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Abstract
Word Sense Disambiguation (WSD), i.e., the task
of assigning senses to words in context, has seen
a surge of interest with the advent of neural mod-
els and a considerable increase in performance up
to 80% F1 in English. However, when consider-
ing other languages, the availability of training data
is limited, which hampers scaling WSD to many
languages. To address this issue, we put forward
MULTIMIRROR, a sense projection approach for
multilingual WSD based on a novel neural discrim-
inative model for word alignment: given as input a
pair of parallel sentences, our model – trained with
a low number of instances – is capable of jointly
aligning, at the same time, all source and target
tokens with each other, surpassing its competitors
across several language combinations. We demon-
strate that projecting senses from English by lever-
aging the alignments produced by our model leads
a simple mBERT-powered classifier to achieve a
new state of the art on established WSD datasets
in French, German, Italian, Spanish and Japanese.
We release our software and all our datasets at
https://github.com/SapienzaNLP/multimirror.

1 Introduction
In the last few years, Word Sense Disambiguation (WSD),
i.e., the task of determining the meaning of a word in a
given context, has witnessed a remarkable improvement in
performance due to increasingly refined neural approaches
[Bevilacqua et al., 2021]. However, the potential of these
approaches is severely limited by the paucity of high-quality
training corpora and by the demanding process, both in terms
of expertise and amount of work, required to expand them.
This problem, generally referred to as the knowledge acqui-
sition bottleneck [Gale et al., 1992], has long affected several
word- and sentence-level semantic fields of NLP, and is par-
ticularly relevant to WSD [Pasini, 2020], owing to the fine
granularity of senses, which are often difficult to distinguish
from one another, and their Zipfian distribution in a corpus.

Although several attempts have been made to address the
issue, this limitation is still far from being overcome, and,
particularly in languages other than English, different lines

of research have been explored that drop the requirement for
vast amounts of labeled data. Among these, knowledge-based
approaches cope with this limitation by utilizing the linguistic
information contained in largely-interconnected knowledge
bases such as WordNet [Miller, 1998] and BabelNet [Nav-
igli and Ponzetto, 2012], typically by means of graph-based
strategies such as the Personalized PageRank [Agirre et al.,
2014], or densest-subgraph algorithms [Moro et al., 2014].
More recently, a valid alternative to these approaches has
been identified in the so-called zero-shot paradigm. Thanks
to the cross-lingual representational power of recent unsuper-
vised embeddings such as mBERT [Devlin et al., 2019], this
paradigm proposes training supervised models on existing
manually-annotated resources, which are typically in English,
and applying them directly to other languages. Finally, a dif-
ferent research direction that has shown promising potential is
annotation projection [Yarowsky et al., 2001]. This technique
consists in propagating manually-curated labels to unlabeled
data and has not only been successfully used in WSD [Scar-
lini et al., 2019; Barba et al., 2020], but also in several other
NLP tasks, such as Semantic Role Labeling [Aminian et al.,
2019] and Semantic Parsing [Blloshmi et al., 2020].

However, despite significant steps forward, current ap-
proaches still suffer from two main shortcomings: i) they
often depend heavily on the availability of high-quality and
wide-coverage external resources in order to validate candi-
date projections, thus posing a serious limitation, particularly
when dealing with low-resource languages; ii) they strive to
transfer annotations onto untagged text, either from a dataset
of a different nature (e.g., from news to Wikipedia), or by as-
signing sense tags automatically with clustering or induction
techniques. In contrast, we transfer sense tags across paral-
lel sentences, arguing that this is the most natural setting for
label propagation, and an affordable one for several language
pairs, thanks to the recent advances in multilingual generative
approaches [Tang et al., 2020].

To address the aforementioned issues, we introduce
MULTIMIRROR, a novel approach for cross-lingual label pro-
jection based on an innovative neural architecture for word
alignment. Our contribution is threefold:

1. We propose a cross-lingual sense projection approach
based on word alignment, which enables a simple
mBERT-powered classifier to achieve a new state of the
art on established WSD datasets and proves to be effec-
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tive also when projecting labels onto a distant language,
i.e., Japanese.

