MODULAR FORMS INVARIANT UNDER NON-SPLIT
CARTAN SUBGROUPS

PIETRO MERCURI AND RENE SCHOOF

ABSTRACT. In this paper we describe a method for computing
a basis for the space of weight 2 cusp forms invariant under a
non-split Cartan subgroup of prime level p. As an application we
compute, for certain small values of p, explicit equations over Q
for the canonical embeddings of the associated modular curves.

1. INTRODUCTION

It is well known how to compute bases for the spaces of cusp forms
that are invariant under the modular groups I'o(N) or I';(N). In-
deed, efficient algorithms to compute g-expansions of eigenforms ex-
ist  MAGMA], [SAGE] and extensive tables are available online [BK72],
[ILMFDB]J, [Ste]. For other congruence subgroups of SLy(Z) the sit-
uation is different. While for some groups, like split Cartan sub-
groups, there are efficient algorithms [SAGE] and it is easy to obtain
g-expansions from the existing tables for I'o(/V), for other subgroups
this is not so immediate [BC14], [Bar10].

In this paper we describe a method to compute g-expansions of a
basis for the space Sy(I'ys(p)) of weight 2 cusp forms invariant under a
non-split Cartan subgroup I'ys(p) of prime level p. As in the compu-
tation for p = 13 by B. Baran [Barl4], we obtain a basis of Sa(I'ys(p))
by applying trace maps to certain normalized eigenforms in So(Tg(p?))
and S2(I'1(p)). In Baran’s computation for p = 13, this involves only
one eigenform. It generates a cuspidal GLy(IF,)-representation. For
larger primes p, several non-isomorphic irreducible representations such
as cuspidal, twisted Steinberg and principal series, are involved. This
complicates matters, since in each case the trace map is different. Our
main tools are the formulas of Propositions 6.2 and 6.3.

As an application we are able to compute explicit equations for the
canonical embeddings of the modular curves X, 4(p) associated to the
non-split Cartan subgroups and the curves X (p) associated to their
normalizers. Since our method allows us to compute a basis that is
defined over Q, the equations that we compute have coefficients in Q.
We work this out for the modular curves X[ (p) for p = 17, 19 and 23.

2010 Mathematics Subject Classification. Primary 11F30, 14G35; Secondary
11Y40, 14Q05, 20C33.
1



2 PIETRO MERCURI AND RENE SCHOOF

In principle, we could also deal with larger p, but the genus and the
number of equations grow rapidly with p.

In the remainder of this introduction, we provide some context for
our computational results. The curves X,s(p) and X (p) are defined
over Q. Their genera grow rapidly with p. See [Barl0]. This may
explain why thus far not many computations have been done with
these curves.

The curves X,5(p) have no real and hence no rational points. For
p < 5 the genus of X,5(p) is zero. The curve X,5(7) has genus 1 and, for
the record, is given by the equation —y? = 22* — 1423 + 2122 + 282 + 7.
Equations for the genus 4 curve X,(11) are given in [DFGS14]. Using
the methods explained in this paper, equations for the genus 8 curve
Xys(13) are determined in [DMS19]. No explicit equations have been
computed for the curves X,s(p) for primes p > 13.

The curves X (p) are quotients of X,s(p) by a modular involution.
The rational points of the curves Xf(p) are relevant in connection with
Serre’s Uniformity Conjecture [Ser72]. Indeed, after Mazur’s 1978 re-
sult [Maz78] and the 2010 paper by Bilu, Parent and Rebolledo [BPR13],
the conjecture would follow, if for sufficiently large primes p, the only
rational points of the curves X (p) are CM-points.

For p < 7 the curves X% (p) have genus zero and have infinitely many
rational points. For p = 11 the genus is 1 and there are also infinitely
many rational points. An explicit equation was computed in 1976 by
Ligozat [Lig77]. For p > 11 the genus exceeds 2 and hence there are
only finitely many rational points. An equation for the genus 3 curve
X(13) was computed in 2014 by B. Baran [Barl4]. In this paper we
present equations for X[ (p) for the primes p = 17,19 and 23. Recently
J. Balakrishnan and her coauthors [BDMTV19] used the Chabauty-
Kim method to show that the curve Xf(13) has precisely seven rational
points. All these points are CM-points. For p > 13 it is at present not
known whether or not X (p) admits any rational points that are not
CM. For p = 17,19 and 23 a quick computer calculation shows that
these curves do not admit any non-CM rational points that have small
coordinates in our models. There may very well not be any. See sections
7 and 8.

In Section 2 we fix our notation and recall some of the basic proper-
ties of representations of GLo(F,). In Section 3 we determine our trace
map for the principal series and the twisted Steinberg representations.
In Section 4 we do the same for the cuspidal representations. In Section
5 we recall some of the basic properties of the various modular curves
that play a role. In Section 6 we use the results of sections 3 and 4 and
derive formulas for the g-expansions of weight 2 cusp forms invariant
under a non-split Cartan subgroup. In Section 7 we describe in some
detail the actual computations for the curve X (17). In Section 8 we
present the numerical results for X% (19) and X (23).
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2. REPRESENTATIONS OF GLy(F,)

Let p > 2 be a prime. In this section we fix notation and recall the
basic properties of the representation theory of the group G = GLy(F,),
on which our computations are based.

The group G acts on the p+ 1 points of the projective line P, (IF,) via
linear fractional transformations. A Borel subgroup is the stabilizer of
a point. It is conjugate to the subgroup B of upper triangular matrices
and has order p(p — 1) A split Cartan subgroup of G is the stabilizer
of two points. It is conjugate to the subgroup T of diagonal matrices.
It has order (p—1)? and index 2 in its normalizer N. The group G also
acts on the p? + 1 points of Py(F,2). A non-split Cartan subgroup of
G is the stabilizer of two points of Py (F,2) that are conjugate over [,
Any such group is conjugate to the subgroup 7" of matrices that fixes
the points +4/u, where u denotes a non-square in F,. Explicitly, we
have

T’:{(Z b:) eG:a,be]prithaQ—ubQ;éO}.

The group 1" is cyclic of order p* — 1 and has index 2 in its normalizer
N'.

In this paper we mostly deal with representations V' of GG for which
the subgroup of scalar matrices Z acts trivially. These are representa-
tions of G/Z = PGLy(F,). The complex irreducible representations of
PGLy(F,) are left modules and come in four types [Bum98|, [Lan02].
There are two 1-dimensional representations: the trivial character and
the quadratic character w. Both factor through the determinant. There
are also two irreducible p-dimensional representations. To define them,
we consider the natural action of PGLy(FF,) on the ring A of func-
tions ¢: P1(F,) — C given by o¢(P) = ¢(o~*(P)) for P € Py(F,)
and o € PGLy(IF,,). Since the subspace C of constant functions is pre-
served by this action, PGLy(F,) acts on the p-dimensional quotient
space Vi = A/C. This representation is irreducible, has dimension p
and is called the Steinberg representation. Its twist by w is denoted
by V.

The irreducible representations of the third type are the princi-
pal series representations V). These are the inductions of characters
w: B/Z — C* for which p? # 1. The representations V, have dimen-
sion p + 1. Two representations V), and V), are isomorphic if and only
if ' = p*!. There are (p — 3)/2 mutually non-isomorphic representa-
tions of this type. The irreducible representations of the fourth type
are the cuspidal ones. They are associated to characters 0: T"/Z — C*
for which 62 # 1. These representations have dimension p — 1 and are
denoted by Vj. Two representations Vjy and Vjp are isomorphic if and
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only if # = #*!. There are (p — 1)/2 mutually non-isomorphic repre-
sentations of this type. See [Bum98|, [Lan02] for all this. In Section 4
we describe explicit models for the representations Vj.

