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Abstract. In this paper we describe a method for computing
a basis for the space of weight 2 cusp forms invariant under a
non-split Cartan subgroup of prime level p. As an application we
compute, for certain small values of p, explicit equations over Q
for the canonical embeddings of the associated modular curves.

1. Introduction

It is well known how to compute bases for the spaces of cusp forms
that are invariant under the modular groups Γ0pNq or Γ1pNq. In-
deed, efficient algorithms to compute q-expansions of eigenforms ex-
ist [MAGMA], [SAGE] and extensive tables are available online [BK72],
[LMFDB], [Ste]. For other congruence subgroups of SL2pZq the sit-
uation is different. While for some groups, like split Cartan sub-
groups, there are efficient algorithms [SAGE] and it is easy to obtain
q-expansions from the existing tables for Γ0pNq, for other subgroups
this is not so immediate [BC14], [Bar10].

In this paper we describe a method to compute q-expansions of a
basis for the space S2pΓnsppqq of weight 2 cusp forms invariant under a
non-split Cartan subgroup Γnsppq of prime level p. As in the compu-
tation for p “ 13 by B. Baran [Bar14], we obtain a basis of S2pΓnsppqq
by applying trace maps to certain normalized eigenforms in S2pΓ0pp

2qq

and S2pΓ1ppqq. In Baran’s computation for p “ 13, this involves only
one eigenform. It generates a cuspidal GL2pFpq-representation. For
larger primes p, several non-isomorphic irreducible representations such
as cuspidal, twisted Steinberg and principal series, are involved. This
complicates matters, since in each case the trace map is different. Our
main tools are the formulas of Propositions 6.2 and 6.3.

As an application we are able to compute explicit equations for the
canonical embeddings of the modular curves Xnsppq associated to the
non-split Cartan subgroups and the curves X`

nsppq associated to their
normalizers. Since our method allows us to compute a basis that is
defined over Q, the equations that we compute have coefficients in Q.
We work this out for the modular curves X`

nsppq for p “ 17, 19 and 23.

2010 Mathematics Subject Classification. Primary 11F30, 14G35; Secondary
11Y40, 14Q05, 20C33.

1



2 PIETRO MERCURI AND RENÉ SCHOOF

In principle, we could also deal with larger p, but the genus and the
number of equations grow rapidly with p.

In the remainder of this introduction, we provide some context for
our computational results. The curves Xnsppq and X`

nsppq are defined
over Q. Their genera grow rapidly with p. See [Bar10]. This may
explain why thus far not many computations have been done with
these curves.

The curves Xnsppq have no real and hence no rational points. For
p ď 5 the genus of Xnsppq is zero. The curve Xnsp7q has genus 1 and, for
the record, is given by the equation ´y2 “ 2x4´14x3`21x2`28x`7.
Equations for the genus 4 curve Xnsp11q are given in [DFGS14]. Using
the methods explained in this paper, equations for the genus 8 curve
Xnsp13q are determined in [DMS19]. No explicit equations have been
computed for the curves Xnsppq for primes p ą 13.

The curves X`
nsppq are quotients of Xnsppq by a modular involution.

The rational points of the curves X`
nsppq are relevant in connection with

Serre’s Uniformity Conjecture [Ser72]. Indeed, after Mazur’s 1978 re-
sult [Maz78] and the 2010 paper by Bilu, Parent and Rebolledo [BPR13],
the conjecture would follow, if for sufficiently large primes p, the only
rational points of the curves X`

nsppq are CM-points.
For p ď 7 the curves X`

nsppq have genus zero and have infinitely many
rational points. For p “ 11 the genus is 1 and there are also infinitely
many rational points. An explicit equation was computed in 1976 by
Ligozat [Lig77]. For p ą 11 the genus exceeds 2 and hence there are
only finitely many rational points. An equation for the genus 3 curve
X`

nsp13q was computed in 2014 by B. Baran [Bar14]. In this paper we
present equations for X`

nsppq for the primes p “ 17, 19 and 23. Recently
J. Balakrishnan and her coauthors [BDMTV19] used the Chabauty-
Kim method to show that the curve X`

nsp13q has precisely seven rational
points. All these points are CM-points. For p ą 13 it is at present not
known whether or not X`

nsppq admits any rational points that are not
CM. For p “ 17, 19 and 23 a quick computer calculation shows that
these curves do not admit any non-CM rational points that have small
coordinates in our models. There may very well not be any. See sections
7 and 8.

In Section 2 we fix our notation and recall some of the basic proper-
ties of representations of GL2pFpq. In Section 3 we determine our trace
map for the principal series and the twisted Steinberg representations.
In Section 4 we do the same for the cuspidal representations. In Section
5 we recall some of the basic properties of the various modular curves
that play a role. In Section 6 we use the results of sections 3 and 4 and
derive formulas for the q-expansions of weight 2 cusp forms invariant
under a non-split Cartan subgroup. In Section 7 we describe in some
detail the actual computations for the curve X`

nsp17q. In Section 8 we
present the numerical results for X`

nsp19q and X`
nsp23q.
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2. Representations of GL2pFpq

Let p ą 2 be a prime. In this section we fix notation and recall the
basic properties of the representation theory of the group G “ GL2pFpq,
on which our computations are based.

The group G acts on the p`1 points of the projective line P1pFpq via
linear fractional transformations. A Borel subgroup is the stabilizer of
a point. It is conjugate to the subgroup B of upper triangular matrices
and has order ppp´ 1q2. A split Cartan subgroup of G is the stabilizer
of two points. It is conjugate to the subgroup T of diagonal matrices.
It has order pp´1q2 and index 2 in its normalizer N . The group G also
acts on the p2 ` 1 points of P1pFp2q. A non-split Cartan subgroup of
G is the stabilizer of two points of P1pFp2q that are conjugate over Fp.
Any such group is conjugate to the subgroup T 1 of matrices that fixes
the points ˘

?
u, where u denotes a non-square in Fp. Explicitly, we

have

T 1 “

"ˆ

a bu
b a

˙

P G : a, b P Fp with a2 ´ ub2 ‰ 0

*

.

The group T 1 is cyclic of order p2´ 1 and has index 2 in its normalizer
N 1.

In this paper we mostly deal with representations V of G for which
the subgroup of scalar matrices Z acts trivially. These are representa-
tions of G{Z “ PGL2pFpq. The complex irreducible representations of
PGL2pFpq are left modules and come in four types [Bum98], [Lan02].
There are two 1-dimensional representations: the trivial character and
the quadratic character ω. Both factor through the determinant. There
are also two irreducible p-dimensional representations. To define them,
we consider the natural action of PGL2pFpq on the ring A of func-
tions φ : P1pFpq Ñ C given by σφpP q “ φpσ´1pP qq for P P P1pFpq
and σ P PGL2pFpq. Since the subspace C of constant functions is pre-
served by this action, PGL2pFpq acts on the p-dimensional quotient
space Vst “ A{C. This representation is irreducible, has dimension p
and is called the Steinberg representation. Its twist by ω is denoted
by Vω.

The irreducible representations of the third type are the princi-
pal series representations Vµ. These are the inductions of characters
µ : B{Z Ñ C˚ for which µ2 ‰ 1. The representations Vµ have dimen-
sion p` 1. Two representations Vµ and Vµ1 are isomorphic if and only
if µ1 “ µ˘1. There are pp ´ 3q{2 mutually non-isomorphic representa-
tions of this type. The irreducible representations of the fourth type
are the cuspidal ones. They are associated to characters θ : T 1{Z Ñ C˚
for which θ2 ‰ 1. These representations have dimension p´ 1 and are
denoted by Vθ. Two representations Vθ and Vθ1 are isomorphic if and
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only if θ1 “ θ˘1. There are pp ´ 1q{2 mutually non-isomorphic repre-
sentations of this type. See [Bum98], [Lan02] for all this. In Section 4
we describe explicit models for the representations Vθ.

Since the characters µ are trivial on the unipotent subgroup

U “

"ˆ

1 x
0 1

˙

: x P Fp
*

,

they can be viewed as characters of the cyclic group T {Z. A character
µ : T {Z Ñ C˚ is called even or odd, depending on whether it is 1 on
the unique element of order 2 in T {Z or not. Similarly, a character
θ : T 1{Z Ñ C˚ is called even or odd, depending on whether it is 1 on
the unique element of order 2 in T 1{Z or not. Note that the restriction
of the quadratic character ω to T {Z is even if and only if its restriction
to T 1{Z is odd. This happens if and only if p ” 1 pmod 4q.

The following proposition gives the dimensions of the T -invariant and
T 1-invariant subspaces V T and V T 1 of the irreducible representations
V of PGL2pFpq.

Proposition 2.1. Let V be an irreducible complex representation of
PGL2pFpq that is not 1-dimensional. If V “ Vst, then

dimV T
“ 2, dimV N

“ 1, and dimV T 1
“ dimV N 1

“ 0.

In all other cases we have

dimV T
“ dimV T 1

“ 1, and dimV N
“ dimV N 1

ď 1.

Moreover, we have

dimV N
“ dimV N 1

“ 1, if and only if

$

’

&

’

%

V “ Vµ, with µ even,

V “ Vθ, with θ odd,

V “ Vω, and p ” 1 pmod 4q.

Proof. We recall the remarkable isomorphisms of rationalG-representations

QrG{T s – QrG{T 1s ˆ Vst ˆ Vst, and QrG{N s – QrG{N 1
s ˆ Vst,

described by De Smit and Edixhoven in [DSE00, Formulas (3) and (4)].
When V ‰ Vst, the fact that the vector spaces V H and HomGpQrG{Hs, V q

are naturally isomorphic for every subgroup H of G, implies that
dimV T “ dimV T 1 and dimV N “ dimV N 1 . To show that dimV T “ 1,
we observe that dimV T is equal to the scalar product xResT pχV q, 1T yT .
Here χV denotes the character of V and 1T is the trivial character on T .
A standard character computation shows this to be equal to 1 in all
cases. A similar computation shows that xResNpχV q, 1NyN is 0 or 1
depending on the parity of the relevant character µ, θ or ω. These
computations are particularly straightforward when V “ Vµ or Vω. For
the cuspidal representations V “ Vθ, everything can be computed using
the description of Vθ as a virtual representation as in [Bum98], [Lan02].
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Alternatively, one may use the explicit models for Vµ and Vθ given in
sections 3 and 4.