2. We put forward a novel neural architecture for word
alignment which is capable of aligning all source and
target tokens at the same time with just a few hundred
training sentences, achieving a new state of the art and
considerably reducing the processing speed.

3. Additionally, as a by-product of our experiments, we
also release four new manually-annotated datasets for
word alignment in the following language combinations:
English-French, English-German, English-Italian, and
English-Spanish.

2 Related Work
Several efforts have been made to cope with the scarcity
of sense-tagged data via annotation projection. The earli-
est works focused on harvesting training instances by ex-
ploiting WordNet’s lexical relations and particularly monose-
mous relatives of polysemous words [Leacock et al., 1998;
Agirre and Martinez, 2004]. Although these approaches
proved their ability to produce new training instances, they
failed however in scaling across languages and domains.

Subsequent research addressed these drawbacks by lever-
aging parallel corpora [Delli Bovi et al., 2017], or multi-
lingual knowledge bases such as BabelNet. For instance,
Pasini and Navigli [2017] proposed a language-independent
approach, which, given as input a multilingual knowledge
base and an unlabeled corpus, is capable of generating sense-
annotated data in a fully-automatic fashion. Following this
line of research, Scarlini et al. [2019] automatically assigned
senses to words in Wikipedia sentences building upon the
One Sense per Wikipedia Category assumption, that is, all oc-
currences of a given word in Wikipedia pages associated with
the same Wikipedia category share the same meaning. Re-
cently, Barba et al. [2020] proposed MuLaN, a label projec-
tion approach using unsupervised multilingual embeddings to
automatically generate sense-annotated data. Taking as input
a labeled dataset and an unlabeled corpus, MuLaN projects
all labeled and unlabeled instances into a shared vector space
and propagates labels by adopting the k-nearest neighbors al-
gorithm with an additional candidate validation step.

In other areas of NLP, cross-lingual label propagation has
often been implemented via word alignment, i.e., the task
of identifying translation correspondences between words in
parallel sentences. For instance, Xi and Hwa [2005] auto-
matically generated data for Chinese POS Tagging, Padó and
Lapata [2009] exploited word alignment to project semantic
roles and, more recently, Stengel-Eskin et al. [2019] pro-
posed a neural discriminative architecture for word alignment
and applied it to label propagation for Chinese NER. How-
ever, despite its success in a wide range of NLP tasks, to
the best of our knowledge, no attempt has been made pre-
viously to leverage neural word alignment to project word
senses across languages.

3 MultiMirror
In this Section, we describe MULTIMIRROR, our approach
for cross-lingual sense projection. We first explain the novel

word alignment model we put forward and compare it to the
currently best-performing system (Section 3.1). Then, we de-
tail how, using this model, we automatically generate sense-
tagged corpora (Section 3.2).

3.1 Cross-lingual Word Alignment Model

We now introduce our discriminative word alignment model,
whose structure is reported in Figure 1. It takes as input
two parallel sentences U = u1, . . . , ui, . . . , ul and V =
v1, . . . , vj , . . . , vk, where ui is the i-th token of U and vj
is the j-th token of V . In order to obtain continuous repre-
sentations of each token, we employ a pretrained contextu-
alized embedding, namely multilingual BERT [Devlin et al.,
2019, mBERT]. Following the reference paper, we concate-
nate the two sentences, separating them with a special token,
i.e. [SEP], and surround the whole sequence with two ad-
ditional tokens, namely [CLS] and [SEP]. In order to match
mBERT input format, we further split the input tokens into
subwords.

