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Abstract. Robotic Process Automation (RPA) is an emerging technol-
ogy that allows organizations to automate intensive repetitive tasks (or
simply routines) previously performed by a human user on the User In-
terface (UI) of web or desktop applications. RPA tools are able to capture
in dedicated UI logs the execution of several routines and then emulate
their enactment in place of the user by means of a software (SW) robot.
A UI log can record information about many routines, whose actions are
mixed in some order that reflects the particular order of their execution
by the user, making their automated identification far from being trivial.
The issue to automatically understand which user actions contribute to
a specific routine inside the UI log is also known as segmentation. In
this paper, we leverage a concrete use case to explore the issue of seg-
mentation of UI logs, identifying all its potential variants and presenting
an up-to-date overview that discusses to what extent such variants are
supported by existing literature approaches. Moreover, we offer points of
reference for future research based on the findings of this paper.

1 Introduction

Robotic Process Automation (RPA) is an automation technology in the field 
of Business Process Management (BPM) that creates software (SW) robots to 
replicate rule-based and repetitive tasks (or simply routines) performed by hu-
man users in their applications’ user interfaces (UIs). A typical routine that can 
be automated by a SW robot using a RPA tool is transferring data from one sys-
tem to another via their respective UIs, e.g., copying records from a spreadsheet 
application into a web-based enterprise information system [21]. In recent years, 
much progress has been made both in terms of research and technical devel-
opment on RPA, resulting in many deployments for industrial-oriented services 
[19, 4, 17, 28]. Moreover, the market of RPA solutions has developed rapidly and 
today includes more than 50 vendors developing tools that provide SW robots 
with advanced functionalities for automating office tasks in operations like ac-
counting and customer service [5]. Nonetheless, when considering state-of-the-art 
RPA technology, it becomes apparent that the current generation of RPA tools 
is driven by predefined rules and manual configurations made by expert users 
rather than automated techniques [2, 10].
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In fact, as reported in [16], in the early stages of the RPA life-cycle it is
required the support of skilled human experts to: (i) identify the candidate rou-
tines to automate by means of interviews and observation of workers conducting
their daily work, (ii) record the interactions that take place during routines’ en-
actment on the UI of software applications into dedicated UI logs, and (iii) man-
ually specify their conceptual and technical structure (often in form of flowchart
diagrams) for defining the behavior of SW robots.

This approach is not effective in case of UI logs that keep track of many
routines executions, since the designer should have a global vision of all possible
variants of the routines to define the appropriate behaviours of SW robots, which
becomes complicated when the number of variants increases. Indeed, in presence
of UI logs that collect information about several routines, the recorded actions
are mixed in some order that reflects the particular order of their execution
by the user, making the identification of candidate routines in a UI log a time-
consuming and error-prone task. The challenge to understand which user actions
contribute to which routines inside a UI log is known as segmentation [2, 21].

This paper aims to explore the challenge of automated segmentation in RPA
through the evaluation of two research questions: (i) what are the variants of
a segmentation solution needed to properly deal with different kinds of UI log?
(ii) to what extent such variants are supported by literature approaches?

To answer these research questions, we first leverage a concrete RPA use case
in the administrative sector to explain the segmentation issue (Section 2). After
having described the relevant background on UI logs (Section 3), we discuss
how a segmentation technique should behave in presence of three different (and
relevant) forms of UI logs, which may consist of: (i) several executions of the
same routine, (ii) several executions of many routines without the possibility to
have user actions in common, and (iii) several executions of many routines with
the possibility to have user actions in common (Section 4). Then, we investigate
how and if such forms of UI logs are tackled by the current state-of-the-art
segmentation approaches (Section 5). Finally, we provide future directions for
automated segmentation in RPA based on the findings of our study (Section 6).