For the Steinberg representation, i.e., V “ Vst, an explicit calculation
shows that dimV T

st “ 2 and dimV N
st “ 1. The result by De Smit and

Edixhoven implies therefore that V T 1

st and V N 1

st vanish.
This proves the proposition. �

In the next sections we construct T 1-invariant elements inG-representations
V by applying the T 1-trace

ÿ

tPT 1

t “
ÿ

a,bPFp, a2´ub2‰0

ˆ

a bu
b a

˙

in QrGs

to suitable vectors v P V . Since we have the Bruhat decomposition
G “ B YBwB, where

w “

ˆ

0 1
´1 0

˙

,

every non-scalar element in T 1 can be written as an element in BwB.
This leads to the following formula for a projective version of the T 1-
trace.

Proposition 2.2. The T 1-trace element
ř

MPT 1{ZM of the group ring QrPGL2pFpqs
is given by

id`
ÿ

rPFp

ˆ

1 r
0 1

˙

w

ˆ

1 r
0 r2 ´ u

˙

.

Proof. Representatives in T 1 of the quotient group T 1{Z are the identity

matrix and the matrices ´

ˆ

r u
1 r

˙

with r P Fp. Since ´

ˆ

r u
1 r

˙

“

ˆ

1 r
0 1

˙

w

ˆ

1 r
0 r2 ´ u

˙

, the result follows. �

3. Principal series and twisted Steinberg representations

Let p ą 2 be prime and as before put G “ GL2pFpq. We let
Z,B, T, T 1, N,N 1 and U be the subgroups of G defined in Section 2.

In this section we explain how to compute elements that are invariant
under a non-split Cartan subgroup in a principal series representation
Vµ or a twisted Steinberg representation Vω of G “ GL2pFpq on which
the center Z acts trivially.

The 1-dimensional characters of the Borel subgroup B that are trivial
on the center Z form a cyclic group of order p ´ 1. Given such a
character µ, we write Qpµq for the number field generated by the values
of µ. An explicit model for the induced representation IndGBpµq of G is

tφ : GÑ Qpµq : φpgbq “ µ´1pbqφpgq for all g P G and b P Bu.

The group G acts on this Qpµq-vector space as follows

pσφqpxq “ φpσ´1xq, for σ, x P G and φ P IndGBpµq.
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A basis of IndGBpµq is given by the functions er with r P P1pFpq “
Fp Y t8u. Here e8 is equal to µ´1 on B and zero elsewhere, while for
r P Fp, the function er is defined as follows: on the B-coset tσ P G :

σp8q “ ru it is given by erpσq “ µ´1pyq, where y “

ˆ

0 1
´1 r

˙

σ, while

it is zero elsewhere. For every r P P1pFpq the G-action on er can easily
be computed: for r P Fp and k P Fp we have

(3.1)

ˆ

1 k
0 1

˙

er “ er`k, for r P Fp, while

ˆ

1 k
0 1

˙

e8 “ e8.

For every a P F˚p we have
(3.2)
ˆ

a 0
0 1

˙

er “ µ

ˆ

1 0
0 a

˙

ear, for r P Fp, while

ˆ

a 0
0 1

˙

e8 “ µ

ˆ

a 0
0 1

˙

e8.

The action of the matrix w “

ˆ

0 1
´1 0

˙

is given by

(3.3) wer “ µ

ˆ

r 0
0 1{r

˙

e´1{r for r P F˚p ,

while w switches e0 and e8. Since G “ B Y BwB, these formulas
determine the action of G.

If µ2 ‰ 1, we recover the irreducible complex representation Vµ of
Section 2 as IndGBpµqbQpµqC. The values of the character of Vµ generate
the maximal real subfield Qpµq` of the cyclotomic field Qpµq. Since
the subspace of T -invariants is 1-dimensional, it follows from [Wal85,
Lemma 1.1] that the representation Vµ itself can actually be defined
over Qpµq`. We do not make use of this.

If µ2 “ 1, the character µ the restriction of 1 or ω, so that Qpµq “ Q.
In this case e8 `

ř

rPFp er is equal to 1 or ω in IndGBpµq. The subspace
L generated by this element is preserved by G and the representation
pIndGBpµq{LqbQC is irreducible. In fact, we recover the complex Stein-
berg representation Vst and its quadratic twist Vω. See [Bum98].

It is convenient to view µ as a character of F˚p . For this reason we
put

µprq “ µ

ˆ

r 0
0 1

˙

, for r P F˚p .

Proposition 3.1. Let µ : B{Z Ñ C˚ be a character satisfying µ2 ‰ 1
and let Vµ be the principal series representation associated to µ.

(a) The subspace of Vµ of U-invariants has dimension 2 and is
generated by e8 and by

ř

rPFp er. The subgroup B acts via µ

on the line generated by e8 and via µ´1 on the line generated
by

ř

rPFp er.
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(b) The subspace of T -invariants of Vµ is generated by
ÿ

rPF˚p

µprqer.

It is invariant under the action of the normalizer N if and only
if µ is an even character of B{ZU “ T {Z.

(c) The subspace of T 1-invariants of Vµ is generated by

e8 `
ÿ

rPFp

µ´1pr2 ´ uqer.

It is invariant under the action of the normalizer N 1 if and only
if µ is even.

Proof. Parts (a) and (b) easily follow from the formulas given above.
The computations are easy and left to the reader. By Proposition 2.1,
the subspaces of T -invariants and of T 1-invariants have dimension 1.
The element listed in (c) is the T 1-trace of Proposition 2.2 applied to
e8. �

For the character µ “ ω, the result is similar:

Proposition 3.2. Let ω be the quadratic character of G and let Vω be
the twisted Steinberg representation.

(a) The subspace of Vω of U-invariants has dimension 1 and is gen-
erated by e8. The subgroup B acts on it via ω.

(b) The subspace of T -invariants of Vω is generated by
ÿ

rPF˚p

ωprqer.

It is invariant under the action of the normalizer N of T if and
only if p ” 1 pmod 4q.

(c) The subspace of T 1-invariants of Vω is generated by

e8 `
ÿ

rPFp

ωpr2 ´ uqer.

It is invariant under the action of the normalizer N 1 of T 1 if
and only if p ” 1 pmod 4q.

Proof. Note that in Vω we have the relation e8 “ ´
ř

rPFp er. The proof
is similar to the proof of Proposition 3.1. �

4. Cuspidal Representations

Let p ą 2 be prime and put G “ GL2pFpq. In this section we explain
how to find elements in cuspidal representations Vθ, that are invariant
under a non-split Cartan subgroup of G.

Let u P F˚p be a non-square, let T 1 denote the non-split torus in G
introduced in Section 2 and let θ : T 1 Ñ Qpθq˚ be a character that is
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trivial on the subgroup Z of scalar matrices. We have θp`1 “ 1 and
assume that θ2 ‰ 1. By Qpθq we denote the field generated by the
image of θ.

In order to describe our model Vθ for the cuspidal representation
associated to θ, we first consider the quotient of the Q-vector space
V of functions φ : Fp Ñ Q by the 1-dimensional subspace of constant
functions. The standard Borel subgroup B Ă G acts by fractional
linear transformations on Fp “ P1pFpq ´ t8u and hence on the space
of functions φ : Fp Ñ Q: we have σφpxq “ φpσ´1xq for σ P B and any
function φ. Since B preserves the constant functions, it acts on V . It is
easy to see that V is an irreducible pp´ 1q-dimensional representation
of B, on which the scalar matrices act trivially.

Next we turn Vθ “ V b Qpθq into an irreducible representation
of PGL2pFpq. Let

w “

ˆ

0 1
´1 0

˙

be the usual involution. Since G “ B Y BwB, it suffices to describe
the action of w. It is given by

w φ “ ´
1

p

ÿ

yPF˚
p2

θpyq

ˆ

Npyq Trpyq
0 1

˙

φ, for all φ P Vθ.

Here Fp2 denotes T 1 Y

"ˆ

0 0
0 0

˙*

. It is a subfield of the ring of 2 ˆ 2

matrices over Fp. By N and Tr we denote the norm and trace maps
from Fp2 to Fp respectively.

Proving that the formula for the action of w gives rise to a well de-
fined action of G on Vθ is straightforward, but somewhat cumbersome.
Alternatively, one can relate Vθ to the representation space described
by Bump [Bum98, 4.1] as follows. Let ζp denote a p-th root of unity.

To every φ P Vθ we associate the function φ̃ : F˚p2 Ñ Qpθq given by

φ̃pyq “ θ´1pyq
ř

rPFp φprqζ
rNpyq
p . This gives an isomorphism of VθbQpθqC

with Bump’s model. Our model has the advantage that it can be de-
fined over Qpθq, rather than over a field that contains the p-th roots of
unity. The character values of Vθ generate the maximal real subfield
Qpθq` of Qpθq. As in the principal series case, it follows from [Wal85,
Lemma 1.1] that Vθ can actually be defined over Qpθq`. We do not
make use of this.