Since the characters p are trivial on the unipotent subgroup

o={(5 7) weml.

they can be viewed as characters of the cyclic group T'/Z. A character
w: T/Z — C* is called even or odd, depending on whether it is 1 on
the unique element of order 2 in T//Z or not. Similarly, a character
0:T'/Z — C* is called even or odd, depending on whether it is 1 on
the unique element of order 2 in 7"/Z or not. Note that the restriction
of the quadratic character w to T/Z is even if and only if its restriction
to T"/Z is odd. This happens if and only if p=1 (mod 4).

The following proposition gives the dimensions of the T-invariant and
T'-invariant subspaces VT and VT of the irreducible representations
V' of PGLy(F,).

Proposition 2.1. Let V be an irreducible complex representation of
PGLy(F,) that is not 1-dimensional. If V = Vg, then

dmV? =2, dimVY =1, and dimV" =dim VY =0.
In all other cases we have
dmV? =dim V" =1, and dimVY =dim VY <1.
Moreover, we have

V =V, with p even,
dm VY =dim VY =1, ifand only if {V =V,,  with6 odd,
V=V, andp=1 (mod4).

Proof. We recall the remarkable isomorphisms of rational G-representations
Q[G/T] = Q|G/T"] x Vi x Vi, and Q[G/N] =~ Q[G/N'] x Vg,

described by De Smit and Edixhoven in [DSE00, Formulas (3) and (4)].
When V' # V, the fact that the vector spaces V# and Homg(Q[G/H], V)
are naturally isomorphic for every subgroup H of G, implies that
dim VT = dim VT and dim VY = dim V"', To show that dim V7' = 1,
we observe that dim V7 is equal to the scalar product (Resr(xv), 17)7.
Here xy denotes the character of V' and 17 is the trivial character on 7.
A standard character computation shows this to be equal to 1 in all
cases. A similar computation shows that (Resy(xv), 1n)n is 0 or 1
depending on the parity of the relevant character p, 8 or w. These
computations are particularly straightforward when V' =V, or V,,. For
the cuspidal representations V = Vj, everything can be computed using
the description of Vj as a virtual representation as in [Bum98], [Lan02].
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Alternatively, one may use the explicit models for V,, and Vj given in
sections 3 and 4.

For the Steinberg representation, i.e., V = V., an explicit calculation
shows that dim V.I' = 2 and dim V. = 1. The result by De Smit and
Edixhoven implies therefore that V.I" and V. vanish.

This proves the proposition. U

In the next sections we construct 7"-invariant elements in G-representations
V by applying the T"-trace

a bu )
Z t= Z ( b a) in Q[G]
teT"’ a,beFp, a2 —ub?+0

to suitable vectors v € V. Since we have the Bruhat decomposition

G = B u BwB, where
(0 1
Y= -1 0)

every non-scalar element in 7" can be written as an element in BwB.
This leads to the following formula for a projective version of the T"-
trace.

Proposition 2.2. The T’ -trace element ZMGT,/Z M of the group ring Q[PGLy(F,)]

s given by
. 1 r 1 r
1d+§(0 1)w<0 TQ_U).

Proof. Representatives in 7" of the quotient group 7"/Z are the identity
matrix and the matrices — <7£ 7;) with r € F,. Since — (; :f) =

1 r 1 r
(0 1) w (0 2 u)’ the result follows. O

3. PRINCIPAL SERIES AND TWISTED STEINBERG REPRESENTATIONS

Let p > 2 be prime and as before put G = GLo(F,). We let
Z,B,T,T7'",N,N" and U be the subgroups of GG defined in Section 2.

In this section we explain how to compute elements that are invariant
under a non-split Cartan subgroup in a principal series representation
V,, or a twisted Steinberg representation V,, of G = GLy(IF,) on which
the center Z acts trivially.

The 1-dimensional characters of the Borel subgroup B that are trivial
on the center Z form a cyclic group of order p — 1. Given such a
character u, we write Q(u) for the number field generated by the values
of p. An explicit model for the induced representation Ind$ () of G is

{¢0: G — Q(p) : p(gb) = 1 (b)¢(g) for all g e G and b e B}.
The group G acts on this Q(u)-vector space as follows
(00)(x) = p(0c '), for o,z € G and ¢ € Ind%(p).
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A basis of Ind§(u) is given by the functions e, with r € Py(F,) =

F, u {o0}. Here ey, is equal to p~! on B and zero elsewhere, while for

r € F,, the function e, is defined as follows: on the B-coset {o € G :
1) o, while

1 r

it is zero elsewhere. For every r € Py(F,) the G-action on e, can easily

be computed: for r € F, and k € F, we have

(3.1) <(1) llg) er = €pyk, forrel,, while <(1) /f) Cop = €op.

For every a € ) we have
(3.2)

a 0 10 . a 0 a 0
(O 1) GrZM(O a) €qr, for r e Fp, while (0 1) eoo:M(O 1) oo

The action of the matrix w = (_01 é) is given by

o(0) = r} it is given by e,(0) = p~1(y), where y = <_0

(3.3) we, = [ (6 197) e_1y forrel),

while w switches ey and ey. Since G = B u BwB, these formulas
determine the action of G.

If u? # 1, we recover the irreducible complex representation V,, of
Section 2 as Indg(,u)@(@(#)(c. The values of the character of V,, generate
the maximal real subfield Q(u)" of the cyclotomic field Q(u). Since
the subspace of T-invariants is 1-dimensional, it follows from [Wal85,
Lemma 1.1] that the representation V), itself can actually be defined
over Q(u)*. We do not make use of this.

If u? = 1, the character p the restriction of 1 or w, so that Q(u) = Q.
In this case ex + 3, € 18 equal to 1 or w in Ind%(p1). The subspace
L generated by this element is preserved by G and the representation
(Ind%(11)/L) ®q C is irreducible. In fact, we recover the complex Stein-
berg representation Vi and its quadratic twist V,. See [Bum98|.

It is convenient to view p as a character of ;. For this reason we
put

w(r) =p <6 (1)> : for r e IF).

Proposition 3.1. Let pu: B/Z — C* be a character satisfying u? # 1
and let 'V, be the principal series representation associated to fi.

(a) The subspace of V,, of U-invariants has dimension 2 and is
generated by e, and by ZTE]FP e.. The subgroup B acts via
on the line generated by e, and via u=' on the line generated

by ZTEFP Er.
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(b) The subspace of T-invariants of V,, is generated by

Z p(r)e;.

*
refy

It is invariant under the action of the normalizer N if and only
if u is an even character of B/ZU =T/Z.
(c) The subspace of T"-invariants of V,, is generated by

oo + Z wt(r? —ue,.

refp

It is invariant under the action of the normalizer N’ if and only
if 1 1s even.

Proof. Parts (a) and (b) easily follow from the formulas given above.
The computations are easy and left to the reader. By Proposition 2.1,
the subspaces of T-invariants and of 7T”-invariants have dimension 1.
The element listed in (c) is the T"-trace of Proposition 2.2 applied to
€op- O

For the character y = w, the result is similar:

Proposition 3.2. Let w be the quadratic character of G and let V,, be
the twisted Steinberg representation.
(a) The subspace of V,, of U-invariants has dimension 1 and is gen-
erated by eo,. The subgroup B acts on it via w.
(b) The subspace of T-invariants of V,, is generated by

2 w(r)e,.

