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Fuzzy k-Means: history and applications

Maria Brigida Ferraro

Dipartimento di Scienze Statistiche, Sapienza Università di Roma,
P.le Aldo Moro, 5 - 00185, Rome, Italy

Abstract

The fuzzy approach to clustering arises to cope with situations where ob-

jects have not a clear assignment. Unlike the hard/standard approach where

each object can only belong to exactly one cluster, in a fuzzy setting, the

assignment is soft; that is, each object is assigned to all clusters with cer-

tain membership degrees varying in the unit interval. The best known fuzzy

clustering algorithm is the fuzzy k-means (FkM), or fuzzy c-means. It is a

generalization of the classical k-means method. Starting from the FkM algo-

rithm, and in more than 40 years, several variants have been proposed. The

peculiarity of such different proposals depends on the type of data to deal

with, and on the cluster shape. The aim is to show fuzzy clustering alterna-

tives to manage different kinds of data, ranging from numeric, categorical or

mixed data to more complex data structures, such as interval-valued, fuzzy-

valued or functional data, together with some robust methods. Furthermore,

the case of two-mode clustering is illustrated in a fuzzy setting.

Keywords: Fuzzy clustering, Fuzzy k-Means, mixed data, fuzzy data,

functional data, double clustering

1. Introduction

The hard/standard approach to clustering consists in assigning each ob-

ject to one and only one cluster. Thus, some objects are forced to be assigned

to a given cluster despite being far from the prototype. The soft approach to

clustering allows us to assign units to all the clusters with a degree ranging

in [0, 1]. In this case, the assignment is referred to as a membership and
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not as a simply allocation, as in the hard approach. There exist several

types of soft clustering: fuzzy, possibilistic, and rough clustering, among

others (see, for a review, [35]). In a fuzzy setting, the membership degrees

are not based on probabilistic assumptions but just on the distances be-

tween objects and prototypes. The possibilistic approach differs from the

fuzzy one only because some constraints on membership degrees are relaxed,

while in the rough clustering, there are not degrees taking values in the unit

interval but objects with no clear assignment (belonging to the boundary

region between two clusters) are associated to more than one cluster. Even

if it is not always recognized as a soft approach, model-based clustering also

provides a soft partition. Unlike the previous ones, it is based on proba-

bilistic assumptions. In such a clustering approach, each cluster is viewed

as a component of a mixture model, and the the posterior probability of a

component membership may play the same role as the membership degree

in the fuzzy clustering.

In this work, the focus is on the fuzzy approach. The first and most

known fuzzy clustering algorithm is the generalization of the standard k-

Means [66, 6], the fuzzy k-Means (FkM). It was introduced in [19] but deeply

analyzed and improved in [4, 5]. Fuzzy clustering has also been shown to be

a valuable tool from a computational point of view, making the clustering

algorithm to become more efficient [59]. There exist about 1114000 docu-

ments containing “Fuzzy k-means” (or “Fuzzy c-means”) on Google, and

178740 on Google Scholar. The time series of the number of documents on

Google Scholar and Scopus is reported in Figure 1, showing an exponential

growth. Focusing on Scopus, there are near 16000 documents (about 2500

Open Access) containing “Fuzzy k-Means” (or “Fuzzy c-Means”) in the Ar-

ticle title, in the Abstract or in the Keywords (standard default search in

Scopus). Regarding the areas in which this method is more popular, Figure

2 reports the standard search on Scopus containing “Fuzzy k-Means” (or

“Fuzzy c-Means”) by subjects. About 33% of the documents are in com-

puter science, 23.7% in engineering and 12.3% in mathematics plus some

application areas that underline its multidisciplinarity.

A review of the Fuzzy c-Means algorithm from 2000 to 2014 is provided
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Figure 1: Number of documents on Google Scholar and Scopus containing ”Fuzzy k-

Means” (or ”Fuzzy c-Means”).

in [67]. Starting from the FkM, several variants have been proposed based

on different distance measures, different prototype definitions and different

kinds of data. Most proposals are devoted to numerical data: the Gustafson-

Kessel Fuzzy k-Means (GK-FkM) [44], the Entropic Fuzzy k-Means (EFkM)

[64, 65], the Fuzzy k-Means with Polynomial Fuzzifier (FkMPF) [58, 94],

the Fuzzy k-Medoids (FkMed) [60], the Fuzzy k-Means with Noise cluster

(FkMN) [13], among others.

While fuzzy cluster analysis techniques for object data (units by vari-

ables) matrices have received significant interest, fuzzy clustering of rela-

tional data has received less attention, because in most cases, an object

matrix, and not pure relational data, is available. Relational data are rep-

resented by a measure of similarity (or dissimilarity) between the elements

that is sometimes obtained from the objects themselves. An example of this
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Figure 2: Documents on Scopus containing ”Fuzzy k-Means” (or ”Fuzzy c-Means”) in the

Article title, in the Abstract or in the Keywords, by Subject Area.

case is represented by the Euclidean distance between objects. Proposals of

fuzzy clustering techniques for relational data are provided, for example, in

[80, 93, 48, 56, 46, 47, 14].

The above fuzzy clustering methods for relational data can also be used

for other kinds of data, for example, categorical or mixed data, as long as

an appropriate dissimilarity measure is defined, but there also exist specific

proposals for categorical or mixed data. This is the case of the fuzzy k-

modes [51] for categorical and the fuzzy k-prototypes [54] for mixed data,

among others.

In more than 40 years, several variants of FkM have been extended

to more complex data structures such as fuzzy-valued, interval-valued and

functional data.