Let e0 : Fp Ñ Qpθq be the characteristic function of 0 and let er “

ˆ

1 r
0 1

˙

e0,

for r P Fp. It is the characteristic function of the element r P Fp. The
functions er, r P F˚p form a basis for the Vθ. Since

ř

rPFp er is the

constant function 1, we have the relation
ř

rPFp er “ 0 in Vθ.
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Proposition 4.1. Let θ : T 1{Z Ñ Qpθq˚ be a character satisfying
θ2 ‰ 1 and let Vθ be the cuspidal representation of G associated to
the character θ. Then

(a) the subspace of U-invariants is zero;
(b) the subspace of T -invariants is generated by e0; it is invariant

under the action of the normalizer N of T if and only if θ is an
odd character of the cyclic group T 1{Z;

(c) there is an r P F˚p for which the element

per ´
ÿ

mPFp

ÿ

yPF˚
p2

θpyqe pm`rqNpyq
m2´u

`Trpyq`m

generates the 1-dimensional subspace of T 1-invariants. The space
of T 1-invariants is also N 1-invariant if and only if θ is odd.

Proof. Part (a) and the first statement of (b) easily follow from the
formulas given above. The statement about the normalizer N can be
proved with a short computation [Bar14, Prop. 2.1]. To prove (c), we
combine the formula for the action of w with Proposition 2.2. It follows
that the T 1-trace is equal to

id´
1

p

ÿ

yPF˚
p2

θpyq
ÿ

mPFp

ˆ

Npyq mNpyq ` pm2 ´ uqpTrpyq `mq
0 m2 ´ u

˙

.

Applying it to per gives the element of part (c). Since the elements
er, with r P Fp, generate Vθ, their T 1-traces generate the 1-dimensional
space of T 1-invariants. In other words, the T 1-trace of at least one of
the elements er is not zero and hence generates the subspace of T 1-
invariants. �

5. Modular curves

Let p ą 2 be prime and put G “ GL2pFpq. The modular curve
Xppq is an algebraic curve that parametrizes elliptic curves with full
level p structure. The field of constants of its function field is the
cyclotomic field Qpζpq. The curve Xppq admits a natural morphism
to the j-line Xp1q over Q. The Galois group of Xppq over Xp1q is
naturally isomorphic to G{t˘idu. Restriction of automorphisms in
GalpXppq{Xp1qq to the Galois group of Qpζpq over Q coincides with
the determinant map GL2pFpq{t˘idu Ñ F˚p .

For every subgroup H of GL2pFpq containing t˘idu we write XppqH
for the quotient of Xppq by H. The field of constants of its function
field is the subfield of Qpζpq that is invariant under the subgroup detpHq
of F˚p . We put

ΓH “ tA P SL2pZq : A pmod pq P Hu.
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Then the non-cuspidal complex points of any base change of XppqH
from its field of constants to C, form the Riemann surface ΓHzH. Here
H denotes the usual upper half-plane.

Taking for H the subgroup Z of scalar matrices of G, we obtain
the curve XppqZ . We denote it by Xppq1. Its field of constants is the
quadratic subfield of Qpζpq. This is Qp?pq or Qp

?
´pq depending on

whether p ” 1 or 3 pmod 4q. Since Z X SL2pFpq “ t˘idu, the base
change of Xppq1 from Qp

?
˘pq to Qpζpq is the curve Xppq. The curves

XppqT and XppqN associated to the split Cartan subgroup T and its
normalizer N and the curves XppqT 1 and XppqN 1 associated to the non-
split Cartan subgroup T 1 and its normalizer N 1 are quotients of Xppq1.
These are the curves Xsppq, X

`
s ppq, Xnsppq and X`

nsppq respectively,
that were mentioned in the introduction. Since the determinant maps
from the subgroups T,N, T 1 and N 1 to F˚p are all surjective, the curves
are all defined over Q, in the sense that their fields of constants are
equal to Q.

The group G “ GL2pFpq acts naturally and linearly on the Q-vector
space Ω1pXppqq of Kähler differentials. Therefore its quotient G{Z “
PGL2pFpq acts on the Q-vector space Ω1pXppqqZ of Z-invariants. On
the other hand, the index 2 subgroup PSL2pFpq of PGL2pFpq is iso-
morphic to the quotient group SL2pZq{ΓZ . Therefore it acts natu-
rally on the complex vector space S2pΓZq of weight 2 cusp forms for
the congruence subgroup ΓZ . The two actions are related by the fact
that Ω1pXppq1q bQ C is isomorphic to the induction from PSL2pFpq to
PGL2pFpq of S2pΓZq. See [Bar14, p.279]. So we can write

Ω1
pXppq1q bQ C “ S2pΓZq ` rRsS2pΓZq,

for some fixed respresentative R of the non-trivial coset of the nor-
mal subgroup PSL2pFpq of PGL2pFpq. Following [Bar14], we call the
first coordinate f1 of an element f1 ` rRsf2 of S2pΓZq ` rRsS2pΓZq, its
classical coordinate.

Proposition 5.1. Let H be a subgroup of GL2pFpq containing Z.

(a) The natural maps

Ω1
pXppqHq

–
ÝÑ Ω1

pXppqqH “ Ω1
pXppq1qH

1

,

are isomorphisms. Here H 1 denotes the subgroup H{Z of PGL2pFpq.
(b) If H has the property that detpHq “ F˚p, then projection on the

classical coordinate induces an isomorphism

Ω1
pXppqHq bQ C –

ÝÑ S2pΓHq,

of SL2pFpq-representations.
(c) Let H be the standard Borel subgroup B. It acts on Ω1pXUqbQC

and for any character µ of B, projection on the classical coor-
dinate induces an isomorphism

pΩ1
pXZUq bQ Cqpµq –

ÝÑ S2pΓ1ppq, µ
2
q.
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Here the left hand side denotes the subspace of Ω1pXZUq bQ C
on which B acts via the character µ. The right hand side is
the subspace of S2pΓ1ppqq on which the diamond operators act
through the character µ2.

Proof. Part (a) is well known. Part (b) follows from the fact that
H-invariant elements in Ω1pXppq1q bQ C “ S2pΓZq ` rRsS2pΓZq are
determined by their classical coordinates. Indeed, we may choose the
representative R inside H. Then the two coordinates must be equal.

(c) The two coordinates of an element of Ω1pXZUq are cusp forms
in S2pΓ1ppqq. The diamond operators in Γ0ppq{ ˘ Γ1ppq are congruent
modulo p to matrices of the form

ˆ

a 0
0 a´1

˙

, with a P F˚p .

It follows that, if b P B acts as multiplication by µpbq on an element
of Ω1pXZUq, the two coordinates are in S2pΓ1ppq, µ

2q. The second co-
ordinate is determined by the classical one. Indeed, we can choose
R P B and then the second coordinate is equal to the first multiplied
by µ´1pRq.

This proves the proposition. �

Of special interest is the standard split Cartan subgroup T of G.
Since the subgroup ΓT of SL2pRq is conjugate to Γ0pp

2q, there is a
natural Hecke compatible isomorphism S2pΓ0pp

2qq Ñ S2pΓT q. In terms
of q-expansions at infinity, the isomorphism is given by

ÿ

ně1

anq
pn
ÞÑ

ÿ

ně1

anq
n,

where q denotes expp2πiτ{pq with τ P H. Since, the Fourier coefficients
of Γ0pp

2q-invariant normalized eigenforms are totally real algebraic in-
tegers, so are those of T -invariant normalized eigenforms.

We denote the subspace of newforms of S2pΓ0pp
2qq by S2pΓ0pp

2qqnew.
Abusing notation somewhat, we denote the corresponding subspace of
S2pΓT q by S2pΓT q

new. Note however, that all forms in S2pΓT q are of
level p. See [Bar14, (3.4)]. By Prop. 5.1 (b) applied to H “ T , we may
identify S2pΓT q with the subspace of T -invariants of Ω1pXppqq bQ C.
By Vf we denote the QrGs-subrepresentation of Ω1pXppqq generated by
a normalized eigenform f in S2pΓT q

new. It is a vector space over the
number field Kf Ă C generated by the Fourier coefficients of f .

Proposition 5.2. Let f be a normalized eigenform in S2pΓT q
new. Then

the subgroup Z of scalar matrices acts trivially on the CrGs-module
Vf bKf C. Moreover, Vf bKf C is an irreducible representation of di-
mension ‰ 1, which is not isomorphic to the Steinberg representation.

Proof. See [Bar14, Prop. 3.6]. Let V be an irreducible constituent of
Vf bKf C. By semi-simplicity we have that V T ‰ 0. The G-action
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and the Hecke action on Ω1pXppqq commute. Therefore, for a prime
number l ‰ p the Hecke operator Tl acts on V as multiplication by
the Fourier coefficient al. Then it also acts this way on the subspace
V T of S2pΓT q. Since f corresponds to a newform in S2pΓ0pp

2qq, strong
multiplicity one implies that V T is the 1-dimensional complex vector
space generated by f . It follows that f P V , so that V is equal to the
irreducible representation Vf bKf C. The group Z acts trivially on Vf ,
since it is contained in T .

If Vf had dimension 1, it would be invariant under PSL2pFpq. Since
the quotient of Xppq1 by PSL2pFpq is a genus 0 curve over Qp

?
˘pq, the

SL2pFpq-invariants of Ω1pXppq1q are zero and Vf must be zero as well.
Contradiction. Since the subspace of T -invariant elements of Vf has
dimension 1, Proposition 2.1 implies that Vf cannot be the Steinberg
representation either.

This proves the proposition. �

6. q-expansions

Let T, T 1 denote the standard split and non-split Cartan subgroups
of GL2pFpq respectively. Suppose that f is a normalized eigenform in
the space S2pΓT q

new that was defined in the previous section. Since f
is ΓT -invariant, Proposition 5.1 (a) and (b) imply that we can identify
S2pΓT q

new with a subspace of Ω1pXppqq bQ C. By Proposition 5.2, the
newform f generates an absolutely irreducible G-representation Vf ,
defined over the number field Kf generated by the Fourier coefficients
of f . By Proposition 2.1, the subspace of T 1-invariants of Vf is 1-
dimensional. In this section we compute the q-expansion of a generator.