TEF§
It is invariant under the action of the normalizer N of T if and
only if p=1 (mod 4).
(c) The subspace of T'-invariants of V,, is generated by

€ + 2 w(r? —u)e,.

relfp

It is invariant under the action of the normalizer N of T" if
and only if p=1 (mod 4).

Proof. Note that in V,, we have the relation e, = — Zrer e,. The proof
is similar to the proof of Proposition 3.1. U

4. CUSPIDAL REPRESENTATIONS

Let p > 2 be prime and put G = GLy(F,). In this section we explain
how to find elements in cuspidal representations Vj, that are invariant
under a non-split Cartan subgroup of G.

Let u € IF; be a non-square, let 7" denote the non-split torus in G
introduced in Section 2 and let 0: 7" — Q(6)* be a character that is
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trivial on the subgroup Z of scalar matrices. We have #P*! = 1 and
assume that 62 # 1. By Q(#) we denote the field generated by the
image of 6.

In order to describe our model Vj for the cuspidal representation
associated to 6, we first consider the quotient of the Q-vector space
V' of functions ¢: F, — Q by the 1-dimensional subspace of constant
functions. The standard Borel subgroup B < G acts by fractional
linear transformations on I, = P,(FF,) — {0} and hence on the space
of functions ¢: F, — Q: we have o¢(z) = ¢(oc'z) for 0 € B and any
function ¢. Since B preserves the constant functions, it acts on V. It is
easy to see that V' is an irreducible (p — 1)-dimensional representation
of B, on which the scalar matrices act trivially.

Next we turn Vp = V ® Q(¢) into an irreducible representation

of PGLy(F,). Let
(0 1
R N

be the usual involution. Since G = B u BwB, it suffices to describe
the action of w. It is given by

1 N Tr(
wo=— > o(y) ( (()y) 13/)) ¢, forall ¢ eV

yE]F;‘2

0 0
0 0
matrices over I,. By N and Tr we denote the norm and trace maps
from 2 to ), respectively.

Here F,2 denotes 17" U { > } It is a subfield of the ring of 2 x 2

Proving that the formula for the action of w gives rise to a well de-
fined action of G' on Vj is straightforward, but somewhat cumbersome.
Alternatively, one can relate Vj to the representation space described
by Bump [Bum98, 4.1] as follows. Let (, denote a p-th root of unity.
To every ¢ € V, we associate the function ¢: F* — Q(0) given by

o(y) =0 (y) Direw, A1) "N This gives an isomorphism of Vo®qe) C
with Bump’s model. Our model has the advantage that it can be de-
fined over Q(#), rather than over a field that contains the p-th roots of
unity. The character values of Vj generate the maximal real subfield
Q(#)" of Q(0). As in the principal series case, it follows from [Wal85,
Lemma 1.1] that Vj can actually be defined over Q(#)". We do not
make use of this.

.. . 1
Let eg: F, — Q(€) be the characteristic function of 0 and let e, = 0
for r € F,,. It is the characteristic function of the element r € F,,. The
functions e,, r € F> form a basis for the Vj. Since Zrer e, is the

constant function 1, we have the relation ZTGFP e, = 0in V.

) €o,
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Proposition 4.1. Let 6: T'/Z — Q(0)* be a character satisfying
02 # 1 and let Vy be the cuspidal representation of G associated to
the character 0. Then

(a) the subspace of U-invariants is zero;

(b) the subspace of T-invariants is generated by eq; it is invariant
under the action of the normalizer N of T if and only if € is an
odd character of the cyclic group T/ Z;

(c) there is an r € F for which the element

pe, — Z Z 9(9)6W+Tr(y)+m

melF, ye]F:Q

generates the 1-dimensional subspace of T'-invariants. The space
of T -invariants is also N'-invariant if and only if 0 is odd.

Proof. Part (a) and the first statement of (b) easily follow from the
formulas given above. The statement about the normalizer N can be
proved with a short computation [Barl4, Prop. 2.1]. To prove (c), we
combine the formula for the action of w with Proposition 2.2. It follows
that the T"-trace is equal to

g1 N(y) mN(y) + (m* = u)(Tr(y) + m)
1d—]—9y§36(y)m§p< 0 m? — )

Applying it to pe, gives the element of part (c). Since the elements
er, with r € IF,,, generate Vj, their T"-traces generate the 1-dimensional
space of T'-invariants. In other words, the T’-trace of at least one of
the elements e, is not zero and hence generates the subspace of T"-
invariants. Il

5. MODULAR CURVES

Let p > 2 be prime and put G = GLy(F,). The modular curve
X(p) is an algebraic curve that parametrizes elliptic curves with full
level p structure. The field of constants of its function field is the
cyclotomic field Q((,). The curve X(p) admits a natural morphism
to the j-line X (1) over Q. The Galois group of X(p) over X(1) is
naturally isomorphic to G/{£id}. Restriction of automorphisms in
Gal(X(p)/X(1)) to the Galois group of Q((,) over Q coincides with
the determinant map GLy(F,)/{+id} — F;.

For every subgroup H of GLy(F,) containing {+id} we write X (p)g
for the quotient of X (p) by H. The field of constants of its function
field is the subfield of Q((,) that is invariant under the subgroup det(H)
of F;. We put

Ty = {AeSLy(Z) : A (mod p) € H}.
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Then the non-cuspidal complex points of any base change of X (p)y
from its field of constants to C, form the Riemann surface I'y\H. Here
‘H denotes the usual upper half-plane.

Taking for H the subgroup Z of scalar matrices of G, we obtain
the curve X (p)z. We denote it by X (p)’. Its field of constants is the
quadratic subfield of Q(¢,). This is Q(/p) or Q(y/—p) depending on
whether p = 1 or 3 (mod 4). Since Z n SLy(F,) = {+id}, the base
change of X (p)’ from Q(/£p) to Q((,) is the curve X (p). The curves
X (p)r and X (p)y associated to the split Cartan subgroup T and its
normalizer N and the curves X (p)r and X (p) - associated to the non-
split Cartan subgroup 7" and its normalizer N’ are quotients of X (p)’.
These are the curves Xi(p), X (p), Xus(p) and X, (p) respectively,
that were mentioned in the introduction. Since the determinant maps
from the subgroups T', N,T" and N’ to [ are all surjective, the curves
are all defined over Q, in the sense that their fields of constants are
equal to Q.

The group G = GL»(F,) acts naturally and linearly on the Q-vector
space Q'(X(p)) of Kahler differentials. Therefore its quotient G/Z =
PGLy(F,) acts on the Q-vector space Q' (X (p))? of Z-invariants. On
the other hand, the index 2 subgroup PSLy(F,) of PGLy(F,) is iso-
morphic to the quotient group SLo(Z)/T'z. Therefore it acts natu-
rally on the complex vector space S3(I'z) of weight 2 cusp forms for
the congruence subgroup I'z. The two actions are related by the fact
that Q'(X(p)’) ®g C is isomorphic to the induction from PSLy(F,) to
PGLy(F,) of S2(I'z). See [Barl4, p.279]. So we can write

QX (p)) ® C = S52(T'z) + [R]S:(T2),
for some fixed respresentative R of the non-trivial coset of the nor-
mal subgroup PSLy(F,) of PGLy(F,). Following [Barl4], we call the
first coordinate f; of an element f; + [R]fs of So(I'z) + [R]S2(I'2), its
classical coordinate.
Proposition 5.1. Let H be a subgroup of GLy(FF,) containing Z.
(a) The natural maps

QX (p)a) = (X (p)" = (X (p))",

are isomorphisms. Here H' denotes the subgroup H/Z of PGL4(F,).
(b) If H has the property that det(H) = Fy, then projection on the
classical coordinate induces an isomorphism

QN X(p)u) ®g C —> S3(Tp),

of SLy(F,)-representations.

