
SmartRPA: A Tool to Reactively Synthesize
Software Robots from User Interface Logs

Simone Agostinelli, Marco Lupia, Andrea Marrella, and Massimo Mecella

Sapienza Universitá di Roma, Rome, Italy
lupia.1694700@studenti.uniroma1.it

{agostinelli,marrella,mecella}@diag.uniroma1.it

Abstract. Robotic Process Automation (RPA) is an emerging technol-
ogy that automates intensive routine tasks (or simply routines) previ-
ously performed by a human user on the User Interface (UI) of a com-
puter system, by means of a software (SW) robot. To date, RPA tools
available in the market strongly relies on the ability of human experts to
manually implement the routines to automate. Being the current practice
time-consuming and error-prone, in this paper we present SmartRPA, a
cross-platform software tool that tackles such issues by exploiting UI
logs keeping track of many routine executions to generate executable
RPA scripts that automate the routines enactment by SW robots.

1 Introduction

Robotic Process Automation (RPA) is an automation technology that operates
on the user interface (UI) of software applications and replicates, by means of a
software (SW) robot, mouse and keyboard interactions to remove high-volume
routine tasks (a.k.a. routines) [3]. To take full advantage of this technology in the
early stages of the RPA life-cycle, organizations leverage the support of skilled
human experts to:

1. identify the candidate routines to automate by means of interviews and
observation of workers conducting their daily work;

2. record the interactions that take place during routines’ enactment on the
UI of SW applications into dedicated UI logs, which are mainly used for
debugging purposes only;

3. manually specify their conceptual and technical structure (often in form of
flowchart diagrams), which will drive the development of dedicated RPA
scripts reflecting the behavior of SW robots.

While this approach has proven to be effective to execute rule-based and well-
structured routines [5], it becomes time-consuming and error-prone in presence
of routines that are less deterministic and require decisions [7].
In this paper, we tackle the above issue by presenting SmartRPA, an open-
source software tool that is able to reason over the UI logs keeping track of
many routine executions (cf. step 2), and to automatically synthesize SW robots



2 S. Agostinelli et al.

that emulate the most suitable routine variant for any specific intermediate user
input that is required during the routine execution, thus skipping completely
the manual modeling activity of the flowchart diagrams (cf. step 3). SmartRPA
implements the approach presented in [2] and is available for download at https:
//github.com/bpm-diag/smartRPA/.
The rest of the paper is organized as follows. Section 2 introduces a running
example. Section 3 presents the tool architecture and the technical aspects of
SmartRPA. Section 4 discusses some experiments performed to evaluate the
robustness and feasibility of the tool. Finally, Section 5 concludes the paper.

2 Running Example

Below, we introduce a real-life scenario used to explain the functioning of our
tool. The example is inspired by the work performed by the Administration Office
of the Department of Computer, Control and Management Engineering (DIAG)
of Sapienza Università di Roma, which consists of filling the travel authorization
request form made by the personnel of DIAG for travel requiring prior approval.
We specifically consider the task of filling a well-structured Excel spreadsheet
(cf. Fig. 1(a)), manually performed by a request applicant that provides some
personal information together with further information related to the travel.
Then, the spreadsheet is sent via email to an employee of the Administration
Office of DIAG, which is in charge of processing the request: for each row in the
spreadsheet, the employee manually copies every cell in that row and pastes that
into the corresponding text field in a dedicated Google form (cf. Fig. 1(b)). In
addition, if the request applicant declares the need to use a personal car as one
of the means of transport for the travel (by filling the dedicated row labeled with
“Car” in the spreadsheet), then the employee has to activate the request on the
Google form (in this case, a dialog box labeled “Own car request” appears on
the UI, cf. Fig. 1(b)) and then accept or reject the personal car request. When
the data transfer for a given travel authorization request has been completed,
the employee presses the “Submit” button to confirm data and submit them into
an internal database. Finally, a confirmation email is sent automatically to the
applicant when data are submitted.
The above routine procedure (in the following, we will denote it as R) is usually
performed manually, it is tedious (as it must be repeated for any new travel
request) and prone to errors. A proper execution of R requires a path on the UI
made by the following user actions:1

– loginMail, to access the client email;
– accessMail, to access the specific email with the travel request;
– downloadAttachment, to download the Excel file including the travel request;
– openWorkbook, to open the Excel spreadsheet;
– openGoogleForm, to access the Google Form to be filled;