We first consider the case where Vf is a principal series or twisted
Steinberg representation. In other words, we have an isomorphism

Vµ – Vf bKf C, for some non-trivial character µ : B{Z Ñ C˚.

Note that that Kf contains the field Qpµq` of character values. By
Propositions 3.1 (a) and 3.2 (a), the representation Vµ admits a unique
1-dimensional U -invariant subspace W on which the Borel subgroup
B acts via µ. It is generated by the element e8. Proposition 5.1
(c) implies then that in Vf , there is a unique element whose classical
coordinate is a Γ1ppq-invariant normalized eigenform h on which Γ0ppq
acts via the character µ2. In the twisted Steinberg case, we have µ “
ω and hence µ2 “ 1. In this case h is a Γ0ppq-invariant normalized
eigenform.

Any G-equivariant linear map Vµ Ñ Vf bKf C, must map e8 into
the 1-dimensional space generated by h. Schur’s Lemma implies that
for each c P C˚ there is a unique G-equivariant isomorphism

jc : Vµ
–
ÝÑVf bKf C,

for which jcpe8q “ ch.
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Let q “ e
2πiτ
p . Since h is Γ1ppq-invariant, its Fourier expansion is of

the form

h “
ÿ

ně1

anq
pn.

Note that there is also a unique element in Vf bKf C whose classi-

cal coordinate is the ‘complex conjugate’ normalized eigenform h “
ř

ně1 anq
pn P S2pΓ1ppq, µ

´2q. The isomorphism jc maps the element

´
ř

rPFp er to a multiple of h.
The following proposition relates the Fourier expansion of f to the

one of h.

Proposition 6.1. Let µ ‰ 1 and let f and h be the normalized eigen-

forms described above. Put ζp “ e
2πi
p .

(a) Then the q-expansion of f is given by

f “
ÿ

ně1

µpnqanq
n,

with the convention that µpnq “ 0, whenever n is divisible by p.

(b) The eigenform h is in the QpµqrGs-span of τpµqτpµ2q
ap

f . Here

τpµq and τpµ2q denote the Gaussian sums
ř

xPFp µpxqζ
x
p and

ř

xPFp µ
2pxqζxp respectively. When µ “ ω we have µ2 “ 1 and we

put τpµ2q “ ´1.

Proof. By Proposition 3.1 (b), the subspace of T -invariant elements
of Vµ is the 1-dimensional subspace generated by

ř

rPF˚p µprqer. The

isomorphism jc introduced above, maps it to a ΓT -invariant eigenform
in Vf bKf C. For a suitable choice of c we obtain f itself.

We compute jcp
ř

rPF˚p µprqerq. The formula (3.1) given above and

the fact that w switches 0 and 8, imply that

er “

ˆ

1 r
0 1

˙

we8, for r P Fp.

It follows that

jcperq “ c

ˆ

1 r
0 1

˙

wh.

By Atkin-Li [AL78], the modular involution wp transforms h into the

‘complex conjugate’ form hmultiplied by the so-called pseudo-eigenvalue ε,
which is a complex number of absolute value 1. To be precise, ε is equal
to τpµ2q{ap and we have

1

pτ 2
hp´

1

pτ
q “ εhpτq, for τ P H.
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This implies that wh is the element of Vµ whose classical coordinate is
equal to the Fourier series

whpτq “
ε

p
hpτ{pq “

ε

p

ÿ

ně1

anq
n.

It follows that for r P Fp we have

jcperq “ c

ˆ

1 r
0 1

˙

whpτq “ c
ε

p

ÿ

ně1

anζ
´rn
p qn.

Therefore the classical coordinate of jcp
ř

rPF˚p µprqerq is

c
ε

p

ÿ

ně1

ÿ

r‰0

anµprqζ
´nr
p qn “ c

εµp´1qτpµq

p

ÿ

ně1

µ´1pnqanq
n
“

“ c
εµp´1qτpµq

p

ÿ

ně1

µpnqanq
n.

The last equality follows from the fact that µ´1pnqan is real and hence
equal to µpnqan for all n P Z. Since f is a normalized eigenform, part
(a) follows.

When we choose c “ p{εµp´1qτpµq, we have that jcp
ř

rPF˚p µprqerq “

f . In particular, f is in the QpµqrGs-span of jcpe8q “ ch. Since Vf is
irreducible, this is the same as saying that h is in the QpµqrGs-span of
ετpµqf .

This proves the proposition. �

We now turn to the computation of the Fourier series of the T 1-
invariant eigenform in Vµ. See also [LH13]. Recall that u P F˚p is a
fixed non-square. We put

λn “
ÿ

rPFp

µ´1pr2 ´ uqζ´rnp , for n P Z.

Proposition 6.2. Let f P S2pΓT q
new be the T -invariant eigenform

discussed above and let h “
ř

ně1 anq
pn be the corresponding Γ1ppq-

invariant eigenform. Then the element of Vf with classical coordinate
equal to

1

µp´1qτpµq

¨

˝

p

τpµ2q

ÿ

n, p|n

anq
n
`

ÿ

ně1

λnanq
n

˛

‚

is a generator for the subspace of T 1-invariant forms. Moreover, it is
in the QpµqrGs-span of the ΓT -invariant eigenform f .
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Proof. Propositions 3.1 (c) and 3.2 (c) give an explicit generator of the
1-dimensional subspace of T 1-invariants of Vµ. We apply the isomor-
phism jc with c “ p{εµp´1qτpµq as we did in the proof of Proposi-
tion 6.1. Since

er “

ˆ

1 r
0 1

˙

we8, for r P Fp,

we get

p

εµp´1qτpµq

˜

ÿ

ně1

anq
pn
`
ε

p

ÿ

rPFp

µ´1pr2 ´ uq
ÿ

ně1

anζ
´rn
p qn

¸

.

Since apn “ apan for every n ě 1, this is equal to

p

µp´1qτpµqτpµ2q

ÿ

n, p|n

anq
n
`

1

µp´1qτpµq

ÿ

ně1

˜

ÿ

rPFp

µ´1pr2 ´ uqζ´rnp

¸

anq
n,

which is easily seen to give the result. By Proposition 6.1 (b) the series
is contained in the QpµqrGs-span of f . �

The numbers λn “
ř

rPFp µ
´1pr2 ´ uqζ´rnp are so-called Salié sums.

They are related to Kloosterman sums. See [Con02] and the references
therein.

Next we consider the case where the normalized ΓT -invariant weight
2 eigenform f generates a cuspidal irreducible representations Vf Ă
Ω1pXppqq.

As before, let q “ e
2πiτ
p , let ζp “ e

2πi
p and let

f “
ÿ

ně1

anq
n

be a ΓT -invariant normalized weight 2 eigenform. By Prop. 5.1 (a)
and (b) we may identify S2pΓT q with the subspace of T -invariant ele-
ments in Ω1pXppqq bQ C. Then f generates an absolutely irreducible
G-representation Vf that is defined over the number field Kf generated
by the Fourier coefficients of f . Since Vf is a cuspidal representation,
we have

Vθ – Vf bKf C, for some character θ : T 1{Z Ñ Qpθq˚ with θ2 ‰ 1.

Note that Kf contains the values of the character of Vθ. This means
that Qpθq` is a subfield of Kf .

By Proposition 4.1 (b), the element f P Vf corresponds to the vector
e0 P Vθ or a multiple thereof. More generally, for any r P Fp the
elements in Vf with classical coordinate equal to

fr “

ˆ

1 r
0 1

˙

f “
ÿ

ně1

anζ
´nr
p qn,

correspond to multiples of er.
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Proposition 6.3. The elements in Vf with classical coordinate equal
to

pfr ´
ÿ

mPFp

ÿ

yPF˚
p2

θpyqf pm`rqNpyq
m2´u

`Trpyq`m
, for r P Fp,

are all T 1-invariant. They are all in the QpθqrGs-span of f and at least
one of them generates the subspace of T 1-invariants of Vf .

Proof. By Proposition 4.1 (c) this follows from the fact that the vectors
er are in the ZrGs-span of e0 and the fact that the T 1-trace is an element
of QpθqrGs. �

7. Level 17

In this section we explain how to compute equations over Q for the
canonically embedded genus 6 curve X`

nsp17q. We follow the method
in [Mer18]. We exhibit six linearly independent weight 2 cusp forms
that are invariant under the normalizer N 1 of the standard non-split
Cartan subgroup T 1. We find these forms inside the six representation
spaces Vf , generated by six normalized eigenforms f P S2pΓT p17qqnew,
that are invariant under the normalizer N of the standard split Cartan
subgroup T . Since the space S2pΓT p17qqnew is naturally isomorphic
to the classical space S2pΓ0p172qqnew, we start from there. We can
find the Fourier expansions of the normalized eigenforms in William
Stein’s [Ste], for instance.

In Stein’s table we find, up to Galois conjugation and twists by the
quadratic character ω, four normalized weight 2 eigenforms invariant
under Γ0p172q. Two of these are twists of normalized eigenforms in
S2pΓ1p17qq. They give rise to principal series and twisted Steinberg
representations. The other two eigenforms generate cuspidal represen-
tations.

There is a unique Γ0p17q-invariant normalized eigenform f0 “
ř

n anq
17n.

Its 17-th Fourier coefficient a17 is equal to `1. Its quadratic twist
ř

n ωpnqanq
17n is a normalized Γ0p172q-invariant eigenform. Here we

put q “ e
2πiτ
17 for τ P H. By convention ωpnq “ 0 whenever n is divisi-

ble by 17. The corresponding ΓT -invariant form is
ř

n ωpnqanq
n. The

first few terms of its Fourier expansion are

f1 “ q´q2´q4`2q5´4q7`3q8´3q9´2q10´2q13`4q14´q16`3q18`. . .