(¢) Let H be the standard Borel subgroup B. It acts on Q' (Xy)®gC
and for any character p of B, projection on the classical coor-
dinate induces an isomorphism

(Q(Xzv) ®q C) (1) —> Sa(Ta(p), 1)
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Here the left hand side denotes the subspace of Q' (Xzr) ®g C
on which B acts via the character p. The right hand side is
the subspace of Sa(I'1(p)) on which the diamond operators act
through the character 2.

Proof. Part (a) is well known. Part (b) follows from the fact that
H-invariant elements in Q'(X(p)) ®y C = S2(T'z) + [R]S2(Tz) are
determined by their classical coordinates. Indeed, we may choose the
representative R inside H. Then the two coordinates must be equal.

(c) The two coordinates of an element of Q'(X ;) are cusp forms
in So(I'1(p)). The diamond operators in I'y(p)/ + I'1(p) are congruent
modulo p to matrices of the form

<8 CLQl) ) with a € ).

It follows that, if b € B acts as multiplication by pu(b) on an element
of Q'(Xzy), the two coordinates are in Sy(T'y(p), #?). The second co-
ordinate is determined by the classical one. Indeed, we can choose
R € B and then the second coordinate is equal to the first multiplied
by p~H(R).

This proves the proposition. U

Of special interest is the standard split Cartan subgroup 7' of G.
Since the subgroup 't of SLy(R) is conjugate to Ty(p?), there is a
natural Hecke compatible isomorphism Sy(Tg(p?)) — S2(I'z). In terms
of g-expansions at infinity, the isomorphism is given by

Dlang™ — > ang",

nz=1 n=1
where ¢ denotes exp(2mi7/p) with 7 € H. Since, the Fourier coefficients
of Ty(p?)-invariant normalized eigenforms are totally real algebraic in-
tegers, so are those of T-invariant normalized eigenforms.

We denote the subspace of newforms of Sa(To(p?)) by Sa(To(p?))™™.
Abusing notation somewhat, we denote the corresponding subspace of
So(I'7) by Sa2(Ir)". Note however, that all forms in Sy(I'r) are of
level p. See [Barl4, (3.4)]. By Prop. 5.1 (b) applied to H = T', we may
identify S»(I'7) with the subspace of T-invariants of Q'(X(p)) ®q C.
By V}; we denote the Q[G]-subrepresentation of Q'(X(p)) generated by
a normalized eigenform f in So(I'7)"*V. It is a vector space over the
number field Ky < C generated by the Fourier coefficients of f.

Proposition 5.2. Let f be a normalized eigenform in So(Up)™*™. Then
the subgroup Z of scalar matrices acts trivially on the C[G]-module
Vi ®r, C. Moreover, Vi ®, C is an irreducible representation of di-
mension # 1, which is not isomorphic to the Steinberg representation.

Proof. See [Barl4, Prop. 3.6]. Let V' be an irreducible constituent of
Vi ®x,; C. By semi-simplicity we have that VT # 0. The G-action
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and the Hecke action on Q'(X(p)) commute. Therefore, for a prime
number [ # p the Hecke operator 7; acts on V' as multiplication by
the Fourier coefficient a;. Then it also acts this way on the subspace
VT of Sy(T'r). Since f corresponds to a newform in Sy(Tg(p?)), strong
multiplicity one implies that V7 is the 1-dimensional complex vector
space generated by f. It follows that f € V, so that V is equal to the
irreducible representation V; ®g, C. The group Z acts trivially on V,
since it is contained in 7.

If V; had dimension 1, it would be invariant under PSLy(F),). Since
the quotient of X (p)’ by PSLy(F,) is a genus 0 curve over Q(1/£p), the
SLy(F,)-invariants of Q'(X(p)’) are zero and V; must be zero as well.
Contradiction. Since the subspace of T-invariant elements of V}; has
dimension 1, Proposition 2.1 implies that V; cannot be the Steinberg
representation either.

This proves the proposition. U

6. g-EXPANSIONS

Let T, T" denote the standard split and non-split Cartan subgroups
of GLy(F,) respectively. Suppose that f is a normalized eigenform in
the space Sa(I'r)™*"™ that was defined in the previous section. Since f
is I'p-invariant, Proposition 5.1 (a) and (b) imply that we can identify
So (7)™ with a subspace of Q'(X(p)) ®g C. By Proposition 5.2, the
newform f generates an absolutely irreducible G-representation V%,
defined over the number field K; generated by the Fourier coefficients
of f. By Proposition 2.1, the subspace of T"-invariants of V is 1-
dimensional. In this section we compute the g-expansion of a generator.

We first consider the case where V; is a principal series or twisted
Steinberg representation. In other words, we have an isomorphism

V.=V ®k, C, for some non-trivial character u: B/Z — C*.

Note that that Ky contains the field Q(u)* of character values. By
Propositions 3.1 (a) and 3.2 (a), the representation V,, admits a unique
1-dimensional U-invariant subspace W on which the Borel subgroup
B acts via p. It is generated by the element e,. Proposition 5.1
(c) implies then that in V}, there is a unique element whose classical
coordinate is a I';(p)-invariant normalized eigenform h on which T'g(p)
acts via the character 2. In the twisted Steinberg case, we have u =
w and hence p? = 1. In this case h is a T'o(p)-invariant normalized
eigenform.

Any G-equivariant linear map V, — V; ®g, C, must map ey into
the 1-dimensional space generated by h. Schur’s Lemma implies that
for each ¢ € C* there is a unique G-equivariant isomorphism

jci V# i Vf ®Kf (C,
for which j.(ex) = ch.
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» . Since h is I'y (p)-invariant, its Fourier expansion is of

=Y o

n=1

Let g =e
the form

Note that there is also a unique element in V; ®g, C whose classi-

cal coordinate is the ‘complex conjugate’ normalized eigenform h =
Y1 ng™" € Sa(I'(p), u=?). The isomorphism j. maps the element
— 2k, € 10 a multiple of h.

The following proposition relates the Fourier expansion of f to the
one of h.

Proposition 6.1. Let p # 1 and let f and h be the normalized eigen-

2mi

forms described above. Put ¢, =e » .

(a) Then the g-expansion of f is given by

f= Z p(n)ang",
n>1
with the convention that u(n) = 0, whenever n is divisible by p.
(b) The eigenform h is in the Q(u)[G]-span of %}@f Here
7(p) and 7(p?) denote the Gaussian sums Dk, H(T)C, and
ermp p*(x)Cy respectively. When = w we have p* = 1 and we

put 7(p?) = —1.

Proof. By Proposition 3.1 (b), the subspace of T-invariant elements
of V, is the 1-dimensional subspace generated by Zrem w(r)e,.. The
isomorphism j. introduced above, maps it to a I'p-invariant eigenform
in Vy ®g, C. For a suitable choice of ¢ we obtain f itself.