Once fed to mBERT, we take the output of its final layer
and use it to compute a representation for each token by av-
eraging the vectors associated with the subwords that token
was split into. Thanks to this procedure, subwords can at-
tend to each other and generate a representation that is not
only contextualized on the sentence in which they appear,
but also on its translation. Finally, we leverage an addi-
tional 6-layer Transformer Encoder, fully resembling the ar-
chitecture of mBERT,1 so as to enable a token-level contex-
tualization; formally, it takes as input the current representa-
tions of each token and outputs a sequence of l + k vectors
token level out = hu1

, . . . , hul
, hv1

, . . . , hvk
of dimension

768 each.2

As we now have a fully contextualized representation for
each token, we classify each possible alignment separately.
To this end, we first compute the tensor H ∈ Rl×k×768,
where Hij is the vector resulting from the element-wise
product of hui

and hvj
. Then, the word alignment matrix

A ∈ Rl×k, with Aij containing the probability of aligning ui
to vj , is obtained as follows:

A = Sigmoid(R2W3)

R2 = Relu(R1W2)

R1 = Relu(HW1)

where W1 and W2 are both matrices ∈ R768×768 and W3 ∈
R768×1.

We train our model by minimizing the Binary Cross En-
tropy loss betweenA and Â, i.e., the alignment reference ma-
trix containing the gold standard annotations, and such that
Âij = 1 if the tokens ui and vj are aligned and 0 otherwise.
The final loss for each sentence is thus computed as:

1With the exception of the embedding layer, which we omit as
we already have continuous representations for each token.

2The hidden size of the final layer of multilingual BERT.
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Figure 1: Depiction of our proposed word alignment model. The model takes as input the concatenation of two sentences and computes the
alignment matrix. Best seen in color.

L(A, Â) = −1

l

1

k

l∑
i=1

k∑
j=1

(
Âij · log(Aij)

+ (1− Âij) · (1− log(Aij))
)

Finally, as the datasets we employ were annotated by dif-
ferent annotators and, more in general, the consistency of the
annotations is hampered by human factors, we apply a spe-
cial masking over the loss function. Indeed, if two tokens
ui and vj in two parallel sentences are not aligned to any
other token, i.e., @ m ∈ {1, . . . , l} | Âmj = 1 and @ r ∈
{1, . . . , k} | Âir = 1, the prediction of the model is not con-
sidered when computing the loss function; thus, the model is
only updated when the predictions consider at least one token
that has been manually aligned between the two parallel sen-
tences. We train our model with a learning rate of 2 × 10−5,
Adam [Kingma and Ba, 2015] as the optimizer and a token
batch size of 512.
Datasets The datasets we select for our experiments are
those described by Nagata et al. [2020]. We use 4 manually-
annotated datasets for word alignment in the following
language combinations: English-French (En-Fr), German-
English (De-En), Japanese-English (Ja-En) and Romanian-
English (Ro-En). The En-Fr dataset and the Ro-En dataset
were proposed during the the HLT-NAACL-2003 workshop
on Building and Using Parallel Texts [Mihalcea and Peder-
sen, 2003]. The De-En dataset is derived from [Vilar et al.,
2006] and, finally, the Ja-En dataset was provided by Neu-
big [2011] and obtained by manually translating Wikipedia

pages regarding Kyoto from Japanese into English. We split
the sentences into training and test data as detailed in Nagata
et al. [2020].

Comparison System We compare against the system with
the best reported performances on these datasets, that is, the
architecture proposed by Nagata et al. [2020]. The authors
present a novel SQuAD-style approach in which every align-
ment is formulated as a query with respect to a context: the
query represents a word in a sentence, the context is the trans-
lation of that sentence and the answer is the query word’s cor-
responding translation. As in the authors’ experimental setup,
we consider here their bidi-average symmetrization strategy.

Results We show in Table 1 how our model fares when
compared to our competitor in terms of F1 score over the
alignments. Following previous works, we do not report the
AER measure since it has been debated to be skewed towards
precision [Fraser and Marcu, 2007].

As a first result, we note how our model performs consid-
erably better in all settings and, interestingly, that the differ-
ence is most marked on a distant language, namely Japanese,
where MULTIMIRROR surpasses Nagata et al. [2020] by
almost 2 F1 points. Second, with the sole exception of
En-Fr, our approach features a recall that is always consis-
tently higher, with the closest gap on De-En amounting to 1.9
points. This finding is particularly relevant to our setting as
MULTIMIRROR features filtering heuristics that validate the
proposed alignments, thus discarding any spurious ones that
might occur.

