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Abstract: In the American West, wildfires and earthquakes are increasingly threatening the archae-
ological, historical, and tribal resources that define the collective identity and connection with the
past for millions of Americans. The loss of said resources diminishes societal understanding of the
role cultural heritage plays in shaping our present and future. This paper examines the viability
of employing stationary and SLAM-based terrestrial laser scanning, close-range photogramme-
try, automated surface change detection, GIS, and WebGL visualization techniques to enhance the
preservation of cultural resources in California. Our datafication approach combines multi-temporal
remote sensing monitoring of historic features with legacy data and collaborative visualization to
document and evaluate how environmental threats affect built heritage. We tested our methodology
in response to recent environmental threats from wildfire and earthquakes at Bodie, an iconic Gold
Rush-era boom town located on the California and Nevada border. Our multi-scale results show
that the proposed approach effectively integrates highly accurate 3D snapshots of Bodie’s historic
buildings before/after disturbance, or post-restoration, with surface change detection and online
collaborative visualization of 3D geospatial data to monitor and preserve important cultural resources
at the site. This study concludes that the proposed workflow enhances the monitoring of at-risk
California’s cultural heritage and makes a call to action to employ remote sensing as a pathway to
advanced planning.

Keywords: cultural heritage resilience; digital site monitoring; laser scanning; close-range
photogrammetry; drones; M3C2 surface change detection; datafication; WebGL; Bodie;
California heritage

1. Introduction

The intensifying effects of climate change in the arid American West pose increasingly
severe threats to the natural and cultural resources of this vast and incredibly diverse region.
The consequences of global warming in California have resulted in higher than average
temperatures and greater temperature extremes [1,2], decreased rainfall and extremely
dry vegetation [3], prolonged drought [4–6], strong winds, and more frequent lightning
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ignitions [7,8]. These environmental risk factors have led to increased occurrences of the
severe wildfires that have scorched the Golden State in recent years. For instance, in the
late summer of 2020, the CZU Lightning Complex Fire was ignited by a series of lightning
strikes that hit multiple areas across the Santa Cruz Mountains. Due to the continual dense
vegetation characterizing the landscape of western Santa Cruz and San Mateo counties and
low humidity and high wind conditions, this wildfire spread at a speed of over 400 hectares
per hour, burned a total of 86,509 acres, and took over a month to be fully contained [9].
Tragically, the CZU Lightning Complex Fire resulted in the loss of 1450 structures and
one reported fatality [10]. Among the burned structures, this powerful wildfire destroyed,
or severely damaged, an unprecedented number of historically significant buildings and
burned over several previously recorded archaeological and tribal cultural resources [10,11].
As California’s earliest and most celebrated state park, Big Basin Redwoods suffered the
greatest impact, with a total of 52 historic buildings destroyed. Many were serving as park
facilities for staff and visitors [12] (Figure 1a,b). Although many conservationists speak
to the resilience of the old-growth redwood forest at Big Basin [13,14], the park’s burned
cultural resources are not renewable. The risk of post-fire erosion further threatens its
environment [15]. Analyzing the catastrophic effects of the CZU Lightning Complex Fire in
the broader context of a wildfire emergency in California, it is clear that recent fire behavior
trends demonstrate the need to better protect values at risk. This goal can be achieved
using a suite of fire management strategies and tactics, including forest stewardship, fuel
reduction, prescribed fire, and wildfire planning, combined with remote sensing data.

Figure 1. (a) The Old Lodge at Big Basin Redwoods State Park is seen in the 1950s; (b) aerial plan
view image of the ruins of the Old Lodge after the 2020 CZU Fire. Photographs (a) by K. Parker and
(b) by D. Jaffke. (a,b) Courtesy of California State Parks.

When the effects of wildfires are compounded with the devastating damage caused
by the powerful earthquakes that frequently occur in seismic California and its border
regions [16], the threats to the state’s archaeological, historical, and tribal resources become
even greater. For instance, the area around Bodie (1859–1942), an iconic Gold Rush-era
boom town located few miles west of the California and Nevada border, has been a hotbed
of seismological activity and earthquake swarms for thousands of years [17–19]. This
grim scenario exacerbates a sense of urgency in protecting California cultural heritage and
brings to the fore the need for the development of new preservation methods and increased
cooperation between preservationists, resource managers, scholars, and local communities
to increase their sustainability and resilience [20–24].

While the primary intent of collecting remote sensing data is to generate and curate
baseline data of at-risk heritage resources, these datasets would also be invaluable to
proactively assess ignition risk, monitor structural integrity, and prioritize future treat-
ments. Therefore, this paper argues that to better protect and preserve cultural heritage
sites in fire and earthquake-prone regions worldwide, resource managers are encour-
aged to enhance traditional documentation, monitoring, and site management practices
by integrating remote sensing as a pathway to advance planning and apply mitigation
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measures. We contend this approach would foster greater awareness of conditions and
facilitate the creation of site-specific monitoring schedules for resources that are identified
as particularly vulnerable.

Thus, this study examined how to collect new remote sensing data and integrate their
derivative products and analyses with legacy data, such as historic photographs, fire and
earthquake incidents data, and other resource management and field reports, within a
collaborative web visualization platform through a process called ‘datafication’ [25]. In
our study, datafication means integrating terrestrial laser scanning (TLS), or Light De-
tection and Ranging (LiDAR), close-range photogrammetry, or Image-based Modeling
(IBM), simultaneous localization and mapping (SLAM), automated surface change de-
tection data, and WebGL-based visualization in a process that produces new insights
and knowledge on the performance and resilience of at-risk cultural resources. Previous
studies have applied similar techniques for what concerns the 3D reconstruction or dig-
itization of heritage sites and buildings [26–30], structural monitoring of archaeological
buildings [31–33], producing site cartography from drone-based aerial surveys [34–37],
generating rapid and precise documentation as a quick response to disturbance from
natural hazards, such as earthquakes [38], or integrating geospatial data into Building
Information Modeling systems [39–41].

