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DERIVATION OF A LINE-TENSION MODEL FOR DISLOCATIONS
FROM A NONLINEAR THREE-DIMENSIONAL ENERGY: THE
CASE OF QUADRATIC GROWTH*
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Abstract. In this paper we derive a line tension model for dislocations in 3D starting from
a geometrically nonlinear elastic energy with quadratic growth. In the asymptotic analysis, as the
amplitude of the Burgers vectors (proportional to the lattice spacing) tends to zero, we show that
the elastic energy linearizes and the line tension energy density, up to an overall constant rotation, is
identified by the linearized cell problem formula given in [S. Conti, A. Garroni, and M. Ortiz, Arch.
Ration. Mech. Anal., 218 (2015), pp. 699-755].
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1. Introduction. Dislocations are line defects in crystals originated by plastic
slips. Their presence, motion, and interaction are considered the key ingredients in
understanding plastic behavior of metals, as well as other important effects (e.g., the
interface energy at grain boundaries). We refer the reader to [6, 26] for a general
introduction to the subject.

In the last decades the mathematical community has shown an increasing interest
in the analysis of models for dislocations involving several different approaches and
frameworks. Here we focus on a three-dimensional semidiscrete variational model
where dislocations can be seen as topological singularities of a continuum strain field.
More precisely, while a deformed elastic body can be described by a deformation whose
gradient represents locally the distortion of an undeformed reference configuration,
in the presence of defects the relevant continuum variable is a field 8 € L!(;R3*3)
(the strain field), which may be represented by a gradient only locally. Therefore the
defects may be identified with the set in which the curl 5 is concentrated. Precisely,
a distribution of dislocations in an elastic body Q C R? is represented by a matrix-
valued measure p of the form

(1.1) p=b@tH' Ly,

where b € B is the (normalized) Burgers vector (a vector-valued multiplicity which
describes the kinematics of the line defect), B C R? is a discrete lattice generated by
the set of admissible Burgers vectors (which depends on the underlying crystalline
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structure of the body), v is a closed curve in 2, and ¢ is its unit tangent vector.
Therefore, the strain in the presence of a distribution of dislocations u satisfies

(1.2) curl f =ep in Q,

in the sense of distributions. The small parameter € represents here a length scale
which is comparable with the lattice parameter and reveals the discrete nature of the
model. The discreteness is indeed highlighted by the presence of the line v around
which crystal defects occur at a microscopic scale, inside the so-called core of the dis-
location, while the continuum variable § is actually an approximation of the discrete
deformation far from the core. The coexistence of the continuum variable and the
discrete one, which makes this model, so to speak, semidiscrete, is a common feature
of models showing topological defects (this is also the case of Ginzburg-Landau mod-
els for superconductors or Landau-De Gennes models for liquid crystals; see, e.g.,
[2, 7, 8, 30, 42, 43]).

The validity of the continuum approximation, though, is limited to regimes in
which the density of dislocations is not too high and in a region sufficiently far from
the dislocations. It is known indeed that an incompatible strain § satisfying (1.2)
diverges close to the dislocation line as

1

|B8(z)] ~ m7

and in particular is not square integrable. In order to work with the continuum strain
field it is then common to perform a regularization of the elastic energy, either by
removing the core of the dislocation from the energy by considering

(1.3) W (B)de,
Qe (p)

with Q.(u) := {z € Q : dist(z,suppp) > €}, or by regularizing directly the strain
field enforcing the following alternative constraint:

(1.4) curl 8 = ep * e,

with ¢, a mollifier at scale e. We will use the latter, which we refer to as the regular-
ization by mollification, while the former is the so-called core cut-off regularization.

In the framework of linear elasticity it is well known that the energy stored by
a straight dislocation, with Burgers vector b and direction ¢ in a hollow cylinder T
with inner and outer radii, respectively, 0 < € < R, and height h, is given by

1
/ —Cn:ndx ~ Uy(b, t)hlogﬁ,
T. 2 g

where C denotes the elastic tensor and curln = b ® tH'L Rt in T.. In this linear
context the elastic strain and the corresponding dislocation density are normalized by
g, in view of the 2-homogeneity of the energy.

The function ¥y is the so-called self-energy per unit length of a straight infinity
dislocation, and, for any Burgers vector b € R? and any direction ¢ € S2, it is
obtained classically by solving the elasticity problem in the whole of R3 or it can be
characterized, as in (3.6), by a suitable variational formula (see [16, Lemma 5.1]).
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In [16] Conti, Garroni, and Ortiz have shown that for general dislocation distribu-
tions p satisfying an appropriate diluteness condition (see Definition 2.3) the rescaled
energy

1 1
fg(u):min{ —Cn:ndx for curly=pin Q}

|log e| Q. (p) 2
(where we recall Q. (u) := {x € Q : dist(z,supp p) > €}) I-converges with respect to
the weak™ convergence to the line-tension energy

(1.5) / Wo(b,t) dH?,

where Uy is the H! -elliptic envelope of ¥y and is obtained by a relaxation procedure
in [12]. In particular the relaxation process may produce microstructures at meso-
scopic scales. Precise definitions of Wo(b,t) and ¥y are recalled in (2.12) and (3.6),
respectively. The above-mentioned result is one of the first rigorous asymptotic analy-
ses of the elastic energy induced by dislocations in a quite general three-dimensional
framework (see also [27]). Previous results were indeed confined to special geometries
where the models could be treated in a two-dimensional framework and studied by
means of I'-convergence in different relevant energetic regimes. In these reduced mod-
els dislocations can be seen either as points in the cross section of a cylindrical domain
(see [11, 17, 19, 23, 35]) with a strong similarity to the case of filaments of currents
in superconductors [42, 43, 30] or as lines confined to a single slip plane and their
energy described by nonlocal phase field models (generalizing the Peierls—Nabarro
model [31, 32, 24, 10, 12, 13, 14, 20, 15]).

In the context of two-dimensional models with point singularities, several authors
have also studied fully discrete models for screw dislocations [41, 3|, deriving the
same asymptotics obtained by means of the semidiscrete models (which then turns
out to be a robust approximation of the discrete framework) and considering further
asymptotic expansions able to capture the interaction and to drive the evolution of
systems of dislocations [4, 28, 29]; see also [36] and [37].

The classical semidiscrete models of dislocations, including the ones mentioned
above, are based on the assumption of the elastic far field being small and therefore
of the corresponding elastic energy being linear, which then confines the analysis of
systems with dilute dislocations in single grain bodies. A step forward in the direction
of having more flexible models that in principle may be suitable for the description
of grain boundaries effects or of large deformations in thin materials is to consider
nonlinear energies which may incorporate invariance under rigid rotations. This was
first done for noncoherent interfaces in rods by [38, 39, 18], where the nonlinearity of
the energy, with p growth and p < 2, is also used as an alternative regularization of
the core region (see also [45, 44]).

In a two-dimensional setting the use of a geometric nonlinear energy has shown
already quite interesting features (see [46, 40]). The prototype energy is the following:

/ dist?(3, SO(2))dz,

with w representing the two-dimensional cross section of the cylindrical body and the
field 8 € L'(w;R?*?) an incompatible field, describing the local distortion of the body
in the context of plane elasticity, with curl concentrated on a sum of Dirac masses
representing the distribution of dislocations (curl 8 = 52?21 bidz;). The analysis
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performed in [46, 40] required an assumption of separation of scales (then removed
in [25]) that prevents dislocations from being too close in the scale of . A crucial
ingredient is a rigidity estimate for incompatible fields proved in [40] which is the
nonlinear counterpart of Korn’s inequality for incompatible fields proved in [23]. In
dilute regimes (in particular in the logarithmic scale) the rigidity estimate shows
that the strain is close to a given rotation, and therefore in the asymptotics as the
lattice spacing tends to zero the rescaled energy linearizes around such a rotation
T'-converging, as € goes to zero, to

(1.6) / %(Cf s &dx + Zw(QTbi) for curlé =0, Q € SO(2),

where C = %Z‘TVQV(I ) and ¢ is the same self-energy which is found in the asymptotics
of the linear, above-mentioned, semidiscrete two-dimensional models. We stress here
that the result in the limit is still single grain and, up to a rigid motion, coincides
with the one obtained in the linear case. Nevertheless the analysis can be pushed to
different regimes, and in principle these models can allow for multigrain structures
(see [33, 34] for the derivation of the Shockley—Read formula for small-angle grain
boundaries).

In the present paper we will combine two important features: the geometric
nonlinearity and a full three-dimensional geometry. We will assume, as in [16], that
dislocations are separated in the sense of Definition 2.3 and derive via I'-convergence
the line-tension energy for a general three-dimensional distribution of dislocations. We
consider an energy density W with quadratic growth and invariant by rigid rotations,
then behaving as the dist?(-, SO(3)), and to any distribution of dislocations x of the
form (1.1) in Q we associate the rescaled energy

(1.7) &.9) = ey [ WP

where the incompatible deformation field B: Q — R3*3 satisfies curl 8 = ey * .. The
I’-convergence analysis shows that the limit functional takes the form

1 . T T 1
(1.8) /Qicg.g dx+L@o(Q b,t)dH,

where (£,Q) € L2(Q;R3*3) x SO(3), curlé = 0 in Q, Uy is the self-energy density
of the linear case (see (1.5)), and ~ is the support of the limit dislocation density
i =b®tH'L~. The precise statements of the results are given in section 2.

We stress that in the general three-dimensional model the geometry of line dis-
locations makes the problem of removing the separation scales from the definition of
admissible configuration, as it was done in the two-dimensional case [25], substantially
more complex (as well as for the linear case in [16]). In particular the crucial use of
the rigidity estimate here (and of Korn’s inequality in the linear context) does not
permit us to adopt directly the strategy used in the context of Ginzburg-Landau [2].
Therefore, how to obtain a general compactness result and a sharp lower bound for
the energy in (1.7) is still an open problem.

Finally, we also point out that the combination of the three-dimensional frame-
work with the geometric nonlinearity is far from being a straightforward adaptation of
the techniques used in [16] and [46]. In particular, the proof of the lower bound where
linearization, concentration, and relaxation must be dealt with all at once requires us
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to show precise quantitative estimates for the optimal energy of straight dislocations.
A key step is then the use, in section 3, of an auxiliary cell problem formula which
introduces an extra parameter and allows us to separate the linearization (guaranteed
by the rigidity estimate and the subsequent compactness) from the relaxation process
(see subsection 3.3).

The paper is organized as follows. In section 2 we formulate the model and state
the main result. Section 3 is devoted to the study of the cell problem formula in
the comparison with the linear cell problem formula. Section 4 is devoted to the L2
estimate of admissible strain fields which are used to show the compactness in section
5 (where the T'-limit result is also proved). For the convenience of the reader we collect
in Appendix A all the notation we used throughout the paper.

2. The model and the results. In what follows we denote by €2 the material
reference configuration, which is a simply connected, bounded domain in R3 with
boundary of class C?.

We identify a distribution of dislocations as a matrix-valued measure supported
on a one-dimensional subset of 2. In this framework the topological nature of these
defects can be easily translated in the property for these measures to be divergence-
free in the sense of distributions. Precisely, the set of admissible dislocation densities
is the set of all divergence-free bounded measures p € M(£2;R3*3) of the form

p=>b@tH L~

with v a 1-rectifiable subset of Q, t: v — S? its tangent vector, and b € L (; B; H' L)
the Burgers vector field. Here B C R? is a discrete lattice and represents the space of
admissible renormalized Burgers vectors (e.g., in the case of the cubic crystal B = Z3).
In particular, without loss of generality we will assume that

(2.1) min{|b|: be B} =1.

The divergence-free condition reads as
/b(D@Mleo
~

for all ¢ € C§°(2;R?). We will denote this set of admissible dislocation densities as
Mp(Q), ie.,

Ma(Q) = {p € MOR) : p= b tH' Ly,

(2.2) divu=0,be B, v 1rectiﬁab1e}.

REMARK 2.1. It can be seen (see, for instance, [12, Theorem 2.5]) that for each
uw € Mp(Q) v must be the union of a countable number of Lipschitz curves with
no endpoints in ), b must be constant on each connected component of v away from
branching points, and in each branching point the oriented sum of Burgers vector must
be zero.

In order to associate a semidiscrete elastic energy to a given distribution of dis-
locations, as already mentioned, we need to regularize the problem inside the core,
i.e., at scale € proportional to the lattice spacing. Among different types of regular-
izations (that in our analysis give rise to the same asymptotics; see [16]) we decide
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to introduce a mollification kernel which has the effect of spreading the mass of y in
a neighborhood of order ¢ of its support and therefore smearing out the singularity
of the corresponding strain. Then we define the class of admissible strains associated
with any p € Mg(Q2) as

(2.3) AS () == {B € LX(GR>®) s cwrlB=cfixp. in Q},

where i € Mpg(R?) is an extension of p, that is, il Q = p, p.(z) == e 3p(z/e) is a
mollifier, and curl 8 is intended in a distributional sense. To simplify the arguments
we will assume that ¢ < C'xp, (o), 0 that ¢ (z) < C\)?E((oo))|

Note that the scaling € of the dislocation density fi * . reflects the fact that
dislocations are defects at the atomic scale, and the support of fi * . represents the
dislocation core.