In many real-life situations, some measurements may be imprecise and
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some observations may be vaguely defined. In such contexts, it is appropri-

ate to represent the information by means of either interval data or fuzzy

data instead of considering crisp/hard values [99]. Several statistical tech-

niques have been introduced for fuzzy/interval data (see[11] for a review in

statistics and econometrics). In a clustering framework, extensions of the

FkM algorithm for fuzzy data are provided in [82, 47, 96, 74, 83, 97, 84,

1, 52, 23, 75, 43, 12, 38, 20, 42, 31, 25, 78]. If we consider intervals as a

particular type of fuzzy data, we can find proposals of FkM-type algorithms

in [39, 24, 21]. On the other hand, if intervals are managed as symbolic data

[7], some fuzzy clustering methods are illustrated in [15, 17, 76, 16].

Among complex data, functional data also deserve attention. Advances

in data collection and storage have led to an increasing amount of this

kind of data. Hence, appropriate statistical methods are needed [79, 37].

Nowadays, it is usual to encounter functional data in many fields such as

engineering, economics, finance biology, medicine, or meteorology. Some

proposals of fuzzy clustering of functional data are based on transforming

the data before applying a fuzzy k-means type algorithm (see, for example,

[18] and [41]). A different proposal is provided in [89]. The authors suggest

using a dissimilarity matrix that is itself a function. Consequently, the

cluster prototypes and the membership degrees are also defined as functions.

The above proposals of clustering techniques are also known as one-mode

(or one-way) clustering to distinguish them from two-mode clustering. Two-

mode clustering is helpful to synthesize more complex data structures. In

particular, we refer to data matrices whose two modes have an interchange-

able role. The approach is symmetrical, and the aim is to look for blocks (or

sub-matrices) characterized by internal cohesion and external separation.

In some situations, for example, units can be similar only on a subgroup of

features, and some variables can be associated only within a subgroup of

units. This is the case of products and customers in market basket analysis

or genes and samples in DNA microarray analysis. In this setting, an ex-

tension of the FkM is the Fuzzy double k-Means introduced in [36]. Further

variants and robust versions are provided in [34].

The paper is structured as follows. Section 2 is devoted to the FkM
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method and its variants for numerical data. Furthermore, the proposals for

relational data are briefly described in Subsection 2.1. Section 3 contains

a review of the modifications of FkM for categorical or mixed data. Fuzzy

clustering of fuzzy and interval data are reported in Section 4 and Subsection

4.1, respectively. The case of functional data is addressed in Section 5, whilst

Section 6 contains some extensions of the FkM algorithm for two-mode

clustering of a data matrix. Some applications are reported in Subsections

2.2, 4.2 and 5.1. Finally, some concluding remarks and open problems are

addressed in Section 7.

2. Fuzzy k-Means and its variants

The fuzzy approach to clustering is based on a soft assignment of units to

clusters. Most of the proposals consider object data, a typical unit-variable

data matrix, with numerical variables. As already stated, the first and

best known fuzzy clustering algorithm is the Fuzzy k-Means (FkM) [4, 5].

Given an (n × p) matrix, X, where n and p are the number of units and

variables, respectively, the aim is to partition the units into k groups, where

each group is characterized by a prototype (centroid). Each row vector

xi = [xi1, xi2, . . . , xip] represents the i-th observation. The optimization

problem of the FkM can be formalized as:

min
U,H

JFkM =
n∑
i=1

k∑
g=1

umigd
2 (xi,hg),

s.t. uig ∈ [0, 1] , i = 1, . . . , n, g = 1, . . . , k,
k∑
g=1

uig = 1, i = 1, . . . , n,

(1)

where d2 (xi,hg) = ‖xi − hg‖2 is the squared Euclidean distance between

unit i and prototype g.

In (1), the (n × k) matrix U denotes the membership degree matrix,

where each element uig ∈ [0, 1] represents the membership degree of unit

i to cluster g. The row-wise sums of U are equal to 1. The (k × p)

matrix H denotes the prototype (centroid) matrix, where each row hg =

[hg1, hg2, . . . , hgp] (g = 1, . . . , k) is the prototype of cluster g. Finally, the

6

                  



parameter m > 1 is used to tune the fuzziness of the obtained partition.

The greater the value of m, the further away from 1 and 0 the membership

degrees are. For m→ 1 FkM reduces to the k-means (kM) algorithm. Em-

pirical results depend on the selection of this parameter, which is commonly

chosen between 1.5 and 2 in practice, as shown in [70].

The optimal solution can be found by means of an iterative algorithm,

where the updates are obtained through the Lagrangian multiplier method.

The centroid and the membership degree updates are

hg =

n∑
i=1

umigxi

n∑
i=1

umig

, g = 1, . . . , k, (2)

and

uig =
1

k∑
g′=1

(
d2(xi,hg)

d2(xi,hg′)

) 1
m−1

, i = 1, . . . , n, g = 1, . . . , k. (3)

Starting from the FkM, several variants have been proposed in the last

decades. Since the initial FkM usually identifies clusters of spherical shape,

some of the variants are based on a non-Euclidean distance measure in order

to overcome such a drawback. This is the case of the Gustafson and Kessel

proposal [44]: the FkM with covariance matrices (FkM-GK). It consists in

replacing the Euclidean distance with the Mahalanobis one:

d2M (xi,hg) = (xi − hg)
′
Fg (xi − hg) ,

where Fg is a symmetric and definite positive matrix. The optimal solution

of Fg depends on the inverse of the fuzzy covariance matrix of the g-th

cluster. To avoid numerical problems that may arise when updating Fg,

an improved version of the FkM-GK is suggested in [2].The improvement

consists in constraining the condition number of Fg to be higher than a

pre-specified threshold.