2 A RPA Use Case

In this section, we describe a RPA use case derived by a real-life scenario at
Department of Computer, Control and Management Engineering (DIAG) of
Sapienza Universitá di Roma. The scenario concerns the filling of the travel au-
thorization request form made by personnel of DIAG for travel requiring prior
approval. The request applicant must fill a well-structured Excel spreadsheet
(cf. Fig. 1(a)) providing some personal information, such as her/his bio-data
and the email address, together with further information related to the travel,
including the destination, the starting/ending date/time, the means of transport
to be used, the travel purpose, and the envisioned amount of travel expenses,
associated with the possibility to request an anticipation of the expenses already
incurred (e.g., to request in advance a visa). When ready, the spreadsheet is
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(a) Excel spreadsheet (b) Google form

Fig. 1: UIs involved in the use case

sent via email to an employee of the Administration Office of DIAG, which is
in charge of approving and elaborating the request. Concretely, for each row
in the spreadsheet, the employee manually copies every cell in that row and
pastes that into the corresponding text field in a dedicated Google form (cf. Fig.
1(b)), accessible just by the Administration staff. Once the data transfer for a
given travel authorization request has been completed, the employee presses the
“Submit” button to submit the data into an internal database.

In addition, if the request applicant declares that s/he would like to use
her/his personal car as one of the means of transport for the travel, then s/he
has to fill a dedicated web form required for activating a special insurance for the
part of the travel that will be performed with the car. This further request will
be delivered to the Administration staff via email, and the employee in charge of
processing it can either approve or reject such request. At the end, the applicant
will be automatically notified via email of the approval/rejection of the request.

The above procedure, which involves two main routines (in the following, we
will denote them as R1 and R2), is performed manually by an employee of the
Administration Office of DIAG, and it should be repeated for any new travel
request. Routines such as these ones are good candidates to be encoded with
executable scripts and enacted by means of a SW robot within a commercial
RPA tool. However, unless there is complete a-priori knowledge of the specific
routines that are enacted on the UI and of their concrete composition, their
automated identification from an UI log is challenging, since the associated user
actions may be scattered across the log, interleaved with other actions that are
not part of the routine under analysis, and potentially shared by many routines.

For the sake of understandability, we show in figures 2 and 3 the interaction
models of R1 and R2 required to represent the structure of the routines of
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Fig. 2: Interaction model for R1

Fig. 3: Interaction model for R2

interest, depicted as Petri nets.1 For example, analyzing the Petri net in Fig. 2,
it becomes clear that a proper execution of R1 requires a path on the UI made
by the following user actions:2

– loginMail, to access the client email;
– accessMail, to access the specific email with the travel request;
– downloadAttachment, to download the Excel file including the travel request;
– openWorkbook, to open the Excel spreadsheet;
– openGoogleForm, to access the Google Form to be filled;
– getCell, to select the cell in the i-th row of the Excel spreadsheet;
– copy, to copy the content of the selected cell;
– clickTextField, to select the specific text field of the Google form where the

content of the cell should be pasted;
– paste, to paste the content of the cell into a text field of the Google form;
– formSubmit, to finally submit the Google form to the internal database.

As shown in Fig. 2, the user actions openWorkbook and openGoogleForm can
be performed in any order. Moreover, the sequence of actions 〈getCell, copy,
1 The research literature is rich of notations for expressing human-computer dialogs

as interaction models. Among them, Petri nets guarantee a good trade-off between
expressiveness and understandability of the models [26].

2 Note that the user actions recorded in a UI log can have a finer granularity than the
high-level ones used here just with the purpose of describing the routine’s behaviour.
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clickTextField, paste〉 will be repeated for any travel information to be moved
from the Excel spreadsheet to the Google form. On the other hand, the path of
user actions in the UI to properly enact R2 is as follows:

– loginMail, to access the client email;
– accessMail, to access the specific email with the request for travel insurance;
– clickLink, to click the link included in the email that opens the Google form

with the request to activate the travel insurance on a web browser;
– approveRequest, to press the button on the Google form that approves the

request;
– rejectRequest, to press the button on the Google form that rejects the request;

Note that the execution of approveRequest and rejectRequest is exclusive, cf.
the Petri net in Fig. 3. Then, in the interaction models of R1 and R2, there
are transitions that do not represent user actions but are needed to correctly
represent the structure of such models. These transitions, drawn with a black-
filled rectangle, are said to be “invisible”, and are not recorded in the UI logs
(cf. Inv1, Inv2 and Inv3).