To any admissible pair (u, 8) € Mpg(Q) x AS: (1), we associate an energy of the
form

(2.4) &nf) = [ W(oa

where W: R3*3 — [0, +-00| satisfies the classical assumptions for the geometrically
nonlinear elastic setting, that is,
() W is CY and C? in a neighborhood of SO(3);

ii) W(I) =0 (stress-free reference configuration);
(iii) W(RF) = W(F) for every R € SO(3) and F € R3*3 (frame indifference);
(iv) there exist constants Cy, Co > 0 such that for every F € R3*3

(2.5) C1 dist?(F, SO(3)) < W(F) < Cy dist?(F,SO(3));

(v) there exists a constant C3 > 0 such that for every o > 0 and F, F’ € R3*3
there holds

(26) W(F’)S(1+030)W(F)+Cg <1+i) |F/7F|2.

The latter condition is fulfilled by the prototypical energy W (F) = dist*(F, SO(3)),
and it is for instance guaranteed by
(v') there exists a constant Cy > 0 such that for every F € R3*3

ow

(2.7) s

(F)‘ < Oy dist(F, SO(3)),

where 2% (F) € R®*3 is the Jacobian matrix of W in F.

REMARK 2.2. Note that assumption (v) (or (v’)) is used only for the lower bound
and that the asymptotics of the energy in this regime depends only on its linearization
near the identity. Our result holds true for all energies satisfying (1)—(iv) and

W(F)>W(F) VFeR>3

with %;2 (I) = %QFW; (I) and W satisfying (i)—(v).

The main goal of this paper is to study the asymptotic behavior of the energy in
a mesoscopic scale, i.e., a scale at which lines are still visible and in the asymptotics
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we recover a line tension. Under our assumption for the energy the natural rescaled

functional is given by
1

e2|loge|

Ee (s B)

(see also [46]). As in [16], in order to perform the analysis, we need to assume a
diluteness condition for the admissible dislocation densities.

DEFINITION 2.3. Given two positive parameters a, h > 0, a dislocation measure
w € Mp(Q), with Q C R® open, is said to be (h,a)-dilute if there are finitely many
closed segments v; C Q and vectors b; € B, t; € S? (with t; tangent to ;) such that

p=> bj@t;H L,
J

where the closed segments vy; satisfy the following properties:

(a) Fach v; has length at least h;

(b) if v; and v are disjoint, then their distance is at least ah;

(c) if the segments v; and -y, are not disjoint, then they share an endpoint, and
the angle between them is at least «.

The set of (h, a)-dilute measures is denoted by M%’Q(Q).

Moreover, we say that a measure p € ./\/lg“(Q) is an (h, o)-dilute meaure in Q if

also the following condition holds:

(d) If v; N OSY # O, then this intersection consists of a single point x; and the
angle between «y; and the tangent plane to 02 at x; is at least o. Moreover,
if v; N0 =0, the distance between ~; and 0 is at least ha.

We will denote this space by Mly*(Q).

Condition (d) in Definition 2.3 essentially guarantees that any p € MZ’“ (Q) can
be extended to fi € MZ’Q(R?’) still dilute. This is clearly the case when Q is a half-
space and the extension is obtained by reflection (the general case is more delicate but
can be obtained with some suitable generalization stated in Lemma 4.2). Nevertheless,
we point out that this assumption is not restrictive. A dilute extension if € is of class
C' can be always obtained with an ad hoc construction that we do not give here.

In addition we choose the diluteness parameters h and o much larger than the
core radius €, namely

log(1/(cche . .
(2.8) lim log(1/(ach:)) = lim a, = lim h. = 0.
e—0 | log E| e—0 e—0

For technical reasons (see Proposition 4.4) we also require the following stronger
diluteness condition:

(2.9) a2hl|loge| > 1.

This ensures that a., he go to zero very slowly; e.g., a. = |loge|™®, h. = |loge|™"
With0<a<%and0<h< %Willwork.

With this choice of the diluteness parameters we will show that the rescaled
functional

1 . h€7a5 —
(2.10) Folp, B) = g@gﬁMﬁ)ﬂWMGMB (Q) x AS. (1),

+00 otherwise
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I'-converges to the following functional:

1 -
—C¢:€d Ty dHL if S
(211) fo(u7§’ Q) = /;2 2 5 é x + /Y \IIO(Q 7t) H (:u7£a Q) S .A s

400 otherwise,

where
AS = {(11,€,Q) € Mp(Q) x L*(4R¥>*3) x SO3) : u=b@tH 'L, curl € = 0in Q}.
Here C := 8%’;’(1) is the Hessian of W at the identity, and A : B = 7, ; A;;B;;

denotes the Euclidean scalar product of matrices, while Uy is the H!-elliptic envelope
of ¥, defined as

(2.12) Wo(',t) = inf{/ Uo(0(z), 7(2)dH (z) : v =0 @ TH' Ly € Mgp(By2(0)),
supp(v — b’ @ tH' L(Rt N By /2(0))) CC Bl/g(())}.

The function ¥q is defined in (3.6) and (3.8) below and represents the self-energy
per unit length of a straight infinite dislocation. Therefore ¥y is the relaxed line-
tension energy density (see [12]); we remark that one can show examples where the
relaxation is actually needed in order to optimize the energy. Note that the depen-
dence of the limit functional on a rotation @ is due to the geometric nonlinear nature
of the energy, namely to its frame indifference, and comes out from a Taylor expansion
of the energy density W near a constant rotation Q.

The first important result concerns a compactness property for the dislocation

measures and associated fields with equibounded energies.
THEOREM 2.4 (compactness). Lete; — 0 and (he;, ;) be as in (2.8) and (2.9).

he o, = .
If (py, B5) € My’ 7 (Q) x ASc,(u5) is a sequence such that F. (u;,B;) < C, for
some C' > 0, then the following hold:
(i) There exists a measure i € Mg(Q) such that, up to a subsequence,

pi = pin Mp(S).

(ii) There exist a sequence {Q;} C SO(3) and & € L*(Q;R3*3) with curlé =0 in
Q such that, up to a subsequence,

QB —1I
gj+/|loge;]

where xq, denotes the characteristic function of Q0;: = {x € Q : dist(z, 0Q) >
Ej}.

Since in the definition of admissible strains we do not specify how we extend the
measure outside 2 in order to define the regularized dislocation density, we cannot ex-
pect a control on the total mass of fi;*p.,. This is the reason why in the compactness
of the strains (property (ii) of the above result) we need to remove a neighborhood
of the boundary. Whether the control on the energy of the £’s is enough to deduce
compactness without any further assumption on the extension is not clear to us.

xo, ~ & in L*R¥P) and Q; — Q € SO(3),
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In order to recover compactness in the whole of 2 we can fix a specific extension
operator T': Mp(Q2) — Mp(R?), and replace the class of admissible strains AS. (1)
defined in (2.3) with the class

(2.13) AS?(p) := {B € L*(Q;R3*3) . curl B = T * . in Q}.
There are many possible choices of the extension operator T; one that will work is

defined by Lemma 4.2.

REMARK 2.5. If in Theorem 2.4 we assume that 3; belongs to AS%(u;), property

(ii) in Theorem 2.4 can be replaced by the following:
(i) There exist a sequence {Q;} C SO(3) and & € L*(;R3*3) with curlé = 0
such that, up to a subsequence,

QjB;—1
gjy/|loge;l

DEFINITION 2.6. We say that (i, ;) € M};j’%j (Q) x AS_,(j) converges to
(1, &,Q) € Mgp(Q) x L2(;R3*3) x SO(3) if (i) and (ii) of Theorem 2.4 hold.

THEOREM 2.7 (T'-convergence). The energy functional F. T'-converges to Fo in
the following sense.

(2.14) — ¢ in X(Q;R*3) and Q; — Q € SO(3).

hejroe; o

(i) Lower bound: For any sequence €; — 0 and any (p;,5;) € Mg (Q) x
ASc, (pe,;) converging to (u1,&, Q) in the sense of Definition 2.6, one has

fo(u’é"Q) < h}gg.}ffsj (Mjaﬂj)'

(ii) Upper bound: For any (u,&, Q) € Mp(Q) x L?(Q; R**3) x SO(3) with curl ¢ =

hE 9 €4 P
0 and any sequence ¢; — 0 there exists a sequence (fj, ;) € My’ s () x
ASc, (pe,;) converging to (u,&, Q) in the sense of Definition 2.6 such that

lim sup F; (115, B5) < Fo(i, €, Q).

j—o0

3. Asymptotics for straight dislocations. The elastic energy F. of a given
polyhedral measure p € Mg’a(Q) is asymptotically equivalent to the sum of the
energy contributions of each segment. The latter is obtained by studying a cell prob-
lem, which provides the energy per unit length of a straight infinite dislocation. In
the following we analyze a three-dimensional cell problem in a nonlinear framework
combining and developing techniques used by [16] for the linear case and by [46] for

the two-dimensional nonlinear case.

3.1. Linear cell problem. In the three-dimensional linear framework, corre-
sponding to a given elasticity tensor C: R3*3 — R3*3 linear, symmetric, and positive
definite, the line-tension density was characterized in [16]. For completeness we give
here the main results.

For t € 5% we fix a matrix

(3.1) Q: € SO(3) such that Q:e3 =1t
and let
(3.2) Dy(r,0,z) := Q¢(rcosh,rsinb, z)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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be the change of variables to cylindrical coordinates with axis t. The local basis in
cylindrical coordinates is

(3.3) er = (cosf,sinf,0), ep:=(—sinh, cosh,0), es:=(0,0,1).

We denote by BJ; (respectively, Br) the ball of radius R in R? (respectively, R?)
centered at the origin.

For any b € R? and ¢ € S? we define pp 1 := b @ tH' LRt and denote by ;¢ €
LY (R3; R3*3) the distributional solution to

. o . 3
(3.4) {le Ce=0 inR”,

curlé =y in R3.

The function 1+ is of the form
1
(3.5) Mt (Pe(r,0,2)) = —(f(0) ® Qreg + 9 ® Qrer),

where (f, g) € L*((0,2m); R?) x R3, with fo% f(s)ds = b, are solutions to the following
minimization problem:

(3.6) Wy (b, t) := min { /0 7 %ca(a) xell)) d@} :

the minimum being taken over all functions G: (0,27) — R3*3 of the form G(f) =
f(0) ® Qres + g @ Qe as in (3.5) (see [16, Lemma 5.1]). In particular,

14

(3.7) |77b,t () < Cm

for a constant ¢ > 0 depending only on C. The line-tension energy density associated
to the measure ¢ given in (3.6) can be rewritten as

(3.8) W (b, t) ;:/O W%cnb,t(@t(l,e,o»;nb,t(@t(1,e70))d9.

REMARK 3.1. The function ¥y is continuous and satisfies the following:
e There exist cg,cq > 0 such that

(3.9) colb? < Wo(b, 1) < e1[b]%;

o for any t € S? the map b Wy (b,t) is quadratic;
e there exists co > 0 such that for any t,t' € S?

(3.10) Uo(b,t) < (1+ colt —'|)To(b,t).

This line-tension energy density for straight infinite dislocations is the starting
point in characterizing the asymptotics in [16]. Indeed, it can be shown that the
line-tension energy

(3.11) / o (b, t)dH!
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is not lower semicontinuous; therefore the limiting energy in the linear framework
requires a relaxation procedure. More precisely, in [12] the authors show that the
relaxed energy is given by

/ o (b, £)dHL,
:

where W is the H'-elliptic envelope of ¥y as defined in (2.12). We stress that
Wo(b,t) > Wo(b,t) and, in particular, it has linear growth with respect to b; namely,
there exist ¢y, ¢; > 0 such that

(3.12) G|b] < Wo(b,t) < b

Next we characterize the elastic energy induced by ;4 in a finite hollow cylinder.
To this aim, fix b € R3, ¢t € S?, h,r, R € (0,00) with r < R < h. Let Q; be as
in (3.1) and let T,:’R, QtT,?, T, }fi, QtT,f’2 denote the corresponding cylinders defined
as in (A.1) and (A.2), respectively. Then consider the three-dimensional linear cell
problem

1 . 1
U(b,t,h,r,R):= m mm{/@ o §(C77 :n dx, n € L}, (R R3>3) curly = ub’t}
T toh

1 . 1 TR : r, R
= @ mm{/QtT;)R 5@7 cnde, € L(QTT%RY3), curly = 0in Q1"
(3.13)
27
| (@020 Qucap b = btor (p.2) < 0.y x (0.1
0

REMARK 3.2. The condition

27
/0 0(®1(p.6,2)Queap d0 = b for (p.2) € (r.R) x (0, )

is intended in the following integral sense:

h R 2m h R
(3.14) /0/<p(p,Z)/0 n(®:(p, 0, 2))Qreap d9dpdz=/0 / o(p, 2)b dpdz

for all € L*((r, R) x (0,h)).
The following asymptotic analysis is proved in [16, Lemmas 5.6, 5.10, and 5.11].
LeEmMMA 3.3. There is a constant ¢ > 0 such that for every M > 1, there is a
function wpr: (0,00) — (0,00) with

}%wwf(r) =0,

and

(1 - i —wM(%)) Uo(b,t) < U(b,t,h,r, R) < o (b, 1)

forallbe R3, t € S%, r,R,h > 0 such that MR < h. In particular,

(3.15) lim lim U(b, ¢, h,r, R) = Uo(b,t).

h—o0 r—0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/18/22 to 151.100.101.44 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

NONLINEAR DISLOCATION ENERGIES IN 3D 4263

Furthermore, there exists ¢, > 0 such that, for all b,t,h,r, R with 2r < R < h,

(3.16) cu b < W(b,t,h, 7, R).

3.2. Rigidity. In this section we state and prove a rigidity estimate (see [21]) for
a hollow cylinder with a constant which does not depend on the radius of the central
hole. This result combines the two-dimensional nonlinear version proved in [46] with
the three-dimensional Korn inequality in [16, Lemma 5.9].