A further proposal to deal with different cluster shapes is provided in

[40]. In this case, the Euclidean distance is replaced with a distance norm

based on fuzzy maximum likelihood estimates: the Gauss distance.
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Since the FkM algorithm involves the parameter m lacking a physical

meaning, an alternative, based on an entropic regularization to replace the

fuzziness parameter m, has been proposed in [64, 65]. The entropic FkM has

been proven to be connected to the EM algorithm used for mixture models

[45]. An entropic version of the FkM-GK is proposed in [28]. It should be

used in the case of non-spherical shape clusters.

A limitation of the above FkM type algorithms is the assignment of the

units to all the clusters with non-zero membership degrees. In order to

overcome it, a generalization of the FkM algorithm is introduced in [58]. In

particular, a polynomial fuzzifier is used in the minimization problem. In

general, a fuzzifier function is a continuous, strictly increasing function f :

[0, 1] −→ [0, 1] with f(0) = 0 and f(1) = 1. In the FkM case, f(uig) = umig .

The polynomial fuzzifier function is defined as f(uig) =
(
1−β
1+βu

2
ig + 2β

1+βuig

)
,

with β ∈ [0, 1]. For β = 0 we obtain the FkM with parameter m equal to 2

and for β = 1 the hard/classical kM.

Most of the above algorithms are implemented in the R package fclust

[30, 33].

As it happens for the k-means type methods, their fuzzy versions are not

robust to outliers. This is due to the unit-sum constraints of the membership

degrees that force outliers to be assigned to clusters. Furthermore, since the

centroids are weighted means, they are affected by anomalous points.

There exist several proposals of robust fuzzy clustering methods. A timid

kind of robustification consists in replacing the centroids (means) with the

medoids. The Fuzzy k-Medoids (FkMed) algorithm [60] is a generalization

of the classical k-Medoids [56]. In [95], however, an alternative FkM is pro-

posed, by replacing the Euclidean distance in (1) with a “robust” distance

measure, the exponential distance: dexp (xi,hg) = 1 − exp (−γd (xi,hg)),

where γ is a positive constant. Another robust approach consists in adding

a noise cluster containing all the units considered as outliers [13]. It is impor-

tant to highlight that the noise cluster is not a proper cluster characterized

by homogeneity (compactness). On the other hand, a trimmed approach

of fuzzy clustering is suggested in [38]. The idea is to trim a fixed propor-

tion of observations. In this case, the trimming proportion is to be fixed,

8

                  



whilst in the previous one (noise cluster) we have to fix the distance of the

observations from the noise prototype.

The possibilistic approach to clustering relaxes the unit-sum constraint,

which boosts robustness. The membership degrees do not longer depend

on the distance to all prototypes but only on the distance to the prototype

of the belonging cluster. This explains why they are also called degrees of

typicality. The best known possibilistic clustering algorithm is the possi-

bilistic extension of the k-Means, the Possibilistic k-Means [61, 62]. Further

possibilistic clustering methods are provided in [98, 86, 92]. The first one

[98] is based on the exponential distance, robust to noise and outliers. The

second one [86] is based on the introduction of a repulsion term, in order to

overcome the risk of obtaining a trivial solution with coincident clusters [3].

The third proposal [92] is an extension of the method introduced in [98].

Finally, in order to take into account the benefits of the fuzzy and pos-

sibilistic approaches and to overcome their drawbacks, some hybridizations

are proposed: the Fuzzy Possibilistic k-Means [71], the Possibilistic Fuzzy

k-Means [72] and the Modified Fuzzy and Possibilistic k-Means [81], among

others. The possibilistic and hybrid proposals are implemented in the R

package ppclust [9].

2.1. Fuzzy clustering algorithms for relational data

In several practical applications, the information is not available in terms

of object data but only as relational data. Relational data are pair-wise

relations (similarity or dissimilarity/distance) between units. There exist

different proposals of fuzzy clustering algorithms for such a kind of data. A

Relational duals of the FkM algorithm (RFkM) is proposed in [48]. It is

based on the following minimization problem:

min
U

JRFkM =
k∑
g=1

n∑
i=1

n∑
i′=1

umigu
m
i′gr(xi,xi′ )

2
n∑

i=1
umig

,

s.t. uig ∈ [0, 1] , i = 1, . . . , n, g = 1, . . . , k,
k∑
g=1

uig = 1, i = 1, . . . , n.

(4)
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Unfortunately, the above method requires that r(xi,xi′) is the squared

Euclidean distance. This is too restrictive in several situations. A gener-

alization of the RFkM algorithm is introduced in [46]. It allows the use of

arbitrary dissimilarity data and consists in a modification of the algorithm

by means of transformation of the dissimilarity data. Further proposals are

provided in [56] and in [47]. The first one is known as FANNY. It is char-

acterized by a parameter of fuzziness m = 2 and the relational data usually

are computed by using an L1 norm. The second one illustrates how the

FkM method can be applied to relational data. A modification of FANNY,

called FRC, is proposed in [14]. In particular, a general fuzzifier is used

and the relational data may be obtained from any dissimilarity measure.

As for FkM, the optimal solution is obtained by means of a Lagrangian

function where only the unit-sum constraints of the membership degrees are

involved. When the relational data are Euclidean, the non-negativity con-

dition of the membership degrees is automatically satisfied, as in FkM. In

the case of non-Euclidean distances, neither RFkM nor FRC automatically

satisfy that constraint. A solution is proposed in [14]. A robust version of

fuzzy relational clustering is also provided by means of the introduction of

a noise cluster [13]. Obviously, the FRC algorithm and its robust version

can be applied to all kinds of data. Depending on the data, different dis-

similarity matrices may be used as input argument of the function. This

includes categorical, mixed or more complex data. In addition, even when

data are numerical, several non-Euclidean distances can ben used in order

to take into account, for example, different cluster shapes. In this respect,

a proposal of fuzzy clustering for nonlinearly separable data based on the

geodesic distance is introduced in [32].