In a scenario of increasingly frequent disturbance from wildfire and continuous seis-
mic threats to California historical, archaeological, and tribal resources, between 2015 and
2020, our team partnered with California State Parks (CSP), the state agency entrusted with
the management and preservation of natural and cultural resources in the Golden State,
to test the proposed methodology and collect geospatial data at Bodie State Historic Park.
We generated ultra-precise measurements, 3D models, geospatial data and analyses, and
visualizations as pre and post-mitigation tools and baseline information to plan conserva-
tion efforts or physical reconstruction of the site in case of severe damage or destruction
from the site natural hazards [42]. We aligned our research aims with several goals of
the Transforming California State Parks initiative, a state-wide effort to improve cultural
and natural resources preservation, park management, and connection with the California
public and ensure the CSP System’s long-term sustainability [43]. We disseminated our
results and data in an online digital collection hosted by the UC San Diego Library [44].
This study concludes that our remote sensing and data analysis/visualization techniques
enhance monitoring efforts of at-risk California’s cultural resources and recommends the
application of these tools to better understand conditions and aid in prioritizing treatments.

2. Materials and Methods
2.1. Study Objectives

The environmental risks and threats discussed in this study stress the sustainability
and resilience issues of cultural resources in California and, more broadly, in the American
West. Consequently, it has become a high priority for CSP to capture comprehensive
geospatial and 3D data at several state parks to effectively collect and curate detailed
information on these resources if they are damaged or destroyed. Thus, the main objective
of this study is to test the capacity of remote sensing tools, Geographical Information
Systems (GIS), and Web-GL visualization techniques to seamlessly integrate geospatial
data into a comprehensive workflow for site monitoring, documentation, and advanced
planning purposes at multiple scales, from sitewide to the building-level. To achieve this
goal, we conducted fieldwork at Bodie in 2015–2020, accomplishing the following sub-goals:
(1) to establish a baseline model to document the current state of Bodie downtown and
other areas of interest and compare it with legacy data (2) to create geometrically-accurate
3D models of several historic buildings and ruins to examine their structural soundness
or the effects of environmental threats, and (3) to create GIS and online 3D visualizations
disseminating the project’s results to other scholars, stakeholder communities, and the
general public, which increase awareness of the significance of the site and reinforce our
call to action in its preservation.
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2.2. Study Area

Our research focused on the historic town of Bodie, a site of state and national signifi-
cance located in Mono County, in the east-central portion of California (Figure 2). Since
1961, Bodie has been preserved as a National Historic Landmark [45], the highest recog-
nition of outstanding historical value in the United States. In 1962, the site became a
California State Park [46]. Today, Bodie encompasses a 1173.5-hectare landscape of historic
buildings, structures, objects, ruins, and landforms associated with the mining-related
activities spanning 1859 and 1942. The cultural remains associated with mining, or those
living in the Bodie Mining District, are found in clusters, isolates, and networks distributed
across the barren, high-desert landscape.

Figure 2. Map showing Bodie’s location in the Western United States, nearby cities in California and
Nevada, the Sierra Nevada mountain range, and the hydrographic Great Basin Region. Map by M.
Dueñas Garcia.

The core of the Bodie townsite, as well as the surrounding mining zone, contain hun-
dreds of ruins in the form of collapsed wooden buildings, cellar pits, privy holes, dumps,
and broadcast refuse, which constituted the commercial and residential remains of the
district’s 7000 to 8000 former inhabitants [47]. Mining remains, including shafts, tunnels,
waste rock dumps, mill sites, tailings ponds, habitation sites, and other structures and
objects, cover the hillsides. Specifically, more than 120 original buildings remain [48], con-
structed in vernacular styles from the late 19th and early 20th centuries and built primarily
of local pine milled in nearby sawmills [49]. Their informal construction technique shows
that most structures were erected as an economic response to the need for shelter in a
remote high-sierra desert area with incredibly severe winters where building material was
scarce [50]. These characteristics compounded with the harshness of Bodie’s high-elevation
desert environment make the preservation and restoration of historic structures quite
complex, even in normal circumstances. California State Parks has maintained Bodie in a
state of “arrested decay,” stabilizing structures and intervening only to preserve buildings
as they existed at the time they were acquired in 1960 [51,52] (Figure 3a,b). The physical
conservation intervention has most often taken the form of roof repair and replacement,
foundation work, and bracing. Buildings within the town have been stabilized to prevent
their collapse and halt further deterioration. However, many of the buildings are at risk
due to a deferred maintenance backlog, threat of wildfire, and earthquake damage.
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Figure 3. Examples of “arrested decay” at Bodie. (a) Swazey Hotel; (b) New Standard Hoist building. Photographs (a,b) by
N. Lercari.

2.2.1. Dry Climate and Fire

The prolonged drought that hit California between 2012 and 2016 amplified the
effects of climate change in the region, resulting in environmental conditions that further
weakened the already fragile historic fabric [3–6]. This issue brings into focus questions
regarding Bodie’s sustainability and resilience in the context of its harsh high-desert climate,
identified as cold winter/dry summer (Dsc) in the Modified Köppen Climate Classification
System. The site’s climate features snowy and frigid winters with average low temperatures
in January as low as 4.7 ◦F (−15.2 ◦C) and dry summers with an average high temperature
in July as high as 77.6 ◦F (25.33 ◦C), which make maintenance and conservation efforts
particularly challenging [53]. Bodie’s historic landscape evolved through successive boom
and bust cycles and fires in and around town that occurred during the historic period,
natural deterioration resulting from abandonment, and alteration due to modern land-use
practices. For instance, the 1892 fire destroyed much of Main Street between the Miner’s
Union Hall and the bank building [54]. Residents rebuilt several buildings and moved
others from back streets to fill in Main Street [55]. In 1932, another large fire destroyed most
of the north part of the town. Bodie’s population dwindled significantly afterward, leaving
only 10% of the town we see today [48].