LEMMA 3.4 (rigidity with a hole). For every h > 0 there exists ¢ = c¢(h) > 0
with the following property: let R > 0, € € (0, %R], Ti}f be as in (A.1) and
u € W1’2(T§}%R;R3); then there exists a rotation Q € SO(3) such that

(IVu — Q”H(Tjk’?) < c||dist(Vu, SO(3))||L2(T;}%R) :

Proof. In order to obtain the estimate we need to extend the function u in the
inner cylinder. This should be done in two steps. By scaling we can take R = 1.
We set N := |h/e| — 1 and z; := je for j = 0,...,N — 1, zy := h — 2¢, so that
2y —zN-1 € [0,¢). For every j, we now apply the rigidity estimate [21, Theorem 3.1]
on the domain

Ty o= T3 + zje3

and get
(3.17) IVu = Qjll 27,y < clldist(Vu, SOB)) L2,
for a rotation @; € SO(3), with a constant that, by scaling and translation, does not

depend on ¢ and j. Moreover, applying Poincare’s inequality, we find ¢; € R3 such
that setting a;(z) := @,z + g; there holds

1 .
g||u — ajlp2(1;) < el dist(Vu, SO3)) || L2 (1;)-
Therefore, by applying the triangular inequality we derive for k =j—1and k = j+1
1 .
(3.18) - lax — aj”L?(TjnTk,) < cl|dist(Vu, 50(3))||L2(TjuTk) :

Now, using, e.g., Lemma 2.6 in [1], for any j we can extend u to a function u; on the
full cylinder

(3.19) T := T + zjes
satisfying
1 .
(3.20) Sllwg = agll 2z + VU = Qsll s,y < clldist(Vu, SOEB))ll 2z, -

Note that by the definition of the cylinders T\J we have

T = UﬂA} and fj N j\’j_l =T2 + (2 — €)es.
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Again, by scaling and translation, the constant does not depend on ¢ and j. Finally,
we interpolate the different extensions by choosing a partition of unity in [0, ] with
p; € CX(R;[0,1]) such that

C
D pi=1 on(0,h), ;=0 on(0,h)\ (2,2 +2e), Vsl < 2

In particular, ¢o(0) = ¢n(h) = 1. We define @ := 3, p;u; in Tj; and write

(3.21) Vi = Z wjVu; + Z ) @ Vo, + Z a; ® Vj.

J

Observe that, since > i Ve; =0, for every k we have

(3.22) Z a; ® Vo; = Z(CL]' —ai) ® V;.

J J

We can now write, by the subadditivity of the norm and the definition of IA} in
(3.19),

[dist(Vai, SOG)l 2re) < D Il dist(Vii, SOG)) a7,
J
(3.23) < ZIIVﬂ—QjI\Lz@)~
J

In turn, by (3.21), (3.22), and recalling that ¢ = 0 on (z;,2; + 2¢) for k ¢ {j —
1,7,7 + 1}, we have

Jj+1
||V11—Qj||L2(T) < Z or(Vuy — Q])||L2(T)
k=j—1
Jj+1 J+1
D (un—an) @ Verl ) + 1D (a5 —aw) @ Vel iz,
k=j—1 k=j—1
j+1 Jj+1
o len(Vur = Qi + Y len(@k = @)l 2,
k=j—1 k=j—1
Jj+1 J+1
(3.24) + > Nk —ar) @ Verl g, + > (e —ar) © Ver| iz
k=j—1 k=j—1

Using (3.20) in the first term on the right-hand side of (3.24), we get

J+1 Jt+1
Z o (Vg — Qk)”p(fj) < Z [(Vur — Qk)Hm(fjmTk)
k=j—1 k=j—1
J+1
<c Z || dist(Vu, SO(3))|L2(7,)-
k=j—1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/18/22 to 151.100.101.44 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

NONLINEAR DISLOCATION ENERGIES IN 3D 4265

Similarly we estimate the third term

j+1 j+1
Z [(ug — ar) ® V‘Pk”Lz(T Z ||L2 T;1T%)
k=j—1 k=j—1
j+1
<c Z || dist(Vu, SO(3))| L2(7,)-
k=j—1

The fourth term is instead bounded by

Jj+1

c
Z l[(a; —a ®v90kHL2(T) ||aj_aj+1HL2(ij:FH1)+g”aj_aj71||L2(fjm:T“j71)
k=j—1

< || dist(Vu, SO3)) | L2 (1;uty40) + cll dist(Vu, SO(3)) | L2(7;ut; 1)
where the second inequality follows by (3.18) and by (3.19) we have

1 c
(3.25) Zlas = all a2 gy0m,y < Zllag = arllzzernm

for k=j— 1,7+ 1. It remains to estimate the second term on the right-hand side of
(3.24). To this end we observe that

J+1 Jj+1
S len(@k = Qll oz < IT1M2 Y 1@k - @yl
k=j—1 k=j—1
Jj+1
=2V 3 1k - Q)
k=j—1

< C(HVU - Qj+1‘|L2(Tj+1ﬂTj) + [[Vu — Qj||L2(Tj+lmTj)

+ ||vu - Qj_1||L2(Tj—1ﬁTj) + HVU - Qj“L2(Tj—1ﬂTj))
j+1

<c > |Vu—Qillzar,
k=j—1
J+1

<c Y |l dist(Vu, SO(3))llz2(z),
k=j—1

where the last inequality follows from (3.17).
Going back to (3.23), we have that

Idist(Vii, SOB3))| g2y < ¢ || dist(Va, SO(3))| 21y
J
< ¢ dist(Vu, SO(3))HL2(T§,1).
Therefore, we infer
| dist(V@,SO(3)) || 21y
< || dist(Vu, SO(3))HL2((T§,1) + || dist(Va, 50(3))HL2(T5)
< ol dist(Vut, SO3) 1z o)

for a constant ¢ independent of €. We can conclude the proof by applying the rigidity
estimate on the fixed domain T} (see [22, Theorem 6] and [5]). d
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REMARK 3.5. The estimate in Lemma 3.4 still holds if we replace TZ}?‘ with a set
Se(9) x (0, hR) where S:(V) :={(r,0) : e <r < R,0< 0 <9I} for 0 <9 <21 with a
constant depending on 1.

Lemma 3.4 cannot be directly applied to strains S whose curl is concentrated on a
line, as they are not globally gradients in the hollow cylinder. They become gradients
if we cut the domain to let it be simply connected. Therefore, as in [46] we need a
variant of Lemma 3.4 for a domain with a hole and a cut.

For r > 0 we fix the segment L, := {(z,0) : r < z < R} C R? and define the
hollow cylinder with a cut

(3.26) Tr o= [(By \ BL)\ L] x (0,h).

COROLLARY 3.6 (rigidity with a “hole” and a “cut”). For every h,R > 0, € €
(0, %R] let Tyt be as in (3.26). Then there exists a constant ¢ = c(h) > 0 such
that for every u € Wl’Q(T}f}%R; R?) there exists a rotation Q € SO(3) that satisfies

(3.27) V0 = @l s g < e lldist(Va, SOB) oz

Proof. The proof is analogous to the two-dimensional case (see [46, Proposition
3.3]) and consists in partitioning the domain into four cylindrical subdomains of the
form Sc(m/2) x (0,hR) (as in Remark 3.5) and consequently applying the rigidity
estimate to each of them and finding four constant rotations. The thesis follows by
showing that for these rotations the estimate also holds in the whole domain. 0

COROLLARY 3.7. For every h > 0 there exists ¢ = ¢(h) > 0 with the following
property: let R > 0, € € (0, %RL and TZ}? be as in (A.1), and let b € R? be fived;
then for every 3 € LQ(TZ§;R3X3) with curl B =0 in TZ}?‘ and f027r B(p,0,2)egp df =
eb for every p € (e, R), z € (0, h), there exists a rotation @ € SO(3) such that

Hﬁ - QHL2(T;}%R) S CH diSt(ﬂ7 SO<3))HL2(T5}%R)'

Proof. Let T,f}f‘ be the cut cylinder as defined in (3.26), and let 8 be as in the
statement. Then curl 3 = 0 in the simply connected domain T 2}5; therefore there
exists u € Wl’Q(f,f}f;R:g) such that § = Vu in Tv}f}?. We conclude by applying
Corollary 3.6 to the function u. ]

Analogously to the two-dimensional case derived in [46], Corollary 3.7 points out
that any elastic strain 8 whose curl is concentrated on the vertical axis of a cylinder
with multiplicity eb and whose energy tends to zero is close to a constant rotation
Q € SO(3) in LQ(TE}%R;R?’X?’). This suggests that in the limit as ¢ — 0 the energy
density W (3) linearizes near such a rotation, or, equivalently, by frame indifference,
W (QT ) linearizes near the identity 7. This will imply that the nonlinear energy of
a straight dislocation g, ¢ on a hollow cylinder is asymptotically comparable (as the
inner radius goes to zero) to the self-energy (3.8) where the normalized Burgers vector
is rotated by Q7.

In order to deal with this additional variable that appears in the asymptotics it is
convenient to define an auxiliary cell problem formula which describes the nonlinear
elastic energy of a straight dislocation in a cylinder with the constraint that the elastic
strain is close to a fixed rotation.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/18/22 to 151.100.101.44 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

NONLINEAR DISLOCATION ENERGIES IN 3D 4267

3.3. Nonlinear auxiliary cell problem formula. For every Q € SO(3), b €
R3,teS%2, R>r>0, h>0,and A > 0 we consider the variational problem

UiHQ,b,t, h,r, R) = = inf{/ _W(B)+ B - QPda :
QT

§ € QTS B), curl 5= 0in QT ",

27
(3.28) B(®:(p,0,2))Qiegp df = rbfor allp € (r, R), z € (0, h)},
0

where QtTZ’R is as defined in (A.1). The dependence on @ € SO(3) introduced in this
auxiliary cell problem formula is needed since, a priori, due to the frame indifference
of the energy, the latter can linearize close to any rotation giving rise to different
optimal energies. This dependence, which helps to control the convergence, will not
appear in the I'-limit and will be removed by taking A — 0.

REMARK 3.8. By scaling, it holds that
(3.29) WH(Q, b, t, kh, kr,kR) = U3(Q,b,t, h,r,R) for all k > 0.

Indeed, for every 3, admissible competitor for ¥3H(Q, b, t, h r, R), the function B(z) =

B(x/k) is admissible for W3(Q, b, t, kh, kr,kR), since fo (P1(p, 0, 2))Qreq db = krbd.
Furthermore, by the frame indifference of W, we have

(3.30) (Q,b,t, h,r, R) = W, Q7b,t,h, 7, R) VYQ € SO(3).

The main result of this section regards the asymptotic analysis of the cell problem;
more precisely, we show that U5(Q,b,t, h,r, R) converges to Uo(QTb,t) as r — 0,
h— o0, A —0.

LEMMA 3.9 (lower bound). There exists a constant C' > 0 such that, for every
Qe SOB),beR3, teS? h>R>0, and X\ > 0, it holds that

R
lim inf Q. b,t, h,m, R) > Uo(QTb,t) — C|b|2E.
r—

Proof. Fix @, b, and t. To simplify the notation we assume ¢t = e3 (the general
case being similar).

For every 0 < r < R, let 3, be admissible for the definition of U} (see (3.28))
and be such that

(3.31) / W(B.) + NBr — Q2 dx < Q. b,t,h,r,R) + |b\2R

hr? log

Next fix § € (0,1/2) and divide T;;’R into dyadic cylinders

-1

(332)  CF =TI (i~ 1)eg = (Blygeos \ Blgge) X ((i — 1)ho*=1, ihd*1),

with k = 1,...,k,, where k, := lkr] + 1,

(3.33) bom s B0 g fixed s € (0,1)
. r.—Sllogél Or some 1xea s y s
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and i = 1,...,4; := [1/6F1]. Since ¢, R, and s are fixed, the smallest inner radius
of the dyadic annuli, namely R#*r, is much bigger than r as r — 0; indeed
(3.34) RSFr > RoF 1 =GR 9% > r.

In particular,

1
—_ W (B,)+\| B, — Q|%d
o / WS, QP
kr ik 2
1 1 - A B, —
log +* == h ok r

We stress that the cylinders CF defined in (3.32) (and the corresponding indices i and
k) depend on r. We will denote by I(r) the set of such pairs of indices, i.e.,

(3.36) Iy ={(,k) :i=1,....i, k=1,...,k.}.

For every 0 <7 < Rand k= 1,...,k, we denote by i(k,r) an index ¢ such that

Gan) > [ WE) NS QP [ W)+ N8, - QP
=1 C;,C f(km)

Let M := h/R, and let wps: (0,00) — (0,00) be the function given in the statement
of Lemma 3.3.

We will show that there exist a sequence of positive numbers o, infinitesimal for
r — 0, and a positive constant C' > 0, such that

Sy UGS ES LS
ck

hok—1 2
(3.38) ik,r) :
C
> T - = - -
> [log 6| Wo(Q" b, t)(l 7 wM(5)> oy
for every r > 0 and for every k = 1,..., k.. Equivalently we will show that
C
. T -
lim <|10g d[Wo(Q7 D, t)(l i wM(é))
1 W(Br) + AlBr — QI
. - — d =
(3.39) hT /Ck 2 x . 0,

i(k,r)

uniformly in k, where (a)4 denotes the positive part of a. We establish (3.39) by
arguing by contradiction. The argument is based on the following claim, which is a
variation of the one used in [46] for the proof of the lower bound.