2.2. FkM: a real-case study

This section is devoted to a real-case study. We consider a food bal-

ance sheet provided by the Food and Agriculture Organization (FAO). In

particular, we analyze the “wheat and products” of European countries in

2018. The food balance sheet shows for each food item the sources of supply

and its utilization. The aim is to find homogeneous groups of the 39 Eu-
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ropean countries characterized by similar behaviour related to production,

imports and exports of wheat, fat supply quantity (g/capita/day), food

supply (kcal/capita/day), food supply quantity (kg/capita/yr) and protein

supply quantity (g/capita/day). The first three variables are normalized (di-

vided) by population. We use the function FKM of the fclust package [33].

By inspecting the values of Fuzzy Silhouette [10], a cluster validity index

used to evaluate the partition quality, the optimal number of clusters, cor-

responding to the maximum value of the index, is k = 4. The first cluster

is composed by 7 countries: Belarus, Czechia, Denmark, Estonia, Latvia,

Netherlands and Republic of Moldova. Austria, Bosnia and Herzegovina,

Croatia, Finland, Germany, North Macedonia, Norway, Poland, Portugal,

Slovakia, Spain, Sweden, Switzerland, United Kingdom of Great Britain

and Northen Ireland are all contained in the second cluster. The third

cluster contains Albania, Belgium, Greece, Iceland, Ireland, Italy, Luxem-

bourg and Malta. The remaining 8 countries belong to the forth cluster:

Bulgaria, France, Hungary, Lithuania, Romania, Russian Federation, Serbia

and Ukraine.

The prototypes/centroids of the clusters are reported in Table 1. As

we can notice, countries in Cluster 1 are characterized by average values

of imports, exports and production of wheat and related products, and the

lowest values of supplies. Cluster 4 contains countries with the highest

production and exports and the lowest import quantity. Countries in Cluster

2 and Cluster 3 present a similar export quantity, but the first ones have

a lower value of imports and higher production. Furthermore, Cluster 3

is also characterized by the highest values of fat, protein and food supply

quantities.

By inspecting the membership degree matrix (not reported here for the

sake of brevity), there are three countries not clear assigned (highest mem-

bership degree lower than 0.5): Belgium, Czechia and the Netherlands. In

particular, Belgium is assigned to Cluster 3 with a membership degree equal

to 0.37 and its membership degree to Cluster 2 is 0.36. Czechia has in-

termediate characteristics between Cluster 1 (uig = 0.47) and Cluster 2

(uig = 0.46). Finally, the Netherlands is assigned to Cluster 1 (uig = 0.46),

11

                  



Table 1: FAO dataset: prototypes of the four clusters obtained with FkM

Exports Imports Product. PCFat SupplyDay SupplyYear PCProtein

Clus 1 0.22 0.13 0.35 3.69 504.02 63.33 15.58

Clus 2 0.08 0.11 0.15 4.21 707.69 91.13 21.79

Clus 3 0.07 0.18 0.09 7.59 924.79 117.35 27.57

Clus 4 0.37 0.04 0.59 3.90 888.57 115.30 27.46

but the membership degree to Cluster 2 is 0.39. This can also be seen by

looking at the feature values assumed by these three countries, reported in

Table 2.

Table 2: Feature values of Belgium, Czechia and Netherlands.

Exports Imports Product. PCFat SupplyDay SupplyYear PCProtein

Belgium 0.23 0.47 0.14 2.56 781 110.51 23.37

Czechia 0.21 0.05 0.41 4.80 647 84.36 18.44

Netherlands 0.09 0.43 0.06 2.46 584 68.42 18.30

3. Extensions of Fuzzy k-Means for categorical/mixed data

This section is devoted to fuzzy clustering proposals for categorical or

mixed data. As already observed in Subsection 2.1, the fuzzy relational

clustering methods can be applied by using specific dissimilarity/similarity

measures for categorical or mixed data. However, specific algorithms exist.

An extension of the k-Means algorithm to clustering large data sets with

categorical variables is proposed in [50]. It is known as k-Modes. A fuzzy

version is introduced in [51], the Fuzzy k-Modes (FkMo). It consists in using

12

                  



a simple matching measure for categorical data and replacing the means with

the modes. The optimization problem is

min
U,H

JFkMo =
n∑
i=1

k∑
g=1

umigdc (xi,hg),

s.t. uig ∈ [0, 1] , i = 1, . . . , n, g = 1, . . . , k,
k∑
g=1

uig = 1, i = 1, . . . , n,

(5)

where dc (xi,hg) is the simple matching dissimilarity measure. It is defined

as

dc (xi,hg) =

p∑

j=1

δ(xij , hgj), (6)

where

δ(xij , hgj) =

{
0, if xij = hgj ,

1, if xij 6= hgj .
(7)

The matrix H in (5) contains the modes. The main difference with the

FkM algorithm is the update of H. In detail, denoting with DOMj =

{a(1)j , a
(2)
j , · · · , a(nj)

j } the set of nj categories of the j-th categorical variable,

j = 1, · · · , p, the loss function JFkMo is minimized iff hgj = a
(r)
j ∈ DOMj

where

∑

i,xij=a
(r)
j

umig ≥
∑

i,xij=a
(t)
j

umig 1 ≤ t ≤ nj (8)

for 1 ≤ j ≤ p.
An extension of the FkMo is proposed in [57]. In particular, the clusters

of categorical data are represented by means of fuzzy centroids instead of

the hard ones.

