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Hybrid Brain–Computer Interfaces (BCIs) for upper limb rehabilitation after stroke should enable the
reinforcement of “more normal” brain and muscular activity. Here, we propose the combination of cortico-
muscular coherence (CMC) and intermuscular coherence (IMC) as control features for a novel hybrid BCI
for rehabilitation purposes. Multiple electroencephalographic (EEG) signals and surface electromyogra-
phy (EMG) from 5 muscles per side were collected in 20 healthy participants performing finger extension
(Ext) and grasping (Grasp) with both dominant and non-dominant hand. Grand average of CMC and
IMC patterns showed a bilateral sensorimotor area as well as multiple muscles involvement. CMC and
IMC values were used as features to classify each task versus rest and Ext versus Grasp. We demon-
strated that a combination of CMC and IMC features allows for classification of both movements versus
rest with better performance (Area Under the receiver operating characteristic Curve, AUC) for the Ext
movement (0.97) with respect to Grasp (0.88). Classification of Ext versus Grasp also showed high per-
formances (0.99). All in all, these preliminary findings indicate that the combination of CMC and IMC
could provide for a comprehensive framework for simple hand movements to eventually be employed in
a hybrid BCI system for post-stroke rehabilitation.

Keywords: Hybrid brain–computer interface; electroencephalography; electromyography; corticomuscular
coherence; intermuscular coherence; upper limb.

1. Introduction

Brain–Computer Interfaces (BCIs) have successfully
been employed to address upper limb motor reha-
bilitation after stroke.1,2 Most BCIs targeting upper
limb functional motor recovery exploit brain signals
(most commonly recorded via electroencephalogra-
phy, EEG)3 to control visual or propriocep-
tive feedbacks/effectors4,5 which ultimately aim at

reinforcing “more normal” brain activation by clos-
ing the sensorimotor loop.6–8 However, residual or
recovered muscular activity can be monitored along
the rehabilitation process and guided towards “more
normal” movement patterns to achieve maximum
possible functional regain.9 It is well known that
the regaining of motor function after stroke is chara-
cterized by several changes in muscular activation
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patterns, such as motor overflow,10 co-activation of
agonist and antagonist muscles and spasticity.11–15

Rehabilitation approaches should be designed to
counteract these maladaptive changes.16 Currently
available rehabilitative BCIs mostly overlook these
aspects along with the training protocols, if at all
restricting their assessment within the evaluation
phases (e.g. to determine efficacy).

Hybrid BCIs include peripheral signals such as
those derived from electromyography (EMG) as a
control feature.17 These have mostly been devel-
oped to improve the classification performance of
the system e.g. in assistive BCIs,17–19 with little
or no focus on which properties of the EMG sig-
nals should be considered in a rehabilitative con-
text. Applications of hybrid BCIs for motor reha-
bilitation after stroke are still limited.20,21 The EMG
features employed in these few studies include ampli-
tude estimates, such as the envelope and other fea-
tures extracted from the surface EMG signal (e.g.
the waveform length,22 the mean of the absolute
value, the variance, the root-mean-square error and
the logarithm of the variance of the EMG signal23).
However, there is no consensus on which movement-
related features should be encouraged (or discour-
aged) within a BCI training to pursue physiolog-
ical muscular activation patterns. Ideally, hybrid
BCI systems specifically developed for hand motor
rehabilitation should allow to train both brain and
peripheral activity in a top-down framework,24 in
which volition, that is brain control over muscular
activation, is reinforced together with correct mus-
cular activation patterns.25

To address this approach in designing hybrid
BCI for motor rehabilitation, we propose the com-
bination of corticomuscular coherence (CMC) and
intermuscular coherence (IMC) as novel features
to control hybrid BCIs. The CMC is a mea-
sure of synchronization between central and periph-
eral activation. Stroke- related CMC studies have
shown alterations in both the acute and chronic
phases26–29; furthermore, changes have been corre-
lated with functional recovery.30 The IMC provides
information about the common corticospinal drive
among different muscles and has been employed
to investigate intermuscular coordination during
upper limb motor tasks in healthy participants.31,32

In stroke subjects, IMC provides information on
the pathophysiological basis of altered muscular

patterns related e.g. to spasticity.10 It has been
shown that both CMC33 and IMC34 can be
modulated in a neurofeedback/biofeedback training
paradigm.

