) == (u, (~A)°p), for all ¢ € C°(Q2). (3.4.6)

Clearly, the 0-fractional laplacian is the first variation of the functional FO , as shown in the
following result.

Proposition 3.4.3. For every u € HY(Q) and for every ¢ € CZ(Q) we have

iy GG _ ([ 20 Pt o)y ()

-0 t | 2|4
I JP (u + tsz;) — ) <u 9 s W d2>’ (3.4.8)
so that . .
lim © (“”i) i O TN R (3.4.9)

Proof. Fix u € H3(Q) and ¢ € CX(Q). Then, using the change of variable z = y — x, we have

tim GO (u+ tcp //B . )—(il(d z) — p(y)) dy dz
_ — Pz +2) G(y) — oy — 2)
_/Qu(x) ‘Z’d dz dx—l—/ . 2/ dzdy

o [, Bl mde ) oy

B

i.e., (3.4.7). Moreover, using again the change of variable z = y — , we obtain

lim JP(u+ tp) — // )d da
t—0 t R2d\ 3y ‘x_y’d
G(y)
= — dy) d
‘/Qu(x)< /]Rd\Bl 2) |$—y|d y) Z,
(w2 [ so(wifl@@’
R\B, 2]

namely, (3.4.8). Finally, (3.4.9) follows from (3.4.7) and (3.4.8]), using (3.4.6)). O
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3.4.2 The main results

Here we state and prove the convergence of the parabolic flows corresponding to the rescaling of
the s-Gagliardo seminorms. These follow by collecting the preparatory results of the previous
sections, and Lemma for the first order convergence as s — 0.

We start with the convergences as s — 0.

Theorem 3.4.4. Let {8, neny C (0,1) be such that s, — 07 asn — +oo. Let u) € L2(Q2) and
let {ul}nen C L2(Q2) be such that uly € Hy"(Q), S := sup,ey sn 5" (ul) < +00 and up} — u)
in L2(Q) . Then, for every n € N there exists a unique solution u™ € H* ([0, +00); L%(Q)) to

(3.4.10)

{ut(t) = —sp(—A)*"u(t) for a.e. t € [0, +00)
u(0) = ug ,

satisfying (—A)*ru™(t) € L2(Q) for every t > 0. Moreover, for every T > 0, u™ — u® in
HY([0,T];1L2(2)) as n — +oo, where u® € HY([0,T];L2(S2)) is the unique solution to

{ut(t) = —dwgu(t) for a.e. t € (0,T), (3.411)

u(0) = u.
Furthermore, if

lim s, F* (ufl) = FO(u]),

n—-+00
then, u™ — u® (strongly) in H([0,T); L2(Q)) for every T >0, and
lu"(t) — uo(t)HL2(Q) =0 and s, F(u"(t)) — F°(u°(t)) for everyt > 0.
Theorem 3.4.5. Let {5, nen C (0,1) be such that s, — 07 asn — +oo. Let ud € L2(Q) and

let {uf }nen C L2(Q) be such that uff € Him (), S = sup,ey F* (ul) < +0o and uff — ud in
L2(Q)) . Then, for every n € N there exists a unique solution u™ € H' ([0, +00); Hg" (2)) to

w(t) = = |[(=2)"u(t) - —tu@®)]  forae te(0,1),

U(O) = ugv

(3.4.12)

satisfying (—A)*ru(t) € L2(Q) for every t > 0. Moreover, u) € H3(2) and, for every T > 0,
u™ — u® in HY([0,T);L3(Q)) as n — +oo, where u® € HY([0,T]; HJ(Q)) is the unique
(distributional) solution to

— (=A% or a.e.
{ut(t)— (=A)u(t)  f te(0,7) (3.4.13)

u(0) = ug )
satisfying (—A)0u0(t) € L3(Q) for every t > 0. Furthermore, if

lim B () = FO(u)

n——+oo
then, u™ — u® (strongly) in H*([0,T); L2(Q)) for every T >0, and

[u™(t) — u’(t)|le) = 0 and F(u"(t)) — F(u’(t))  for everyt=>0.
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The result below shows the convergence toward the classical heat equation as s — 17 of
the rescaled in time s-fractional heat equations.

Theorem 3.4.6. Let {s,}nen C (0,1) be such that s, — 17 asn — +oo. Let u$® € L2(Q)
and let {ul}nen C L3(Q) be such that ul} € Hi* (), S := sup,en(1l — sp) F*" (uf) < +o0o and
ul — ul® in L2(Q). Then, for every n € N there exists a unique solution

u™ € H([0,+00); L2(2)) to

{ut(t) = —(1=sn)(=A)™u(t)  fora.e tel0,400) (3.4.14)

U(O) = u87
satisfying (—A)*ru™(t) € L2(Q) for every t > 0. Moreover, u$® € H} (), and, for every
T >0, u® — u™® in H([0,T);L*(Q)) as n — +oo, where u™ € HY([0,T); HY(Q)) is the

unique (distributional) solution to

u(t) = wgAu(t) for a.e. t € [0,+00) (3.4.15)
u(0) = ug° . o
Furthermore, if
lim (1 — s,)F5 (ud) = F(ud), (3.4.16)

n—-+o0o

then, u™ — u® (strongly) in H'([0,T);L2(2)) for every T >0, and
[u™(t) = u® ()2 = 0 and (1 —sp)F*" (u"(t)) — FY(u™(t)) for every t > 0.
We first prove Theorem [3.4.4]