In the case of mixed data (units described by both numerical and categor-

ical variables) neither the FkM nor the FkMo can be used. For this reason,

a combination of both methods is introduced [49]: the (hard) k-Prototype

algorithm. A fuzzy extension, the Fuzzy k-Prototype (FkP), is proposed in
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[54]. In this case, each unit vector is xi = [xri1, x
r
i2, · · · , xrip1 , xci,p1+1, · · ·xcip],

where the first p1 are numerical variables, denoted by superscript r, and the

remaining p− p1 are the categorical ones, denoted by superscript c.

The minimization problem is

min
U,H

JFkP =
n∑
i=1

k∑
g=1

umigdrc (xi,hg),

s.t. uig ∈ [0, 1] , i = 1, . . . , n, g = 1, . . . , k,
k∑
g=1

uig = 1, i = 1, . . . , n,

(9)

where drc (xi,hg) is defined as

drc (xi,hg) =

p1∑

j=1

(wj(x
r
ij − hrgj))2 +

p∑

j=p1+1

δ(xcij , h
c
gj). (10)

The membership degree update is the same as the FkM algorithm with

dissimilarity drc (xi,hg). The prototype consists of two parts. The first p1

elements are computed as weighted means of the numerical variables (as in

FkM) and the remaining p−p1 ones are the fuzzy modes introduced in [57].

4. Fuzzy k-Means for fuzzy data and its variants

In various practical applications in economics, social science, biology,

ecology or medical science, many useful variables are vague or imprecise, and

it is easier to capture the vagueness/imprecision by means of more complex

data than to discard it and obtain precise data. Imprecise data may be

formalized by means of fuzzy numbers [99]. The space of fuzzy numbers,

denoted by Fc(R), is composed by the mappings Ũ : R→ [0, 1] such that for

each α ∈ (0, 1] the so-called α-level set (or α-cut) Ũα = {x ∈ R|U(x) ≥ α}
belongs to the class of nonempty compact intervals in R (denoted by Kc(R)).

The 0-level, U0, is the closure of the support of Ũ .

The most used family of fuzzy numbers is the so-called class of LR-

fuzzy numbers. An LR-fuzzy number Ũ is determined by four values, Ũ ≡
(c1, c2, r, l)LR. In detail, c1 and c2 are the left and the right centers of the
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1-level of Ũ and represent the location of the fuzzy number, while the right

and left spreads of Ũ , r and l are associated with the imprecision of Ũ .

The membership degree of x to Ũ is defined as

µ
Ũ

(x) =





L

(
c1 − x
l

)
, if x < c1,

1, if c1 ≤ x ≤ c2,
R

(
x− c2
r

)
, if x > c2,

(11)

where L : R→ [0, 1] (and R) is a convex upper semi-continuous function so

that L(0) = 1 and L(x) = 0, for all x ∈ R \ [0, 1] (see [101]). If L(z) = 1− z
and R(z) = 1− z for 0 ≤ z ≤ 1, then Ũ is a trapezoidal fuzzy number when

c1 6= c2 and a triangular fuzzy number when c1 = c2 = c. Furthermore,

LR fuzzy numbers are a generalization of intervals. An interval is got when

c1 6= c2 and l = r = 0 (see Figure 3).

The usual arithmetic between fuzzy numbers is a level-wise extension

of the standard non-linear arithmetic for intervals ([68, 99]). Given Ũ , Ṽ ∈
Fc(R) and λ ∈ R, the sum and the product by a scalar can be defined so

that for each α ∈ [0, 1] it is fulfilled that

(
Ũ + λṼ

)
α

= Ũα + λṼα =
{
u+ λv : u ∈ Ũα, v ∈ Ṽα

}
. (12)

Given n units described by p LR fuzzy variables, a fuzzy data matrix can

be defined as X̃ =
{
x̃ij ≡ (c1ij , c2ij , lij , rij)LR , i = 1, . . . , n, j = 1, . . . , p

}
,

where x̃ij is the value of the LR fuzzy variable j observed on the i-th unit

with left center c1ij , right center c2ij , and left and right spreads lij and rij ,

respectively. The matrix X̃ can be characterized by four matrices: X̃ ≡
(C1,C2,L,R)LR. Each observation i is expressed as x̃i ≡ (c1i, c2i, li, ri)LR.

Let dF (·, ·) be a distance measure between fuzzy numbers, the Fuzzy

k-Means for Fuzzy data (FkM-F) is formalized by means of the following

optimization problem:
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Figure 3: Three examples of LR fuzzy data: a trapezoidal fuzzy number (left), a triangular

fuzzy number (center), an interval (right).

min
U,H̃

JFkM−F =
n∑
i=1

k∑
g=1

umigd
2
F

(
x̃i, h̃g

)
,

s.t. uig ≥ 0, i = 1, . . . , n, g = 1, . . . , k,
k∑
g=1

uig = 1, i = 1, . . . , n,

(13)

where uig is the membership degree of observation i to cluster g, stored in the

(n×k) matrix U, and H̃ =
{
h̃gj ≡

(
hC1
gj , h

C2
gj , h

L
gj , h

R
gj

)
LR

, g = 1, ..., k, j = 1, ..., p
}

is the prototype matrix. In particular, h̃gj ≡
(
hC1
gj , h

C2
gj , h

L
gj , h

R
gj

)
LR

repre-

sents the value of the j-th LR fuzzy variable of the g-th centroid with left

center hC1
gj , right center hC2

gj , left spread hLgj and right spread hRgj . Hence,

h̃g ≡ (hC1
g ,hC2

g ,hLg ,h
R
g )LR is the fuzzy vector of length p for centroid g.