The combination of information encoded in CMC
and IMC would enable a hybrid BCI to reinforce voli-
tional control of those movement attempts that most
resemble physiological muscular activation patterns,
thereby lessening the probability to facilitate mal-
adaptive motor re-learning.

In this study, we first explored both CMC and
IMC in healthy participants performing simple hand
movements such as finger extension and grasp-
ing. These tasks are the most used in BCI-based
rehabilitative contexts.4,5,35 Although some stud-
ies in both healthy and stroke participants have
employed CMC as a BCI control feature,33,36 the
combined use of CMC-IMC for hybrid rehabilitative
BCIs has not been conceived yet.

It is well known that brain activity and con-
nectivity patterns are widely altered after stroke37

and such changes involve brain areas distant from
the lesion, both ipsi and contralateral to the lesion
itself. The muscular patterns are also altered after
stroke resulting in excess activation of muscles
other than the target one (motor overflow, coacti-
vation of agonists and antagonists and even bilat-
eral involvement38,39). Therefore, we estimated CMC
and IMC values from multiple EEG and EMG
electrodes rather than considering only few pre-
determined scalp electrodes and movement target
muscles.29,30,36 This multichannel approach returned
EEG-EMG and EMG-EMG synchronization pairs as
a comprehensive functional connectivity pattern for
each tested movement. The performances of CMC
and IMC as features to classify simple hand motor
tasks versus rest or different tasks against each other
were evaluated.

This signal processing framework will contribute
to the design of a novel hybrid BCI system for upper
limb motor rehabilitation in stroke subjects, pro-
viding the necessary knowledge on (i) how multi-
modal features should be defined for successful detec-
tion of correct (i.e. “close to normal”) movement to
be volitionally controlled via BCI, and eventually
implemented for the online processing, (ii) the inter-
subject and intra-subject variability to be taken into
account when approaching the variety of movement
impairment in stroke population.
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2. Materials and Methods

2.1. Participants and experimental
protocol

Twenty healthy volunteers (9 females/11 males, age
27.8 ± 2.4 years), all right-handed and with no
history of neuromuscular disorders, were enrolled in
the study. All participants were informed about the
experimental protocol and gave their informed writ-
ten consent to the study. The study was approved
by the ethics board of the IRCCS Fondazione Santa
Lucia, Rome, Italy (Prot. CE/PROG. 730).

During the experiment, participants were seated
in a comfortable chair with their forearms on the
armrests. Visual cues were presented on a screen fac-
ing them. Participants were instructed to perform
four movements: finger extension (Ext) and grasping
(Grasp), with either the right (R) and left (L) hand.
The experiment was administered in two sessions
including 4 blocks (one per movement: ExtR, ExtL,
GraspR, GraspL) of 30 trials each. We set an inter-
block break of 1min and an inter-session break of 10
min. The block sequence was randomized inter- and
intra-sessions. The total trial duration was 7 s with
an inter-trial interval of 3.5 s. Each trial began with a
cursor appearing at the bottom of the screen, moving
toward the top at constant velocity on a vertical
line, reaching the top of the screen at the end of the
trial. The screen was split into two vertically stacked
regions with different background color (black/green
for the bottom/top regions, respectively), so that the
moving cursor would cross the boundary between

Fig. 1. (Color online) Timeline of the experiment with
details on the screen shown to the participant. The
orange and the blue lines show the time intervals selected
for the analysis of rest ([0 2]s) and task ([4 6]s), respec-
tively.

the regions exactly 3 s after the trial’s start (Fig. 1).
The moving cursor provided the participants with
a visual cue of the timing of the tasks: participants
were instructed to rest in the first 3 s of the trial
(cursor in the black region) and to perform the task
along the remaining 4 s (cursor on the green region).
The task consisted of a gradual extension or flexion
of their right- or left-hand fingers, spanning across
the final 4 s of each trial.

This instruction was given to reduce the inter-
subject and intra-subject variability in executing the
motor tasks. Furthermore, such gradual/slow execu-
tion of finger extension/grasping was chosen as more
suitable keeping in mind the target stroke population
with different degrees of motor impairment.