As of August 2021, Mono County is once again experiencing extreme drought condi-
tions [56], making maintenance and stabilization efforts at Bodie more challenging. This
situation is further aggravated by the park’s remote location, where fire suppression efforts
are costly and may not be timely enough to protect Bodie’s cultural resources in case of
a fast-moving fire incident. The most recent and serious fire threat came with the Spring
Peak Fire that started as a lightning strike on 17 August 2013, within the Humboldt-Toiyabe
National Forest in Nevada. High winds quickly carried the fire southwest. It crossed the
California state line and stabilized approximately three miles east of Bodie [57] (Figure 4).
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Figure 4. Map showing the Spring Peak Fire’s perimeter (orange) and proximity to the Bodie State
Historic Park’s boundaries (green). Generated from data made available by the U.S. Forest Service,
California State Parks, and NASA JPL (2021). NASADEM Merged DEM Global 1 arc second V001.
Distributed by OpenTopography. https://doi.org/10.5069/G93T9FD9 Accessed: 23 August 2021.
Map by A. Campiani.

During the incident, a Structural Fire crew was deployed to the park to provide fire
suppression support and protect buildings identified as high-value assets (Figure 5a,b).
Of the 120 buildings still standing at Bodie, site managers were asked to provide a list
of no more than ten structures to actively protect [57]. Fortunately, the Spring Peak Fire
spared Bodie and its historical and archaeological remains. However, this dramatic incident
served as an opportunity to evaluate and improve the park’s Wildfire Management Plan,
fire suppression systems, and defensible space [58]. Prioritizing which resources to actively
protect during a wildfire event is undoubtedly challenging. The selection process can be
more discernable if there is a prior understanding of how individual resources contribute
to the significance of the property along with advanced information about the site and
its environmental conditions. The remote sensing documentation techniques employed
in this study, together with our analytical and visualization pipeline, can enhance the
acquisition and processing of this important intelligence before the urgency to respond to a
fast-moving wildfire makes this task incredibly time-sensitive and complex, potentially
draining resources from the response. For this reason, CSP partnered with our team to
enhance the documentation of structures located in remote areas that are poorly defensible
as detailed in the Results section (i.e., the Benton Railroad Office, the New Bodie Mine
Hoist, the New Standard Hoist, the water tanks, and the Roseklip Mill Complex located
on the hills above the townsite). Additionally, the agency explored options to utilize the
3D visualization tools discussed in this paper (i.e., Potree viewer) to identify and monitor
at-risk buildings over time. This approach contributed to inform advanced planning and
creating a priority list of buildings to protect before new fire disturbances occur.

https://doi.org/10.5069/G93T9FD9
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Figure 5. (a) Plumes of smoke from the Spring Peak fire are seen in the landscape near Bodie; (b) a
fire crew’s helicopter is seen filling up a bucket at a pond at Bodie. Photographs courtesy of California
State Parks and U.S. Forest Service.

2.2.2. Seismic Risk

Bodie lies near several seismic faults on both sides of the California and Nevada border,
two of the most seismically active areas in the United States [59] (Figure 6). A large number
of moderate tremors with no identifiable mainshock are relatively common in the region.
While it is rare that these episodes cause complete historic building collapse, they can
compromise overall structural integrity and contribute to non-structural element failures.

Figure 6. Map showing Bodie’s proximity to several faults’ locations in California and their probabil-
ity of being involved in seismic activities of magnitude≥6.7 in the next 30 years. Generated from data
made available by the Working Group on California Earthquake Probabilities and Google Earth Pro
v.7.3.4.8248 (22 February 2014). Bodie, California. 38◦12′45.41′′N, 119◦00′48.25′′W, Eye alt 10,378 feet.
Data LDEO-Columbia, NSF, NOAA, SIO, U.S. Navy, NGA, GEBCO. Image Landsat/Copernicus.
Google 2021. http://www.earth.google.com [accessed on 22 July 2021]. Map by N. Lercari.

http://www.earth.google.com
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At Bodie, the most vulnerable non-structural elements affected by seismological
activities are unanchored stone veneers, cornices, chimneys, and gable ends [60]. Intense
seismological activity poses significant threats to historic settlements similar to Bodie as
gas and water lines may rupture, which can cause fire and water damage. For instance,
on 28 December 2016, the Dechambeau Hotel and the International Order of Odd Fellows
(IOOF) Hall buildings at Bodie suffered damage during a magnitude 5.6 earthquake with an
epicenter 28 km southwest from Hawthorne, Nevada, just a few miles east of the park [61]
(Figure 7). As shown by our multi-temporal monitoring and building-level analysis of the
said structures, this study detected and displayed the visible and invisible harmful effects
of the 2016 earthquake. It is critical to be able to recognize these structural weaknesses
early so efforts can be made to stabilize the structure, if it warrants immediate action, or
modify the monitoring schedule to track changes if the situation is less severe. Results
of the comparative analysis for Dechambeau Hotel and IOOF Hall would not have been
possible without the collection of baseline 3D data prior to the incident. With the remote
sensing techniques utilized in this study, collecting this kind of data has never been simpler.
Being aware that post-processing and analysis can be time-consuming and costly, we argue
that it is best to have these baseline data available if disaster strikes, especially in high fire
and earthquake prone-zones.