3 Preliminaries on User Interface Logs

In this section, we provide some preliminary notions about User Interface (UI)
logs, needed to understand the rest of the paper. A single UI log in its raw form
consists of a long sequence of user actions recorded during one user session.3

Such actions include all the steps required to accomplish one or more relevant
routines using the UI of one or many sw application/s. For instance, in Fig. 4,
we show a snapshot of a UI log captured using a dedicated action logger4 during
the execution of R1 and R2. The employed action logger enables to record the
events happened on the UI, enriched with several data fields describing their
“anatomy”. For a given event, such fields are useful to keep track the name
and the timestamp of the user action performed on the UI, the involved sw
application, the human/sw resource that performed the action, etc.

For the sake of understandability, we assume here that any user action as-
sociated to each event recorded in the UI log is mapped at most with one (and
only one) Petri net transition, and that the collection of labels associated to the
Petri net transitions is defined over the same alphabet as the user actions in the
UI log,5 i.e., the alphabet of user actions in the UI log is a superset of that used
for defining the labels of Petri net transitions. In the running example, we can
recognize in R1 and R2 a universe of user actions of interest Z = {loginMail,
accessMail, downloadAttachment, openWorkbook, openGoogleForm, getCell, copy,
clickTextField, paste, formSubmit, clickLink, approveRequest, rejectRequest}.
3 We interpret a user session as a group of interactions that a single user takes within

a given time frame on the UI of a specific computer system.
4 The working of the action logger is described in [1]. The tool is available at:

https://github.com/bpm-diag/smartRPA
5 In [22], it is shown how these assumptions can be removed.
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Fig. 4: Snapshot of a UI log captured during the executions of R1 and R2

As shown in Fig. 4, a UI log is not specifically recorded to capture pre-
identified routines. A UI log may contain multiple and interleaved executions of
one/many routine/s (cf. the blue/red boxes that group the user actions belonging
to R1 and R2, respectively), as well as redundant behavior and noise. We consider
as redundant any action that is unnecessary repeated during the execution of a
routine, e.g., a text value that is first pasted in a wrong field and then is moved
in the right place through a corrective action on the UI. On the other hand, we
consider as noise all those actions that do not contribute to the achievement of
any routine target, e.g., a window that is resized. In Fig. 4, the sequences of user
actions that are not surrounded by a blue/red box can be safely labeled as noise.

Segmentation techniques aim to extract from a UI log all those user actions
of a routine R, filtering out redundant actions and noise. Any sequence of actions
in the UI log that can be replayed from the initial to the final marking of the
Petri net-based interaction model of R is said to be a routine trace of R. For ex-
ample, a valid routine trace of R1 is 〈loginMail, accessMail, downloadAttachment,
openWorkbook, openGoogleForm, getCell, copy, clickTextField, paste, formSubmit〉.
The interaction model of R1 suggests that valid routine traces are also those ones
where: (i) loginMail is skipped (if the user is already logged in the client email);
(ii) the pair of actions 〈openWorkbook, openGoogleForm〉 is performed in reverse
order; (iii) the sequence of actions 〈getCell, copy, clickTextField, paste〉 is exe-
cuted several time before submitting the Google form. On the other hand, two
main routine traces can be extracted from R2: 〈loginMail, accessMail, clickLink,
acceptRequest〉 and 〈loginMail, accessMail, clickLink, rejectRequest〉, again with
the possibility to skip loginMail, i.e., the access to the client email.

4 Identifying the Segmentation Cases

Given a UI log that consists of events including user actions with the same
granularity6 and potentially belonging to different routines, in the RPA domain

6 The UI logs created by generic action loggers usually consist of low-level events
associated one-by-one to a recorded user action on the UI (e.g., mouse clicks, etc.).
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segmentation is the task of clustering parts of the log together which belong to
the same routine. In a nutshell, the challenge is to automatically understand
which user actions contribute to which routines, and organize such user actions
in well bounded routine traces [2, 21].