2.2. EEG and EMG data collection

Electroencephalographic (EEG) and electromyo-
graphic (EMG) signals were simultaneously collected
with a sampling frequency of 2400Hz by means of the
g.HIamp amplifier (g.tec medical engineering GmbH
Austria). Scalp EEG potentials were collected from
thirty-one passive electrodes assembled on an elec-
trode cap placed above the sensorimotor area accord-
ing to an extension of the International 10–20 system
(FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1,
Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4,
CP6, P5, P3, P1, Pz, P2, P4, P6, PO3, POz, PO4).
Potentials were referenced to the linked earlobes and
grounded to the left mastoid. The contact impedance
of each electrode was kept below 5kΩ. The EMG data
were collected from 10 muscles of the upper limbs
(5 per side) namely: extensor digitorum (ED), flexor
digitorum superficialis (FD), triceps (TRI), biceps
brachii (BIC) and lateral deltoid (DELT). EMG sen-
sors were placed according to the guidelines reported
in Barbero et al.40 For each muscle, two surface
Ag/AgCl electrodes, 10mm diameter, were placed at
20 mm inter-electrode distance on the center of the
muscle belly, in the direction of the muscle fibers,
according to the SENIAM recommendations.41 We
minimized crosstalk between forearm muscles dur-
ing electrode placement and tested it by the execu-
tion of specific movements associated with the mus-
cles. The quality of EEG and EMG signals was visu-
ally checked prior to beginning the measurements
and continuously monitored afterwards. Three maxi-
mum voluntary contractions (MVCs) lasting 5 s were
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recorded for each muscle42,43 at the beginning of the
experiment.

2.3. Data analysis

Figure 2 shows the flow chart illustrating the
methodological steps of the analyses presented.

2.3.1. EEG and EMG data pre-processing

Vision Analyzer 1.05 software (Brain Products
GmbH, Gilching, Germany) was used to pre-process
the data. EEG and EMG signals were downsam-
pled to 1000 Hz after an appropriate filtering to
avoid aliasing. EEG and EMG signals were band-
pass filtered with a Butterworth zero-phase filter in
the range 3–100Hz and 3–500Hz, respectively. A
notch filter at 50Hz was applied to remove power-
line interference on both signals. Continuous traces
were segmented in 7 s epochs, comprising the 3 s of
rest and the 4 s of motor execution. Trials with EEG
signals exceeding in absolute value the amplitude of
100 μV and trials contaminated by muscular arti-
facts were rejected. All EEG and EMG trials were
visually inspected to identify artifacts. Following this
assessment, three participants were excluded from
further analysis due to artifacts in more than 50% of

Fig. 2. Flow chart illustrating the methodological steps
of the analyses.

trials. EEG signals were re-referenced according to
the common average reference. The following analy-
ses were performed using custom code developed in
Matlab R2019a (The MathWorks, Inc., Natick, Mas-
sachusetts, USA).

2.3.2. Assessment of muscle activation

Two time intervals of interest lasting 2 s were selected
for the CMC and IMC analysis according to the
muscle activation level: (i) a rest interval, from 0 s
to 2 s, and (ii) a task interval, from 4 s to 6 s with
respect to the trial start (see Fig. 1). To verify that
participants showed a stable and predictable muscle
activation in these windows, we computed the EMG
activation as follows. The root-mean-square (RMS)
of EMG signal on the target muscle for each trial
(flexor digitorum muscle for grasping movements,
extensor digitorum muscle for finger extension move-
ments) was computed on windows of 0.15 s length
sliding across the whole trial duration and on the
three MVC repetitions of the corresponding muscle.
The EMG activation was expressed as percent of the
ratio between the RMS in each short window of the
trial and the maximum RMS among the three cor-
responding MVC repetitions (%MVC). The activa-
tion level values, expressed as %MVC, were finally
averaged across all time points belonging either to
the rest or the task intervals, and across trials (EMG
activation level).

2.3.3. Coherence estimation

The magnitude squared coherence values between
EEG and EMG signals, i.e. CMC, or between
EMG signals, i.e. IMC, were computed in the range
8–100Hz.