Claim. Given a sequence r; — 0, assume that there exists a constant C > 0 such
that

1 W(B;) + AlB; — QJ

kj—1 k. 2
hé Cij] 7"]

(3.40) dr < C < 400

for some sequence (i;,k;) € I(r;) as defined in (3.36), 8; € LQ(C’Zj;R3X3) with
curl ; =0 in Cf;, and

27
(3.41) ﬂj (p,0,2)egp db = rib
0
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for (p,z) € (R§%, R6*=1) x ((i — 1)hd*~1 ihé*i=1). Then it holds that

; 02
(3.42) hmlnf# W(B;) + AlB; — Q| d

2
iy r2
RS CJ j

> Jlog 8] Wo(Q7b, 1) (1~ - — ().

Before proving the claim, we show that it implies (3.39) and how this concludes
the proof of the lemma. If, by contradiction, (3.39) does not hold, then there exists
an g > 0 such that for all o > 0 there exist r, < ¢ and k, such that

( |10g (5| \I’()(QTb, t) (1 — % — UJ]W(é))
(3.43) B %/ W(Br,) + AlBr, — Q|2dx> o
cks +

héke— r2

i(ko,ro)

and therefore we can assume that there exist a sequence r; — 0 and k; such that for
the corresponding ¢; := i(k;, r;), (3.40) holds with

C = [log 8| Wo(QT, t)(l - % — wM(5)> — e,
and f3; := 3,,. Namely,
1 W(B;) + AlB; — Q)

k-1 K 2
h5 sz TJ

(3.44)

o
dz < |1og 8|To(QTb, 1) (1— - —wM((S)) _¢o.

Combining this with (3.42), we get the contradiction, and we then prove (3.38).
Therefore, by (3.35), (3.37), and (3.38) we have

liminf ——— / W(B,) + A Br — Q|?dx
r—0 r210g7
kv g A2
> lim inf Rz 1/ W(Br) + MBr — Q| dx
r—0 lo v ck r2
r k=11i= i
E
o -0 1 W (Br) + B, — Q)
>t g2 2 5 /C = o
k=1 i(k,r)
> liminf s(1 — §) U0 (QTb,t) - 8) ) -
1£r£n S 0 5 M Whr O

= 5(1—6)To(Q7b,1) (1 - % - wM(5)>,

where the quantity (1—§) comes from the fact that i, > (1—0%~1)/6%=1 > (1-§) /681
Since ¢ € (0,1/2) and s € (0,1) are arbitrary, we can pass to the limit as 6 — 0 and
s — 1 to get

R R
.. nl T e T _ 27"
11£n_>161f \P)\ (Q? b7 tu hv T, R) > \IJO(Q b7 t) (1 C h) > \IIO(Q b? t) C|b| h )

where the last inequality follows by (3.9) and the statement is proved.
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It remains to prove the claim. To simplify the notation we drop the dependence
of ¢ and k on 5. We proceed in steps. First we scale the problem to a fixed cylinder
(Step 1); then we estimate the nonlinear term of the energy (Step 2) and conclude.

Step 1: Scaling and compactness. Here we reduce the analysis to the fixed cylinder
T,f’/lR defined as in (A.1), and we consider the scaled function

h
i (x) = R(Skflnj <R5k1 (x + (i — 1)R63)> for z € T;f’/lR,
where

:QT/Bj_I.

rj

In this step we show that up to a subsequence

(3.46) iy =i in LTy RS,
and that 7 is admissible for the cell problem defining ¥(Q7b,¢,h/R,4,1) in (3.13).
Indeed, from (3.40) we have

.02 _
(3.47) A / 15; = @ dr < C,
cf

hok—1 7]2-

and then by a change of variable we have

1 h -
~,2 e — 2 [E—
/’1“51 |"7]‘ de = R(Sk*l /Cf |77]| dl‘g R)\C7

which implies the weak convergence in (3.46) up to a subsequence. To verify the
admissibility of the limiting function we recall that by (3.41) it holds that

h R 27 h R
| [ oo [ nsto.0.21cap dodpaz = [ [ o007 dpa
0 r 0 0 r

for all ¢ € L2((RS*, RO*~1) x ((i — 1)hé*~1,ihé*~1)), and therefore

h/R 1 21 h R
gas) [ [elon) [ o0 2eap dodpds = [ [ o(2)Q" dpas
0 0 0 r

for all ¢ € L?((4,1) x (0,h/R)). The conclusion follows by taking the limit as j — oo,
obtaining

h/R 1 27 h R
(3.49) / / o(p.2) / (.6, 2)eap dbdpdz — / / (0, 2)QTb dpdz
0 ) 0 0 r

for all ¢ € L?((4,1) x (0,h/R)), and recalling (3.14).

Step 2: Estimate of the nonlinear term. We will show, following the ideas in [46],
that the scaled problem linearizes in the limit, giving rise to the expected estimate.
From (3.33) we have

ko T "5 -1(T5\"
Aj R(Sk—l—Ral}r—é (R) ’
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and then the sequence )\;? is infinitesimal for 7 — co. We also consider the sequence
X; of characteristic functions

1 i I5| < p5=D/2
(3.50) Xj = if ] =" s
0 otherwise in Th/R.

By the boundedness of 7); in LQ(T;LS’/IR; R3*3) it follows that X; — 1 in measure, so that,

by (3.46), x;7; — 7 in L2(T2’/1R;R3X3). By a Taylor expansion, using assumptions
(ii) and (iv) on W (see section 2), we get

1
W(I+F)=3CF: F +o(F),

where C := %2%([) and o(F)/|F|*> = 0 as |F| — 0. Setting w(t) := sup| pi<¢ lo(F)],
we have

1
(3.51) W(I +1rF)> 57«2<CF : F —w(r|F)),

with w(t)/t?> — 0 as t — 0. Thus, by the frame indifference of W and using (3.51)
and (3.45) we obtain

(3.52)
1 W (B;) e — 1 W (I +7in;) de > E/ 4W(I+)\;?ﬁj) p
et Jor  r2 WoF T Jor 12 S o T ()2
R 1., i w(AS17;1)
=5 oo <2C(Xj77j) F(Xg75) — A ANSVSE dz.
h/R J

Again the first term on the right-hand side of (3.52) is lower semicontinuous with
respect to the weak L?(T ,f’/lR; R3*3)-convergence, that is,

... R 1 ~ - R 1.
(3.53) hmmfﬁ /T“ §C(Xj17j) s (xymy) dz > E/ ~C1j: 1 dx,
h/R

j —00 51 2
J Th/r

while the last term in (3.52) converges to zero as j — oco. Indeed, we can rewrite its
integrand as

LEOHD w04
J — 1 J ~ )
(A})? (AFI71;1)2

which is the product of a bounded sequence in Ll(Tg’/lR) and a sequence converging

to zero in L‘X’(T,‘E/R), since A¥|7j;| < 6‘1RS_17"§175)/2 for every k, when x; # 0. This
combined with (3.53) yields

. (54) R J
1 f > — : .
et J 2 2, 5 Cil <1 do
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Finally, since 7} is admissible for W(Q7b,t,h/R, 6, 1), recalling the estimate in Lemma
3.3 with M := %, we get

1 W (5]’) T
>
hjlgg;fhék T /ck sz dz > [logé| ¥(Q"b,t,h/R,0,1)

C
. > T - - :
(3.54) > llog 8] o(Q"b,6) (1~ 1 —war())
This concludes the proof of the claim since
1 : — QP
lim inf = Wis;) +);|B] <l dx
j—oo hd ck T
> lim inf W(Qﬁj) dx. 0

k—1
Jj—oo h5 Cf 7"j

LEMMA 3.10 (upper bound). There exists a constant C > 0 such that for every
Q€ SO3),beR3, teS% h>R>0, it holds that

limsup U3H(Q, b,t, h,r, R) < (1 + AC)¥o(QTb, t).
r—0

Proof. Analogously to the previous lemma, we perform the proof for ¢t = ez (the
general case is similar).
We define the sequence

(3.55) Br = QI +rngre,) in T,

where ngry,, is the solution to (3.5) with pgr,; = Qb ® tH*LRt. Then f§, is
admissible for ¥3(Q, b,t, h,7, R). We observe that from (3.7) we immediately get

R
(3.56) / 1B, — Q|?dx = / Irngry.¢|*de < C|b|*hr? log —.
TR T;,R r

h

Hence by (3.9) we have

(3.57) )\/ 1B - Q|?dx < ANCUo(QT b, t)hr? log E
T r

h

Next, fix s € (0,1) and set
(3.58) cli=17 "% and  C2=T7"

In view of the frame indifference of W, we have

! W6, )dr = ——

hr2log & Jrr.n 2 logE TR

/ W (I + rngrys)dr +

W (I + rngry.)de

— —— [ W[ +r dv =: I} + I72.
" hr2 log hr? log o / nQTs)

We now estimate I} and I?. Regarding I!, by a Taylor expansion of W near the
identity we get

1

—_— dz,
hlog §

1 1 T
Iv} = *(CUQTbt : 77QTb t dl’ + f/ w
cl 2 ’ ’ h

cr r?log §
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where o(F)/|F|*> = 0 as |F| — 0. By (3.5) and (3.8) we deduce

1 oo - R -
§CnQTb,t DNQTy dr = —Po(Q" b, t)p dpdz = hlog ——W¥o(Q" b, 1),
cl 0 Jri-s P r
and then

1
(3.59) lim sup

1
- —C : dr < U Tb,t '
r—0 hlog% /O; 2 NQTv,t - NQTh,t < ¥y (Q )

Moreover, setting w(t) := sup g <, [0(F)|, we have

1/ J(TnQTb,t)dx
c

dr = 0.
h r2log & v=0

< lim 1 w(rlngresl) |rngry.®

3.60 lim
(3.60) r=0 h Jpr “lrngro P2 log £

r—0

1
In fact, the above integrand is the product of a sequence converging to zero in L>° (T}?)
and a bounded sequence in L'(T}?) by (3.56). Thus, combining (3.59) and (3.60), we
infer

(3.61) limsup I} < Wy (QT0,1).

r—0

Finally, the growth assumption on W and the definition of ngry,, give

C logr—*
I’ < 7/ r 2dr < C ;
= 2 1og§ o2 | nQTle = log R

r

then, as s < 1, we get

(3.62) limsup I < Cs.

r—0

In view of (3.57), (3.61), and (3.62), we conclude that

limsup U3(Q, b, t, h,r, R) < (1 4+ XC)Wo(QTb, t) + C's;

r—0

hence the thesis follows by the arbitrariness of s € (0,1). O
COROLLARY 3.11. For any Q € SO(3), b€ R3, t € S, R > 0, one has

(3.63) lim lim lim O%4(Q,b,t, h, 7, R) = Uo(QTb,t).

A—0 h—oo0 r—0

Proof. The thesis is an immediate consequence of Lemmas 3.9 and 3.10. ]

Property (3.63) cannot be directly applied in the analysis of the I'-limit in section
5; in fact, we need a uniform bound from below (which does not depend on the
parameters) for the cell formula in order to deal with the relaxation process. The
uniform bound is proved in the following lemma.

LEMMA 3.12. For every A >0, M > 1, L > 0, there exist C > 0 and w1, : (0,00)
— (0, 00) with

lim L«JM7L(T) = O,
r—0
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such that
CL? r
o e ()

for all Q € SO(3), b€ Br(0) CR3, t € S?, 7 R, h > 0 with MR < h. Furthermore,
there exists ¢, > 0 (which does not depend on the parameters), such that, for all X,
Q, b, t, h, r, Rwith2r < R<h,

(3.64) WR(Q byt b, R) > Wo(QTb,1) —

(3.65) Q. b,t, h,r,R) > (1 - f) c.|b)?.

REMARK 3.13. As a consequence of the above estimate we also deduce a uniform
bound from below of the elastic energy which will be needed for the compactness ar-
gument. Namely, if 5 € LQ(QtTZ’R;RSX‘O’) is a test function for W3(Q,b,t,h,r, R),
then from (3.65) we get

1
hr?log g

R

(3.66) / W(B)dz > lim ¥3Y(Q,b,t, h,r, R) > <1 - > b2
QtT}TYR A—0 h

For the proof of Lemma 3.12 we follow the approach proposed in [16, Lemma 5.7],
which requires the following preliminary result.

LEMMA 3.14. Let A > 0, let H := {(b,t,h) € R® x S? x (0,00)}, and let K C H
be compact. The family of functions \I/g’l(I, o nry 1), r e (0,1), is equicontinuous on
K.

Proof. Let A > 0 and K C H compact be fixed. It suffices to prove equicontinuity
of \Il;” with respect to r separately in each variable b, ¢, and h.
Step 1. Continuity in b. We show that there exists a constant ¢ > 0 (not depend-
ing on ) such that for all b,b" € R3, it holds that
(LYt hyry 1) — ORI, byt by 1) < b — bl(1 + ¢t — b))

for all t € S%2,h > 0,7 € (0,1).
Let b, b’ € R3, consider 8 as a test function for W}!(1,b,¢, h,r,1), and define

B =B+ rny_ps,

with 7y _p + the solution of (3.4) for py _p¢. Then for every o > 0 we have

1
/ 1B = IPPdw < (1+a)/ 1B = IPda + (1+>/ 18" — B|*dx
Q: Ty Q: Ty o QT

1
=(1+ J)/ |8 — I|2dx + (1 + ) / |r17b/,b’t|2dx.
QT 9/ Jau!