As shown in Section 3, in general a UI log stores information about several
routines enacted in an interleaved fashion, with the possibility that a specific
user action is shared by different routines. Furthermore, actions providing re-
dundant behavior or not belonging to any of the routine under observation may
be recorded in the log, generating noise that should be filtered out by a segmen-
tation technique. Based on the above considerations, and on a concrete analysis
of real UI logs recorded during the enactment of the routines presented in Sec-
tion 2, we have identified three main forms of UI logs, which can be categorized
according to the fact that: (i) any user action in the log exclusively belongs to
a specific routine (Case 1); (ii) the log records the execution of many routines
that do not have any user action in common (Case 2); (iii) the log records the
execution of many routines, and the possibility exists that some performed user
actions are shared by many routines at the same time (Case 3). In the follow-
ing, we analyze the characteristics of the three cases and of their variants. For
the sake of understandability, we use a numerical subscript ij associated to any
user action to indicate that it belongs to the j − th execution of the i− th rou-
tine under study. Of course, this information is not recorded in the UI log, and
discovering it (i.e., the identification of the subscripts) is one of the “implicit”
effects of segmentation when routine traces are built.

Case 1. This is the case when a UI log captures many executions of the same
routine. Of course, in this scenario it is not possible to distinguish between shared
and non-shared user actions by different routines, since the UI log keeps track
only of executions associated to a single routine. Two main variants exist:

– Case 1.1. Starting from the use case in Section 2, let us consider the case
of a UI log that records a sequence of user actions resulting from many non-
interleaved executions of R1 (cf. Fig. 5(a)). We have also the presence of some
user actions that potentially belong at the same time to many executions
of the routine itself. This is the case of loginMail, which can be performed
exactly once at the beginning of a user session and can be “shared” by many
executions of the same routine. Applying a segmentation technique to the
above UI log would trivially produce a segmented UI log where the (already
well bounded) executions of R1 are organized as different routine traces: the
yellow and orange vertical lines outline the routine traces, while the red line
outlines the routine segment of R1.

– Case 1.2. The same segmented UI log is obtained when the executions of R1
are recorded in an interleaved fashion in the original UI log (cf. Fig. 5(b)).
Here, the segmentation task is more challenging, because the user actions of
different executions of the same routine are interleaved among each others,
and it is not known a-priori to which execution they belong.

We will discuss the abstraction issue in Section 5, where state-of-the-art techniques
are shown that enable to flatten the content of a log to a same granularity level.
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(a) Case 1.1 (b) Case 1.2

Fig. 5: Variants for Case 1

Both variants of Case 1 are affected by noise or redundant actions. The logs
contain elements of noise, i.e., user actions Yk∈{1,n} ∈ Z (remind that Z is
the universe of user actions allowed by a UI log, as introduced in Section 3)
that are not allowed by R1, and redundant actions like copy and paste that
are unnecessary repeated multiple times. Noise and redundant actions need to
be filtered out during the segmentation task because they do not contribute to
the achievement of the routine’s target. For the sake of space, in the following
analysis we do not consider anymore the presence of noise and redundant actions,
since their handling is similar for all the cases.

Case 2. In this case, a UI log captures many executions of different routines,
with the assumption that the interaction models of such routines include only
transitions associated to user actions that are exclusive for that routines. To
comply with the latter constraint, let us suppose that in both interaction models
of R1 and R2 the transitions loginMail and accessMail are not required. Four main
variants of Case 2 can be identified:

– Case 2.1. Let us consider the UI log in Fig. 6(a). The output of the seg-
mentation task would consist of a segmented log where the (already well
bounded) executions of R1 and R2 are organized as different routine traces:
(i) the yellow and orange vertical lines outline the routine traces of R1, (ii)
the light blue and grey vertical lines outline the routine traces of R2, while
(iii) the outer red and blue lines outline the routine segments of R1 and R2.
In the following, the coloring scheme will be kept the same.
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(a) Case 2.1 (b) Case 2.2

(c) Case 2.3 (d) Case 2.4

Fig. 6: Variants for Case 2

– Case 2.2. Similarly to what already seen in Case 1.2, it may happen that
many executions of the same routine are interleaved among each other (cf.
Fig. 6(b)), e.g., the first execution of R1 is interleaved with the second execu-
tion of R1, the first execution of R2 is interleaved with the second execution
of R2, and so on.