Corticomuscular coherence

The CMC values were computed as

CMCxy(fj) = |Sxy(fj)|2 (1)

Sxy(fj) =
1
n

n∑

i=1

Xi(fj)Y ∗
i (fj), (2)

where Sxy(fj) represents the cross-power spectrum
between the EEG signal x and the EMG signal y

at a given frequency fj, estimated using the Welch
periodogram method with a Hann window. The
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length and overlap of the periodogram windows were
tailored to the specific aim of the subsequent anal-
ysis (see below). EMG signals were rectified before
entering in the CMC computation.44

We used the absolute square value of the cross-
spectrum (as in 1) as measure of EEG-EMG synchro-
nization, instead of the classical coherence formula-
tion.45 This approach prevents, in fact, the detection
of false positives in CMC when the muscle activation
level is around 0, as observed in the rest time inter-
val of our experiment.46 To be consistent with IMC
analysis and previous literature, we will refer to the
corticomuscular cross-spectrum by maintaining the
acronym CMC and the designation of coherence.

Intermuscular coherence

Intermuscular coherence was computed between
pairs of unrectified EMG signals recorded from
muscles of the same side (10 pairs of ipsilateral mus-
cles). The IMC values were computed as47

IMCxy(fj) =
|Sxy(fj)|2

|Sxx(fj)| · |Syy(fj)| , (3)

where Sxy(fj) represents the cross-power spectrum
between the EMG signals x and y and Sxx(fj) and
Syy(fj) are the auto-spectra of x and y, respectively.
Cross- and auto-spectra were computed according to
Welch periodogram with Hann window as described
above for the CMC formula.

Across-trials and single-trial estimations

CMC/IMC values were estimated for each partici-
pant, movement (ExtR, ExtL, GraspR, or GraspL),
and interval of interest (task, rest). Two different
procedures were followed for the CMC/IMC estima-
tion (across-trials or single-trial approaches), differ-
ing in how the periodogram windows were defined
and averaged, serving different purposes in the down-
stream analysis. In the across-trials approach (peri-
odogram window length of 1 s with 0% overlap) we
estimated a single CMC/IMC spectrum from all tri-
als in the dataset of a single participant for each
EEG-EMG/EMG-EMG pair, in order to have an
average CMC/IMC pattern for each participant to be
included in the grand average (see Statistical analy-
sis, section: CMC and IMC grand average patterns).

Before computing the average IMC pattern for each
participant, the significance of non-zero IMC values
were assessed47 by comparing them to the chance
level defined by the equation48

CL(α) = 1 − (1 − α)
1

n−1 , (4)

where n is the number of windows of the signals used
in the spectra estimation. The significance level was
set to α = 0.01 and corrected according to the False
Discovery Rate procedure, FDR.49 Values below
CL(α) were set to zero. In the single-trial approach
(periodogram window length of 0.125 s with 50%
overlap), we estimated a CMC/IMC spectrum for
each trial in the dataset, in order to have different
observations of CMC/IMC patterns for each partic-
ipant to be used as features of a classifier discrimi-
nating task versus rest or different movements among
each other (see paragraph Movement classification).

Characteristic frequencies

To select specific frequencies in which CMC and IMC
are modulated by a specific task, we divided the fre-
quency spectrum into four bands: alpha (8–12Hz),
beta (13–30Hz), gamma (31–60Hz) and high fre-
quencies (HF, 61–100Hz). In each band we identi-
fied a characteristic frequency f∗ as the frequency
in which CMCxy(fj) (or IMCxy(fj)) showed the
highest value, for all fj in the band. The charac-
teristic frequency was specific for each pair of sig-
nals x and y, thus for each movement type (Ext
and Grasp) and in each band we obtained a set
of 310 characteristic frequencies for the CMCxy (31
EEG × 5 EMG from muscles ipsilateral to the task
side × 2 sides) and a set of 20 characteristic fre-
quencies for the IMCxy (the number of pairs among
5 EMG signals from muscles ipsilateral to the task
side× 2 sides). As for “inactive” muscles, character-
istic frequencies that were determined when the xy

pair included a muscle ipsilateral to the movement
(e.g. right DELT during GraspR) were also used for
the same xy pair when the movement was contralat-
eral to the muscle (e.g. right DELT during GraspL).
Analyses of the rest interval borrowed the charac-
teristic frequencies of the matching task interval. In
subsequent analyses, only CMC/IMC values taken
at the characteristic frequencies are considered.