1 Note that the user actions recorded in a UI log can have a finer granularity than the
high-level ones used here just with the purpose of describing the routine’s behaviour.

https://github.com/bpm-diag/smartRPA/
https://github.com/bpm-diag/smartRPA/


SmartRPA: A Tool to Reactively Synthesize SW Robots from UI Logs 3

(a) Excel spreadsheet (b) Google form

Fig. 1: UIs involved in the running example

– getExcelCell, to select the cell in the i-th row of the Excel spreadsheet;
– copy, to copy the content of the selected cell;
– clickGoogleFormTextField, to select the specific text field of the Google form;
– paste, to paste the content of the cell into a text field of the Google form;
– activateCarRequest, to activate in the Google form the dialog box for approv-

ing or rejecting the car request;
– accept, to press the button on the Google form that approves the request;
– reject, to press the button on the Google form that rejects the request;
– formSubmit, to finally submit the Google form to the internal database.

The user actions openWorkbook and openGoogleForm can be performed in any
order. Moreover, the sequence of actions 〈getCell, copy, clickTextField, paste〉 can
be repeated for any travel information to be moved from the Excel spreadsheet
to the Google form. Finally, in case of a car request to be evaluated (action
activateCarRequest), the execution of accept or reject is exclusive.

3 SmartRPA Architecture

In this section, we give a detailed description of the architecture of SmartRPA
(see Fig. 2) that consists in five main SW components implemented in Python.
The first SW component of the architecture is an Action Logger able to record
different types of UI actions from multiple SW applications during the enactment
of the routine under study. Specifically, a training session in which several users
perform the routine to be automated is required to record the UI actions involved
in its execution. The Action Logger provides a Graphical User Interface (GUI)



4 S. Agostinelli et al.

Fig. 2: SmartRPA architecture

that allows a user to select which SW applications s/he wants to record UI
actions on (cf. Fig. 3). The Action Logger provides three different types of logging
modules: (i) a System Logger able to detect those UI actions not related to
specific SW applications, (ii) an Office Logger able to detect the UI actions
performed within Microsoft Office applications, and (iii) a Browser Logger able
to detect the UI actions on web browsers.

The UI actions recorded by the logging modules are sent to a Logging Server,
implemented with the Flask framework,2 in charge to store and organize them
as events into several CSV event logs, i.e., the UI logs.

The exact steps to correctly perform R (cf. Section 2) are the following ones:

1. Open the Action Logger, tick the checkboxes related to Excel, Clipboard and
the browser installed on the applicant’s PC/MAC, and click “Start logger”.

2. Open the Excel spreadsheet containing the information about the travel.

3. Open the Google form.

4. Copy and paste each value from the Excel spreadsheet to the Google form.

5. Accept or reject the personal car request (if required).

6. Submit the form. Once done, a confirmation email is sent to the applicant.

7. Push the “Stop logger” button to stop the Action Logger.

It is worth noticing that multiple users can run the Action Logger on their com-
puter system many times performing R in different training sessions. Each CSV
event log contains exactly one long trace of UI actions performed in a single
training session by a single user. Technically speaking, (i) system events are

2 https://palletsprojects.com/p/flask

https://palletsprojects.com/p/flask


SmartRPA: A Tool to Reactively Synthesize SW Robots from UI Logs 5

(a) Windows (b) MacOS

Fig. 3: GUI of SmartRPA both on Windows and MacOS

captured using PythonCOM (for Windows APIs and COM objects) and MacF-
SEvents (for MacOS); (ii) events generated by Microsoft Office applications are
captured using the Office JavaScript APIs; and (iii) browser events are captured
using JavaScript web extensions developed for each supported web browser.
The second SW component of the architecture is the Log Processing tool that
is triggered when any training session is considered as completed. Specifically,
after n training sessions, the Logging Server will deliver the n created CSV event
logs to the Log Processing component, in charge of import them into a single
Pandas dataframe.3 A dataframe is a two-dimensional size-mutable and hetero-
geneous tabular data structure with labeled axes, which is used as the main
artifact to represent event logs in SmartRPA. The dataframe created by the Log
Processing component consists of low-level events with fine granularity associ-
ated one-by-one to a recorded UI action, including several columns representing
the payload of the recorded event, i.e.: the timestamp, the application that gen-
erated the event, the resources involved, etc. SmartRPA is also able to produce
a XES4 (eXtensible Event Stream) version of the datastream that will contain
exactly n traces, one for each recorded CSV event log and can be inspected using
the most popular process mining tools, such as ProM,5 or Disco6.
The third SW component is an Event Abstraction engine used to produce
a high-level event log from the low-level one with the goal to: (i) filter out
noise and irrelevant events for the routine execution. For example, during several
training sessions of R, applications related to the operating system may start