– Case 2.3. Another variant is when the UI log records in an interleaved
fashion many different routines but not the routine executions (cf. Fig. 6(c)),
e.g., the first execution of R2 follows the first execution of R1, the second
execution of R2 follows the second execution of R1, and so on.
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– Case 2.4. The complexity of the segmentation task becomes more challeng-
ing in presence of both interleaved routines and routine executions (cf. Fig.
6(d)), e.g., the first execution of R1 is interleaved with the second execution
of R1; the second execution of R1 is interleaved with the first execution of
R2; the first execution of R2 is interleaved with the second execution of R2.

Case 3. In this case, a UI log captures many executions of different routines,
and there exist user actions that are shared by such routines. This case perfectly
reflects what happens in the use case of Section 2. In particular, loginMail and
accessMail are shared by R1 and R2, as they are included in the interaction
models of both routines. Four variants can be distinguished:

– Case 3.1. Let us consider the UI log depicted in Fig. 7(a). loginMail is po-
tentially involved in the enactment of any execution of R1 and R2, while
accessMail is required by all executions of R1 and R2, but it is not clear
the association between the single executions of accessMail and the routine
executions they belong to. The complexity of the segmentation task here
lies in understanding to which routine traces the execution of loginMail and
accessMail belong to. The outcome of the segmentation task will be a seg-
mented log where the executions of R1 and R2 are organized as different
routine traces according to the coloring scheme explained in Case 2.1.

– Case 3.2. This is the case when the UI log records interleaved executions of
the same routine in presence of shared user actions (cf. Fig. 7(b)), e.g., the
first execution of R1 is interleaved with the second execution of R1, and the
first execution of R2 is interleaved with the second execution of R2.

– Case 3.3. Another variant is when the UI log records in an interleaved
fashion many different routines but not the routine executions in presence
of shared user actions (cf. Fig. 7(c)), e.g.: the first execution of R2 follows
the first execution of R1 and the second execution of R2 follows the second
execution of R1.

– Case 3.4. The segmentation task becomes more challenging in presence of
more complex UI logs consisting of both interleaved routines and routine
executions with shared user actions (cf. Fig. 7(d)), e.g., the first execution
of R1 is interleaved with the second execution of R1, the second execution
of R1 is interleaved with the first execution of R2, and the first execution of
R2 is interleaved with the second execution of R2.

The above three cases and their variants have in common that all the user
actions are stored within a single UI log. It may happen that the same routine
is spread across multiple UI logs, in particular when there are multiple users
that are involved in the execution of the routine on different computer systems.
This case can be tackled by “merging” the UI logs where the routine execution
is distributed into a single UI log, reducing the segmentation issue to one of
the already analyzed cases. It is worth noticing that although the classification
of cases and variants was illustrated with only two routines (interleaving or
not), the classification is defined in a generic way and applies to any number of
routines.
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(a) Case 3.1 (b) Case 3.2

(c) Case 3.3 (d) Case 3.4

Fig. 7: Variants for Case 3
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Table 1: Literature approaches to tackle segmentation variants

Papers Case 1 Case 2 Case 3
1.1 1.2 2.1 2.2 2.3 2.4 3.1 3.2 3.3 3.4

Agostinelli et al. [3] X X X X X X ∼ ∼
Baier et al. [7] X X

Bayomie et al. [8] X
Bosco et al. [9] X X

Kumar et al. [18] X X
Leno et al. [20] X ∼ X ∼ ∼ ∼

Liu [23] X X ∼ ∼ ∼
Fazzinga et al. [12] X X X
Ferreira et al. [13] X X

Mannhardt et al. [24] X X
Măruşter et al. [27] X
Srivastava et al. [29] X X

5 Assessing the Segmentation Approaches

In the field of RPA, segmentation is an issue still not so explored, since the
current practice adopted by commercial RPA tools for identifying the routine
steps often consists of detailed observations of workers conducting their daily
work. Such observations are then “converted” in explicit flowchart diagrams [16],
which are manually modeled by expert RPA analysts to depict all the potential
behaviours (i.e., the traces) of a specific routine. In this setting, as the routine
traces have been already (implicitly) identified, segmentation can be neglected.