We compute jC(ZreF;; p(r)e;). The formula (3.1) given above and
the fact that w switches 0 and co, imply that

e, = <(1) 71n> Weyp, for r e IF),.

e =g 1) uh

By Atkin-Li [AL78], the modular involution w, transforms h into the
‘complex conjugate’ form h multiplied by the so-called pseudo-eigenvalue €,
which is a complex number of absolute value 1. To be precise, € is equal

to 7(u?)/a, and we have

It follows that

—h(——) = eh(r), for 7€ H.
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This implies that wh is the element of V,, whose classical coordinate is
equal to the Fourier series

wh(r) = —h(7/p) = Z anq".

n>1

It follows that for r € IF, we have

Jeler) = ¢ (é 7{) wh(T) = c]% Z @i

n=1

Therefore the classical coordinate of jC(ZTng w(r)e,) is

ZZanM —nr n: ZM anqn:

n>1 r#0 n=>1
—1
el et S umand’
p n=1

The last equality follows from the fact that u=!(n)a, is real and hence
equal to u(n)a, for all n € Z. Since f is a normalized eigenform, part
(a) follows.

When we choose ¢ = p/eu(—1)7(n), we have that jc(3,cpx p(r)er) =
f. In particular, f is in the Q(u)[G]-span of j.(ex) = ch. Since V7 is
irreducible, this is the same as saying that h is in the Q(u)[G]-span of

er(p)f.
This proves the proposition. U

We now turn to the computation of the Fourier series of the 7T"-
invariant eigenform in V,. See also [LH13]. Recall that u € F} is a
fixed non-square. We put

= Z pt (=) for n e Z.

relfp

Proposition 6.2. Let f € Sy(T'7)"" be the T-invariant eigenform
discussed above and let h = ), _, a,¢"" be the corresponding I'y(p)-
invariant eigenform. Then the element of V; with classical coordinate
equal to

1 p n —
W) | 7 2 2

n,pln n=1

is a generator for the subspace of T'-invariant forms. Moreover, it is
in the Q(un)[G]-span of the I'r-invariant eigenform f.
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Proof. Propositions 3.1 (c¢) and 3.2 (¢) give an explicit generator of the
1-dimensional subspace of T"-invariants of V,,. We apply the isomor-
phism j. with ¢ = p/eu(—1)7(n) as we did in the proof of Proposi-

tion 6.1. Since
e, = <(1) 7{) Weyp, for r e I,

n=1 relfp n=1

Since ay, = apa, for every n > 1, this is equal to

Zanq+ Z(Zu r? — ) )@q”,

n,pln n>1 ref

(=1

which is easily seen to give the result. By Proposition 6.1 (b) the series
is contained in the Q(u)[G]-span of f. O

The numbers A, = X, p p~ ' (r? — u)(, ™ are so-called Salié¢ sums.

They are related to Kloosterman sums. See [Con02] and the references
therein.

Next we consider the case where the normalized I'p-invariant weight

2 eigenform f generates a cuspidal irreducible representations V; <
QX (p))-

As before, let ¢ = e et G, =e % and let

f = 2 anq
n=1

be a I'r-invariant normalized weight 2 eigenform. By Prop. 5.1 (a)
and (b) we may identify Sy(I'7) with the subspace of T-invariant ele-
ments in Q'(X(p)) ® C. Then f generates an absolutely irreducible
G-representation Vy that is defined over the number field K, generated
by the Fourier coefficients of f. Since V} is a cuspidal representation,
we have

Vo = V; ®k, C, for some character : T"/7Z — Q(0)* with 6* # 1.

Note that Ky contains the values of the character of V4. This means
that Q(6)" is a subfield of K.

By Proposition 4.1 (b), the element f € V} corresponds to the vector
ep € Vp or a multiple thereof. More generally, for any r € F, the
elements in V; with classical coordinate equal to

1 nrn
fr:<0 ;)f Zanc

n=1

correspond to multiples of e,.
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Proposition 6.3. The elements in V; with classical coordinate equal
to

pfr = Z Z e(y)fW+Tr(y)+m’ forreF,,

meF, ye]F:Q

are all T'-invariant. They are all in the Q(0)[G]-span of f and at least
one of them generates the subspace of T"-invariants of V.

Proof. By Proposition 4.1 (c) this follows from the fact that the vectors
e, are in the Z|G]-span of ey and the fact that the T"-trace is an element

of Q(0)|G]. O
7. LEVEL 17

In this section we explain how to compute equations over QQ for the
canonically embedded genus 6 curve X% (17). We follow the method
in [Merl8]. We exhibit six linearly independent weight 2 cusp forms
that are invariant under the normalizer N’ of the standard non-split
Cartan subgroup 7”. We find these forms inside the six representation
spaces Vr, generated by six normalized eigenforms f € Sy(I'7(17))",
that are invariant under the normalizer N of the standard split Cartan
subgroup 7. Since the space So(I'7(17))"" is naturally isomorphic
to the classical space Sy(T'(17%))"", we start from there. We can
find the Fourier expansions of the normalized eigenforms in William
Stein’s [Ste], for instance.

In Stein’s table we find, up to Galois conjugation and twists by the
quadratic character w, four normalized weight 2 eigenforms invariant
under T'5(17?). Two of these are twists of normalized eigenforms in
S9(I'1(17)). They give rise to principal series and twisted Steinberg
representations. The other two eigenforms generate cuspidal represen-
tations.

There is a unique I'g(17)-invariant normalized eigenform fo = > a,q'™.
Its 17-th Fourier coefficient a;7 is equal to +1. Its quadratic twist
>, w(n)a,g'™ is a normalized I'g(17%)-invariant eigenform. Here we

put ¢ = e’ 17 for 7 € . By convention w(n) = 0 whenever n is divisi-
ble by 17. The corresponding I'p-invariant form is ), w(n)a,q". The
first few terms of its Fourier expansion are

fl — q_q2_q4+2q5_4q7+3q8_3q9_2q10_2q13+4q14_q16+3q18+.“

The irreducible subrepresentation Vj, of Q'(X(p)’) is isomorphic to
the twisted Steinberg representation. The form f; is also invariant
under the normalizer N of T' because 17 = 1 (mod 4). See Proposi-
tion 3.2 (b).

One finds in Stein’s tables that the space S3(I'1(17)) is the direct
product of the 1-dimensional space of I'g(17)-invariant forms that we
considered just now, and a 4-dimensional subspace W spanned by the
Galois conjugates of an eigenform h on which the diamond operators
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act through a character of order 8 of (Z/17Z)*. Any such character
is of the form 2, where p has order 16. Since yu is an odd character
of T/Z, Proposition 3.1 implies that the normalizer N acts as —1 on
the T-invariants. Therefore the twist by p of h as described in Section
3, is a ['y(17%)-invariant normalized weight 2 eigenform, corresponding
to a ['p-invariant form that is not N-invariant. It plays no role in our
computation of the canonical embedding of X1 (17).

Since the normalized eigenforms f € Sy(I'r(17))™" for which V; is a
principal series or twisted Steinberg representation, all arise in this way
from eigenforms in Sy(I';(17)), the remaining normalized eigenforms in
Sa(Do(17?%)) give rise to cuspidal representations. There are two of
them.

Put a = #ﬁ Then the modular form

fo=q—(a+1)@+ag* +(a+2)q¢* —(a+1)¢°—3¢°+(a—1)q¢" —3¢® —ag™+
+(a+4)¢" —3¢" +(a+3)¢g"* — (a+2)¢" + (a—2)¢"* —3¢"° + (a—1)¢" + . ..

is the ['p-invariant form associated to a newform in T'g(17%). The repre-
sentation V7, is cuspidal with respect to some character 6 of order divid-
ing 18. The field K}, generated by the Fourier coefficients is Q(+/13).
Since it contains Q(#)", we actually must have that 6% = 1. Figuring
out what character 6 of 7"/Z is involved, can be done by numerically
computing the action of w on f; for every possible 6 in a suitable 7 € H
as in Baran’s paper [Barl4, Section 6]. It turns out that in this case
has order 6. The twist of f; by w is cuspidal with character fw, which
has order 3. By Prop. 4.1 the form f; is N-invariant, while its twist is
anti-invariant.