Moreover, by (2.6) we get

f W= [ W
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Then setting o = |b’' —b|, after rescaling and using the arbitrariness of the test function
8, we finally get

(Tt by, 1) — U bt by 1) < |t — bl (BRI, b, t, b7, 1) + 1) + ¢|b) — b|%

We conclude the proof of Step 1 observing that by the growth condition on W

1

2
—_— d
hr? log } v

(I, bt b, 1)

IN

/ W(I +rmye) + Ao
QtT;:’l

c+ A 9 9
3.67 < — dr < c(1+ N\)|b|~.
( ) = 2 log% »/QtT’"’l |np,¢|“dz < itd

h

Step 2. Continuity in t. We now show that there is a constant ¢ > 0 such that
for all t, t' € S2,

WL, bt by, 1) — U, bt by, 1) < et —t] + |t —t]?)
for all h > 0,7 € (0,1).
We choose t, t € S2 and fix as above /3 to be an admissible strain in the definition
of WR(I,b,t,h,r,1). The function
B(x) = B(STx)ST — (ST - 1), S:=QuQf € SO(3),
is admissible for U3(Q,b,t', h,7, 1) and
(3.68) |ST —I| <t/ —t| V', teS%

If we let B(x) := 8'(Sz), then a change of variable gives

/ W(B) + \§ — I]2dz = / W(B) + A — Ida.
QuTt Q

r,1
tth

For every o > 0, writing 3 — I = (8 — 8) + (8 — I) and using (3.68), we get

. 1
/ 1B—1* < (1+> c|t’—t|2/ |B—I|2d:r+(l+a)/ |3 — I*dx.
tT;’l g QtT;:’l QT

h

Now choosing o = [t/ — t| in the above inequality, we find

r,1
toh

(3.69) )\/Q TM(|B—I|2 — B = I})dx < Ae(|t' —t| + \t’—t\Q)/ |8 — I*dx.

Moreover, by (2.6) and (3.68) there holds

/QtT;;l W(B)dx—/QtTF W (B)dz

1
< oga/ W(B)dx + Cy (1 + > v — t|2/ 18— I%da.
QT o QuTy!
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Hence we obtain

/ W(B) — W(B) de < e[t — t] + [t/ — t2) / W(B) + |6 — I%d.
QT Q:T"

h

Combining this with (3.69), we have

(T, b, hyr, 1) — OR(T, b, t by, 1) < (|t — ¢+ | — ¢2) 0% (1,0, ¢, h, 7, 1),

which again gives the conclusion using (3.67).

Step 3. Continuity in h. We assume without loss of generality h > § > 0 (where
d depends on the compact set K). We show that there exists a constant ¢ > 0 such
that for h,h' >4,

[N, b, t, B, 1) — URN(T, byt by, 1)| < cfh — A

for all t € S% with (¢t,h) € K, and for all r € (0,1).
Assume that k' > h and notice that any test function for W (I,b,¢,h',r, 1) can
be restricted to get a test function for W4!(1,b,¢,h,r,1) and in particular

no_
(3.70) W, bt h,r, 1) < E\p';l(.r, bt b, r 1),
or equivalently, using (3.67),
B —h
W, bt by, 1) — ORI, b, t, B, 1) < (I, bt 0 1)
14+ \)|b|?
< c( +5 0] W — hl.

It remains to show the other inequality. As usual we assume ¢t = e3. Let  be
admissible for WY(1,b,¢,h,r,1) and let u € Wl’Q(TZ’R;R‘g) be such that Vu = § —
r1p,¢. Then we estimate

|Vu — I*dz < 2 |8 — I|*dx + 2 [rmp.¢|2dz
R R ™R
e e T

.

1
§2/ |8 — I|?dx + c|b|*hr? log ~.
TT,R T

h

We consider w € W12 (T};"R; R?) the function such that Vw = Vu — I and we choose
y3 € (0, h) such that

1
| v wPar < [ vl de
Bi\B,. Ty

2 1
(3.71) < E/ 18 — 1%z + cfp|*r2log =
ok r

Next we define the extension @ € W'2(T};"; R3) as

,Qfg) if T3 € (an3)7
(2, w3) = q w(a',ys) if z3 € (y3,y3 +h' —h),
w(x',xg — (B —h)) ifxs € (ys+h —h,R).
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The function 3 := ¢ + Vb + I is admissible for W2(1,b,¢,h',r, 1) and satisfies

|3 —Idx = |8 — I?dz + (b — h) [rmy. + V(2! y3)|*da’
TT‘WR TT,R

% h BI\B;.
2 1
S/ |8 —1I|2dx + (h' — h) f/ |3 — I2dx + c|b|*r?log - | ,
7" h TR r

where we have used (3.71). Furthermore, using the growth assumption on W we find

WBds = [ W(B)dz+ (b — h) / Wty + Vi, ys) + I)da’
Trym o B\BL

<[ Wzt —h) / (P + V(2 ) P’

" Bi\B,

1
<[ W)+ —h) (c / 18 — I%dz + clp|*r2log ) .

TR h TR r

h h

Then we conclude
nl / nl h'—h 2 nl
U (I, bt R 1) — O (1,b,t, h,r,1) <c (|b| +\IIA+1(I,b7t,h,r,1))
14+ \)[b?

Proof of Lemma 3.12. By property (3.29) we can reduce to R = 1. In addition
we can assume h € [M,2M]. In fact for any N € N, we can subdivide QtTZ’l
into N cylinders T;, i = 1,..., N, of length h/N, and for any g test function for
U@, b, t, h,r,1) we have

N

W(B)+NIB—Ql*dz = W(B)+AB—Q|%dz > Nmin | W(B8)+\B—Q|%d

/C?tT;;,l (B)+Ap-Q dx ;/:n (B)+A-Q*dx > miln/Ti (B)+A|B—Q|*da
and therefore

h
(3.72) Q. b, t, hyr, 1) > T (Q,b, by 1).

Consider the compact set Hysr := Br(0) x S? x [M,2M] and recall that by the
previous lemma \IIS\”(I, -+, -, 7, 1) is equicontinuous on Hyy . Therefore for any j € N
there exists d; > 0 such that

|\Iﬂ)‘ﬂ(1’ b’ t, h7 &) ]‘) - \IJS\LZ(I? bl7 tlv hlv T, 1)| < 1/,7

if o) —b| + [t' —t| + |k —h| < 6;, (bt h), (V',U',h') € Hyp, 7 € (0,1).
Hence from (3.30) it follows that

(373) |\Il§l(Q’ b? tv h’a T, 1) - ‘IJT(Qv b/7 tlv h’lv T, 1)| < 1/-]

if | =0+ [t/ —t|+ |h —h| <§;, Q € SO3), (b, t,h), (V',t',1') € Hyyp, 7 € (0,1).
We fix Q € SO(3) and cover Hyy ; with finitely many balls of radius J;. By Lemma
3.9, at every center (b, t;, h;) of these balls of radius J;, we have

liminf O3(Q, by, tg, hy,my 1) > Wo(QT by, 1) — g\bl|2~
r—0 M
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Therefore for every [ there exists 7;(1) € (0,7,;-1(1)) such that for all » < r;(I) it holds
that

C 1
(3.74) WRN(Q, iyt b,y 1) > Wo(QTbr, 1) — 7 [bif* — -

Define r; := min; r;(I) and for any (b,t,h) € Hpp let (by, 1, hy) be the center of the
ball that contains (b,¢, h). Then for every r < r; we get

\I’;\LZ(Qa b7 ta ha T, 1) - \IIO(QTba t) = (\Iﬂ;l(Qv ba t7 ha T, 1) - \Iﬂ)?l(Qv bl7 tl7 h’lv T, 1))

+ (\I/&Ll(Qa bla tla hl7 T, 1) - \IIO(QTb, t))
3 c 9

3.75 >_"_ [
(3.75) S

where we have used (3.74), (3.73), and the continuity of ¥.
From this we deduce that

C

M

for all Q € SO(3), (b,t,h) € Har,k, and r < rj, with way, 1, (r) := 3/ for r € (141, 75],
and (3.64) is proven.

It remains to prove (3.65). We assume ¢ = e3. Using first (3.70) and then (3.72)
for N = |h| we get

Q. b,t, h,r, 1) > To(QTh,t) L? —wpr (1)

h h
376 wg@bthey) > e n,nn > MagQn e,

Let 8 be admissible for W2/(Q,b,t,1,7,1). Then, by the growth condition on W and
the rigidity estimate on cylinders, Corollary 3.7, there exist ¢ > 0 (independent of the
parameters) and @) € SO(3) such that

W(B)dz > c/ 18 — O2dz,
! !

and by Jensen’s inequality and using the condition on the curl of § we obtain

T

W(B)dz >c / / —

Tt o Jr 2mp
[ ]

=C —_—

0 r 27Tp

Lot g2 1
:c/ / —|b]2dpdz = c|b|*r* log ~.
o Jr 2mp r

2

27
| 6= eop | dpaz
0

2 2
B-egp db| dpdz
0

Analogously we obtain
1
/ N B — Q*dx > Ac|b]*r?log —.
! r
Thus from (3.76) we conclude that

h 1
Qb b 1) 2 P X)efp = (1 1 )efpP 0
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4. A uniform estimate of the quadratic energy. This section is devoted
to the analysis of the asymptotic behavior of the quadratic energy associated to a
sequence of dilute dislocations. Indeed, as already pointed out, our approach exploits
the fact that the energy asymptotically linearizes near a suitable rotation. We will
provide in Proposition 4.4 an L? estimate of the strains corresponding to a sequence
of dilute dislocations . € Mgs’%(ﬁ). This result will be crucial for the proof of
compactness in section 5.

It is indeed known (see [9]) that for any measure u € M(R3) there exists a unique
n € L32(R3 R3*3) which is a distributional solution of
(1) {divn:O in ]RZ,

curlp =p in R°.

In general we cannot expect a better summability for n; in particular it might not
belong to L if p > 3/2 (see [16, Lemma 4.1]). Nevertheless, if we assume that the

measure is polyhedral, it is possible to show that 7 is in LP for any p < 2. In particular,
one can show that if u € Mg(R3?) is a dislocation measure of the form

(4.2) W= Zbi ® tH Ly,

where ; are straight segments, then there is a constant C' > 0, independent of u,
such that the following estimates hold:

Clul(R?)
(4.3) @) S G swpp 2
o ) < 0F g

This is, for instance, proved in [16, Lemma 4.1] in a more general context.

Note that in these estimates p needs to be defined in the whole of R3 and
divergence-free. Therefore, in order to use them we will extend any measure in
Mg’a(Q) to a measure in Mp(R?). In what follows we will first prove that simi-
lar estimates hold true for a larger class of measures, which we will call deformed
polyhedral, namely measures of the form (4.2) where ~; are segments deformed under
suitably regular maps. Second, we will extend a dilute measure x in Q to a deformed
polyhedral one in the whole of R3.

Precisely, a dislocation measure u € Mg(R?) is said to be a deformed polyhedral
measure if it is of the form (4.2) where now v; := ®;(L;) for some L; straight segments
and ®; : R — R3 uniformly bi-Lipschitz functions; i.e., there is a positive constant
¢ > 1 such that, for all ¢

1
(4.5) Z|x —y| <|Pi(x) — Pi(y)| < Lllx —y| forall z,y € R3.

LEMMA 4.1. Let i € Mg(R3) be a deformed polyhedral dislocation measure. Let
n € L3/2(R3; R3*3) be the solution to (4.1). Then there is a constant C > 0 such that,
for all x ¢ supp p, (4.3) and (4.4) hold.

Proof. The proof follows the argument in Lemma 4.1 in [16], by means of a change
of variable and exploiting the uniform bi-Lipschitz condition in (4.5). For the reader’s
convenience we sketch the main points.
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From (4.1), since curlcurln = V divn — An, we obtain that n = (=A) ™! (curl p),
and therefore for all x ¢ supp u

(4.6) nij(w) = /Rs Kjx(r — y)dpir(y),

where Kj,,,(z) = —5lmk4:|—;‘3. Then we have

(@) @l <Ol [ ).

x—yl?

Estimate (4.3) is easily achieved. To obtain (4.4) we use the property of ®;, (4.5),
and with a change of variables we write

1

Yi |I‘ - y|2

1

¢
v y,|2d7-[1(y’) <C

4. _
(48) - Tdist(z/, L;)’

dH' (y) < ¢

where 2/ = ®; ' (z), ¥ = ®; *(y), and the last inequality can be obtained by a direct
estimate (see [16]). Again by assumption (4.5) we have |2’ —y'| > }|z —y|, and hence

(4.9) dist(a’, L;) > £dist(z,v;),

which in turn implies

1 ) 1
<O
/7 T — y|2dH W) < Cdist(wm)

for some constant C' > 0 independent of i. Therefore, together with (4.7), we readily
conclude. O

We then state and prove an extension lemma for a polyhedral measure u €
Mp(Q), to a deformed polyhedral measure ji € Mg(R?), which is a refinement of
Lemma 2.3 proved in [12]. We recall that we are working with  a C? domain.

LEMMA 4.2. Let p € Mp(S2) be a polyhedral dislocation measure, p:= 3, ; b; ®
tiH L y;, with v; straight segments. Then there is a measure ji € Mp(R?) that
satisfies the following properties:

(i) @ extends p, that is pLQ = p;

(ii) @ is deformed polyhedral,

o= Z 51 ® fi/Hll_’%;
iel

(iii) there is a constant C > 0 depending only on the domain Q such that the
following estimates hold:

(4.10) |A|(R?) < C|ul(9),

(4.11) Z i M (3:) < CZ i PH (),
iel el

(4.12) B(1) < #(1) + Clul(9).