However, these results do not fully convey the benefits of
our formulation. Indeed, thanks to it: i) we do not require

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3917



Languages Method P R F1

Ja-En Nagata et al. [2020] 77.3 78.0 77.6
MultiMirror Word Aligner 78.3 80.5 79.4

De-En Nagata et al. [2020] 89.9 81.7 85.6
MultiMirror Word Aligner 90.1 83.6 86.7

En-Fr Nagata et al. [2020] 79.6 93.9 86.2
MultiMirror Word Aligner 81.5 92.7 86.8

Ro-En Nagata et al. [2020] 90.4 85.3 87.8
MultiMirror Word Aligner 90.6 88.5 89.1

Table 1: Comparison between our architecture for word alignment
and the SQuAD-style formulation of Nagata et al. [2020].

any symmetrization strategy as our predictions are symmetri-
cal by design; ii) we enable the alignment of non-contiguous
spans, which is not straightforward in SQuAD-style formula-
tions; iii) our architecture is significantly faster since tokens
are aligned jointly and in a single pass, in contrast to Nagata
et al. [2020] where, instead, a different query for each source
token has to be performed.

3.2 Sense Projection
Based on the output of our word alignment model, we now
show how MULTIMIRROR projects senses across languages.
Taking as input a source corpus, i.e., a list of sense-tagged
sentences s1, . . . , sn in language L1 and their respective
translations t1, . . . , tn in language L2, MULTIMIRROR auto-
matically projects sense annotations from each si to the corre-
sponding ti, thus producing an automatically-tagged dataset
as output.

Let si = si1 . . . s
i
|si| be the i-th source sentence and ti the

corresponding target sentence defined analogously. Given a
sense tag la,b for a contiguous span sia . . . s

i
b in si,3 our aim is

to identify the target span tia′ . . . tib′ onto which sense tag la,b
should be projected. To this end, we utilize the alignment ma-
trix A obtained from our cross-lingual word alignment model
(Section 3.1) for the pair (si, ti). However, the alignments in
A are token-level and potentially non-contiguous. We there-
fore bring together such alignments to produce a list of non-
overlapping continuous target spans:

T (a, b) = {tia′ . . . tib′ |∀j ∈ [a′, b′]∃k ∈ [a, b] s.t. Ak,j > 0.5}

whose elements are sorted by their start index a′. For each
label la,b in the set of sense annotations for si, we select the
first target span τ ∈ T (a, b) which does not overlap with any
of the previously-chosen target spans for any of the preceding
labels and such that the part of speech of any of the tokens in
τ matches with the one of the sense la,b we are projecting.

4 Experimental Setup
In this Section, we present the experimental setting we adopt
to evaluate MULTIMIRROR in the Word Sense Disambigua-
tion task. First, we detail the corpora we use in our sense

3sia . . . s
i
b corresponds to a word if a = b and a multiword ex-

pression otherwise.

projection process to automatically create training data (Sec-
tion 4.1). Second, we illustrate the test bed (Section 4.2) and
the WSD reference model employed (Section 4.3). Finally,
we describe the comparison systems in Section 4.4.

4.1 Datasets
Alignment Datasets In order to perform sense projection,
we need data on which to train our alignment model. To this
end, we use the same reference alignment data described in
Section 3.1. As those datasets cover only alignments between
English and three other languages, i.e., French, German and
Japanese, we produce datasets of comparable size for Ital-
ian and Spanish by manually aligning for each of them 300
sentence pairs (with around 4,000 aligned tokens) from Wiki-
Matrix [Schwenk et al., 2021], of which 50 are reserved for
development.

However, our alignment data is based on Wikipedia text,
while the reference data from Section 3.1 comes from dif-
ferent genres, including constitution laws, news text, etc. To
determine whether different genres and domains might im-
pact on the performance of our word alignment model (and,
consequently, on WSD), we also create analogous alignment
datasets in two of the languages for which reference data was
already available (cf. Section 3.1), i.e., French and German.