The irreducible subrepresentation Vf1 of Ω1pXppq1q is isomorphic to
the twisted Steinberg representation. The form f1 is also invariant
under the normalizer N of T because 17 ” 1 pmod 4q. See Proposi-
tion 3.2 (b).

One finds in Stein’s tables that the space S2pΓ1p17qq is the direct
product of the 1-dimensional space of Γ0p17q-invariant forms that we
considered just now, and a 4-dimensional subspace W spanned by the
Galois conjugates of an eigenform h on which the diamond operators
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act through a character of order 8 of pZ{17Zq˚. Any such character
is of the form µ2, where µ has order 16. Since µ is an odd character
of T {Z, Proposition 3.1 implies that the normalizer N acts as ´1 on
the T -invariants. Therefore the twist by µ of h as described in Section
3, is a Γ0p172q-invariant normalized weight 2 eigenform, corresponding
to a ΓT -invariant form that is not N -invariant. It plays no role in our
computation of the canonical embedding of X`

nsp17q.
Since the normalized eigenforms f P S2pΓT p17qqnew for which Vf is a

principal series or twisted Steinberg representation, all arise in this way
from eigenforms in S2pΓ1p17qq, the remaining normalized eigenforms in
S2pΓ0p172qq give rise to cuspidal representations. There are two of
them.

Put a “ ´1`
?
13

2
. Then the modular form

f2“q´pa`1qq2`aq3`pa`2qq4´pa`1qq5´3q6`pa´1qq7´3q8´aq9`

`pa`4qq10´3q11`pa`3qq12´pa`2qq13`pa´2qq14´3q15`pa´1qq16` . . .

is the ΓT -invariant form associated to a newform in Γ0p172q. The repre-
sentation Vf2 is cuspidal with respect to some character θ of order divid-
ing 18. The field Kf2 generated by the Fourier coefficients is Qp

?
13q.

Since it contains Qpθq`, we actually must have that θ6 “ 1. Figuring
out what character θ of T 1{Z is involved, can be done by numerically
computing the action of w on f2 for every possible θ in a suitable τ P H
as in Baran’s paper [Bar14, Section 6]. It turns out that in this case θ
has order 6. The twist of f2 by ω is cuspidal with character θω, which
has order 3. By Prop. 4.1 the form f2 is N -invariant, while its twist is
anti-invariant.

The fourth normalized eigenform is the ΓT -invariant form associated
to one of the Γ0p172q-invariant eigenforms in Stein’s table with Fourier
coefficients in Qpζ9q`. The first few terms of its Fourier expansion are

f3“q´pb
2
`b´2qq2´pb`1qq3`bq4`pb2`b´4qq5`p2b2`2b´3qq6`bq7`

`pb2` b´3qq8`pb2`2b´2qq9`p2b2`b´6qq10´p2b2´2qq11´pb2`bqq12` . . .

Here b “ ζ9` ζ
´1
9 . It is a zero of x3´ 3x` 1. The representation Vf3 is

cuspidal with character θ of order 18. The twist by ω is cuspidal with
character θω of order 9. By Prop. 4.1 (b) the form f3 is N -invariant,
while its twist is anti-invariant.

At this point we have six T -invariant eigenforms: f1, f2 and its
Galois conjugate and f3 with its two Galois conjugates. To f1 we apply
the T 1-trace fomula in Proposition 6.2. This gives us a T 1-invariant
form g1 with Fourier coefficients in Qpζ17q`. Applying the formula of
Proposition 6.3 to f2 and its conjugate over Kf2 “ Qp

?
13q, we obtain

the T 1-invariant form f 12 and its conjugate. Their Fourier coefficients are
in Kf2pζ17q

`. We put g2 “ Trpf 12q and g3 “ Trp
?

13f 12q. Here Tr denotes
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the trace map from Qpζ17q`p
?

13q to Qpζ17q`. Then g2 and g3 are T 1-
invariant forms with Fourier coefficients in Qpζ17q`. Similarly, we apply
the T 1-trace map given in Proposition 6.3 to f3 and its conjugates
over Kf3 “ Qpζ9q` and obtain the T 1-invariant form f 13. Its Fourier
coefficients are in Kf3pζ17q

`. For i “ 1, 2, 3, we put g3`i “ Trpeif
1
3q,

where e1, e2, e3 denotes the basis of Kf3pζ17q
` over Qpζ17q` given by

1, α, α2, where α is a zero of the defining polynomial x3` 3x2´ 3 used
in Stein’s table. Then g4, g5 and g6 are T 1-invariant forms with Fourier
coefficients in Qpζ17q`.

We list the first few Fourier coefficients of the T 1-invariant forms
g1, . . . , g6. By an 8-tuple rx1, . . . , x8s P Z8 we denote the element
ř8
j“1 xjpζ

j
17 ` ζ´j17 q. For every i we have divided the coefficients of

gi by a common divisor in Z.

g1“r7,1,2,5,4,5,4,6sq´r6,7,4,1,5,2,4,5sq
2
`r´5,6,4,7,2,4,5,1sq4 . . .

g2“r4,16,2,´4,´2,8,´8,18sq`r9,2,´4,8,4,1,´1,´2sq2´r4,´1,2,´4,´2,8,9,1sq3 . . .

g3“r9,2,´4,8,4,1,´1,´2sq2´r4,´1,2,´4,´2,8,9,1sq3´r´2,9,´1,2,1,´4,4,8sq4 . . .

g4“r8,8,´2,4,5,´2,´1,´3sq´r3,2,´1,2,´2,7,´4,10sq2´r12,9,12,6,18,12,9,24sq3 . . .

g5“´r4,4,8,6,3,4,2,3sq`r1,4,´1,4,´2,4,´1,8sq2`r2,5,10,1,12,10,2,9sq3 . . .

g6“r10,10,9,12,5,2,1,2sq´r5,12,0,12,0,16,1,22sq2´r8,10,22,4,32,22,9,29sq3 . . .

By [SD73] the canonical embedding of a genus 6 curve is typically cut
out by six quadrics. See also [Dos16, Thm. 1.1] and [Mer18]. We
compute six quadrics that vanish on the canonically embedded curve
X`

nsp17q and then use MAGMA to check that the intersection of the
quadrics is a curve of genus 6. Then we know that the quadrics are
indeed equations for X`

nsp17q.
To do this, we compute Fourier series of the 21 products gigj with

1 ď i ď j ď 6. Even though the Fourier coefficients of the forms gi
are in Qpζ17q` and are usually not rational, the corresponding Kähler
differentials are rational. This is explained by the fact that the cusps of
X`

nsp17q are not rational, but conjugate over Qpζ17q`. Since the curve
X`

nsp17q is defined over Q, we search for quadrics
ÿ

1ďiďjď6

aijxixj,

with coefficients aij in Q. From the equation
ř

1ďiďjď6 aijgigj “ 0 we

obtain infinitely many equations with coefficients in Qpζ17q`, one for
every term qn in the Fourier expansion. Since the coefficients are in the
degree 8 number field Qpζ17q`, each equation gives rise to eight equa-
tions with coefficients in Z. For instance, a consideration of the Fourier
coefficients of q2 and q3 gives rise to the following 16 equations. Here
the columns correspond to the coefficients aij in lexicographic order.
Rather than two, we use the first 10 Fourier coefficients and hence
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Table 7.1

6 0 0 3 ´2 5 ´3840 0 0 ´2 2 0 0 0 0 15 2 7 3 ´3 10
3 0 0 3 1 1 10620 0 6 ´2 4 0 0 0 0 18 2 8 4 ´5 14
4 ´2 0 ´1 0 ´1 ´5256 0 ´4 0 2 0 0 0 0 7 0 4 6 ´9 17
5 2 0 1 0 1 2820 0 ´14 0 ´8 0 0 0 0 20 0 14 6 ´9 24
3 0 0 0 1 ´2 ´3948 0 12 10 ´8 0 0 0 0 24 ´1 17 4 ´6 20
6 6 0 ´3 ´1 0 9972 0 6 2 0 0 0 0 0 18 ´2 15 4 ´7 21
4 ´8 0 ´1 1 ´2 ´3018 0 ´16 ´2 ´8 0 0 0 0 25 ´1 20 3 ´5 23
5 2 0 ´2 0 ´2 852 0 10 ´6 16 0 0 0 0 26 0 17 4 ´7 24
´2 ´12 8 ´10 2 ´8 8 ´4 ´51 26 ´76 0 13 0 10 4 4 ´7 ´2 7 ´20
0 ´24 6 ´9 2 ´8 24 ´12 ´45 17 ´56 0 15 3 6 0 1 ´4 ´2 5 ´12
0 ´9 3 ´3 1 ´2 24 ´12 ´30 23 ´54 0 6 1 2 6 ´4 8 0 1 ´2
0 ´12 6 ´9 3 ´12 36 ´18 ´54 23 ´64 0 18 ´1 14 18 ´3 15 ´2 3 2
´4 ´15 1 ´8 ´1 ´3 4 ´2 ´51 25 ´71 0 17 ´1 13 2 ´5 9 8 ´14 26
2 ´12 4 ´14 5 ´16 ´8 4 ´39 22 ´61 0 11 ´4 15 8 ´2 10 0 0 8
0 ´3 3 ´3 1 ´4 48 ´24 ´39 11 ´43 0 21 1 15 24 ´7 28 2 ´7 30
0 ´15 3 ´12 4 ´15 0 0 ´48 23 ´68 0 18 1 10 6 ´1 9 ´4 5 2

obtain a grossly overdetermined linear system of 80 equations in 21
unknowns. As expected, the solution space has dimension 6. In this
way we obtain six independent quadrics

ř

1ďiďjď6 aijxixj with coeffi-
cients in Q. By means of a linear change of variables and by replacing
the quadrics by suitable linear combinations, we obtain equations that
have very small coefficients and have good reduction modulo primes
different from 17. Here we use the LLL-algorithm as in [Mer18]. The
independent quadrics q1, . . . , q6 we obtained, are listed below. They
cut out a genus 6 curve, which must be X`

nsp17q.