Proof. The proof of Lemma 4.2 can be straightforwardly achieved by following
the lines of the proof of Lemma 2.3 in [12], with the addition of minimal changes.
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We discuss it without much detail. We can first define the extension £ in an outer
neighborhood of 90 by a reflection argument. If the boundary of 2 is of class C?, we
can use the reflection ® through 0 that is a bi-Lipschitz transformation which sends
the set ,

00, = {x € Q : dist(z, N) = s}

onto

00 = {x € R*\ Q : dist(x,00) = s}

for any s < sg, where s > 0 is small enough and depends only on the geometry of .
Since by slicing it holds that

Solbil [ HO(un090,)ds < |ul(9),
il s0/2
and
> \b¢|2/ HO(yi N OQ)ds < C Y |bi*H! (),
i€l s0/2 il

we can find 5 € (so/2, s9) such that the slice of the measure p on 9QL satisfies

(4.13) D 1Bl HO (v N 09) < Clul(),
el

(4.14) > b PHO (v N 09k < O b PH (1)
el el

for some constant C' > 0 independent of . In particular, 9Q% intersects the support
of p in a finite number of points, i.e.,

HO(OQ N (supp ) < || (Q).

Thus we set i := @4 (ul(9Q)%), where (9Q)% = Uy (0,5 0Q% and @4 denotes the push
forward of a measure by ®. Notice that f is of the form

(4.15) ii=Y b;at;H'LA;,
jel

where 7; is the image by ® of some straight segment ; belonging to the support of
1 and fj the unit tangent to 7;.

We then extend fi outside £ by connecting the endpoints of 7; to each other using
piecewise affine curves and associating to them a suitable multiplicity (for details we
refer the reader to Step 3 of [12, Lemma 2.3]). The final extension is obtained as

(4.16) f= [+ p.
Property (4.12) easily follows by the construction. d
REMARK 4.3.

(a) The support of i is given by curves consisting of straight segments, with
the only exception being the part of supp [i which intersects the set (002)¢ =
Use(0,5)080 where the curves «y; of the support of fi are obtained by reflecting
by @ the segments of p contained in (OQ)%. We denote by IS the set indices
corresponding to the curves v; C (00)¢.
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(b) The bi-Lipschitz map ® defined in the proof of Lemma 4.2 is not a global map
in the whole of R® (as is required in the hypothesis of Lemma 4.1). However,
with a covering arqument and using the regularity of 02 the map ® can be
extended locally in order to fulfill the assumptions in the lemma. Precisely by
the fact that 92 is C* we can choose so such that for every curve v; C (0Q)¢,
with i € IS, we can construct a ®; satisfying (4.5) which coincides with ® in
a neighborhood of v; of diameter sy. Therefore, if 11 € L3/2(R3;R3X3) is the
unique solution to (4.1) with u replaced by [i, then 7 still satisfies estimates
(4.3) and (4.4).

(c) Since the piecewise straight lines built outside QU (00)¢ are arbitrary, we can
assume they consist of segments which have minimal length h > 0. This will
be useful when we extend a dilute measure p in €.

(d) From the proof of Lemma 4.2 we obtain that the number of points in supp(y)N
00s weighted with the norm of their Burgers vectors (and their squares) is

controlled, namely

(4.17)
Z || H (7:N9) < C|ul(Q), Z |0 [PHO (iNOQL) < C’Z i *H* (i)
il il il

We recall that ¢ (z) = e 3¢(2) is a mollifier with ¢, < cf;;;(gj))‘ for ¢ > 0.

PROPOSITION 4.4. Let p. := Zi]\fl bi @ tLHIL AL be a sequence in M}[lf’ai (Q)
such that

Ms
(4.18) S OPLPHN () < C < oo

i=1

Then there exists a sequence 7. € L3/?(R3;R3*3) with the following properties:
(i) curlfe = p. distributionally in ;
(i) there exists a constant ¢ > 0 (independent of €) such that

/ 7Pz < c|loge],
Qs(ﬂs)

where Qe (pe) = {x € Q : dist(z,supp pe) > €}.
Furthermore, there exist a sequence 7). € L3/?(R3;R*>*3)NL2(Q;R3*3) and a constant
¢ >0 (independent of €) such that for every Q' CC Q
(") curlfe = pe * e distributionally in Q';
(ii”)
/ |- |*dx < c|logel.
Q

Before proving the proposition, we fix some notation and give a preliminary result.
If v is a segment, for every p > 0 and § > 0, we denote by T}, 5(v) the cylinder with
vertical axis v, radius p, and length H'(vy) — 2§, namely

(4.19) Tp’g(’y) = A(B;) X 55),

where B’ is the ball in R? of radius p centered at the origin, S5 C R is a segment
of length H!'(y) — 26, and A is an affine transformation that maps Ss in v and the
midpoint of S5 into the midpoint of . To shorten the notation, if « is fixed, we will
simply write T}, 5.
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FiG. 1. Large domain of diameter R+ H! () containing T,,s and Tz 0.

LEMMA 4.5. Let ®: R® — R3 be a bi-Lipschitz map and @ C R3. There exists a
constant C > 0 such that given a segment v, a number & > 0, and positive parameters
p > €, it holds that

(4.20) —dx < C (7—[1(1) log% + (510gg + 1) ,

/fz\wum dist(z,9)

where ¥ = O(y), U = ®(T,5), V =21 0).

Proof. Let 7, U, and V be as in the statement. We observe that, for every X € R3,
Y € ~ it holds that

(4.21) dist(X,7) < |X — Y| < (8(X) - &(V)],

where ¢ > 0 is the Lipschitz constant associated to @~ and ®(Y) € 4. If now we
take the infimum over all Y € v in (4.21), we get

(4.22) dist(X,v) < £dist(®(X),7) for all X € R3,

By a change of variable and property (4.22) we have that

1
/ ———dzr < C/ Ve
a\wuv) dist*(z,7) -1 Q\(T,,5UTs0) dist™(2(X),7)

dx
1
< % / — X
 Jo-1@)\(1, 501 o) dist™ (X, 7)

Next, we set R = 3diam(®~1(Q2)) < 3C diam(Q2) and assume dist(y, ®~1(Q)) < R/2.
Up to a change of coordinates we can assume that v is centered at the origin, namely

7 ={(0,0)} x (=H'(7)/2,H'(v)/2),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/18/22 to 151.100.101.44 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

4284 A. GARRONI, R. MARZIANI, AND R. SCALA

and T}, 5 1. o are contained in the large domain of diameter R+ #!(v) as represented
in Figure 1. Thus, setting X = (X', X3), we obtain

1
(4.23) / de
=L\ (T, sUT. o) dist (X,7)

1
< |5 Loax 25/ Loax / L oax
BR\B, \X’|2 By \BL \X 2 B X[
R R
< 27H! () log n + 4w log - + 47R.
If instead dist(y, ®71(2)) > R/2, then we estimate as follows:

(4.24) dx < |Q|— <C. 0

AI(Q)\(Tp,JUTs,o) dist*(X, )
Proof of Proposition 4.4. Let p. € ./\/lh "*¢(Q) be as in the statement

Ms
=> B etiH' Ly,

=1

and consider the sequence of deformed polyhedral extended measures ji. € Mp(R3)
given by Lemma 4.2 so that

Na
fie = Zbg @tH Ly for N. > M..

i=1

In particular, by (4.10) and (4.11) we have

N
(4.25) Be|(R?) <€, D BLPH' () < €,

i=1

and therefore, from (2.1) and(4.18) we infer that

M, M.
(4.26) Mche <) |bilhe < [b*he < C.

i=1 i=1

Analogously by (2.1), (4.25), and recalling Remark 4.3 (c), (d),
N, N,
(4.27) Nehe <> [bi|he < |00 < C.

Now let n. € L3/?(R3 R3*3) be the distributional solution to (4.1) with u replaced
by fic, which, thanks to Lemma 4.1, satisfies

|bL] _
(4.28) [ (z Z Tt (e, 70) for = ¢ supp fic.

To construct 7. (and consequently 7).) we will modify 7. close to the support of ..
We start by fixing two parameters p. < h? and . and, to denote by UZ, V7 (for
1 =1,...,N.), the cylinders defined as follows:
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FiG. 2. Deformed cylinder UZ obtained by reflection.

e If ! is a straight segment, then

Uli=T, 5.(00), Vi=Teo(4l);

e If 4! is obtained by reflecting some 72 (i # j), then U! and V. are the
reflections of U? and V7 (see Figure 2).
By the diluteness assumption, if

(4.29) heae > a.d. > pe,

then the cylinders U for i € {1,..., M.} are contained inside 2, while all the U¢ with
1e€{M.+1,...,N.} lie outside Q2. Furthermore,

UnUF=0, Unyf=0 fori,k=1,...,N., i#k.

For the convenience of the reader we divide the rest of the proof into three steps.
Step 1. Estimate of the L? norm of n. in D := Q.(pe) \ UsUZ, with Qo (pe) =
{z € (@) : dist(z,supp ) > €} and () the e-neighborhood of Q. Estimate (4.28)

gives
LAY
2de <
/Da ne"dw < © (Z dist(x, %) )
con 3t [
dist?(

(z,7E)

(4.30) < CN. Z / L

o) \wivvy) dist”(z, 71)

We then use Lemma 4.5 replacing 2 with Q' 5D Q and get

1
/ Er T 5/ Er T
@\ (wiuvy) dist™(z,7) onwiuvy) dist™(z,7%)
4 C c
(4.31) < C<7—t1(7§) log — + dmd. log — + 1)
pe
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for some positive constant depending only on the domain Q’. Then from (4.25), (4.27),
(4.30), and (4.31), it follows that

e C C
/ ne|?dz < CNY |62 (7—[1(72) log P dclog — + 1)
D, i=1 5

1 C 4. C 1
, <O —log =+ <log =+ — ).
(4.32) _C<h510gp6+h§10gs+h§>

Step 2. Interpolation with the radial solution in U¢ for all i € {1,...,M.}. We
construct for every i € {1,..., M.} a function 7t € L*(UZ, R3*3) such that

it = 7. in a neighborhood of OU?,

curl it = curln. in U?,

and
[ s PR log
C i ((H100)? (I ()
(4.33) +h2|b5|2< }(12 Ly ;2 V7Y

We first observe that by (4.27) and (4.28) it follows that
[N A
he

(4.34) @ S 5 Fste, 7D

Ve e Ul ie{l,..., M.}
(recall (2.1)). Furthermore, it holds that

curlge =L @ tLH Lyl in UL i€ {1,..., M.}

To simplify the notation we fix i € {1,..., M.} and assume without loss of generality
that bl = b, t£ = e3, H'(72) = 2¢, and 7% = [0,2(]es, so that Ul = U, = TQ”@_,; ) Hoees
and V! = V. = T5,. Then we let ., € L*>2(R3;R**3) be the solution to

div C¢ = 0 inR?,
curlé = b®esH' LRes inR3.
From (3.7) we have that
0] 0]
4.35 e <C—F—_ =C-,
(4.35) o) < C gy = O

with = (2/,23) and 2/ = (21, z2). From (4.35) we deduce that
(4.36) / e, |2da < C|b[2¢1og 2=
T;él’s 3

Hence there exists v. € WH(U,;R?) such that np e, = 1- + Vo, in U.. Then (4.34)
and (4.35) imply that

(4.37) |V (z)] < PRI Vo € Ue,
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and in particular
(4.38) lve ()| < |b| ( + log | 7

Next we take a cut-off function ¥. € C2°(R?;[0,1]) defined as follows:

> Vx € U..

ve =0yl Wi(@) = w(l2'l/pe),  VE(x) = ¢e(xs),
where ¢, ¢. € C(R; [0, 1]) are such that
Pt)=1 if | < %, p(t)=0 if |z|>1, ¢ <3,
¢e(t) =1 if te[de+oo,l— (0 +0c)],

6:(1)=0 if te(0.a]nf—aa, Joll< .

Here o, is a small parameter to be chosen later, satisfying h. > 0. > p.. Finally, we
define wu, := v.1). and (recall that i € {1,..., M.} is fixed)
(4.39) At =fe :==n. + Vu. in U..

In this way 7 = My, in {e =1} = 2(2 so—oo) T (0 + oc)es and 7). = 7. on OU..
It remains to show the validity of (4.33). In fact we have

(4.40) / 7. Pde < / e P + / 17 da.
Uc\Ve T5,°¢ {e#1IN(UA\ VL)

20

Moreover, in {1, # 1} there holds
Vue(@)] < [Voe| + [v=(2)] (V92 (2)] + [Vi2(2)])

(44 < iobl (o + G res i) v o))

We take the partition of the set {¢ # 1} N (Ue \ Vz) given by

Si :_T2(2£’p§ +deeg, S = (To 5 +6563)\(T2(Z 5.y 0ce3).