Overall, we report slightly inferior word alignment per-
formances when training on our newly annotated datasets
and testing on the reference test sets, respectively 84.6 for
French (−2.2) and 83.2 for German (−3.5). This result is par-
tially motivated by the different source distribution of the two
datasets and the smaller number of training instances caused
by the fact that the sentences in WikiMatrix have a shorter
length on average. In Section 5, we further investigate this
difference and evaluate how both our training data and the
reference training data fare when used for sense projection.
Source and Target Corpora As source corpus, follow-
ing Barba et al. [2020], we use the concatenation of the
two largest English corpora tagged with WordNet senses,
i.e., SemCor [Miller et al., 1993] and the Princeton Word-
Net Gloss Corpus4 (WNG). This concatenation amounts to
roughly 720k sense annotations. As reference translations of
this data are not available, we generate the target corpus by
automatically translating the source corpus. To this end, we
employ the multilingual translation model released by Tang
et al. [2020] and use it to perform the translation towards
the languages included in our evaluation test bed, namely:
French, German, Italian, Japanese, and Spanish.
Sense Inventory Following Barba et al. [2020], we use
BabelNet [Navigli and Ponzetto, 2012] as our sense in-
ventory, whose multilingual synsets include WordNet ones.
This choice enables a seamless projection of senses from
WordNet-annotated corpora, like ours, to any other language,
since the projected synset remains the same. We note that,
in stark contrast to other dataset creation approaches, includ-
ing MuLaN, we propagate sense annotations based solely on
the resulting span alignment and independently of whether
BabelNet contains the target span as a lexicalization in the
synset at hand.

4https://wordnetcode.princeton.edu/glosstag.shtml
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Produced Datasets We report coverage statistics in Table
2 for the datasets generated by both MULTIMIRROR and our
strongest competitor, i.e., MuLaN [Barba et al., 2020], over
each of the 5 target languages we consider. As Japanese was
not among the languages originally included in Barba et al.
[2020], we execute their projection pipeline ourselves5, trans-
ferring annotations from the concatenations of SemCor and
WNG towards Japanese Wikipedia6. First of all, we note
how MULTIMIRROR steadily transfers a significantly larger
number of instances, the only exception being Japanese, high-
lighting the better coverage our system attains. However, ar-
guably more interesting is the difference in the number of
senses and synsets transferred; indeed, not only does our ap-
proach increase the number of projected synsets by as few
as 2k, but also pushes up the amount of projected senses by
an astounding margin, almost quadrupling them in Japanese.
This seems to suggest that, for a given synset, most transfers
MuLaN performs are skewed towards a specific sense.

4.2 Test Bed
We evaluate our automatically-generated sense-tagged cor-
pora against the well-established SemEval-13 [Navigli et al.,
2013] and SemEval-15 [Moro and Navigli, 2015] datasets7,
the former containing nominal instances in German, French,
Italian and Spanish, and the latter covering all open-class
parts of speech for Italian and Spanish.

Furthermore, so as to assess the extent to which our
approach and its alternatives scale to distant languages,
we include Japanese in our experiments and evaluate
MULTIMIRROR on the Japanese section of XL-WSD, a
cross-lingual Word Sense Disambiguation framework re-
cently proposed by Pasini et al. [2021];8 the resources the
authors released for this language include both a validation
set and a test set, featuring 1,901 and 7,602 instances, respec-
tively, and covering all parts of speech.

As in previous works, we report the F1 score between ref-
erence and predicted labels. We further show, in each setting,
whether the results we attain are statistically significant with
respect to the strongest competitor by performing McNemar’s
test [Dietterich, 1998].