q1 “´ 3x1x2 ` x1x3 ` x1x4 ` x1x5 ` x2x3 ` 2x2x4 ` x2x5 ´ x2x6 ´ 2x23`

` 2x3x4 ` 2x3x5 ` x3x6 ` x4x5 ´ x4x6 ` x
2
5 ´ x5x6,

q2 “ x1x2 ´ 2x1x3 ´ 2x1x4 ` x1x6 ` x2x5 ` 2x2x6 ´ x3x4 ´ 2x3x5 ` x
2
4´

´ x4x5 ` x4x6 ´ 2x25 ` x
2
6,

q3 “ 3x21 ` 3x1x2 ` x1x3 ´ x1x4 ` x1x6 ` x2x3 ´ x2x4 ` x2x5 ` 2x2x6 ` x
2
3´

´ x3x4 ´ x
2
4 ´ x4x5 ´ x4x6 ` x

2
5 ` 2x5x6,

q4 “ 2x21 ` 2x1x2 ´ 2x1x3 ` x1x4 ´ 2x1x5 ` x1x6 ´ x2x3 ´ x2x5 ` 3x2x6 ´ x
2
3`

` 3x3x4 ´ 3x3x5 ´ x
2
4 ´ x4x5 ` 2x25 ´ x5x6 ` x

2
6,

q5 “ x1x2 ` 5x1x3 ` 2x1x4 ´ x1x5 ` x
2
2 ` 3x2x3 ` 2x2x4 ´ x2x5 ´ x

2
3 ` 2x3x4´

´ 3x3x5 ` x
2
4 ` 3x4x6 ´ x

2
5 ´ 2x5x6 ´ x

2
6,

q6 “´ 3x1x2 ` x1x3 ´ 2x1x4 ` 4x1x5 ´ 3x1x6 ´ 3x22 ´ 2x2x3 ´ 5x2x4 ` x2x5´

´ x2x6 ` x
2
3 ` x3x4 ´ 3x3x5 ` x

2
4 ´ 2x4x5 ´ 2x4x6 ` x

2
5 ` 3x5x6 ´ x

2
6.
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CM-points or Heegner points are points on modular curves parametriz-
ing elliptic curves with complex multiplication by imaginary quadratic
orders O Ă C. Only if O is one of the thirteen quadratic orders of
class number 1, the CM-points may give rise to rational points. Since
the prime 17 is inert in the orders O of discriminant ´3,´7,´11,´12,
´27, ´28 and ´163, there is for each of these orders O, a unique ratio-
nal CM-point on the curve X`

nsp17q. We have determined the projective
coordinates of these CM-points by evaluating the Fourier series of the
modular forms gi numerically in suitable τ P H for which 17τ P O.

Table 7.2. CM-points on X`
nsp17q.

discriminant CM-point
´3 p2 : ´2 : ´1 : 3 : ´2 : 1q
´7 p´6 : ´2 : ´4 : 1 : ´3 : 13q
´11 p3 : 1 : 2 : ´9 : ´7 : 2q
´12 p´4 : 10 : 3 : ´5 : ´2 : 3q
´27 p2 : ´5 : ´10 : ´6 : 1 : 7q
´28 p0 : 0 : 0 : 1 : 1 : 1q
´163 p´7 : 9 : 35 : 21 : 5 : 1q

A short computer calculation revealed that there are no rational points
px1 : x2 : x3 : x4 : x5 : x6q on X`

nsp17q with xi P Z and |xi| ă 10 000,
other than the seven CM-points listed in Table 7.2.

8. Level 19 and 23

In this section we present quadrics that cut out the modular curves
X`

nsp19q and X`
nsp23q. They were obtained by the method explained in

the previous section.
The modular curve X`

nsp19q has genus 8. Its canonical embedding in
P7 is cut out by fifteen quadrics. These are listed in Table 8.1. Here
the rows contain the coefficients of the 36 monomials xixj with 1 ď i ď
j ď 8 in lexicographic order. Each column corresponds to the equation
of a quadric in P7. The prime 19 is inert in the imaginary quadratic
orders O of discriminant ´4, ´7, ´11, ´16, ´28, ´43 and ´163. For
each order O there is a rational CM-point on X`

nsp19q, corresponding to
an elliptic curve with complex multiplication by O. As in the previous
section, the CM-points in Table 8.4 have been computed numerically.
They are the only rational points px1 : x2 : x3 : x4 : x5 : x6 : x7 : x8q
with xi P Z satisfying |xi| ď 10 000.

The modular curve X`
nsp23q has genus 13. Its canonical embedding

in P12 is cut out by 55 quadrics. These are listed in Table 8.3. Here the
rows contain the coefficients of the 78 monomials xixj with 1 ď i ď j ď
13 in lexicographic order. Each column corresponds to the equation of
a quadric in P12. The prime 23 is inert in the imaginary quadratic
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orders O of discriminant ´3,´4,´8, ´12, ´16, ´27 and ´163. For
each order O there is a rational CM-point on X`

nsp23q, corresponding to
an elliptic curve with complex multiplication by O. The CM-points in
Table 8.4 have been computed numerically. They are the only rational
points px1 : x2 : x3 : x4 : x5 : x6 : x7 : x8 : x9 : x10 : x11 : x12 : x13q with
xi P Z satisfying |xi| ď 10 000.

Table 8.1. Coefficients of quadrics defining X`
nsp19q

´1 1 0 0 ´1 0 0 ´1 1 1 0 2 0 1 0
1 0 0 0 1 0 0 ´1 ´2 ´1 1 0 3 ´2 4
0 ´1 ´1 0 1 0 1 2 ´1 0 1 ´3 1 0 1
0 1 ´1 0 ´1 1 0 1 ´2 0 1 2 1 0 0
´1 ´1 1 ´2 1 0 0 ´1 1 ´1 0 1 1 2 2
0 0 0 ´1 2 0 ´1 0 ´1 ´1 0 ´2 0 0 1
0 1 0 ´1 0 0 0 0 ´1 ´1 ´1 ´1 0 0 ´1
0 0 0 0 1 ´1 1 ´1 0 0 0 1 2 ´1 ´1
0 0 1 1 0 0 0 0 0 0 ´1 0 0 0 1
1 ´1 1 0 ´1 0 ´1 2 1 ´1 0 0 ´1 0 0
0 ´1 1 0 1 0 0 0 ´1 1 0 ´1 2 ´1 0
0 1 ´1 0 0 1 0 ´1 0 1 0 0 1 ´1 ´1
0 0 0 0 0 2 ´1 0 1 2 ´1 0 2 ´1 ´1
1 0 ´1 ´1 ´1 1 1 1 ´1 0 0 0 0 1 ´2
0 0 1 1 0 0 0 0 0 ´1 1 1 0 1 ´1
0 ´2 0 0 0 0 0 2 0 0 ´1 ´1 ´1 0 0
0 1 1 0 ´1 ´1 0 ´2 2 ´1 0 0 0 1 ´1
1 ´1 0 ´2 1 ´1 0 1 1 1 2 ´1 0 0 ´1
1 ´1 1 ´1 0 ´1 ´1 ´2 2 0 ´1 0 0 0 ´1
1 ´1 0 ´1 ´1 1 0 1 ´1 0 ´1 0 0 0 0
1 0 1 0 ´2 2 ´2 1 ´1 0 0 ´1 0 ´1 0
1 0 1 0 0 1 0 1 ´2 ´1 1 1 1 ´1 1
0 0 ´1 0 ´1 0 0 ´1 0 ´1 0 2 ´1 ´1 ´3
1 ´1 1 0 0 1 0 0 0 0 ´1 0 0 ´3 0
´1 2 0 0 ´1 1 0 0 0 1 ´1 ´1 ´2 0 ´1
1 0 1 0 1 0 0 ´1 0 ´1 0 1 1 ´1 1
´1 0 ´1 ´1 0 0 0 ´1 1 0 0 0 ´1 0 ´2
´1 1 ´1 0 0 ´1 2 ´2 0 ´1 0 0 ´2 ´1 ´1
0 ´2 1 ´1 1 ´2 ´1 1 0 1 ´1 ´1 ´2 ´1 ´1
´1 0 0 1 1 ´1 ´1 0 ´1 1 1 ´1 0 ´3 ´1
0 0 0 0 0 0 1 0 0 0 0 0 0 ´1 0
0 0 0 ´1 0 0 0 2 0 1 1 0 ´2 0 0
0 0 0 0 1 0 ´1 0 0 0 0 ´1 ´3 ´1 1
1 0 0 ´1 ´1 0 0 0 1 0 1 1 0 0 0
0 0 ´1 ´1 ´2 1 1 1 1 0 ´1 0 ´1 1 1
0 0 0 0 1 0 ´1 0 0 0 0 ´1 0 0 2