Figure 7. Map showing the epicenter location and intensity contour lines of the 5.6 M earthquake
that affected Bodie’s region in December 2016. Generated from data made available by USGS and
Google Earth Pro v.7.3.4.8248 (22 February 2014). Epicenter 38◦23′25.44′′N, 118◦53′49.92′′W, Eye
alt 74.25 miles. Data CISN:NCSS, Nevada Seismological Laboratory, USGS NEIC. Image Land-
sat/Copernicus. Google 2021. http://www.earth.google.com (accessed on 15 August 2021). Map by
N. Lercari.

2.3. Employed Data Capture Techniques

This study employed well-established geospatial and 3D capture techniques, such as
topographic surveying by total station and differential GPS, stationary TLS [62,63], SLAM-
based scanning [64–66], ground and drone-based IBM to produce 3D models [67–69],
high-resolution ortho maps, Digital Elevation Models (DEMs), and Digital Terrain Models
(DTMs) that can be analyzed in a GIS or CAD environment for further analysis [70–72].
A multi-temporal site monitoring methodology was developed to detect decay, material
loss, non-structural issues in specific historic buildings and significant areas over time.
Building on previous studies employing 3D surveys for damage assessment [63,73–76],
we performed multi-temporal surveying of several historically significant structures and

http://www.earth.google.com
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areas of the site, producing 3D datasets with a temporal frequency of one year. We also
scanned several other buildings at risk producing single TLS datasets that can be used by
site managers in case of damage or destruction. Details on buildings and areas scanned are
provided in the section Results.

2.4. Datafication

A datafication process goes beyond the mere collection of information on at-risk
cultural heritage and generates new questions on our data. Human interpretation plays a
key role in creating new intermediate data from heterogeneous digital and analog data [77].
The data intimacy fostered by a human decision-making process—entailing the integration,
transformation, and translation of all the diverse datasets—encourages new research
questions sparked by the new knowledge acquired in this process [25]. For these reasons,
our study utilized a datafication process to integrate new 3D geospatial data we collected
a Bodie and intermediate and derived 2.0 and 2.5 data with legacy geospatial data of
natural hazard disturbance made available by the U.S. Geological Service (USGS) and
the U.S. Forest Service [61,78], historic photographs, technical reports, survey notes and
field observations produced by California State Parks specialists, site managers, and
preservationists working at the site.

2.4.1. Visualization of Cultural Landscape Features in a GIS Environment

At the sitewide level, our datafication process relied on transforming geospatial 3D
data captured by stationary or SLAM laser scanning and low-altitude aerial photographs
processed through an IBM pipeline into visualizations that enhance the perception of spatial
features of interest related to natural or cultural resources. We created DTMs of several
significant areas of Bodie and produced visualizations of sitewide level data using different
GIS visualization techniques. With the use of hill shading and various manipulations of the
original DTMs, these visualizations were produced to emphasize or smooth out features
such as roads, paths, buildings, ruins, sinkholes, mining shafts, tailings, and other remains
of mining operations [79–81] (Figure 8a–c).

Of note, we applied a custom Local Relief Model (LRM) method to our DTMs [82]
and obtained visualizations that isolate large landforms and buildings (Figure 8). We calcu-
lated the mean filter from the original DTM with an application radius of 50 pixels using
the Whitebox Tools plug-in in Qgis 3.16.8. This low-pass filter was subtracted from our
original DTMs. The LRM is presented in grayscale (Figure 8a) or in a palette of dark green
tones to show negative deviations, gray as an intermediate tone, and yellow for positive
deviations (Figure 8b). The resulting LRM was combined with a slope model calculated
in degrees. The latter was visualized in a palette of red or orange colors where the less
pronounced slopes are displayed in light tones and the steepest in dark tones (Figure 8c).
The fusion of both visualizations was produced in multiplication blending mode. The result
is visually very similar to the Red Relief Image Map (RRIM) utilized in previous studies.
However, it uses the LRM method to show positive and negative deviations to the surface
trend instead of emphasizing concave and convex features of the relief as in the RRIM
technique [83–85]. This method facilitates the detection of small landscape and architec-
tural features, thus improving monitoring of the Bodie landscape and its buildings and
ruins while also providing an enhanced representation of said features in their broader
spatial context.
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Figure 8. GIS visualizations of the Bodie downtown captured by drone-based IBM in 2020. The
figure compares our results obtained using the following techniques: (a) Hillshade; (b) Local Relief
Model; (c) our custom Local Relief blending a Slope Map with Local Relief Model. Visualizations by
G. Jiménez Delgado.

2.4.2. Damage Map in a CAD Environment

At the building level, our datafication process focused on assessing the resilience of
iconic historic structures. We selected the adjacent Dechambeau Hotel and the IOOF Hall
buildings as a case study, given their prominent location on Main Street at the entrance of
the site and their ubiquitous presence in the legacy and contemporary photographic record
of the site. We integrated and compared a heterogeneous corpus of digital and analog data
documenting these buildings to illustrate the pattern of seismic damage caused by the 2016
earthquake and the solutions adopted for the subsequent repair and consolidation. We
employed a computer-aided design (CAD) environment to sketch an elevation of the more
iconic and representative western and eastern façades of the buildings. Significantly, we
used the CAD to produce a damage map of the western façades where visible damage
affected the Dechambeau brickwork. Our damage map displays in 2D the life cycle of the
Dechambeau Hotel western façades before/after disturbance and post-restoration. While
complying with the Historic American Buildings Survey (HABS) drawing guidelines was
out of scope in our work [86], our elevations build upon the 3D data recorded to make
the structures more understandable to the general public through measured drawings.
This approach is recommended by the Heritage Documentation Programs of the U.S.
National Park Service [87]. Additionally, the natively digital data we used in our drawings
were stored in our online digital collection to ensure their long-term permanence and
access by architectural historians interested in Western U.S. vernacular architecture and the
public [44].
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2.4.3. Automated Surface Change Detection