On the other hand, following a similar trend that has been occurring in the
BPM domain [25], the research on RPA is moving towards the application of
intelligent techniques to automate all the steps of a RPA project, as proven by
many recent works in this direction (see below). In this context, segmentation
can be considered as one of the “hot” key research effort to investigate [2, 21].

Table 1 summarizes the current literature techniques that could be leveraged
to tackle the different variants of the segmentation issue. We will use X to
denote the full ability of an approach to deal with a specific UI log variant,
while ∼ denotes that the approach is only partially able to deal with a specific
UI log variant (i.e., under certain conditions). In the following, we discuss to
what extent such variants can be supported by existing literature approaches,
grouping them by means of their research area. It is worth noticing that the
assessment of the literature approaches is based on what was reported in the
associated papers.

Concerning RPA-related techniques, Bosco et al. [9] provide a method that
exploits rule mining and data transformation techniques, able to discover rou-
tines that are fully deterministic and thus amenable for automation directly
from UI logs. This approach is effective in case of UI logs that keep track of well-
bounded routine executions (Case 1.1 and Case 2.1), and becomes inadequate
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when the UI log records information about several routines whose actions are
potentially interleaved. In this direction, Leno et al. [20] propose a technique to
identify execution traces of a specific routine relying on the automated synthesis
of a control-flow graph, describing the observed directly-follow relations between
the user actions. The technique in [20] is able to achieve cases 1.1, 1.2 and 2.1,
and partially cases 2.2, 2.3 and 2.4, but (for the latter) it loses in accuracy in
presence of recurrent noise and interleaved routine executions. The main limita-
tion of the above techniques is tackled in [3]. Here, a supervised segmentation
algorithm able to achieve all variants of cases 1, 2 and (partially) 3 has been
proposed, except when there are interleaved executions of shared user actions of
many routines. In that case, the risk exists that a shared user action is associated
to a wrong routine execution (i.e., Case 3.3 and Case 3.4 are not covered). How-
ever, to make the algorithm works, it is required to know a-priori the structure
of the interaction models of the routines to identify in the UI log.

Even if more focused on traditional business processes in BPM rather than on
RPA routines, Bayomie et al. [8] address the problem of correlating uncorrelated
event logs in process mining in which they assume the model of the routine is
known. Since event logs allow to store traces of one process model only, as a
consequence this technique is able to achieve Case 1.1 only. In the field of process
discovery, Măruşter et al. [27] propose an empirical method for inducing rule sets
from event logs containing execution of one process only. Therefore, as in [8], this
method is able to achieve Case 1.1 only, thus making the technique ineffective
in presence of interleaved and shared user actions. A more robust approach,
developed by Fazzinga et al. [12], employs predefined behavioural models to
establish which process activities belong to which process model. The technique
works well when there are no interleaved user actions belonging to one or more
routines, since it is not able to discriminate which event instance (but just the
event type) belongs to which process model. This makes [12] effective to tackle
Case 1.1, Case 2.1 and Case 3.1. Closely related to [12], there is the work of Liu
[23]. The author proposes a probabilistic approach to learn workflow models from
interleaved event logs, dealing with noises in the log data. Since each workflow
is assigned with a disjoint set of operations, it means the proposed approach is
able to achieve both cases 1.1 and 2.1, but partially cases 2.2, 2.3 and 2.4 (the
approach can lose accuracy in assigning operations to workflows).