Table 8.3: Coefficients of quadrics defining X`
nsp23q

0 1 -1 1 3 0 0 2 1 0 -1 0 0 0 1 -2 1 2 2 1 1 0 1 0 0 0 1 -1 1 3 -2 1 -1-1 0 0 -1 0 0 1 -1 1 -1-1 0 2 2 -1-1 2 1 1 1 -1 0
-2 1 -1 2 2 1 -1 0 -2-1-3 0 0 -2 1 2 3 -1-1-1 0 1 3 -1-1 0 -2 0 -1-1 1 0 1 -1 2 1 -3 1 0 0 1 0 -1-1-1-1-1 1 0 2 -1-2-1-1 2
0 0 2 -3-2 2 -2 0 -2 1 0 0 0 -2-3-1 2 -2-2 0 -1 0 1 -1-1 0 -1-1-3-2 3 1 1 1 -1 1 0 0 2 -2 0 0 0 1 1 -1-1 0 0 0 0 0 0 0 0
2 0 0 1 -1-1 1 1 1 0 0 1 0 0 2 0 -1 1 1 1 1 -2-1-1 2 -1 1 -2 1 2 -2-2-1 0 -1-3 3 -1-1 2 0 0 0 2 -2 0 1 0 0 0 0 0 0 2 0
-1 0 0 -1 0 0 -1 0 -1 0 1 -1 0 0 -1-1 1 0 0 0 -3 1 -1-1-2 1 0 1 -1-1 1 1 0 1 -1 1 -1-1 1 -1 0 -1 0 -1 1 0 0 1 -1 1 1 2 0 -1 0
0 0 1 0 0 -2 2 -1-3 0 -1-1 1 2 3 2 1 1 -5 3 -3 2 1 0 0 2 1 -2 1 -1-2 0 -2 1 0 1 -2 4 0 0 -3-2 0 1 0 -1-1 2 1 -1 1 0 -1-1 0
-1-2 1 0 3 2 0 -3 1 0 -2 0 0 0 1 1 2 0 -2 0 0 0 2 -1-3 3 1 -2 2 -1-1 1 1 1 -1 1 -2 1 1 3 -1 1 2 1 2 -1 0 1 2 -1 2 -1 1 -1 1
0 -2 1 0 -1 2 -3 0 3 1 -2 2 -1-5 1 3 1 -1 2 -2 3 -3 2 0 0 -2-1 1 0 1 2 1 1 -1 0 0 -1-2 1 2 -1 1 1 1 2 0 1 0 2 0 0 -2 0 2 1
-1 1 0 0 3 -3 0 3 -1 2 -1 0 1 1 -1 0 1 1 0 0 1 0 2 -3-1-1 0 -2 1 1 -1 5 0 -2 0 1 1 2 0 0 -2 2 -2-2 2 2 0 2 -3-1 0 1 -2 0 -1
-1-1 1 0 -1 0 -4 0 -2-1-1-2 1 -3 4 2 1 -4 0 1 -1-1 0 1 0 4 -2-2-2-4 0 -1 0 2 0 -1-1-2 0 0 0 -2-2 4 -1-3 0 3 1 0 -1-1-2 1 1
0 -4-1 2 0 -1 1 0 4 -3 1 2 -3-1 2 0 -1 4 0 -1-1 1 1 -1-1-2 1 2 1 2 -2-2-2 0 -1-2-1-2-1 3 0 -1-1 0 2 3 1 1 -1 0 3 -2 1 1 1
1 -1-1 2 -2 1 -1 1 0 1 0 -1 1 -2 0 -1-2-1 0 -3 2 -2 1 -3 1 -1-1 3 -2-2-2-1 0 1 0 -2 3 -3-1-1 1 -1 1 2 2 -2 0 -1 0 1 0 -1 0 1 -2
-3-2 0 -1 0 1 -1-3 2 -1 1 2 0 1 1 4 2 0 -1-2-2 1 0 1 0 -1-1 4 1 -2 2 1 1 -1 1 3 -3 0 3 1 0 -1 1 -4 1 -1-1 1 2 -1 1 0 0 1 3
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0 2 -1 3 -1 0 0 2 -2-1-2-1-1-3 1 1 0 -2 1 0 0 -1 1 -1 3 -1-1-1-1 1 1 -2 0 -1 2 -2 1 0 -1-1 2 0 -1 1 -3-1-1 1 -1 2 -4-1-1 0 1
0 0 1 1 -1 1 -1 0 -1-2 0 0 0 -1 1 2 1 -1-1 0 0 0 1 2 2 2 -1-2 0 -2 2 -1 1 1 -1-2-1 0 1 -1 0 0 0 0 -2-1 0 1 -1 0 -1-2-1-1 0
-2 0 -1-1 2 0 0 -1 0 1 0 -1 0 1 -2-1 0 0 0 -1 0 2 1 -2-2 0 0 1 0 0 1 3 2 0 1 3 0 0 0 1 0 0 0 -1 3 0 0 0 2 0 1 2 1 -1 0
2 0 1 1 -1 1 1 0 1 0 -2 2 0 -1 1 2 -1-1-1 0 2 -2-1 1 1 1 -1-1 1 0 -1-2-1 1 -1-2-1 0 -1 1 0 0 1 1 -1-1 0 1 -1-1 0 -2-1 1 0
0 0 -2 2 0 0 1 -1-2 1 -3 1 2 2 -2 2 1 1 -3 0 1 1 1 -3-1-1 0 0 0 0 -2 2 0 0 2 -1 0 0 -1 2 3 1 -3 1 2 -2-3 1 0 2 0 -1-4-2 0
-3 1 -2 2 2 1 -1-1-3 0 -3-3-1-2-1-1 2 -1 0 -1-2 1 2 -3 0 1 0 -1-1-1 1 1 1 -1 3 1 -1 0 1 0 2 0 0 0 0 -2-2 1 2 3 -2 1 0 -1 2
-1 1 -1 1 3 2 -3 0 -1 1 -1-2 1 0 0 -1 3 2 2 0 0 -1 0 -1-1 1 1 -1-1 0 0 2 0 0 -1 1 -2-1 2 0 -1 2 1 -2-1 0 2 -1 0 4 0 1 2 -1 0
1 0 1 -1-2-2 2 -1 0 1 0 3 1 0 0 0 0 1 -1-1-1 0 -1 1 0 -1-2 0 2 -1-1-1 0 -2 1 -2 0 0 0 -1-2-2 0 1 -2 0 -1-1 1 -2 2 0 -2 2 2
0 0 0 0 2 2 -2 1 1 0 0 -1-1-2 2 2 0 -2 0 0 2 -2 0 -2-1 1 1 0 -2 0 1 -1 1 3 -1 3 1 0 -2 0 0 1 1 -1 0 -1 1 1 -1-1-1-1 3 0 -1
1 0 0 -1 0 -1 2 0 3 -1-1 0 -4 0 0 0 0 -2-1-1-1 1 -2-2 1 -2 0 -1 2 4 0 0 -4 0 1 0 -2 2 0 4 -2 2 1 -1 0 0 -2 3 -1-1 0 -3 1 3 2
0 -2 2 -2-1 1 -2 0 1 -2 1 -1-4-1 2 2 -1-3 1 -2 0 1 1 -1 3 1 -2 0 -1-1 1 0 -1 5 -3 0 0 2 0 0 0 -1 0 0 3 1 0 2 -1-1-1-2 1 1 -1
0 -1 1 -1-1 0 0 1 1 0 1 0 -1-1 1 0 -1-1 1 2 -2-2 0 0 0 0 1 1 -3 1 0 0 -1 0 -1 1 1 1 0 -1 0 0 0 1 2 1 1 1 -1-1-2 2 2 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 -1-1 0 0 0 0 0 0 0 -1 1 0 0 1 0 0 0 0 1 0 1 0 1 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 1 0 -1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 -1-1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1-1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
-4 0 -2 2 4 0 0 -2 0 -2 0 -2 0 2 0 2 0 0 0 -2-1 4 1 -1-2 2 0 2 3 0 2 2 4 1 1 3 -3-1 0 1 2 -1 0 -3 1 0 0 2 2 1 1 0 0 -4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 -2 0 3 1 -1-1 0 -1 1 0 0 2 0 2 3 0 1 0 0 0 -1-1-2 2 1 0 -2-1 1 2 1 2 -1 1 0 2 -2 1 2 4 0 -4-1 0 -2-1-2 0 -1-1 0 -2 0
-2 3 -3 3 4 1 -1 1 -1 2 -1-4 2 3 -3 0 2 1 1 -2 1 0 -2-3-1-1 2 0 3 2 0 5 1 -1 1 3 -2 0 2 1 0 5 1 -4 0 -2 0 1 0 5 -1 1 1 -4 -2
0 1 3 1 -1 2 1 0 -4 2 -1-2-2 0 -3 1 0 1 -1 1 -1 1 -3-1 1 1 5 -4 3 0 2 0 -2 3 -1 3 -2 1 -1 0 0 3 3 0 -2 0 0 2 0 0 -3-2 2 -3 3
0 1 -4 0 4 -3 1 -1 4 -2 3 -2 1 2 -1-4-1-1 1 0 -1 3 -1-1-4 1 -3 2 0 1 1 3 2 -2 1 -1 1 -3-1 1 0 2 -1-3-1 2 0 -1-1-1 2 1 0 1 -2
3 0 1 -2 1 0 1 -2 3 -1 1 0 -2 1 2 2 1 1 -2 3 0 1 -1 0 -3 0 1 -2 0 4 2 0 -1 2 -2 1 -2 2 0 2 -3 2 3 -1-1 2 2 0 0 -1 2 -3 3 1 0
-1-2 0 -2 0 1 -2-4-2-2 0 1 -3 2 -4 1 1 3 -1 0 -2 3 0 0 -1 1 0 -2-2-2 3 1 0 1 -1-1-1 0 1 0 4 1 -1-2 2 3 -2 1 -3 1 1 0 -2 0 0
-1 0 0 2 0 0 0 2 0 -2-1 0 2 3 2 2 1 -1 0 0 1 -1 2 1 2 -1-1-1 1 1 -2 1 0 -1-2-3-1 2 3 1 1 -1-3 1 2 -2 0 3 -1 3 -1 0 -2-2 -2
-1-1 0 0 1 1 -1-2-1 0 -1-1 0 0 0 -1 2 1 -1 0 -2 0 0 0 -1 2 1 -1 0 -2-1 0 -1 0 0 0 -2 0 1 1 0 0 1 0 0 -1-1 0 1 1 1 0 0 0 1
-1-1 2 1 -2 3 -2-1-3 2 -3 0 1 -4-1 1 1 0 -1 0 0 -1 3 0 1 0 0 0 0 -2 1 -1 1 0 1 1 -1-2 1 -1 1 -1 1 3 0 -1 0 0 2 2 -1 0 -1-1 1
-1 0 1 3 2 -1 1 0 -1 2 -1-1 2 1 2 3 0 1 1 1 -1-1 0 -3-1 2 3 -1 4 1 -1 2 0 1 -1 1 0 0 -1 2 -1 0 3 0 0 0 3 3 0 -1-1 1 0 -1 0
-1-1-1-2 1 -1 0 -1 2 -2 0 -1-1 0 -1-1-2-2-4 0 0 2 1 0 -3 0 -3 0 -2 0 1 1 3 -1 1 1 -1-1 1 -1 0 -1-3 1 3 0 -2 2 1 -1 2 0 0 0 -1
-2-4-2 4 1 0 0 -4 0 -3 0 1 -1 0 1 1 0 5 1 -1-3 2 1 -1-3 2 1 1 1 -2-1-2 1 1 0 -3-1-3-1 3 4 -2 0 1 0 2 1 1 0 2 2 -1-1-1 2
-1-3 1 -1-1-1-2-2-1-2 0 -2-1 2 0 -1 0 3 -4 1 -3 3 2 -1 1 -1-1-2 0 -1-1 1 -2 0 -2-2-3-1 4 0 0 -3-1 1 3 2 0 3 -1 3 3 0 -2 2 -1
1 1 -1 0 -1 2 1 0 1 1 0 2 0 0 -2-1 0 2 -1-1 1 -1-1 0 1 -4 0 2 0 2 0 -2 0 -2 2 1 0 0 1 -2 0 1 2 -2-1-1 0 -3-1 2 1 1 2 0 1
1 -2 2 -1-2 1 0 -2 0 0 0 2 -1-2 0 2 -1 0 -1 1 0 0 1 0 -1 0 0 0 -1-1 2 -2 1 2 -1 0 1 -1-2 0 1 -1 1 2 0 1 0 0 0 -2 0 -1 0 1 1
-1-1 0 2 0 0 -2 1 0 1 -1 0 3 -1 3 3 1 0 1 0 1 -2 3 0 1 0 0 2 1 0 -1 2 1 -1 0 0 0 -1 1 1 -1-1 0 1 2 -1 2 1 1 1 0 1 -2-1 -2
2 -2 0 -2 1 -1 1 -1 3 0 0 3 -1 2 1 1 -2 2 -2 0 2 0 -1-1-2-1-1 0 -1 1 -3 0 -1 2 -1 0 0 1 -2 1 -1 0 -2 0 2 2 0 0 -1-2 3 -1 1 2 0
-3-3 0 2 -2 1 -3 0 -2-1 0 0 0 -3-1 0 1 2 1 -1-2 0 2 0 0 0 1 1 -1-3 1 -1 1 -1 0 -1 0 -4 1 0 3 -2-2 2 1 0 0 1 1 2 0 0 -2-1 1
-1 0 2 -1 1 2 0 2 -1-1 1 -1 1 -1 2 -3 0 -3-2 2 -2 2 3 0 2 3 -1 1 -2-2-1-1 0 3 -1 3 0 0 0 -3 0 -2-1 0 0 1 1 0 -1-1 0 1 2 -1 1
1 1 -1 1 -1 2 -1 0 -3 1 0 -1 0 -1-2-2 1 2 0 0 0 0 0 -1 1 -1 1 0 -2-1 0 -2-1 1 1 0 1 0 -1-2 1 1 1 0 -2-1 0 -3-2 3 -1 0 1 -1 0
0 0 1 2 1 -1 0 3 -2 1 0 0 2 1 2 0 0 1 1 1 1 0 1 -1 2 0 1 -1 3 0 -4 0 -2 1 0 0 1 1 -2 0 0 0 -2 1 -1 1 2 1 -3 0 -1 0 -1-1 0
-1 0 -2-1 0 -1-2-1 0 -1-2 0 1 -1 2 0 1 -2 0 -1-1 0 1 2 0 2 -4 1 -3-1 0 1 1 -2 2 -2-1 0 2 0 -1-3-3 1 2 -2-2 0 2 2 2 1 -3 1 -1
-3-1-1 2 1 -3 1 2 -1-1 1 -1 0 1 0 0 -1 2 -1-1-1 1 2 -1-1-1 2 1 1 -1-2 1 1 -2 1 1 0 1 0 -1 1 -2-2-1 2 1 -1 2 -1-1 0 0 -2-2 -1
-3 0 -2 1 4 2 -1 0 1 -3 0 -2 0 1 2 0 0 -2 0 0 -1 1 3 -1 0 3 -1 2 -3 0 0 1 3 2 -1 2 -1 1 1 -1 2 -1-1-2 3 0 1 1 0 2 0 2 2 -2 -2
0 -2 3 -2-1 4 -2-1 1 -2 3 2 1 0 2 1 3 -1-1 1 -1 1 2 2 1 1 -1 1 -1-3 2 -1 1 3 -3 1 -1-1 2 -1 0 0 1 -1-1 0 2 -1-1-1 1 -1 2 -1 2
1 -1 2 -1-1 2 0 0 1 1 0 2 -1 0 0 3 0 1 -1 0 2 -2 0 -1 0 -2 2 0 0 1 0 -1 0 2 -2 2 0 1 0 0 0 1 2 0 1 0 1 0 0 -1 0 -1 2 0 0
0 0 2 -2-1 0 -4 0 -2 2 -1-1 2 -2 2 1 2 -3 1 1 -1-1-1 0 1 3 -2-2 0 -2 0 1 -1 1 0 0 0 -2 1 0 -2 0 -1 3 -1-2 1 1 1 0 0 1 -2 2 1
0 1 1 -2-1 1 1 1 2 0 1 1 0 -2 0 -1 0 -1-1 0 1 -2 1 3 -1-2 0 1 -1 1 2 -1 4 -3 0 2 -1 1 2 -3-2-1 2 0 0 -1 0 -3 3 -1 1 1 3 -1 0
-2 1 -3 2 0 -3 1 0 -3 2 -4-3-2-1-2-1-2 1 0 -2-1 0 0 -2 1 -1 1 0 0 1 -2 1 -2-3 5 0 0 2 0 1 0 -2-1 1 3 -1-3 2 2 2 -2 2 -2 1 -1
0 -2-2 1 -1-2 1 -1 3 -2 1 1 -1-1 1 1 -1 1 -1-2 0 0 1 0 -3-2-1 3 -1 0 0 -1 1 -2 1 -2 0 -1 0 1 0 -2 0 0 2 0 -1 0 1 -1 2 -2-1 1 -1
-1-2-1 4 0 4 -2-1 0 -1-1 0 1 0 0 2 0 0 1 -3 1 0 1 -2 2 0 -1 3 1 -2-1 0 0 3 -1-1-1-3 0 1 4 1 0 0 2 -1 1 1 -1 4 -1-1 0 -2 0
-3-2 1 -3 0 1 -2-2 2 -3 2 0 -3 1 0 2 2 -1-1-1-3 2 0 1 0 0 0 1 -1-1 4 1 0 0 -1 2 -3 0 4 1 0 -1 1 -4 2 0 -1 3 0 -1 1 -1 1 1 2
0 0 0 0 1 0 0 0 2 0 1 -1 1 1 0 -1 1 1 -1 1 0 0 0 -1-1-2 1 -1 2 2 0 1 1 -1-1 1 -1-1 2 1 -1 1 1 0 -1 0 1 0 1 1 1 0 1 0 0
1 1 -1-1 4 -3 2 -1 1 1 -1 1 -1 2 2 1 -3 0 1 0 1 2 -2-1-1 3 -2 0 2 2 -2 1 -1 2 2 1 1 2 -4 1 -2 0 0 -2 0 3 1 1 -2-3 2 1 0 2 0
2 -1 2 0 -3 1 0 1 -1-2 2 0 -1 0 -1-1 0 0 0 2 -1 0 0 1 1 0 1 -2-2-1 1 -2-2 2 -4-3 1 0 -1-1 2 1 -1 2 -1 1 0 0 -3 0 -2-2 0 -1-1
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Table 8.2. CM-points on X`
nsp19q