3 https://pandas.pydata.org/
4 XES is the standard for the storage, interchange, and analysis of event logs.
5 http://www.promtools.org/
6 https://fluxicon.com/disco/

https://pandas.pydata.org/
http://www.promtools.org/
https://fluxicon.com/disco/


6 S. Agostinelli et al.

in background while the Action Logger is being recording the UI log, and they
may dirty the recording phase of the users during their training session. From
a workflow perspective, these events are not relevant for any RPA analyst that
aims to understand the general behaviour of the routine and thus they can be
filtered out; (ii) group similar low-level events to the same high-level concept. For
example, in a web page, the Action Logger can capture different types of clicks,
based on the element clicked. From the RPA analyst perspective it is not relevant
what kind of click was performed, thus the high-level workflow of the routine
may just show the action “Click on button”; (iii) create descriptive labels. Any
recorded event provides a low-level description of the UI action performed. To
make the UI action underlying an event more descriptive for the RPA analyst,
the payload information stored in the low-level event log can be added to its
label, such as the cell and the sheet edited, the value inserted, etc. This allows
us to create a more descriptive label for any event in the high-level event log,
e.g., “Edit cell B2 on Sheet ‘Request’ with value ‘Full Professor’”.

At this point, the Process Discovery component exploits the high-level event
log to derive the underlying high-level workflow as a Directly-Follows Graph
(DFG), by applying the heuristic miner (the decision to employ the heuristic
miner has been driven by its ability to discover highly understandable flowcharts
from a BPM analyst perspective [1]) implemented in PM4PY [4]. In addition, the
knowledge of the workflow underlying the routine, coupled with the low-level ver-
sion of the dataframe-based event log, will be used to support the identification
of different variation points, thus leading to the detection of the most suitable
routine variant according to intermediate user inputs observed in the low-level
dataframe-based event log. A variation point is a point in the routine execu-
tion where a user choice needs to be made between multiple possible variants.
For example, the routine under analysis in Section 2 consists of one variation
point that contains three different user inputs that can led to three different
routine variants of R: (i) the user performs the UI action activateCarRequest

by clicking ‘No’ on the Google form, (ii) the user first performs the UI action
activateCarRequest and then the UI action accept, (iii) the user first performs
the UI action activateCarRequest and then the UI action reject.

Once the routine variant to automatize is selected, before its enactment with a
SW robot, it is possible for an RPA analyst to personalize the values stored in its
events, thanks to the Script Generation component. SmartRPA automatically
detects the events that can be edited, such as pasting a text or editing an Excel
cell, and let the RPA analyst editing them. After confirmation, the low-level
dataframe-based event log is updated. Finally, the Python executable script
based on the selected routine variant and updated with the RPA analyst’s edits,
is generated by scanning the recorded low-level events in the dataframe-based
log and converting them into executable pieces of SW code in Python. The
script generation component relies on Automagica7 and Selenium,8 a popular
suite of tools for process and web browsers automation. Note that the Script

7 https://github.com/automagica/automagica
8 https://www.selenium.dev/

https://github.com/automagica/automagica
https://www.selenium.dev/


SmartRPA: A Tool to Reactively Synthesize SW Robots from UI Logs 7

Generation component considers only the platform where the SW robot is going
to be run regardless of the operating system used to record the log, thus achieving
cross-platform compatibility. SmartRPA is also able to generate RPA scripts
compatible with the commercial tool UiPath Studio.9

4 Evaluation

SmartRPA has been tested using synthetic experiments employing UI logs of
increasing complexity. We generated 240 different UI logs (containing in total
150.000 different routine executions), in a way that each UI log was characterized
through a unique configuration obtained by varying the following input settings:

– log size: number of routine executions in the UI log (250/500/750/1000);
– trace size: number of events in each routine execution (25/50/75/100);
– events size: number of possible different events to be considered for the cre-

ation of a trace (40/80/120);
– variation points: number of variation points in the UI log (1/2/3/4/5).