The proposal of FkM-F in [12] is based on a weighted dissimilarity mea-

sure for fuzzy data: d2w(x̃i, x̃i′). Given two LR fuzzy observations, x̃i and x̃i′ ,
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it is defined as a weighted sum of the squared Euclidean distances between

centers and spreads:

d2w(x̃i, x̃i′) = w2
C [d2 (c1i, c1i′) + d2 (c2i, c2i′)]

+ w2
S [d2 (li, li′) + d2 (ri, ri′)],

(14)

where d(·, ·) is the standard Euclidean distance (for non-fuzzy data), and wC

and wS are weights for the center component and the spread component.

As for FkM, the iterative solution of the constrained quadratic minimiza-

tion problem (13) is obtained through the Lagrangian multiplier method

[12].

A particular case of the FkM-F method is introduced in [23] for LR1

symmetric fuzzy data. A symmetric LR1 fuzzy number is an LR fuzzy

number with c1 = c2 and l = r. A weighted dissimilarity measure taking

into account two components, the center and the spread, is also adopted in

this case.

As for the numerical data case, since the dissimilarity (14) is based on

the Euclidean distance, it does not allow us to recognize non-spherical shape

clusters. To overcome this limitation, a generalization of d2w(·, ·) is intro-

duced in [78]. It entails the cluster covariance matrices and is defined as

d2M,w(x̃i, x̃i′) = w2
C [d2M (c1i, c1i′) + d2M (c2i, c2i′)]

+ w2
S [d2M (li, li′) + d2M (ri, ri′)],

(15)

where dM (·, ·) is the usual Mahalanobis distance.

In the case of outliers, as stated in Section 2, the fuzzy k-means type

methods fail due to the unit-sum constraints of the membership degrees.

When dealing with fuzzy data, we have to face with three kinds of outliers:

outliers with respect to centers (location), outliers with respect to spreads

(imprecision/size) and outliers with respect to both centers and spreads

(location and imprecision/size).

Robust clustering methods are provided in [20]. The authors introduce

a generalization of the FkMed [60] to the case of fuzzy data (FkMed-F), by

using the dissimilarity d2w(·, ·) [12]. This is the starting point of the other

three robust proposals. The first one is based on the following ’robust’

(squared) distance measure:
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d2w−exp(x̃i, x̃i′) = 1− exp
(
−γd2w(x̃i, x̃i′)

)
, (16)

where γ is a positive constant determined according to the variability of the

data. It is an extension of the distance introduced in [95]. The method is

called the Smoothed Fuzzy k-Medoids for Fuzzy Data. The second proposal

deals with outliers by means of the noise cluster [13] whilst the third one is a

Trimmed Fuzzy k-Medoids for Fuzzy Data. In addition, a Fuzzy k-Medoids

for fuzzy data based on a combination of Huber’s M-estimator and Yager’s

ordered weighted averaging operators is provided in [25].

Further robust proposals for fuzzy data are addressed in [53] and in [100].

As for the numerical data, also in the case of fuzzy data, by relaxing the

unit-sum constraints of the membership degrees we obtain the Possibilistic

k-Means clustering method for Fuzzy data (PkM-F). In [31] the PkM-F has

been defined by using the distance dw(·, ·). There exists another possibilistic

clustering method for LR fuzzy data proposed in [12] taking inspiration from

[98]. The two proposals can be formulated in the same way except for the

second term of the cost function.

In order to avoid the coincident cluster problem [3], a possibilistic cluster-

ing method with repulsion constraints for symmetric triangular fuzzy data

is developed in [29]. A different strategy for preventing coincident clusters

is the hybridization of the fuzzy and possibilistic approaches [31]. The last

proposal exploits the benefits of both approaches, fuzzy and possibilistic. On

the one hand, the fuzzy approach is helpful to find the best fuzzy partition.

On the other hand, the possibilistic one helps us to identify outliers.

Finally, a mention should be made of the proposals of fuzzy clustering

of fuzzy data based on hypothesis tests [43, 42].

4.1. Fuzzy k-Means for interval data and its variants

In several contexts, we face with interval data: fluctuations, ranges,

grouped data, among others. An interval I is formalized by [infI , supI ].

Intervals can be seen as a particular case of LR fuzzy sets. In particular,

when l = r = 0, c1 and c2 represent the infimum and the supremum of

the interval, respectively. An interval can also be formalized by means of

18

                  



the mid, (c1 + c2)/2, and the spread (c2 − c1)/2. The clustering methods

reviewed in Section 4 can be obviously used for interval data. Some of them

are previously introduced for this kind of data and then generalized to the

case of fuzzy data. In a multidimensional setting, in the case of interval

data, each observation is represented by a hyperrectangle in Rp.
In [39] an FkM clustering algorithm for interval-valued (and fuzzy-valued)

data is proposed. In particular, the authors propose to preprocess the data

by a feature mapping technique.

A robust FkM clustering method for interval data is provided in [24].

The optimization problem of the FkM of interval data is analogous to that

in (13) except for the dissimilarity measure. Furthermore, the authors adopt

the noise cluster approach [13] to make robust the clustering algorithm and

to take into account the presence of outliers. The same dissimilarity mea-

sure is also used in [21]. The authors propose two fuzzy clustering methods.

The first one is the FkMed for interval-valued data, a timid kind of robus-

tification. The second one is a more robust proposal: a trimmed FkMed

algorithm.

For the sake of completeness, intervals can also be seen as a special case

of symbolic data [7]. There exist several proposals of fuzzy k-means for

symbolic interval data (see, for example, [15, 17, 76, 16]).