discriminant CM-point
´4 p0 : 0 : ´1 : 1 : 0 : ´1 : 1 : 0q
´7 p2 : 7 : ´12 : ´4 : 3 : 3 : 10 : ´4q
´11 p3 : 1 : 1 : ´6 : ´5 : ´5 : ´4 : 13q
´16 p´2 : 12 : 7 : ´15 : 16 : ´3 : 9 : 4q
´28 p0 : 1 : 0 : 0 : 1 : ´1 : 0 : 0q
´43 p´10 : 3 : 3 : 1 : 4 : ´15 : 7 : 1q
´163 p2 : 0 : 0 : ´3 : ´1 : 0 : 0 : 3q

Table 8.4. CM-points on X`
nsp23q

discriminant CM-point
´3 p´3 : 4 : 0 : 1 : 0 : 6 : ´1 : 6 : ´6 : ´6 : 0 : ´6 : ´12q
´4 p1 : ´2 : 0 : ´2 : ´1 : 0 : 1 : ´2 : ´1 : 0 : ´1 : 0 : 0q
´8 p3 : 13 : ´19 : ´4 : 16 : 8 : ´11 : 10 : 1 : ´7 : ´12 : 18 : ´5q
´12 p´15 : 4 : ´20 : ´3 : 12 : 6 : 9 : ´4 : 18 : 12 : 14 : 2 : 2q
´16 p3 : ´10 : 4 : ´4 : ´7 : 8 : ´11 : 10 : 1 : 16 : 11 : 18 : 18q
´27 p0 : 1 : 0 : 1 : 0 : 0 : ´1 : 0 : 0 : 0 : 0 : 0 : 0q
´163 p0 : ´1 : 0 : ´1 : 0 : ´2 : 1 : ´2 : ´4 : 0 : 4 : ´2 : 2q
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