We produced additional data to be integrated into our datafication process using
the open-source software CloudCompare (CC) and its Multi-scale Model to Model Cloud
Comparison (M3C2) plug-in. Using these tools, we calculated millimeter-level distances
between identical X, Y, Z points captured in multi-temporal point clouds describing the
surfaces of surveyed buildings and areas [88–92]. We employed the M3C2 method to
compare pairs of perfectly aligned and identically segmented point clouds and detect
surface change. More specifically, we used the CC 3-Point Registration tool to align the
datasets achieving the lowest useful registration error values (RMS) we then used in the
M3C2 plug-in to avoid false positives. Since we compared morphologically complex
surfaces, we oriented the point normal using CC Minimum Spanning Tree method. We
then used the M3C2 method to compare a subset of core points obtained using a cylindrical
projection for which we identified optimal radius and maximum depth. The M3C2 plug-in
performed automatic point cloud segmentation to decrease the chance of points compared
to not having almost identical references in the base cloud and avoid mistakenly registered
false distance values. It then created datasets with almost identical dimensions. Finally,
it identified the significant change (based on a 95% confidence interval) that occurred on
different portions of the compared buildings and areas. The M3C2 results allowed us to
inform site managers if a building has begun shifting dramatically or an area eroded or
decayed faster than it could be detected during foot surveys or manual inspection.

2.5. Web-GL Visualization

While the LiDAR and IBM data capture techniques used in this study are increasingly
accessible, they produce overly complex data outputs with a limited immediate utility to
heritage preservationists. The use of these data requires high-performance computing, com-
plex processing pipelines, and additional manual labeling. The utility of high-resolution
3D data is often limited to downsampled 2D derivatives, such as snapshots, videos, plans,
orthophotos, and DTMs. At the same time, the raw data remain too dense and unwieldy to
warrant digital archiving or dissemination. Multi-resolution data structures, implemented
in open-source WebGL viewers, contribute to solving this problem as they offer robust
interactivity and customization. They can stream multi-billion-point, hundred-gigabyte
datasets as they might a YouTube video, scaling resolution to individual devices and
bandwidths. Thus, this study employed the Potree point cloud viewer as an exceptionally
efficient multi-resolution WebGL platform to enable collaborative visualization and web-
based interaction with data collected at Bodie. Potree is built on the popular open-source
Three.js WebGL game engine [93]. The system, essentially, trades network storage for local
computing power by incorporating “octrees” or recursively nested cubes of finer and finer
detail (Figure 9).

Octrees are loaded real-time, relative to the user’s camera position, only loading as
many points as can be seen at any given time. Potree implements these data structures in
a highly versatile web environment, allowing for custom annotation and contextualiza-
tion. Moving seamlessly from kilometer to sub-millimeter scale, placing data captured
via LiDAR, IBM, sonar, volumetric CT scans, and meshes and shapefiles in a single open,
georeferenced, extended reality-ready context that can be used for visualization and col-
laborative data interpretation purposes. Built-in measurement tools and coloration allow
users to navigate between layers of colors, scalar values, and classifications, supporting all
fields within the LAS specification, along with customized attributes. A highly optimized
“adaptive” point sizing feature makes most point clouds appear as continuous surfaces
with approximately homogeneous point distributions. The same web page can be adapted
to a standard desktop, laptop, custom visualization walls, now common at large research
institutions, virtual reality headsets, and select Android tablets. The employed Potree can
stream individual datasets in custom external web instances, enabling students, commu-
nity stakeholders, and external collaborators to re-purpose the research data in localized
contexts without being gouged by hosting fees.
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Figure 9. View of the Dechambeau and IOOF Hall buildings’ 2016 point cloud visualized in our instance of the Potree
Viewer showing elevation (point cloud color coding), measurements (red lines), and octrees (yellow cubes). Visualization by
S. McAvoy.

3. Results

Geospatial control data used in this study were collected by CSP land surveyors
in 2015–2017 using Bodie’s permanent control network in combination with a Trimble
differential GPS (DGPS) and triangulation by a total station. We used these centimeter-level
positioning data to georeference our 3D survey data and related intermediate 2.0 and
2.5 derivative data. Additional high-resolution geospatial data were retrieved from the
OpenTopography repository [94]. Between 2015 and 2020, we utilized various UAVs (i.e., a
custom drone manufactured by Monarch Inc.; a DJI Phantom 3 Pro; a DJI Inspire Raw 1; a
DJI Phantom 4 Pro, a DJI Mavic Pro) to collect thousands of close-range aerial photographs
of individual buildings (i.e., the D.V. Cain, the Firehouse, the Miners Union Hall among
many others, the entire Bodie townsite, and several nearby mining areas (i.e., the Standard
Stamp Mill and the Roseklip Mill complexes, and a water tank located on the slope of
the Bodie Bluff) (Figure 10). Using the IBM app Agisoft Metashape, we processed the
photographs and produced georeferenced 3D models and DTMs that precisely describe
the mapped areas or buildings.