4.2. FkM-F: a real-case study

This section is devoted to an application of the FkM algorithm for fuzzy

data. In particular, the data refers to a survey about the personal evalua-

tion of a set of n = 27 students regarding different aspects of 9 specialized

courses on Soft Computing which has been carried out in the European

Centre for Soft Computing (Mieres, Spain) in 2008. The courses are: “Soft-

Computing: A History of an Interdisciplinary Field”, “Fuzzy Set Theory-

Fuzzy Systems”, “Neural Networks and Neuro-Fuzzy Systems”, “Evolution-

ary Computation and Genetic Fuzzy Systems”, “Probability and Statistics

for Soft-Computing”, “Fuzzy Classification and Ensembles”, “Regression

and System Modeling”, “Time Series”, “Frequent Item-Set Mining”. The

students are asked to answer the questions of the survey by using trapezoidal
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fuzzy sets. Here we focus our attention on the overall rating of each course.

We partition the data into two clusters. By inspecting the membership

degree matrix (not reported here for the sake of brevity), we can note that a

cluster is composed by 9 students and the remaining 18 students belong to

the other one. There are 3 students, 1 in Cluster 1 and 2 in Cluster 2, with a

membership degree around 0.6, thus they have intermediate characteristics

between the two clusters. Analyzing the following values of the prototypes,

we can characterize the obtained partition:

HC1 =

[
53.73 63.96 49.24 72.68 57.43 63.37 67.50 74.41 55.03

67.70 72.12 72.43 81.81 76.31 70.39 75.15 84.24 74.74

]

HC2 =

[
57.63 69.72 55.82 82.16 62.26 70.50 72.23 81.24 61.19

75.50 78.45 77.53 88.35 80.67 77.91 82.75 90.09 81.66

]

HL =

[
10.82 8.28 7.92 8.35 8.67 10.82 8.57 9.08 9.64

7.37 7.51 8.44 7.17 7.84 7.54 7.26 7.26 6.66

]

HR =

[
13.01 9.79 8.15 8.31 9.01 11.66 9.56 8.52 11.12

6.99 6.49 7.44 6.28 7.56 7.64 7.03 6.05 5.89

]

In particular, the overall evaluation of the courses expressed by students

in Cluster 1 are, in general, lower than those of students in Cluster 2. Look-

ing at the values of the spreads (stored in HL and HR) of the prototypes, we

can note that the evaluations of students in Cluster 1 are more imprecise.

5. Fuzzy k-Means for functional data

In the last decades, functional data analysis has received a great deal of

attention. Functional data encounter a complexity that is not easy to man-

age. The observations are supposed to be functions (on a continuous domain

such as time or space), but in practice, the sampled curves are observed on a
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finite set of points. The usual methods for multivariate data are not suitable

for functional data but can be applied to discrete measurements. In [22],

for example, some fuzzy clustering algorithms are proposed for multivariate

time-varying data, corresponding to discrete time data instead of functional

data. On the other hand, there also exist proposals of fuzzy clustering meth-

ods for times series (see, for example, [26]). Although conceptually different,

a time series can be seen as a realization of a functional random element:

namely, when the time series generation process, involving concepts such as

autocorrelation, is not considered, they are just (sampled) functions defined

over a time domain, and clustering methods developed for functional data

can be applied and conversely. In contrast, when the clustering method

regards the time series generation process, it cannot be applied for general

functional data.

Most of the clustering proposals for functional data are based on dissim-

ilarities that do not depend on time t. So, the time dependency is neglected

and an L2 distance measure is used. Some dissimilarities for functional data

are introduced in [88] and also in [37]. In this case, the FkM method and

its variants can be easily adapted. On the other hand, functional data can

be transformed and then the usual fuzzy clustering algorithms can be em-

ployed. This is, for example, the case of the proposals in [18] and [41]. In

the first one, the FkM algorithm is used for clustering functional principal

components of selected relevant process variables. In [41] the authors intro-

duce an FkMed method for functional data based on two steps. In the first

one, the functions are fitted to the observed data by means of B-splines.

Secondly, the usual FkMed algorithm is applied to the B-spline coefficients

obtained in the previous step.

A different approach is provided in [89]. In detail, the dissimilarity

between functional data is considered as a function. The authors address

crisp and fuzzy k-means clustering algorithms for multivariate functional

data. The aim is to partition n objects, which are represented as a p-vector

of continuous functions of t ∈ [a, b],

xi(t) = (xi1(t), xi2(t), · · · , xip(t)), (i = 1, · · · , n), (17)
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into k clusters. The optimization problem is

min
U,H

JFkM−Func =

b∫

a

n∑

i=1

k∑

g=1

umigd
2(xi(t),hg(t))dt,

s.t. uig(t) ∈ [0, 1] , i = 1, . . . , n, g = 1, . . . , k,

1

b− a

b∫

a

k∑

g=1

uig(t)dt = 1, i = 1, . . . , n,

where hg(t) is the centroid of the g-th cluster. By minimize the loss function,

the obtained cluster prototypes

hg(t) = (hg1(t), hg2(t), · · · , hgp(t)) (g = 1, · · · , k, t ∈ [a, b])

and the membership degrees

uig(t) (i = 1, · · · , n, g = 1, · · · , k, t ∈ [a, b])

are defined as functions of t ∈ [a, b].

5.1. FkM-Func: a real-case study

This subsection includes the application of the FkM-Func algorithm to

the Velib dataset. It contains data from the bike sharing system of Paris.