4.3 Reference WSD Model
To carry out the evaluation, we employ a simple linear clas-
sifier on top of multilingual BERT (mBERT) [Devlin et al.,
2019] as our reference model. Specifically, given as input a
list of words, which we tokenize into word pieces as required
by mBERT, we first encode them, taking the concatenation of
the last 4 layers as the representation of each word piece, and
then feed the resulting vectors into a fully-connected layer
with a softmax activation function; should a text span be split

5We utilized the original code that the authors released at https:
//github.com/SapienzaNLP/mulan.

6The authors used Wikipedia as the target corpus in all their ex-
periments.

7We use the latest version of these datasets available at
https://github.com/SapienzaNLP/mwsd-datasets.

8The choice of Japanese is primarily motivated by the fact that it
was the only language not already included in the standard evalua-
tion suite for which we already had at disposal its alignment data.

IT ES FR DE JA

M
U

LT
IM

IR
R

O
R # instances 519k 552k 387k 318k 301k

# senses 77k 92k 62k 68k 98k
# synsets 37k 50k 29k 22k 25k
# multiwords 28k 38k 19k 19k 40k

M
uL

aN

# instances 415k 452k 310k 245k 310k
# senses 44k 57k 29k 22k 27k
# synsets 33k 43k 25k 19k 21k
# multiwords 18k 22k 20k 6k 552

Table 2: Statistics of training sets from MULTIMIRROR (top) and
MuLaN (bottom) in terms of number of sense-tagged instances,
unique senses, unique synsets and number of multiwords.

into multiple word pieces, we use the vector associated with
the first word piece as the representation of the whole span.
We explore the usage of 2 different strategies at training time:
i) fine-tuned (FT): where we fine-tune the whole model, with
mBERT being updated along with the linear classifier, and
ii) feature-based (FB): where, instead, we freeze weights and
update only the linear classifier.

In all our experiments, we train our models on a single
NVIDIA RTX 2080 Ti for 50 epochs, monitoring validation
accuracy for early stopping (patience p = 3) and using the
Adam optimizer with learning rate 2 × 10−5. As no official
validation sets exist for the 4 SemEval-13 and 2 SemEval-15
tasks, we reserve 1000 sentences from our training set and
use them for development only; conversely, we use the offi-
cial validation set when dealing with Japanese.

4.4 Comparison Systems
We consider as our baselines the Most Common Sense, com-
puted as described in Pasini et al. [2021] for Japanese and
Barba et al. [2020] for the other languages, and two neural
settings in which our model is trained on English datasets and
tasked to zero-shot over the test languages: i) ∅-shot-SemCor,
where the learning procedure is performed over SemCor, and
ii) ∅-shot-SemCor+WNG, where, instead, the concatenation
of SemCor and WNG is used. In both cases, we use the En-
glish SemEval-2007 dataset for validation.

As competitors, we consider the following systems:
UKB+SyntagNet [Maru et al., 2019], a knowledge-based ap-
proach which applies Personalized Page Rank over the Word-
Net graph further enriched with collocational edges, ARES
[Scarlini et al., 2020], a semi-supervised approach for pro-
ducing sense embeddings that lie in a space comparable to
that of multilingual contextualized embeddings, and MuLaN,
an annotation projection technique that currently holds the
state of the art in most tasks of our experimental setting.

5 Results
We now investigate how MULTIMIRROR fares when com-
pared with current state-of-the-art alternatives in multilingual
WSD. To this end, we train our reference model in all 5 lan-
guages, in both FB and FT configurations, which we denote
as MULTIMIRRORFB and MULTIMIRRORFT , respectively.
Furthermore, we also report the results on the 4L setting, the
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SemEval-13 SemEval-15 XL-WSD

Model Alignment Data IT ES FR DE IT ES JA

B
as

el
in

es MCS - 44.20 37.10 53.20 70.20 44.60 39.60 48.71
∅-shot-SemCor - 74.63 78.25 80.06 79.09 70.21 65.77 55.20
∅-shot-SemCor+WNG - 77.30 79.30 81.40 80.00 72.00 68.20 58.10

1L

UKB+SyntagNet - 72.14 74.12 70.32 76.39 68.95 63.37 -
ARES - 77.00 75.30 81.20 79.60 71.40 70.10 -