Proof of Theorem [3.].4] By the very definition of F** in (3.1.1]), we have that for every n € N
D(spF*n) = Hi" () # 0 and that the functionals s, F*" are strongly lower semicontinuous,
A-positive and A-convex for every A > 0. Moreover, by combining Proposition with
Proposition for F = s,F5» , # = L2(2), and # = C2(Q), we have that for every
u € Hi(Q), either d(s, F*)(u) = 0 of I(s, ") (u) = {(=A)*"u} with s,(—A)*u € L2(Q).
Therefore, by Theorem there exists a unique solution to the Cauchy problem ,
for every n € N. Furthermore, for every u € L?() we have that

0 _ 0
i ot tp) = F(u)
t—0 t

= dwq(u, )12(0) for every ¢ € L2(Q), (3.4.17)

whence we deduce that F%(u) = {dwqu}. As a consequence, there exists a unique solution
to the problem (3.4.11)). Finally, the stability claims follow by applying Theorem with
F" = s, F* and F>* = F° once noticed that, in view of Theorem assumption (a) is
satisfied. O]

In order to prove Theorem [3.4.5] we provide below a lemma showing uniform A-convexity
of the underlying functionals.

Lemma 3.4.7. For every A > 2|Q|, the functionals Fs are \-positive and \-convex for every
se0,1).
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Proof. As for the A\-positivity it is enough to notice that, by the very definition of F'* in

(3.1.10) and (3.1.11)) and by (3.1.9), recalling that G5 > 0 for every s € [0,1), we have that

. A . A
o) + Sl 2 Gt + (5 = 191) lulfa 2 0.

Now we show that the functionals F'* are A-convex for every s € [0,1). We preliminarily notice
that the functionals G are convex for every s € [0,1). Therefore, it is enough to show that
the functionals J§ are A-convex. To this end, for every u,v € HJ(£2) we define the function

A
f :R = R, f(t) = Jf(u+tv)+§\|u+thiz(Q)

and we claim that g—; f(t) > 0 for every t € R. Indeed, since

s __ 75 11(1.)@(:1/) 2 7s
and
Jut b0y = gy + 2t [ u@v(a) do+ 2ol (3.4.19)

by (3.1.9) we have

d? s
a2/ =271 (0) + Aloltz ) 2 (=220 + VvllEe) = 0,

which implies the A-convexity of the functional J{ and then the A-convexity of Fs. O

Proof of Theorem[3.4.5. Let X > 2|Q| be fixed. Then, by the very definition of F** in (3.1.10)
for every n € N we have that D(F*") = H"(Q) # 0 and, by Remark and Lemma

that the functionals F*» are strongly lower semicontinuous, A-positive and A-convex. Moreover,

by (3.4.4) and by (3.4.17)), for every u € Hj"(2) and for every ¢ € C°(€2) we have

Fe(utg) — For(u anyy - 2
lim ( ?) (@) = ((=A)*"u — Tdu’ PIL2(Q)

t—0 t

which, by applying Proposition with F = Fsn | o = L2(Q) and H = C°(Q2), implies
that for every u € H»(Q) either dF* (u) = ) or OF*" (u) = {(—A)*u— %u} with (—=A)%ru—
%u € L2(Q) . Analogously, by Lemma and by Proposition we have that for every
u € HY(Q) either DFO(u) = 0 or DFO(u) = {(—A)u} with (—A)0u € L2(Q).

Therefore, by Theorem the solutions to the problems (3.4.12)) (n € N) and
are uniquely determined. Finally, the stability claim follows by applying Theorem with
Fn = Fsnoand F®© = [ 0 once noticed that, in view of Theorem assumption (b) is
satisfied. ]

It lasts to prove Theorem [3.4.6] Also in this case, this follows from the general results
already discussed.



3. The variational approach to s-fractional heat flows and the limit cases s — 0™ and
102 s— 1"

Proof of Theorem [3.7.6, By the very definition of F* in (3.1.1)), we have that for all n € N
the set D((1 — s,)F*") = Hi*(©2) # 0 and that the functional (1 — s,)F*" is strongly lower
semicontinuous, A-positive and A-convex for every A > 0. Now, by combining Proposition [3.4.1
with Proposition for F = (1 — s,)F, o = L2(Q) and # = C°(2), we have that
for every u € H"(Q), either (1 — s,)0F* (u) = 0 or (1 — s,)0F*"(u) = {(1 — sp,)(—A)*"u}
with (1 — s,)(=A)*mu € L2(Q). Therefore, by Theorem for every n € N, there exists a
unique solution to the Cauchy problem ([3.4.14). Furthermore, for every u € Hg () and for
all p € C°(Q2) we have that

1 _pl
lim F'(u+ hp) — F(u)
h—0 h

= wi(Vu, Vo)r2q) = wa{(—A)u, ©)12(0) ;

therefore, by applying Proposition with F = F1, # = L2(Q) and 2 = C(Q2) we have
that either OF'(u) = ) or OF(u) = {(—Au)} with (—=Au) € L2(2). Finally, the stability
claim follows by applying Theorem with F" = (1 — s,)F*» and F> = F!  once noticed
that, in view of Theorem assumption (b) is satisfied. O
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