Gathering together (4.34) and (4.41) and using that h. > 0. > p. in the L™ estimate
of 7., we get

C|b]? 63
(4.4 [, Vel < CRARI (5 < G- 5

Moreover, recalling that ¢! =1 in Sy by (4.34), (4.41), we can estimate

} Cb%o 1 1 /¢ oe \?
‘775|2d$ < 52 : / I ID) + 2\ + log &; dz’
Sa € {e<]a'|< 55} |£L’ | Oz \Pe |{E I

2
< ClbFo. (1 +E+p5>

= 2 2
h? o2 o

C|b|?o- Pe 2
4.4 < ————|log
(443) - h? € t oz o2

€
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where we also used that ¢ > h.. Plugging (4.36), (4.42), and (4.43) into (4.40), we
obtain

2

2 2 (O pe !t
7| dz < C|b) Elog—+—|b| — tolog—+ — ).
U\ Ve Pz €

O¢

Finally, by choosing 0. = h? > p. we derive (4.33).
We remark that with our choice of the parameters we have that

20 1 1 20 2 1 1 1
(4.44) ( +log ><+)g<+1ogpf>gc+o,gc,
Pe ‘ d Pe  Oe¢ Pe 2’| ) pe 3e || |2’

for all x € U, such that |2’| < 3e. In particular, this shows, combined with (4.34),
(4.39), and (4.41), that the field 7. constructed in this step also satisfies

(4.45) 17 ()|<c|b|ii

for all x € U, such that |2'| < 3e. This will be used in order to show property (ii’)
for the mollified field 7.
Step 3. Construction of 7j.. We define 7). as follows:

N fi(z) ifxeUlfori=1,..., M.,
(4.46) e (@) { (@)

ne(x) otherwise in R3.

Then by estimate (4.32) in Step 1 and (4.33) we have that for h2 > p.

M,
7. *de = / . 2z + / 17 2dx
/fzsms) ) ) Z AV

C 5 ¢ 1 1 1
§C<10g+ log—+ +log—+f+ 2)

h h2 h? ht  h2

g

e C 1 1
SC’(hzlog—i-lo 7+7_|_ 12,2 )
che

where Q. (1) is defined as in Step 1. Eventually by choosing 0. = = h2and p. = («
which is compatible with (4.29), we immediately obtain, using (2. 9)

)%,

(4.47) / |7i-|?dx < c|logel.
Qe (pe
Step 4. Construction of .. We define 7). := 7. * .. Clearly

curl(.) = fic o in R3,

which in particular gives (i’). We need to show (ii’). First we notice that

(4.48) / 7. e = / 7 % o 2di < / 7. Pde < cllogel,
Q2E(N5) Q2E(N5) QE(NE)

where we have used (4.47). In order to conclude, it remains to show the estimate of
the L2 norm of 7). in a 2¢ neighborhood of the support of p.. We define Th. = {x €
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(Q)e : dist(z,supp fic) < 2¢}, and for each ¢ = 1,..., M. we define ('}/6)25 ={z €
R? : 0 < dist(x,7!) < 2¢} and let J be the endpomts of the segments 2. From the
construction of the field 7., recalhng (4.45) and (4.28), we have in particular that

bl 1

44 =S O )
(4.49) @) < € St

V2 € (12)se \ UjBoesa. (1)

Setting f;(x) = dlstlgjl,y 7y, one can see that

bz ]

_— Vo e RS
= dist(z,~%) + € v

(4.50) |fi* pe ()

Therefore, from (4.49) for all i € {1,..., M.}

¢ b ]
T

(4.51) [fexpe ()| < |7 |*pe ()] < Vo e (72)28\Uj33€/a5($g)-

Moreover, from (4.28) we have
(4.52)

bL 1 -
e |<chw€ <o ZdM"H«JM for & ¢ supp .
€

for the last inequality we have used (4.27). From this, setting B = U; B3z /a. (x1), we

obtain
/~ e dx<2/ " ot [ s
525
Sﬁ / |fz*‘P6| dx—l—/ |775*§08| dx
€ =1 (75)22
(4.53)
c M
<= dz + C|B
_hgg/ )a dlstx'ys) £)? +0 |h22
M,
C 9 C
SEZ 75>|bz| +2M.C—— 3h2 E

N
Il
_

where in the last inequality we have used (4.25). The conclusion follows from (4.48)
and the above estimate considering (2.9). 0

5. Proof of compactness and I'-limit. We finally pass to the proof of the
main results, namely Theorems 2.4 and 2.7.

hE i € P
Proof of Theorem 2.4. Compactness of ju;. Let (5, 5;) € My’ I )< AS, (15)
be as in the statement. Since p; is dilute, we can write p; = >, b; ® t“Hl I_'yj Where
7} C Q satisfy the conditions of Definition 2.3. We choose the parameters

(5.1) Pj = (aej th )3> §; = (asjhsj)2

and define the cylinders

(5.2) Ul:=T,,6,(v), Vj=T 0
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according to definition (4.19) given in section 4.

It turns out that, by the choice of p; and d;, the cylinders U ; are pairwise disjoint
and U;f N 'yjl? = () for all 4 # k; therefore, we have

(53) sJ H“]MB] > Z/ W BJ

L\VL

Recalling estimate (3.66), we find a constant ¢, > 0 such that

1 Pj i (2
(5.4) S W(B;)dw > (1 _ b )c*|b?| ,

where [S?| = H'(7}) — 26;. This and (5.3) give
log(p;/e 2150
Rz e(1- 22) “ngfﬂ 315
j

Pi log log(p;/e;) i
1- 1-2h b
‘C< SZ|>( 55 Tiogeyl 2 I H00)
By (2.8), (2.9), and the definition of p. we get

(5.6) C > PH (),

(5.5)

and in particular, by (2.1), we get
(5.7) C = |biH (7)) = |s1(2).
i
By (5.7) and [12, Theorem 2.5], up to subsequences, we derive

pe; = 1€ Mp(9).
Compactness of B;. For every j let €; CC 2 be as in the statement, namely
Q; =0\ {z € Q:dist(z,00) <¢,}.

Notice that, since © is of class C?, any €, can be obtained by a bi-Lipschitz trans-
formation of 2 with Lipschitz constant L; < L; moreover, the characteristic function
Xq, converges to 1 in measure. Thanks to Proposition 4.4 there exist a constant ¢ > 0,
not depending on ¢;, and a sequence

h: € L3/2(R3;R3X3) ﬂLQ(Q;R3X3),

such that

(5.8) | sl < loe, |
and

(5.9) curl iy = pj * oo, in Q.
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In particular,
curl(8; —e;7;) =0 in Q;.
Therefore, there exists u; € W12(£2;; R3) such that
(5.10) Bj = e;N; +Vu; in Q;.

Using the rigidity estimate on ;, we find a constant C; > 0 and a sequence {Q;} C
SO(3) such that

/ Vu; — Q,|%dx < cj/ dist®(Vu;, SO(3))dz.
J Q;
Now Theorem 5 in [22] and the hypothesis on ; imply that C; < C for some constant
C > 0 independent of j. This together with the growth conditions on W gives

C€§|log€j|Z/QdiS‘LQ(ﬁj7SO(3))dx

1
27/ distQ(Vuj7SO(3))dx—/ 31 [P da
2 Q0. Q.

J J

1 N
> QC/QJ. [Vu; — Qj|*dx — /Q &5)i;[*dz

J

1 2 1 215 |2
> c o, 1B; — Q;|"dx — Yl o, e5ln;*dz,
and by (5.8) we conclude that
(5.11) / 18 — Qj|*dx < Cs?| loge;].
Q

J

Hence, there exist £ € L?(Q, R3*3) with curl¢ = 0 and Q € SO(3), such that, up to
subsequences, it holds that

Q)8 — I
gj/|loge;l

REMARK 5.1. The crucial point in order to obtain the compactness of the (B’s
is the decomposition (5.10) which is guaranteed by (5.9). In the case in which we
fix the extension measure in the definition of admissible configurations AS:]_ (u4) for
the functionals F.,(pi5,-) (see Remark 2.14), thanks to Proposition 4.4 we obtain the
decomposition in the whole of Q. Eventually we can proceed as above and obtain (5.11)
in Q.

PROPOSITION 5.2 (lower bound). For any sequence e; — 0 and for any (u;, 3;) €

/\/12517% (Q) x AS, (1) converging to (u,&,Q) € Mg() x L?(Q;R3*3) x SO(3) in
the sense of Definition 2.6 with curl{ = 0, we have

xo, =& in L*(Q,R*?) and Q; —» Q € SO(3). 0

(5.12) Folp, €, Q) < liminf e, (uj, 5y).
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Proof. Let (u;,3;) be a sequence with equibounded energy that converges to
(1,€,Q) with curl€ = 0 as in the statement. Then by Definition 2.6 there exists a
sequence {Q;} C SO(3) such that, up to subsequence, @; — Q and

(5.13) pi = in Mg(Q),

QB — 1
gj\/|loge;l

where Q; := Q\ {z € Q : dist(z,90) < ¢,}. Let p; > 0 be as in (5.1) and define the
sets

(5.14) Xo, =& in LP(Q R,

(5.15) Q) = {z € Q: dist(x,supp u1j) > 2p;} and Q7 :=Q\ Q.
Then
1

——— | wW(g)dz=: F +F".
e3|loge;| Jar (55) 7

1
g By) = 5——— [ W(8))d
]—'](1“‘] 5]) 6?10g€j|/; (5]) X +

Step 1: Lower bound for F J/ We can perform a Taylor expansion of W near the
identity as in (3.51) that yields

1
(5.16) W({I+F)> §(CF : F—w(|F)),
with w(t)/t> — 0 as t — 0. We then set

Qrs; -1 -
= 12 ) Gj = GjXQj7
gj/|log el

G 7 .
and

o {1 it |Gyl <e
J

0 otherwise in €2, Xg = X Xy
Then, using (5.16), we have that
1 1
Fl=— - WQ-TB-dmzi/WI-i—s-\/ loge;1G;)%; - xa. dz
J 6?|10g€j| o ( J ) €?|10g€j| o ( iV ilG3)X; N

- [ (;%x . w(sj\/ucgsjncm)) -
Q

Gj:XjGjijéj'XQj &‘ZHOgE"
3 j

Now (5.14) implies that (G) is bounded in L?(Q; R3*3); then y; — 1 in Q in measure
and x;G; — € in L?(Q;R3*3). Therefore, by lower semicontinuity it follows that

. 1 ..~ . =~ 1
hjrggjlf/ﬂ §(CXJ-G]- 1 x;Gidr > /Q §(C§ s &d.
On the other hand, we have that

w(ejy/[loge;l|Gyl) G2 'x,w(€j\/|10g€j||éj|)
- J J

e3llog ;|G £3] log g;1/G|

G5 xa; - Xj
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is the product of a bounded sequence in L!(€) and a sequence converging to zero in

L>(9) since £;+/[loge;]|G;| < 5;/2\/|1og ¢;| whenever x; # 0. Then

- MMoge: |G
lim )Zj'XQjW(gj |log | J|)dm:0’

j—oo Jo e3|loge;l

which implies

1
(5.17) lijrgiOIng]{ 2/ §(C§ :&dx.
Q
Step 2: Lower bound for F}'. Notice that by (5.14) there exists a constant C' > 0
such that

(5.18) 18- QiPxaydo < Celloge|.

Without loss of generality we can assume that |u|(Q) > C > 0 (otherwise there is
nothing to prove), and then by lower semicontinuity we can also assume that |;|(£2) >
C.

Moreover, diluteness of u; corresponds to
= Zb; ® t;HlLy;,
i

with fyji- satisfying conditions of Definition 2.3. Consider the cylinders U;, V; defined
as in (5.2); thus, recalling (5.4), we have that

1 1
- | W(Bj)der > 55— / W(B;)dx
FTiog )] Joy ) oz 2- oy

> (1+0(1)C 3 141 (2)) = (1+0(1)Cli () = (1 +o(D)C.

where 0(1) — 0 as j — co. Let v > 0 and set A := v/(1 — v); then using the previous
estimates and (5.18) it holds that

FY = L ( » W(B;)dx + X W(@»)dx)

3] log e, a

1—-v ~
= 6210g6|( o W(ﬂj)dl‘—l—)\(l+0(1))CE?|10g5j|>
J J 5
1—-v -
5.19 > W (B;)dx + \C Bi — Qil*xq,dz | .
( ) 5?‘10g€j| ( Q;_’ ( J) Q;’| J J‘

By (3.28) we get for any A > 0

/ W) + MG - Qiffdr > 3 / W(B,) + A8, — Q,de
Q/nQ;

1)’ Ti\YY

> > ISileT log LUR(Q;, b, 1, (S5 25, )

icI(4) €
i Pi qm i 40| Qi
=) |Sj|e?10g;;w(f,@?bj,tj7\Sj|,ej,pj),
i€l(j)
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where ‘
I1(5) :={i: v; C Q1.
Plugging this into (5.19) with A := AC, by (5.1) we infer that

1Og Pj /E 7 7 41 L
(5.20) F} > (1 —v)(1— 2h,, EJ)IITJJIJ Z H (Y)W, QTbE, 1%, ISk €5, p)).-
()

To conclude the proof, fix M > 1 and K > 0, and denote
1. g; ANNIA 2. [; N B
I ={icl(j):|bj| <K} and I::={iecl(j):|bj|>K}.

For sufficiently big j we have |S}| > $he, = Mpj for all i € I(j); thus if was i is the
function given by Lemma 3.12, from estimate (3.64) it follows that

ST H ()T, QTY 8|S <5, ;)

ZEIl
Tt 41 CK2 €j
> ZH <\IJ0 Q] b],t]) W_WM,K (pj))
i€l}
i T1i 41 CK2 &j
(5.21) >y H () Po(Q] b)) — C (M +wmK <pj)) :

o7l
zEIj

Moreover, from (3.65), using that [b%| > K if i € I7, we get

> H DU QB 15} 2 00) 2 (1 |sl) e Y H G

iel? iel?
Pj i i
(5.22) = ( |SZ¢_> > H (e Kb
iel?