In 2015–2017, 2019, and 2020 we employed a FARO Focus3D S120 shift phase stationary
scanner to perform multi-temporal monitoring of historic structures. We documented with
high accuracy and precision several iconic historic buildings, including the Dechambeau
Hotel and IOOF Hall, the Hoover House, the Benton Railroad Office, the Swazey Hotel, and
the Methodist Church, the only remaining original place of worship at the site (Figure 10).
Additionally, a few more modest yet culturally distinct residences were laser scanned,
including the house of a Paiute tribal member, Rosie McDonald, and the stamped tin
can-sided “Chinese Residence” (Figure 10—top left). Using the FARO scanner, we also doc-
umented the New Standard Hoist and the New Bodie Mine Hoist buildings, two structures
associated with mining operations, identified as high priority by CSP site managers. Their
remote location along the slopes of the Bodie Bluff makes the latter buildings particularly
at risk in a rapid-moving wildfire (Figure 10—right side).
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Figure 10. Map showing Bodie’s downtown, Chinatown, roads, and creeks. 3D documented
buildings are seen in yellow. Generated from data made available by California State Parks and NASA
JPL (2021). NASADEM Merged DEM Global 1 arc second V001. Distributed by OpenTopography.
https://doi.org/10.5069/G93T9FD9 Accessed: 23 August 2021. Map by A. Campiani.

In 2020, the last year in our study period, we deployed at Bodie a GeoSLAM ZebHori-
zon handheld scanner featuring a Velodyne Puck sensor. We performed SLAM mapping of
entire areas of interest to produce extensive 3D documentation that can be used in future
studies or preservation efforts. Leveraging the fast speed and high mobility of the SLAM
scanner, we walked along the several roads and trails that cross the park and documented,
in 3D, an area encompassing approximately 35 hectares, or 349,858 sq. meters in few hours.
The SLAM scanned area covers the entire Bodie downtown and Chinatown, which lies
adjacent to the northernmost section of Main Street, and the Standard Stamp Mill complex,
which is accessible only through guided tours due to physical and moderate biohazard
present in the area. We then processed the SLAM data using a series of tools included in
the LAStools suite optimized for our Velodyne Puck sensor [95]. These tools helped us
filter, denoise, and classify the SLAM data (Figure 11) and then produce derivative datasets
that can be visualized online in our Potree viewer to inspect or monitor buildings and areas
or, simply, to virtually tour the park.

Using the remote sensing techniques and the data discussed above, we produced a
collection of highly accurate 3D models and intermediate and derived 2.0 and 2.5 data
of Bodie documenting over forty structures, and three areas of the site (i.e., the townsite,
the Standard Stampmill complex, and the Roseklip complex). These datasets can be used
to inform maintenance, conservation, or physical reconstruction. We shared results with
park managers and created a best-practice guide for built heritage documentation that
was reviewed and accepted by California State Parks as the standard operating procedure
for the department [96]. Most importantly, we created an open access online collection
archiving our data to ensure replicability of results and dissemination to the public [44].
Given the heterogeneity and different scales of our results, we chose to demonstrate the
viability and effectiveness of our methodology through two examples that represent how
our work can be integrated within a comprehensive site monitoring program to increase

https://doi.org/10.5069/G93T9FD9
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the resilience and sustainability of Bodie. More specifically, the following examples focus
on the Web-GL visualization of several areas of the site and on the damage analysis of the
Dechambeau Hotel and IOOF Hall.

Figure 11. Visualization of our classified 2020 SLAM data documenting the Standard Stamp Mill
area in our instance of the Potree viewer. Point cloud classification performed via LASTools using
the following classes: buildings = orange; vegetation = green; ground = brown. Visualization by
G. Jiménez Delgado.

3.1. Sitewide Level Results: WebGL Visualizations of Bodie in Potree

We incorporated our sitewide level results into an instance of Potree viewer. This
online visualization environment combines the collected geospatial and 3D data with
derivative products and facilitates collaborative exploration of our results [97]. As applied
to Bodie, our WebGL platform includes 9 different datasets: a 2020 sitewide drone IBM
model (3.9 billion points, 36 Gigabytes), 2 IBM models of the Roseklip Mill area comparing
2015 and 2020 changes (530 million points—5.8 Gigabytes; 1.3 billion points—12 Gigabyte),
a 2020 SLAM point cloud (6 billion points—5.9 Gigabytes) and 4 TLS models of individual
buildings (totaling 765 million points—3.9 Gigabytes) [97]. We integrated our instance of
Potree with Cesium.js global base map to enable a geographic contextualization of our
results with an OpenStreetMaps tile server. We also applied a fine adjustment to imperfectly
georeferenced 3D models via manual offset added in the Potree HTML page. For instance,
we adjusted the location of our 2020 sitewide drone IBM 3D model, where a subset of the
base imagery included incorrect elevation metadata due to an error generated by the GPS
unit of one of the employed UAVs. We used the more accurate TLS data of the Dechambeau
Hotel and IOOF Hall, the Rosie McDonald House, the Benton Railroad Office, and the
Hoover House to fix this issue. The latter 3D datasets were accurately georeferenced using
geospatial control collected at Bodie by CSP surveyors in 2016 and 2017 using a DGPS and
total station.

Online visual analysis of our results in Potree is significant as it enables Bodie site
managers to discuss and interpret the damaging environmental effects on managed re-
sources with experts and specialists who are not on site for advanced planning purposes.
For instance, our WebGL platform can effectively make large classified SLAM LiDAR point
clouds (Figure 11) or the drone-based IBM model capturing the entire townsite (Figure 12)
available on the internet as interactive 3D visualizations to discuss the historical signifi-
cance of buildings and areas and inform the creation of a priority list of resources to save
in case of natural hazards.
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Figure 12. View of the Bodie downtown point cloud in our instance of the Potree viewer, as it was
captured in 2020 using drone-based IBM. The Dechambeau Hotel and IOOF Hall are seen along
Main St. (bottom left). The Standard Stampmill complex is seen on the slope adjacent to the town
(top right). Visualization by S. McAvoy.