The fourth normalized eigenform is the I'p-invariant form associated
to one of the I'o(17%)-invariant eigenforms in Stein’s table with Fourier
coefficients in Q((o)*. The first few terms of its Fourier expansion are

fa=q— (b +b—=2)>— (b+1)¢* +bg* + (B> +b—4)¢° + (2b* +2b—3)¢° + bg"+

+(0* 4+ b—3)® + (b +2b—2)¢° + (20 +b—6)q"" — (26> —2)¢*' — (B> +b)g"? + . ..

Here b = (, + (5 ' It is a zero of 2° — 3x + 1. The representation Vy, is
cuspidal with character 8 of order 18. The twist by w is cuspidal with
character fw of order 9. By Prop. 4.1 (b) the form f3 is N-invariant,
while its twist is anti-invariant.

At this point we have six T-invariant eigenforms: fi, fo and its
Galois conjugate and f3 with its two Galois conjugates. To f; we apply
the T’-trace fomula in Proposition 6.2. This gives us a 7’-invariant
form g; with Fourier coefficients in Q((17)". Applying the formula of
Proposition 6.3 to f, and its conjugate over K;, = Q(+/13), we obtain
the T"-invariant form fJ and its conjugate. Their Fourier coefficients are
in Ky,(Ci7)*. Weput go = Tr(f}) and g3 = Tr(+/13f3). Here Tr denotes
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the trace map from Q(Ci7)(v/13) to Q(¢17)*. Then g, and g3 are T'-
invariant forms with Fourier coefficients in Q((;7)". Similarly, we apply
the T’-trace map given in Proposition 6.3 to f3 and its conjugates
over Ky, = Q((y)" and obtain the 7"-invariant form f5. Its Fourier
coefficients are in Ky, ((i7)*. For ¢ = 1,2,3, we put gs; = Tr(e; f3),
where e, €3, e3 denotes the basis of Ky, ((i7)" over Q((i7)" given by
1, a, &%, where a is a zero of the defining polynomial 23 + 322 — 3 used
in Stein’s table. Then g4, g5 and gg are T’-invariant forms with Fourier
coefficients in Q((y7)™.

We list the first few Fourier coefficients of the T”-invariant forms
gi,---,96- By an 8-tuple [z1,...,25] € Z® we denote the element
25:1 2;(¢l; + (7). For every i we have divided the coefficients of
g; by a common divisor in Z.

g1=[7,1,2,5,4,5,4,6]g—[6,7,4,1,5,2,4,5]¢> +[-5,6,4,7,2,4,5,1]¢* . ..
go=[4,16,2,—4,—2.8,—8,18]¢+[9,2,~4,8,4,1,-1,-2]¢* — [4,—1,2,—4,-2,8,9,1]¢° . ..
93=[9,2,—4,8,4,1,—1,-2]¢° —[4,—-1,2,—4,-2,8,9.1]¢* —[-2,9,—1,2,1,—4,4,8]¢* . ..
91=[8,8,-2,4,5,—2,—1,-3]¢—[3,2,—1,2,—2,7,—4,10]¢* — [12,9,12,6,18,12,9,24]¢* . . .
gs=—[4,4,8,6,3,4,2,3]q+[1,4,—1,4,—2,4,—1,8]¢* +[2,5,10,1,12,10,2,9]¢° . . .
g6=[10,10,9,12,5,2,1,2]¢—[5,12,0,12,0,16,1,22]¢* — [8,10,22,4,32,22,9,29]¢° . ..

By [SD73] the canonical embedding of a genus 6 curve is typically cut
out by six quadrics. See also [Dos16, Thm. 1.1] and [Merl8]. We
compute six quadrics that vanish on the canonically embedded curve
X L(17) and then use MAGMA to check that the intersection of the
quadrics is a curve of genus 6. Then we know that the quadrics are
indeed equations for X1 (17).

To do this, we compute Fourier series of the 21 products g;g; with
1 <i < j < 6. Even though the Fourier coefficients of the forms g;
are in Q(¢y7)* and are usually not rational, the corresponding Kéhler
differentials are rational. This is explained by the fact that the cusps of
XL (17) are not rational, but conjugate over Q(¢i7)*. Since the curve
XL (17) is defined over Q, we search for quadrics

Z CLiinIj,

1<i<j<6

with coefficients a;; in Q. From the equation ZKK].@ a;;9:9; = 0 we
obtain infinitely many equations with coefficients in Q(¢;7)*, one for
every term ¢" in the Fourier expansion. Since the coefficients are in the
degree 8 number field Q((;7)", each equation gives rise to eight equa-
tions with coefficients in Z. For instance, a consideration of the Fourier
coefficients of ¢% and ¢* gives rise to the following 16 equations. Here
the columns correspond to the coefficients a;; in lexicographic order.

Rather than two, we use the first 10 Fourier coefficients and hence
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TABLE 7.1
6 00 3 -2 5 =380 0 0O -2 2 00 0 0152 7 3 =3 10
3 003 1 1 10620 0 6 —2 4 00 0 0182 8 4 —5 14
4 -20-1 0 —-1-526 0 -4 0 2 00 0 O 7 0 4 6 -9 17
5 2 01 0 1 2820 0 —-14 0 -800 0 0200 14 6 -9 24
3 000 1 —2-3948 0 12 10 -8 00 0 024—-117 4 —6 20
6 6 0-3-10 9972 0 6 2 0 00 0 018-215 4 -7 21
4 -80-11 -2 -3018 0 -16—-2 -800 0 025—-120 3 -5 23
5 2 0-2 0 —2 82 0 10 61600 0 026 0 17 4 —7 24
—-2-128-10 2 -8 &8 —4 -5126-76013 0 104 4 —7-2 7 =20
0 —246 -9 2 -8 24 —-12—-4517-560153 6 0 1 —4-2 5 -—12
0 -93-3 1 -2 24 -—-12-3023-5406 1 2 6 48 0 1 =2
0 —126 =9 3 —12 36 —-18-5423 —64018—-11418-315-2 3 2

—-4-151 -8-1-3 4 -2 -5125-71017-1132 -5 9 8 —14 26
2 -124-14 5 -16 -8 4 -3922 -61011-4158 =210 0 0O 8
0 -33-31 —4 48 -24-3911 —-43021 1 1524-728 2 -7 30
0 -153-12 4 =15 O 0 —4823 —68018 1 106 -1 9 -4 5 2

obtain a grossly overdetermined linear system of 80 equations in 21
unknowns. As expected, the solution space has dimension 6. In this
way we obtain six independent quadrics »;;_,_ <6 QijTillj with coeffi-
cients in Q. By means of a linear change of variables and by replacing
the quadrics by suitable linear combinations, we obtain equations that
have very small coefficients and have good reduction modulo primes
different from 17. Here we use the LLL-algorithm as in [Mer18]. The
independent quadrics ¢, ...,qs we obtained, are listed below. They
cut out a genus 6 curve, which must be X (17).