The data are loading profiles of the bike stations over one week. The data

were collected every hour during the period from Sunday, September 1, 2014,

to Sunday, September 7, 2014. The data consists of the loading profiles

(number of available bikes / number of bike docks) of the 1189 stations at

181 time points. We use the dataset velib contained in the R package

funFEM [8]

The functions are transformed by means of B-splines and then the FkM

algorithm is applied to B-spline coefficients. The optimal number of clusters

according to the fuzzy silhouette index is k = 4. The obtained partition

is composed of clusters of size 446, 266, 221 and 256, respectively. The
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Figure 4: Velib dataset: Cluster 1 (top left), Cluster 2 (top right), Cluster 3 (bottom

left) and Cluster 4 (bottom right), obtained with FkM-Func. The bold curves refer to the

corresponding centroids.

4 clusters and the corresponding centroids (bold line) are represented in

Figure 4.

The percentage of unclear assignments (object assigned with a mem-

bership degree lower than 0.5) is 2.19%. The membership degree plays an

important role in recognizing objects (curves) with intermediate characteris-

tics between two clusters. For example, in Figure 5 are reported two objects

(black solid line and dashed red line) whose membership degrees to Cluster

1 are 0.497 and 0.497, and to Cluster 3 0.413 and 0.428, respectively.

6. Fuzzy Double k-Means

Double clustering, also known as biclustering, two-mode clustering or co-

clustering, consists in simultaneously clustering modes (e.g., units, variables)
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Figure 5: Velib dataset: two curves with unclear assignment (black solid line and dashed

red line) and centroids of Cluster 1 and Cluster 3 (bold solid lines).

of a two-mode data matrix. Let X be a data matrix of order (n × p), the

objective of a double clustering algorithm is to simultaneously partition

n rows (e.g., units) into k clusters and p columns (e.g., variables) into c

clusters.

Starting from the Double k-Means [90], the fuzzy version has been briefly

introduced in [36] and deeply analyzed in [34]. The Fuzzy Double k-Means

(FDkM) algorithm consists in solving the following constrained minimiza-

tion problem:

JFDkM =
n∑
i=1

p∑
j=1

k∑
g=1

c∑
f=1

(xij − hgf )2 umigv
l
jf ,

s.t. uig, vjf ∈ [0, 1],
k∑
g=1

uig = 1,
c∑

f=1

vjf = 1,

(18)

where U = [uig] is the (n × k) membership degree matrix for the rows,
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V = [vjf ] is the (p × c) membership degree matrix for the columns, and

H = [hgf ] is the prototype matrix of order (k × c). In a two-mode setting,

the prototypes have size depending on the numbers of clusters for rows and

columns. In this way, the roles of rows and columns are interchangeable.

The parameters m > 1 and l > 1 tune the fuzziness of the two partitions.

The solution of (18) leads to a decomposition of the data matrix into kc

blocks.

The FDkM algorithm includes some special cases. When m and l tend to

1, the FDkM solution approaches the DkM one. When c = p, the columns

are not partitioned and FDkM reduces to the FkM algorithm. Furthermore,

if c = p and m tends to 1, it corresponds to the standard k-Means.

In [34], a more general Fuzzy Double k-means algorithm with polynomial

fuzzifiers is also addressed, and robust versions are illustrated. The robust-

ness is covered through the noise cluster approach, but we have to stress

that, in this case, the structure is more complex, so three noise clusters are

considered.

There also exist in literature proposals of fuzzy double clustering for

categorical datasets. In this case, the data are stored in tables, whose rows

and columns are the units and the categories of all the variables, respectively.

These tables are known as cross-classification tables, contingency tables or

in general co-occurrence matrices. In [69] the fuzziness is represented by an

entropy regularization. The constraints on the unit membership degrees and

on the category ones are different. For each unit, the constraint is the usual

one: the sum of its membership degrees to all the clusters is equal to 1. On

the other hand, for each cluster, the sum of the membership degrees of all

the categories to this cluster have to be equal to 1. This leads to optimize the

loss function when only one variable in each cluster is completely relevant

and the remaining ones are irrelevant. Hence, the proposal can be seen as a

variable selection procedure rather than a clustering of variables. In order

to overcome numerical instabilities of the above method in the presence

of large numbers of units and categories, a further proposal is introduced

in [63]. Finally, in [87], a single term fuzzifier is used in the optimization

problem.
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7. Concluding remarks and future directions

Starting from the FkM method, first several variants together with ro-

bust proposals for standard object numerical data have been reviewed. Ex-

tensions for different kinds of data are described. In particular, the case of

categorical and mixed data are considered. Then, more complex data struc-

tures, such as fuzzy, interval or functional data, are encountered. The last

part is devoted to double clustering of heterogeneous datasets characterized

by blocks of rows and columns. It consists in simultaneously clustering rows

and columns. Even if there are huge amount of papers on this topic, there

are still several open problems to deal with.

Data grow so large and complex that it becomes crucial to adapt the ex-

isting method to them. On the one hand, the algorithms have to take into

account memory limitations. In a classical clustering setting, a memory-

efficient k-means algorithm is implemented in the R package biganalytics

[27] (related to R package bigmemory [55]). It would be interesting to ad-

dress a fuzzy version of it. On the other hand, the clustering methodology

have to be adapted to the intrinsic characteristics of the data. In terms of

data complexity, there is increasing interest, for example, in network data.

Networks represent a powerful model to describe problems and applications

in various fields, such as economics, biology and technology, among others.

Networks can be formalized in several ways and, depending on the formal-

ization, extensions of FkM type algorithms can be introduced.

Furthermore, the complexity of a structure also refers to heterogeneous

two-mode or multi-mode datasets, whose features are both categorical and

numerical ones. In this connection, some proposals could be found in [91,

73]. It would be very useful to provide two-mode or three-mode FkM type

algorithms.
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