If now we choose K such that ¢, K > ¢, where ¢ satisfies (3.12), and recalling that
\IIO(QTbZ tt) > \IIO(Qsz tt), we have from (5.21) and (5.22)

777 7777

> H ()R, Qb 5,150 25, p5)

i€l(j)
P 1/ i\ Tt 41 Cl<2 €j
> - AN/ .
‘( |S;|>.Z'”<%) @)= (G - (32) )

i€l(j)

thus for every Q cC Q
1

liminf £ > lim inf ——-— W (B;)dx
J—roo i—oo €5|loge;| QO
L CK?
e 1/.14 T1i 41
> (L= v)liminf 3 H' () Wo(Q] b}, 85) = =
i€I(j)
- K2
(5.23) >(1— u)/ To(QTb(x), t(x))dH! (x) — C—,
’yﬁfl M
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where the last inequality follows by the H!-ellipticity of ¥y and then by the lower
semicontinuity of the associated line tension energy, from the weak* convergence of
QF 1y to QT p, with p=b @ tH' Ly € Mp(Q).

Conclusion. From Step 1 and Step 2, specifically from estimates (5.17) and (5.23),
taking the limit as M — oo and then as v — 0, we obtain

li_minf}'sj(,uj,ﬂj)Z/ lcgzgdwr/ To(QTb, t)dH .
J—0 ’ Q 2 N

Since Q cC Q is arbitrary, this concludes the proof. 0

For the upper bound we split the proof into three propositions, exploiting the fact
that all measures in Mg(Q2) can be approximated by dilute measures.

PROPOSITION 5.3. Let v € Mg(R?) be polyhedral, and fix r > 0. Then for any
e > 0, there exists 0% € L' (Q;R3*3) such that curl 0¥ = v in Q and

1
(5.24) lim sup ——— / CoY : 0%dx < / o (b, t)dH",
0 |loge| Jo ) (D)
where (), := {x € R3 : dist(z,Q) < r} and the sequence 0V satisfies
C
5.25 0 (z)] < ————  Vz R
(5.25) 0@ < gy

Moreover, the sequence ég = 0Vxp. € L2(Q;R3*3), with curl é’e’ = vk, in ), satisfies

(5.26) lim sup#/ CO¥ : 0¥ dx < / o (b, t)dH"
c—o0  |logel Jq AN(Q)
and
v 9 3
(5.27) |6 () Vo € R”.

< -
= dist(x, ) + ¢

Proof. The proof of this statement is given in [16, Proposition 6.7], where the
I-limsup estimate for the linear problem is obtained. The explicit estimates (5.25)
and (5.27) can be deduced from the construction of the recovery sequence. Indeed, in
[16] the latter is obtained essentially by gluing the solution in the whole space given
in (4.1) with g = v together with the cell problem solution for each single segment in
the support of v. This is rigorously done by using Lemmas 5.10 and 5.11 in [16]. In
particular this gives the estimate (5.25) as a combination of (4.4) and (3.7). Finally,
(5.27) can be easily obtained by (5.25). d

PROPOSITION 5.4. Let r > 0 and (1, &, Q) € Mp(R3) x L®(Q;R3*3) x SO(3)
with p =3, b" @ t'H' L~" polyhedral and curl§ = 0.

Then setting B = Q(I + e\/|1ogel¢ + £6%) with v = QT p = Y QT @ t'H LA
and 6% given by Proposition 5.3, we have . € AS-(ul_€),
QT —1 _ A

e+/|loge| V| loge|

(5.28) € in L*(Q;R®*3),

and

e—0

lim sup F (u, B:) g/ 1<Cg;§dgc+/ To(QTb, t)dH? .
Q2 AA(Q),
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Proof. Let (p,&,Q) and 5. be as in the statement. Clearly 8. € AS:(ul-Q);
furthermore, it holds that

QB -1 _ 6
ey/|loge] V| logel
Indeed, from (5.27) we obtain that 8”/,/[loge] is bounded in L2(Q; R3*3) and con-
verges to zero strongly in L'(Q; R3*3). Then (ulL_ 2, 8.) converges to (1L, &, Q) in
the sense of Definition 2.6 and also satisfies (5.28).
We define Q.o (p) := {z € Q : dist(z,supp p) > €} and (7)ea := Q \ Qea () for
a € (0,1). Then using the frame indifference and the Taylor expansion we get

1 / v
5210g5|/ W(I+€ \log€|£—|—698)dx
1

= / <cg fdo + —— ce" 0¥ dx +
Qea(n) 2

T
[oge| Jo.a(u) 2 ) [log e[ Joa ()
1 9”
+/ o(ey/|logel€ + ¢ d
(1)

— & in L?(;R33).

C¢: 0V dx

7

e?|loge|
where o(F)/|F|> — 0 as |F| — 0. By Proposition 5.3 we deduce

(5.29) nmsupL / lcég;égdxg / o (QTb, t)dH! .
[loge| Jq 2 e

e—0

Recalling that ¢ € L*®(Q;R**3) and, from (5.27), 67/\/]loge| converges to zero
strongly in L(£2; R3*3), we have

CE: 6Ydx = 0.

el
o
=0 /lloge| Jo.a ()

Finally, setting w(t) := sup|pj<, |o(F)], we find

/ 0(5\/\log5|§+5é;’)dx
o (p)

.
50 e?|loge|

e—0

_ w(|ey/Tlogel€ + 6”]) \/|log6£+50”|2
< lim XQ o () . 3 =0.
e—0 le\/[Tog e|€ + 67| e?|loge]

Indeed, by (5.27), in Qe () we have |#7| < Ce=*, and then the integrand

w(ley/|logel§ +eb7]) |ey/|logelé + 0
le/|1ogel€ + €072 ?[loge|
is the product of a sequence converging to zero in L°°(£2) and a bounded sequence in
LY(Q).
Finally, it remains to estimate the energy in (7). Using the frame indifference
and the estimate from above for W we get

1 1 .
W(B.)dx < —— lev/|log g€ + €0 | dx

e2|logel J(4).a e?|loge| J ().

2 .
<9 / €2da + —— [ |0vde,
(7)ce [log el /(7).
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where the first term of the right-hand side tends to zero as € — 0, while from (5.27)
we have
lim —— 107 2de < C(1 — @).
5 Tiog el Jo..
Thus we conclude that
1 1 1 .~ 4
limsup F(p, Be) < | =C¢: &dx + limsup —— [ =C6OY : 0Ydx
c>0 02 c—o |loge| Jo 2
2

+ E—
[loge| J(3).a
1
< / —C¢ : &dx +/ To(QTb, t)dH! + C(1 — a),
02 AN(Q)

16%|2dar

O

which concludes the proof taking the limit as a — 1.

PROPOSITION 5.5 (upper bound). Let (i, &, Q) € Mp(Q2) x L2(2;R3*3) x SO(3
with curl§ = 0. Then, for every sequence €, — 0 there exists a sequence (fig, Br)
Mp(R?) x AS., (jix|_Q) such that ji, L Q is (he,, az,)-dilute in Q, i, — p in €,

QB —1
ex/ | log x|

N

m

—¢ in LR,
and

limsup F, (i L, Br) < Fo(w, &, Q).

k—o0

Proof. By a standard density argument we can assume that & € L>(Q;R3%3).
The proof is based on a diagonal argument using Proposition 5.4, and it is analogous
to the linear case [16, Proposition 6.8].

Let QT = QTb @ tH' L +; by [12, Theorem 3.1]

[ @ nan
.
with ¥y as defined in (2.12), is the lower semicontinuous envelope of
/ To(QTb, t)dH?.
.

Then, we can find a sequence v; = b; @ t;H'Lv; € Mp(£2) converging weak* to u
such that

(5.30) lim sup / Uo(QTb;,t;)dH! < / To(QTb, t)dH! .
j—)OO Yj v
Now we denote by F the functional
1
(5.31) Fu& @) = [ geecanr [ wi@ i
Q2 YN(R2)r

for r > 0. Then for all j we apply [16, Lemma 6.4] and find a polyhedral measure
pi=b; @ t;H'Lv; € Mp(R?) such that

(5.32) Flijp&.Q. 1) < (14 e F(1,6,Q.0) + CL,
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and f; is close to v; in the following sense: there exists a bi-Lipschitz map f7 : R® —
R3, with

) . 1
(5.33) |f(x) — x| + |Df? (x) — Id| <5 Vr € R,
such that

4 1
(5.34) ln; = fivl(Q) < 7

In particular, p; X pin Q as j — oo. Furthermore, since the restriction L Q
is polyhedral, it is not restrictive to assume that the segments of the support of
; intersect the boundary of  with an angle at most a; > 0 (otherwise a small
modification of the support of u; for segments that are tangent to 992 will reduce to
the latter case with arbitrarily small errors in the line tension energy and therefore
in (5.32)). Thus g; is (he, ac)-dilute in Q according to Definition 2.3 for sufficiently
small €. From Proposition 5.4 applied to (u;,§,Q), for every j there is a sequence
Bl € AS., (11;L_Q) that satisfies

. LAY R— _— m N ’
eny/logex| V/Ilogex|
and
(5.36) limsup Fe, (1 LQ, B) < Fl;.€,Q, i)

k—o0

The function 6%/ is given by Proposition 5.3 and by (5.26) satisfies

HHi
|| osk S M.
\Y ‘10g€k| L2(Q;R3%3)
By (5.30) we finally obtain
(5.37) lim sup lim sup F, (14 I_Q,Bi) < Folp, &, Q).

Jj—o0 k—oo

In order to construct a diagonal sequence which satisfies the thesis, we follow the
same idea of [16], and we notice that the following properties are satisfied for k large
enough:

(1) The measures p; are (he,,ae, )-dilute in €;

(2) Fer (L0, 8)) < Fluj,€.Q. 1) + &

(3) d(6Y /v/|Togeg],0) < %, where d denotes the distance that metrizes the weak

convergence in L2 N {f : || fl|lp2(rexsy < M}
For every j we define an increasing sequence of indices m(j) as follows:

(5.38) m(j) :=min{m >m(j —1) : p; satisfies (1)-(3) Vk >m}.

Now for every k > 0 we define fi := p; and Sy := 6% if k€ [m(j),m(j+1))NN. By
(5.34) we have

ik — Fivl() < % vk € [m(j),m(j + 1)),
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and then from (5.33) and the fact that v; weak™ converges to u, we conclude that fi
weak™ converges to p. In addition, by (3) and (2) we also have

QTBL -1
ery/|log e |

limsup F., (s L Q, Br) < Fo(w, &, Q),

k—o0

—¢  in L*(Q;R*?),

and the proof is concluded. 0

Proof of Theorem 2.7. The thesis is a direct consequence of Propositions 5.2 and
5.5. |

Appendix A. Notation. Here we collect the notation we adopted throughout
the paper.
e (), c denote strictly positive constants which may vary from line to line.
e ! denotes the one-dimensional Hausdorff measure.
e H!'L E denotes the one-dimensional Hausdorff measure restricted to the set
E.
e 1 ® v denotes the tensor product for u,v € R3.
e curl A denotes the 3 x 3 matrix whose rows are the curl of the rows of A
if A e R3X3, the vector (810,12 — 820,11,81(122 — 82(121) if A e R2%2 with
(A)ij = az.
e div A denotes the vector in R™ whose components are the divergence of the
rows of A with A € R™"*"™.
e A : B denotes the Euclidean scalar product of matrices, ie., A : B =
> AijBij.
For n € N, SO(n) denotes the n-dimensional special orthogonal group.
dist(4, SO(n)) := mingeso(m) |4 — Q| for n € N and A € R™*™.
M(Q; R3%3) denotes the space of 3 x 3 matrix-valued measures.
B denotes a discrete lattice in R? that represents the space of admissible
renormalized Burgers vectors.
e For v C R? rectifiable, L'(vy; B;H'L~) denotes the space of the admissible
Burgers vector fields, i.e., the space of all measurable functions b: v — B that
satisfy

/ b(z)|dH! (z) < +oo.
.
o Mp(Q) denotes the set of admissible dislocation densities, i.e.,

Mp(Q) == {M € MR : p=b@ tH'L~,

divp=0, be B, vy l—rectiﬁable}.

o |1|(2) denotes the total variation of a measure p € M(Q;R™**™); ie., the
mass of |p].

For 2 C R3, we set Q.(u) := {x € Q: dist(x,supp u) > ¢}.

For € > 0, we set (Q). := {z € R3: dist(z,Q) < &}.

x e denotes the characteristic function of the set £ € R™.

For & > 0, ¢, := e 3p(x/e) denotes a mollification kernel with ¢ < C'xp, (o).
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For t € S%, Q; € SO(3) is the matrix such that Q;e3 = t, and

Dy (r,0,2) := Q(rcosh,rsinb, z)

is the change of variables to cylindrical coordinates with axis t.

(er, €p,e3) denotes the local basis in cylindrical coordinates of R3.

For R > 0 B, denotes the ball of radius R in R? centered in the origin and
Bpg, the ball of radius R in R3 centered in the origin.

ot =b@tH LRt for b € R? and t € S2.

For b € R3 t € S% r,R,h € (0,00) with r < R < h we define the hollow
cylinders,

(A1) Tpf=(Br\B) x (0,h), QI = Qu(By\ B.) x (0,h)),
and the (full) cylinders,
(A2) TF:=T)" =By x(0,h), QT :=QT>" =Qi(By x (0,h)).

e For the v C R3 segment, p > 0, § > 0, we define, with a little abuse of
notation, the cylinder

T, s5(7) := A(B; x Ss),

where S5 C R is a segment of length H!(y) — 2§ and A is an affine transfor-
mation that maps S5 into v and the midpoint of Ss into the midpoint of ~.
If v is fixed, we simply write T}, 5 in place of T}, 5(y). The latter will be used
only in section 4.

o (V) ={z eR3: dist(z,7) < e}
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