The amount of possible decisions to be taken in a variation point was gener-
ated randomly, ranging from 2 to 10 possible outgoing decisions. The synthetic
UI logs generated for the test are available at: https://github.com/bpm-diag/
smartRPA/. The target was to investigate if the amount and anatomy of varia-
tion points discovered by SmartRPA is the same that was syntetically introduced
in the sample routine executions recorded in the UI logs (i.e., robustness), and
to measure the performance of the tool to generate a SW robot by solely using
the UI logs (i.e., feasibility). Concerning the robustness of the tool, for all the
240 tested logs the tool was able to always discover the correct variation points
to be considered for the synthesis of SW robots. Concerning the feasibility, it
was measured in terms of the computation time required to generate a SW robot
starting from UI logs of growing complexity. The results, which are summarized
in Table 1,10 indicate that the tool scales well in case of an increasing number
of variation points and routine executions/alphabet of events of growing size.

5 Concluding Remarks

SmartRPA offers an innovative contribution to RPA technology with the goal of
mitigating some of its core downsides related to the implementation of SW robots
made by expert users. Close to SmartRPA there is Robidium [6], a tool that
generates RPA scripts based on the most frequent routine variant observed in
the UI log. Conversely, SmartRPA enables to generate the best observed routine
variant, employing the input conditions available before the routine enactment.
The main weakness of SmartRPA is correlated with the quality of information

9 https://www.uipath.com/product/studio
10 For the sake of space, the table includes only the results related to UI logs containing

1000 routine executions.

https://github.com/bpm-diag/smartRPA/
https://github.com/bpm-diag/smartRPA/
https://www.uipath.com/product/studio


8 S. Agostinelli et al.

Table 1: Experimental results for the synthetic case study for logs with 1000
routine executions. The time (in milliseconds) is the average per trace.

Event size: 40 Time

Trace size 1 2 3 4 5

25 0.453 0.452 0.53 0.409 0.423
50 0.417 0.433 0.417 0.425 0.419
75 0.439 0.511 0.424 0.43 0.431
100 0.454 0.416 0.421 0.424 0.431

Event size: 80 Time

Trace size 1 2 3 4 5

25 0.422 0.428 0.43 0.413 0.412
50 0.427 0.425 0.444 0.417 0.428
75 0.42 0.428 0.553 0.422 0.437
100 0.442 0.434 0.428 0.438 0.432

Event size: 120 Time

Trace size 1 2 3 4 5

25 0.413 0.507 0.421 0.416 0.421
50 0.421 0.412 0.417 0.42 0.421
75 0.425 0.433 0.438 0.451 0.429
100 0.437 0.433 0.428 0.532 0.523

recorded in real-world UI logs. Since a UI log is fine-grained, routines executed
with many different strategies may potentially affect the robustness of our tool to
the detection of variation points. For this reason, as a future work, we are going
to perform a robust evaluation of the tool on real-world case studies including
heterogeneous UI logs obtained from different application domains.

Acknowledgments. This work has been supported by the “Dipartimento di
Eccellenza” grant, the H2020 project DataCloud and the Sapienza grant BPbots.

References

1. Agostinelli, S., Maggi, F.M., Marrella, A., Milani, F.: A User Evaluation of Process
Discovery Algorithms in a Software Engineering Company. In: EDOC (2019)

2. Agostinelli, S., Lupia, M., Marrella, A., Mecella, M.: Automated Generation of Ex-
ecutable RPA Scripts from User Interface Logs. In: BPM - RPA Forum (2020)

3. Agostinelli, S., Marrella, A., Mecella, M.: Research Challenges for Intelligent Robotic
Process Automation. In: BPM’19 Int. Workshops (2019)

4. Berti, A., van Zelst, S.J., van der Aalst, W.: Process Mining for Python (PM4Py):
Bridging the Gap Between Process and Data Science (2019)

5. Jimenez-Ramirez, A., Reijers, H.A., Barba, I., Del Valle, C.: A Method to Improve
the Early Stages of the Robotic Process Automation Lifecycle. In: CAiSE (2019)

6. Leno, V., Deviatykh, S., Polyvyanyy, A., La Rosa, M., Dumas, M., Maggi, F.M.:
Robidium: Automated Synthesis of Robotic Process Automation Scripts from UI
Logs. In: BPM Demonstration Track (2020)

7. Marrella, A., Mecella, M., Sardiña, S.: Supporting Adaptiveness of Cyber-Physical
Processes through Action-based Formalisms. AI Commun. 31(1) (2018)


	SmartRPA: A Tool to Reactively Synthesize Software Robots from User Interface Logs