MuLaN - 77.45 77.70 80.12 82.09 70.31 68.73 57.59
MULTIMIRRORFB Nagata et al. [2020] - - 81.09 82.16 - - 58.34
MULTIMIRRORFT Nagata et al. [2020] - - 81.78 83.18 - - 62.60
MULTIMIRRORFB Ours 78.59 79.68 80.81 81.13 73.49 69.03 -
MULTIMIRRORFT Ours 79.53 81.83 83.44 82.81 72.89 69.42 -

4L

MuLaN4L - 77.85 81.11 81.64 82.34 71.80 69.42 -
MULTIMIRRORFB

4L Best 78.59 81.67 81.64 82.43 73.39 69.42 -
MULTIMIRRORFT

4L Best 79.60 82.17 83.64 83.71 73.69 70.42 -

Table 3: Comparison of MULTIMIRROR against its competitors on SemEval-13, SemEval-15, and the Japanese test set released by Pasini
et al. [2021]. Underlined: the first statistically significant results against their best performing competitor according to McNemar’s test,
p < 0.01. Bold: best system in its category.

new configuration introduced by Barba et al. [2020] where
the concatenation of the datasets generated for the 4 Euro-
pean languages is used as the training set. We show the F1
scores that MULTIMIRROR attains in Table 3.

First of all, our results suggest that the word alignment data
we manually annotated is indeed compliant with their ref-
erence counterpart (Section 3.1), with performances almost
in the same ballpark on German and significantly better on
French, most likely thanks to the increased number of correct
alignments9; indeed, as pointed out by Nagata et al. [2020],
the reference French dataset contains a considerable number
of noisy possible alignments.

More interestingly, we point out that MULTIMIRROR
achieves state-of-the-art results, with MULTIMIRRORFB out-
performing its main competitor, namely MuLaN, in all set-
tings. In particular, since MULTIMIRRORFB features the
very same WSD model MuLaN employs, this result clearly
highlights the quality of our automatically-generated datasets.
Once we switch to MULTIMIRRORFT , this trend becomes
even more marked:10 MULTIMIRRORFT outperforms all pre-
vious monolingual11 systems in virtually all settings, with the
only exception of the Spanish SemEval-15 dataset.

However, we believe that the most interesting result con-
cerns Japanese, i.e., our distant language. This setting shows
the largest gap between our approach and MuLaN, which
actually performs worse than direct zero-shot itself, i.e., ∅-
shot-SemCor+WNG. This finding suggests that there might
be possible limitations in applying MuLaN on distant lan-
guages. Conversely, MULTIMIRRORFT scales remarkably
well and outperforms ∅-shot-SemCor+WNG by more than 4
F1 points.

9Here, we use correct alignment, as opposed to possible align-
ment.

10We also explored training MuLaN data on this architecture but
did not observe any significant gain.

11Here we use monolingual as opposed to 4L.

Finally, we consider the 4L setting. Similarly to Barba et
al. [2020], we report significant improvements over the other
systems across the board, including outperforming ARES on
the Spanish SemEval-15 dataset.

6 Conclusions
In this work, we presented MULTIMIRROR, a novel ap-
proach for cross-lingual sense projection based on word
alignment. Leveraging an innovative neural aligner that re-
quires just a few hundred sentences for its training, we tackle
the creation of sense-tagged datasets in multiple languages
by projecting sense annotations across the produced align-
ments. We find that MULTIMIRROR achieves high sense and
synset coverage in many languages and that its automatically-
generated datasets lead a simple transformer-based classifier
to reach state-of-the-art results in established WSD bench-
marks against both strong alternatives for silver data creation
and state-of-the-art multilingual systems. Most interestingly,
we report significantly better results when projecting onto a
distant language, namely Japanese.

As a by-product of our experiments, we release four novel
datasets for word alignment, each containing 300 sentences,
in English and one of the following languages: French, Ger-
man, Italian and Spanish. As future work, we plan to assess
the scalability of this framework when considering compara-
ble rather than parallel sentences.
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