Our Roseklip Mill area results are significant as they display multitemporal 3D data
documenting the complex in 2015 and 2020 (Figure 13). These 3D datasets capture the
large historic complex of buildings, industrial refuse concentrations, mine tails, cyanide
vats, tailings pond, and other related features at the beginning and end of our study
period. These multitemporal datasets can be used to monitor site conditions over time
and better understand how contaminants might be migrating from tailings and document
erosion and distribution. Our Potree results also allow park managers to identify and track
the expansion of previously known mine shafts while also providing early indicators of
subsidence and future collapse. Finally, our Web-GL visualizations allow stakeholders,
communities, and the general public to access and review the data in a 3D Web environment.
Leveraging this capability, our instance of Potree engages them with a more inclusive
monitoring effort of Bodie meant to increase this beloved park’s protection and awareness
of threats to its cultural resources.

Figure 13. Visualization of the multitemporal Roseklip Mill area point clouds in our instance of
Potree. (a) Shows our custom Local Relief colorization of the 2015 dataset; (b) shows our custom
Local Relief colorization of the 2015 dataset. Colorization variation is due to the different resolutions
of the source point clouds. Visualizations by S. McAvoy and G. Jiménez Delgado.
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Our Web-GL platform can also be used to obtain measurements easily, produce
enhanced documentation, such as ortho maps, vector drawings, and segmented 3D point
clouds, allowing for better preservation and protection planning. In future studies, scholars
can leverage Potree shading techniques, such as the Eye-dome non-photorealistic lighting
model [98], to visually analyze our datasets and reveal hidden or otherwise unobtainable
knowledge, such as the location of Chinatown buildings that were burned in the 1982 fire.

However, the system has some limitations for the effective re-use of data. For instance,
the native Potree file format does not currently support granular web-facing segmentation
and queries (e.g., select and download only a small section of a larger model), offering
this feature only on machines with filesystem access. The Entwine Point Tile (EPT) offers
an alternative Potree-readable format that can be queried directly [99]. Another archival
structure is employed by the OpenTopography project [94], which stores large point
clouds as EPT files. Users select a region on a map and can download or visualize the
corresponding data in various formats, such as point clouds, DEMs, and orthophotos. This
system allows for on-request WebGL visualization, building temporary Potree viewers
when the option is selected. Unfortunately, the EPT format does not scale well to giga-
resolution data. For this reason, it takes days to process the octree structures for point
clouds exceeding two billion points and creating hundreds of thousands of tiny files,
making the visualization stack unwieldy to move between local and network locations.
For this reason, we separate archival and visualization layers, which could otherwise be
combined in smaller projects.

3.2. Building-Level Results: the Example of the Dechambeau Hotel and IOOF Hall

We scanned the Dechambeau Hotel and IOOF Hall in 2016 before the earthquake
disturbance and then again in 2017 (Figure 14a–d). Data collection was performed using
stationary TLS scanning from ground level and drone-based aerial photos.

Figure 14. On-scale visualization of (a) photograph of the Dechambeau Hotel and IOOF Hall’s
East façades; (b) architectural drawing showing no visible damage caused by the 2016 Hawthorne
earthquake; (c) M3C2 distance map visualizing the surface change in centimeter between 2016 pre-
disturbance dataset and 2017 post-disturbance dataset; (d) M3C2 significant change map highlighting
invisible damage patterns. (a) By A. Guillem; (b) by A. Campiani; (c,d) by A. Guillem and C. Reps.
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Sections of the buildings were mapped via laser scanning, creating walls of points
that had position and color data stored. The scanner had to be set up at various points
around the building to ensure that every surface had been imaged completely. Next,
the scans were stitched together in FARO Scene to form a single cloud of the walls of
the buildings. Due to occlusion, the scanner did not properly measure the roof of the
structures, so aerial mapping via UAV was also required. A drone made several passes
in a grid pattern (nadir camera) over the area of interest and circular patterns around the
buildings (oblique camera). The base imagery was processed in Agisoft Metashape to
generate 3D point clouds. Both the roof and wall sections of the respective years were
edited to remove noise and points that were not of relevance to the analysis of the structure.
Once cleaned, the roof and wall point clouds were merged in a single cloud for 2016 and
2017. The 2017 dataset was then aligned to the 2016 reference dataset in CloudCompare by
selecting analog characteristic points on each cloud for a minimum of three pairs, achieving
0.013 m accuracy. Once the initial alignment was completed, more points were chosen
to reduce the RMS error as much as possible, eventually to a final value of 0.0038. At
that point, normal were calculated for the 2017 cloud. A triangular method was used for
the local surface model and a minimum spanning tree of knn = 25 to best project from
the surface to calculate the normal. Next, we performed an M3C2 analysis of the two
clouds with a projection diameter of 0.08 and a depth of 2, inputting the RMS, using the
normal of 2017, and projected onto the 2016 cloud. Using the M3C2 plug-in, we computed
significant change between the datasets and projected the results on the 2016 point cloud
showing both significant change (Figure 15a) and M3C2 distance along an axis (Figure 15b).
White points display significant change on a 95% confidence interval in our significant
change visualizations, while red points are not significantly altered or otherwise outside of
this interval.

Figure 15. (a) Dechambeau Hotel and IOOF Hall roof significant change. Point size increased to “2”
to decrease transparency in the structure. No other features have been modified; (b) Dechambeau
Hotel and IOOF Hall south wall. M3C2 distance displayed in centimeters. (a,b) By A. Guillem and
C. Reps.