2
1 = — 311X + T1T3 + T1T4 + T1T5 + ToTg + 22974 + TaXs — ToTe — 205+
2
+ 22374 + 203T5 + T3T6 + TaTs — TaTe + Ts — TsTe,
G2 = T1Ty — 2X1X3 — 2014 + T1X6 + ToXs + 29T — T3y — 203T5 + xi—

2 2
— T4T5 + TaTe — 205 + g,

q3 33:% + 32120 + T1T3 — T1X4 + T1Tg + Toks — ToZy + Tolks + 22006 + x%—

— T3X4 — IZ — T4%5 — TaXg + x% + 2x524,

qs = fo + 201%9 — 201%3 + T1X4 — 2T1X5 + T1Xg — Tol3 — XoTs + 3TaTe — azg—i-
+ 3x314 — 3T375 — xi — T4x5 + 2x§ — T5x¢ + xé,

(s = T1To + Ox1x3 + 22174 — T175 + x% + 3xoT3 + 2X9T4 — ToTs — x% + 2x324—
— 3x3T5 + xi + 3x46 — a:g — 2x5T6 — x%,

G = — 3x12T2 + T1T3 — 20124 + 42125 — 30126 — 3553 — 2T9x3 — DToxy + ToTs—

2 2
— ToXg + X3 + T3Ty — 3T3T5 + Ty — 2T4%5 — 2T4T6 + x? + 3x508 — x%.
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CM-points or Heegner points are points on modular curves parametriz-
ing elliptic curves with complex multiplication by imaginary quadratic
orders O < C. Only if O is one of the thirteen quadratic orders of
class number 1, the CM-points may give rise to rational points. Since
the prime 17 is inert in the orders O of discriminant —3, —7, —11, —12,
—27, —28 and —163, there is for each of these orders O, a unique ratio-
nal CM-point on the curve X% (17). We have determined the projective
coordinates of these CM-points by evaluating the Fourier series of the
modular forms g; numerically in suitable 7 € H for which 177 € O.

TABLE 7.2. CM-points on X (17).

discriminant CM-point
-3 (2:-2:-1:3:-2:1)
-7 (—6:—-2:—4:1:-3:13)
—11 (3:1:2:-9:-7:2)
—12 (—4:10:3:-5:-2:3)
—27 (2:=5:-10:—6:1:7)
—28 (0:0:0:1:1:1)
—163 (=7:9:35:21:5:1)

A short computer calculation revealed that there are no rational points
(1 :x9 23 : x4 : x5 1 x6) on XL (17) with z; € Z and |z;| < 10000,
other than the seven CM-points listed in Table 7.2.

8. LEVEL 19 AND 23

In this section we present quadrics that cut out the modular curves
X;7(19) and XX (23). They were obtained by the method explained in
the previous section.

The modular curve X (19) has genus 8. Its canonical embedding in
P7 is cut out by fifteen quadrics. These are listed in Table 8.1. Here
the rows contain the coefficients of the 36 monomials x;z; with 1 < ¢ <
J < 8in lexicographic order. Each column corresponds to the equation
of a quadric in P;. The prime 19 is inert in the imaginary quadratic
orders O of discriminant —4, —7, —11, —16, —28, —43 and —163. For
each order O there is a rational CM-point on Xf(19), corresponding to
an elliptic curve with complex multiplication by O. As in the previous
section, the CM-points in Table 8.4 have been computed numerically.
They are the only rational points (z1 : zo : X3 : x4 : x5 : T : Ty : Xg)
with x; € Z satisfying |z;| < 10000.

The modular curve X% (23) has genus 13. Its canonical embedding
in P15 is cut out by 55 quadrics. These are listed in Table 8.3. Here the
rows contain the coefficients of the 78 monomials z;z; with 1 <i < j <
13 in lexicographic order. Each column corresponds to the equation of
a quadric in Pj5. The prime 23 is inert in the imaginary quadratic
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TABLE 8.1. Coefficients of quadrics defining X

pOiIltS (ZL’l X9 X3 Ty A5 1 TXg Ty X8 . Tg . T109 - TL11 -« T19 - [Elg) with

orders O of discriminant —3, —4, -8, —12, —16, —27 and —163. For
x; € 7 satisfying |z;| < 10000.
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-1 0 -3 -1
0

0
0

2
0
2
1
1
0
0
0
0
0
1
0
0
0
1
2
0
1
0
0
—1 -1 -2 -1 -1

1
0
1
0
1

_
— — — N —
__ﬂXU1 iUl iUOOle_ __OﬂXUO1iUO :UO“¥}10

—

— — — A AN — ——

_nunu_nXAO iU1iU9u_1 il1fl_ﬁunu__ _1ﬂgU9ﬁun¥lﬂ
—

_

— — — a — — i
CO—OO | OO _OnU_1ﬁunXU0v_0 iUﬂXUﬂXUOOA__4lnu_O1L_
i — QN —

OO —HOOO jUOﬂ¥l21iUO_ __10fl01:l0“u___HXU0“¥lO

— — N — — — N
ill jl2ﬂ¥lo_1lonviuo ilo __ﬂu_o ilOﬂYllﬂXUl_ _1

AN — — — N — — — — — — —
OﬂHUﬂu__ _n¥lnXUHXU ilnXU __ _nXUHgUHXU _nv_1iU_nU_ _n

— — — — — — —
Oﬂu__1iUOH¥ll1L_0 le1ﬁUlﬂYll j101l__1100XU00u_0
— — —

1ﬂu_1 iUTkUO_ _IHXUO il_ __Onxu_oﬁuo1l_onXU0ﬂxU0

— —
_1lOﬂu_OnxUO1iUOH¥lOHXU11$111*U1+_1_ _O_nUOﬂ¥10“u

(23)

+
ns

Table 8.3: Coefficients of quadrics defining

ocNocooco—A—AT == m
—JoocoTHoN—-oo
—Noovmo7N—7 N~ o
—Too——NoOoT Mmoo
aNoco—THoToo—
JoocoT~aaM—Ton
THOO—NHONMm — T —
N H-Hojo~oco—~O™
aFHooTHoONDmA
o= —~oNaaT oo~
TN A Yo
oo ——
—ococo TN A—a N~
ToocoM T Yoo—o
—oQaTomNoom T
coaNT—HoHA—oOoO T ™
0101141222230
1303122111133
0113111011223
0211101000101
1410111122011
T To oo No—~
1012101151211
2132121210222
3122111114222_
TR AT AN AN
I L o
AN~ ON
CoOTHNMA T < Qi
oTTaYoNMojoT—o
oo O =T
T NN = —HO
0102120301121
1011330311122
1101030201132
2121052200001
2421010414440
—HONTAANA—A =T N
AaToTa—moNno <
oqNVocomoR AN N~
cocococo—HoTHAN—O
0001110202212
01100&&L%L311
Noco—oTMomoo—~N
oN =T NCROT ~ T
o—aToNaaNo ——
maPToomTnToNo
1231100000221
1120011101410
——ooooNN—H7 T A
0202101011013



A

PIETRO MERCURI AND RENE SCHOOF

22

o000 NONTANTOO000000000000000000000000ooooo—ofnfoofin~oFaTn—fo~—oco7 T flac—~oTToNoo~
o777 7Nom——ooo T ocoocococococococococococococoYoooooooo—HoTYP~—oNoTToTNo—TaT T T T AN ToaT~— P —~ox

11114022311200010000000000000000000000001000120322010012202122143&222232101100

TN T AT RN O0000000000000000000000OHOoOTHA-Moococo—-oTo-T AT o~o0o—~oNT TN T To—~Q