Differently from the previous works, Time-Aware Partitioning (TAP) tech-
niques cut event logs on the basis of the temporal distance between two events
[29, 18]. The main limitation of TAP approaches is that they rely only on the time
gap between events without considering any process/routine context. For this
reason, such techniques are not able to handle neither interleaved user actions
of different routine executions nor interleaved user actions of different routines.
As a consequence, TAP techniques are able to achieve cases 1.1 and 2.1.

There exist other approaches whose the target is not to exactly resolve the
segmentation issue. Many research works exist that analyze UI logs at different
levels of abstraction and that can be potentially useful to realize segmentation
techniques. With the term “abstraction” we mean that groups of user actions
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to be interpreted as executions of high-level activities. Baier et al. [7] propose
a method to find a global one-to-one mapping between the user actions that
appear in the UI log and the high-level activities of a given interaction model.
This method leverages constraint-satisfaction techniques to reduce the set of
candidate mappings. Similarly, Ferreira et al. [13], starting from a state-machine
model describing the routine of interest in terms of high-level activities, em-
ploy heuristic techniques to find a mapping from a “micro-sequence” of user
actions to the “macro-sequence” of activities in the state-machine model. Fi-
nally, Mannhardt et al. [24] present a technique that map low-level event types
to multiple high-level activities (while the event instances, i.e., with a specific
timestamp in the log, can be coupled with a single high-level activity). How-
ever, segmentation techniques in RPA must enable to associate low-level event
instances (corresponding to user actions) to multiple routines, making abstrac-
tions techniques ineffective to tackle all those cases where is the presence of
interleaving user actions of the same (or different) routine(s). As a consequence,
all abstraction techniques are effective to achieve Case 1.1 and Case 2.1 only.

6 Conclusion

In this work, we have leveraged a real-life use case in the administrative sector
to explore the issue of automated segmentation in RPA, detecting its potential
variants and discussing to what extent the literature approaches are able to
support such variants. The analysis of the related work has pointed out that
the majority of literature approaches are able to properly extract routine traces
from unsegmented UI logs when the routine executions are not interleaved from
each others, which is far from being a realistic assumption. Only few works [12,
3, 20, 23] have demonstrated the full or partial ability to untangle unsegmented
UI logs consisting of many interleaved routine executions, but with any routine
providing its own, separate universe of user actions. However, we did not find
any literature work able to properly deal with user actions potentially shared by
many routine executions in the UI log. This is a relevant limitation, since it is
quite common that a user interaction with the UI corresponds to the executions
of many routine steps at once.

Moreover, it is worth noticing the majority of the literature works rely on the
so-called supervised assumption, which consists of some a-priori knowledge of the
structure of routines. Of course this knowledge may ease the task of segmenting
a UI log. But, as a side effect, it may strongly constrain the discovery of routine
traces only to the “paths” allowed by the routines’ structure, thus neglecting
that some valid yet infrequent variants of a routine may exist in the UI log. For
this reason, we think that an important first step towards the development of a
more complete segmentation technique is to shift from the current model-based
approaches to learning-based ones. In this direction, two main strategies seem
feasible to relax the above supervised assumption: (i) to investigate sequential
pattern mining techniques [11] to examine frequent sequences of user actions
having common data attributes; (ii) to employ clustering techniques to aggregate
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user actions into clusters, where any cluster represents a particular routine and
each associated sequence of user actions a routine trace [15, 14].

Finally, we want to underline that process discovery techniques [6] can also
play a relevant role to tackle the segmentation issue, as demonstrated by some
literature works [23, 12, 8] discussed in Section 5. However, the issue is that the
majority of discovery techniques work with event logs containing behaviours re-
lated to the execution of a single process model only. And, more importantly,
event logs are already segmented into traces, i.e., with clear starting and end-
ing points that delimitate any recorded process execution. Conversely, a UI log
consists of a long sequence of user actions belonging to different routines and
without any clear starting/ending point. Thus, a UI log is more similar to a
unique (long) trace consisting of thousands of fine-grained user actions. With a
UI log as input, the application of traditional discovery algorithms seems un-
suited to discover routine traces and associate them to some routine models,
even if more research is needed in this area.
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