Using TLS results, we also sketched measured drawings of the buildings by digitiz-
ing wall limits and main architectural details from orthophotos derived from our 2016
pre-disturbance 3D survey. Furthermore, we double-checked architectural features by
contrasting the 2016 orthophotos with historical images of the buildings made available by
California State Parks or retrieved from federal and state online photo collections [100,101].
We found that during the 2016 Hawthorne earthquake, the west façade of the Dechambeau
Hotel was severely damaged. Multiple fractures appeared between the bricks adjacent to
windows and doors. The upper part of the building, decorated with corbie steps, suffered a
severe material loss while the chimney entirely collapsed. We mapped our findings and the
results of subsequent consolidation and restoration effort in CAD by integrating additional
information obtained through our 2017 post-disturbance 3D survey (Figure 16a–d).
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Figure 16. On-scale visualization of (a) photograph of the Dechambeau Hotel and IOOF Hall’s
West façades; (b) damage map showing cracks and collapsed material (red) caused by the 2016
earthquake and the repair and consolidation work (yellow); (c) M3C2 distance map visualizing the
surface change in centimeter between 2016 pre-disturbance dataset and 2017 post-disturbance dataset;
(d) M3C2 significant change map highlighting visible and invisible damage patterns. (a) By N. Lercari;
(b) by A. Campiani; (c,d) by A. Guillem and C. Reps.

We integrated our CAD drawings, and M3C2 distance maps, with the Dechambeau
and IOFF Hall photographs to complement our damage maps and accurately represent
the buildings’ materials. This approach enables a broader understanding of our measured
drawings by the general public. Our on-scale CAD visualization spatially contextualizes
the 2016 seismic damage pattern and distribution of resulting cracks, which are necessary
information to anticipate structural damage [31]. When overlapped with the solutions
adopted to mitigate the loss of material and the issues detected, our damage map provides a
comprehensive approximation to the structural integrity of the building and its before/after
disturbance life cycle. For instance, during restoration, the upper part of the Dechambeau’s
West façade was completely rebuilt. Comparing our results with historic photographs,
we found that one of the corbie steps decorating the right part of the gable roof was
reconstructed in 2017–2018, even if it was absent in any photograph of the building taken
after 2007. We also discovered that those same images show the reintegration of a corbie
step on the left side of the roof at an unknown time. The left corbie step was not present in
the pictures taken in the 1960s and 1970s. Our findings speak to the value of producing
damage maps of historic buildings as cultural heritage monitoring tools that capture the
life cycle of significant structures.

4. Discussion

The preservation threats affecting Bodie can be contextualized in the broader context
of the American West, where many other cultural sites of significance share similar envi-
ronmental or historical characteristics. The risk factors studied highlight a sense of urgency



Remote Sens. 2021, 13, 4130 19 of 24

in improving site management and heritage preservation practices to address some of the
most pressing threats to California’s cultural heritage, such as wildfires and earthquakes.
Our results show that multi-temporal remote sensing, datafication, and Web-GL data visu-
alization effectively document the results of said catastrophic events. Additionally, they can
also become tools to proactively produce new knowledge and best-practice methodologies
for site monitoring as well as for advanced planning, conservation interventions, and
reconstruction efforts.

At the site level, our approach is significant because it allows comparing the results
of multi-temporal aerial surveys performed with small UAVs or SLAM scanners. These
techniques make it easier and faster to produce updated cartography of a site at risk or
create GIS-based visualizations. The latter can enhance understanding of imminent or
recurring threats that may not be visible during foot surveys. They can also reveal details
that can be easily missed due to the large scale of the area to monitor (i.e., the Standard
Stamp Mill complex) or because access to the area is restricted due to environmental
threats and physical hazards (i.e., the Roseklip Mill complex). Additionally, our Potree
visualizations can be easily shared with stakeholders and the general public to increase
awareness of the site’s conservation issues.

At the building level, our multitemporal 3D documentation and datafication are
relevant because they produce highly accurate site snapshots and enable integrating or-
thophotos of elevations and damage maps with surface change information applied to
natively digital data [102]. In the discussed Dechambeau Hotel and IOOF Hall example, the
M3C2 analysis of multi-temporal point clouds provides a deeper and more comprehensive
understanding of visible and “invisible” damages and structural irregularities, such as
cracks and lateral displacements, caused by seismological activity near the site.

The broader impact of the results we obtained at Bodie is related to the worldwide
applicability of our methods at cultural heritage sites presenting similar environmental
characteristics, wildfire and seismic risk. The dramatic consequences of earthquakes and
wildfire in the Middle East, Eastern Mediterranean, and Southern Europe, such as the
powerful earthquake that struck southeastern Iran in 2003, destroying much of the ancient
city of Bam, or the multiple seismological events that severely damaged important cultural
sites in Italy in 2009–2012 (i.e., Abruzzo and Emilia Romagna regions), or the more recent
fatal effect of the 2021 fire season in Greece (i.e., the island of Evia) and Western Turkey
(i.e., the resort town of Bodrum), clearly show the need and urgency in adopting our tested
methodology outside California.

5. Conclusions

Based on our experience working at sites in California, Turkey, and Mexico, we have
come to the harsh realization that many cultural heritage resources are at risk of loss due
to natural or anthropogenic conditions that are not easily mitigated. While we know that
it is more cost-effective and efficient to address structural or environmental issues when
they are small, the scale of deferred maintenance is often overwhelming and difficult to
manage, especially with little to no data to base decisions. The methodology presented
in this article can provide a means to collect and process 3D and geospatial data in a way
that delivers comprehensive information to resource managers so they can quickly identify
changing conditions and apply appropriate treatments. Our approach produced 3D models,
natively digital data, and derivative data that highlight potential issues on a multitude
of scales. Once collected and properly curated, these datasets can be used at any time to
develop resource management plans that would summarize current conditions, address
potential threats, prioritize maintenance needs, and develop a monitoring and treatment
schedule. The need to document and characterize significant heritage sites is urgent and
we encourage managers to begin the process of digitally documenting resources using
the proposed remote sensing and data analysis and visualization techniques. The global
climate crisis has elevated preservation issues and the time to begin collecting baseline
data is now, especially those that are located in high fire and earthquake-prone zones.
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