411002021012000000010000000000001000001000044322111112231003001120010012211122

NoCoOT NNt N T T T T Oo00000O—- 0000000000000 HO0OOHOOOOCOWOTTrm—aTTamad—-NaTmoaTadToTaTw —NPo
112102011114010101000000000000002000100000020010311201011011112321010132110123
HFHO AT T NN O00O0 0000000000000 00ON0O0—-H000000O T AT o—mooma—mPo—~o—~oN—~oaN—-To—~Pao—~mo—o
100032211201010000100000000000000010000000020002201032100020010221121103111110

140422001011001000000000000000000100000000002022324400221112011121000211010031

RN TNOTNOCOMNO—~0O00000000000000OoHOHOOOOoOooooooToNTTacncocomomTjoaNa—~oNTaamT—Tomaaa~ro
1011102111010000001000000000O0013000000000044031210301112210200111210301004022
10013010110001000000000000000100000000000000l313131133012102211232112121001101

000010221210100000000000000010001000000000045322110104&31110221032101012211101

NocoomMATNOo 0070000000000 00O—-0000ON000000000ONOOONY—o—Totoo— T Tmo—~o T —aocoRNoovro TN

111120010401000000000000001000001000000000011012011121302011032004440031111111

T T HNONO0000000000000O—HOHOOOOO0000000oooooNaTTFoMmM——T=TtAV Vo7 no—~nNo—~cnococota T
000000100221010011001000000000001000000000020132020201310111400101111212130120
110101201201000000011000100000003000000000002212112101130100001110110010013111
223211123001000000000000010000003000000000013311130111321000130021212020212113

21112311113101010010011000000000100000000001111Q4Q0111022101011021432005111424
JHo-o7JofmomooTjoco-HooToHo0c0cooocoooco-HoooocooocoocoaTmda~Too—THoaTAaTOA—TTNNN—ARPRAmoTan

012101001444000000010100000000004000000000011221001103120111101211310142100112

AT NN T O0000000O0TOoO~0000000000ONO0000000OCOMNOMO——Oo TN TTAOA—A—TT T —TO—A——
121121011010000100110000000000002000000000010212321111110213110402020022014021

120001010411000000110000000000000000000000012014212210212101321011031211021221

Too—oTTaaT Moo Hoo-0o00000o0o0o0o0o0ooomoooooooococofmmooN—ocotT—HooTHTTANmP AP TooToT—Taad

AT o T OO0 O~H000 T OH0O000000000000ONOOO000O0ooooOoTaddTHoTo~TNoNO—~—Oo T A~ N—HON~Oomm—ToN
440400121031000110000000000000000000000000012531041038140004141142442&01440131
TN AT A OO0 0000000000000 0ON00000000OOAT—H—Oo—TaoNoaTYooT7omToaTm—ARnA T NocoTmo
maN—FojoT-mo—~ToococococococococococococococococoVNooooooococooNTHTRNTANTATRR AT Vo~ NOTo~Oo—~ T =P No T~

122133412210110000000000000000001000000000013110010030110001001121121032021111

HHAATHNO T O HOOHO0000000000000000OHOOOOOOOCoCoCOT AN TToNomo——aNTHm T MmO~ —aNmNOT—o——oofo
T~ T o 0000000000000 000000OIFOOOCO0O00O0COO—Mm=mToTTaamTofNoonooo-——NTNooconoxNo
cooa—YoTaToNo~oo0o0o0o0o0o00000000O0OoOoOToooocooooococo-TTod-HNoToRMR—o—~aPJo~TTTTaT—=To—~NRo—
coToojoTjoTYNocococococococoooococooooooocoYNooooooooooofN~omoocoo—oT T HooTNO—~TTo~o—~oQNAN T —ox

110130210111000000000000000000000000000000011112101114144412120101011110111110

Ao N 0000000000000 0000000000000000OOCO——TrmT—o—~TinmNocoaaRNAN—NNN TP ~—OoT—oO
OO HANMOOO ., T O0000000000000O000O00O00O00O00oCOMANOTH—Ha—oNoocoT - N—~o—-o—TomonoNToa—~NPo
N NN T ONONOOO000000000000000000ONO0000000oCoNO—~Ta—aT—mT =T Tam—oNVoocoo—~m—FF—aaH—
114121002021000000000000000000000000000000003342420121102031122220220202100021

AN oo O 7 Oo000000000000000000ON00000000OOANMONHANMOY—ooNOATNR T T +—HooNTTTHo~—~NO

ToocoaTH—TYYTooooocooooooooocoooocooooooooooooocoal—+ANNo—~aT T HoTmTo~oN—~oOo—TNON =P~

ToTa—~NAmToTloocococoocococoococooococooococooNooocoococooococoY Vo~oToT TN acnomoT oo aaT AN —~oco —o

20023310011100000000000000000000000000000001113101J840000010010021030114112112

J-o~o-—oTYoocoocococoocooocooocooocooocoNoooocoococoocoTaAGNTANoAaNNNT—o—o T TA—TTNA 1o TN~

AT o~ TOoO— MmO 000000000000000000000000000ooocOoT T¥mAoTRTaoT—oomATRNNo7T———JaPmoaa —

NoToT 7o Hoo~0o0o0ocococo0o0o0oooocoooooocooYooooooocococoT oA TYaGToTTJoN-TonomTNoToo—~oT T No T~
OO NN C000000000000000000000000000oooo T T—~—NoTd—ooN—oN—PoFoN—~7TVoT———JNoxno
01010122241O0000000000000000O0000000000000011230101344042104122443242018241031
THaToamGcnoT Toooocoooco0o0oc0o00000000OoOYooooooooocoMmYTd—Hoo—NN—A—~TTAo—~ AT —~Oo—tT T T TOoToOo~R

311122110121000000000000000000002000000000003102220132410122211212124422143010

T AT HocoN—HOOo0O0O00O000o000oocoooocooNooooooooooMnToocoa~T N -TaococoNTHATAONNARPV T —HOo T
NOCOOCO—H—HO0OO N7 O000000000O0O0O00000000000000oooo-Mm——oNoTTo TN AT ANo—~oco7oNTo—~—QAANo —

00220341010O0000000000000000O0004000000000002003444444241142341043301003043012



MODULAR FORMS INVARIANT UNDER NON-SPLIT CARTAN SUBGROUPS23

TABLE 8.2. CM-points on X% (19)

discriminant CM-point
—4 (0:0:=1:1:0:-1:1:0)
—7 (2:7:—=12:-4:3:3:10: —4)
—11 (3:1:1:—-6:—-5:—-5:—-4:13)
—16 (=2:12:7:—-15:16:—-3:9:4)
—28 (0:1:0:0:1:-1:0:0)
—43 (-10:3:3:1:4:—-15:7:1)
—163 (2:0:0:-3:-1:0:0:3)

TABLE 8.4. CM-points on X% (23)

discriminant CM-point

-3 (=3:4:0:1:0:6:—-1:6:—6:—6:0:—6:—12)
—4 (1:-2:0:-2:-1:0:1:-2:-1:0:-1:0:0)
-8 (3:13: -19:—-4:16:8:—-11:10:1:—-7:—-12:18: —5)
—12 (—15:4:-20:-3:12:6:9:—-4:18:12:14:2:2)
—16 (3:-10:4:—4:-7:8:—-11:10:1:16:11:18:18)
—27 (0:1:0:1:0:0:-1:0:0:0:0:0:0)

—163 0:=1:0:-1:0:-2:1:-2:-4:0:4:-2:2)
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