2150052-5
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2.3.4. Movement classification

A single-subject binary classification model was
trained to evaluate the performance of CMC and
IMC values to discriminate task versus rest intervals
for each movement. CMC and IMC values from single
trials were merged into a feature vector contain-
ing, therefore, CMC values from all possible EEG-
EMG pairs and IMC values from all possible EMG-
EMG pairs for each frequency band (CMC + IMC
approach). Only pairs including muscles ipsilateral
to the movement (e.g. the 5 muscles of the right
upper limb in ExtR or GraspR) were included in
the feature vector. Thus, the feature space was 660-
dimensional: 620 CMC features (31 EEG channels×5
EMG channels × 4 frequency bands) and 40 IMC
features (10 pairs among 5 EMG channels × 4 fre-
quency bands). For each movement and participant,
the dataset consisted of 120 observations (60 trials×2
intervals i.e. task and rest).

Feature scaling (z-score standardization) was
applied to the dataset to take into account differences
among types of features. A feature selection algo-
rithm based on the stepwise regression50 with an
empty initial model was applied to reduce the dimen-
sionality of the feature space before building the clas-
sification model. The results of this feature reduction
process also served to assess the subset of features
most relevant to classification (see below). A support
vector machine classifier with linear kernel36 was
used as classification model on the reduced features
space. A 10-iteration cross-validation was applied
to evaluate the classification performances. In each
iteration, 70% and 30% of the observations were used
as training and testing dataset, respectively.

Two CMC +IMC more models (Ext-Grasp clas-
sifiers) were considered to assess whether CMC and
IMC features can discriminate different movement
types. Only features from task intervals of two ipsi-
lateral movement types were included in each model
(one model per side), thus discriminating either
GraspR versus ExtR or GraspL versus ExtL classes.

In order to disentangle the role of each feature
type (CMC or IMC) in the movement discrimination,
the single-subject binary classification Task versus
Rest and Ext versus Grasp was repeated considering
CMC and IMC values as features separately (CMC
and IMC approaches).

Four different metrics were computed to evaluate
the performance of all classification models: (i) the

area under the curve (AUC) of the Receiver Operat-
ing Characteristic (ROC) curve,51 (ii) the accuracy,
(iii) the specificity and (iv) the sensitivity of the clas-
sifier.

The subset of features selected by the step-
wise regression was analyzed to identify the most
recurrent EEG-EMG and EMG-EMG pairs used
in the classification models. We counted the num-
ber of times a specific channel pair was selected
across participants and cross-validation iterations
irrespectively of the frequency band they corre-
sponded to.

2.3.5. Statistical analysis

CMC and IMC grand average patterns

Each movement was described by a coherence pat-
tern as result of a grand average analysis computed
on CMC/IMC values across participants.

For each movement type, frequency band and
channel pair we applied a paired sample t-test (across
participants, N = 17) using as independent vari-
able the interval (task versus rest) and as depen-
dent variable the CMC/IMC values computed in the
across-trials procedure. The significance level was set
to 0.05. FDR was used to control family-wise error
rate.

We will interpret significant differences as a
marker of relevance of a specific pair/band in the
execution of a specific movement.

Classification performance evaluation

To investigate the effect of the side and type of move-
ment on the performance of task-rest classifiers, we
performed a two-way repeated measures analyses of
variance (ANOVA) considering as within main fac-
tors the MOVEMENT (2 levels: Ext, Grasp) and the
SIDE (2 levels: right, left) and as dependent variable
the AUC value.

To evaluate whether the discriminability between
grasping and extension movements depends on the
side, the resulting AUC values were analyzed by
means of a paired t-test with significance threshold
equal to 0.05.

Performances obtained by the combination of
CMC and IMC features and CMC and IMC fea-
tures alone were statistically compared using a one-
way repeated measures ANOVA. We used AUC val-
ues as dependent variable and the features type
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(CMC, IMC, CMC +IMC) as within factor. The
same analysis was repeated for each movement and
side in the task versus rest classification and for each
side in the Ext versus Grasp classification.

The statistical significance level for all tests was
set to p < 0.05 and the Tukey post-hoc analysis was
performed to assess differences among pairs.

3. Results

3.1. Assessment of muscle activation

The EMG activation levels in the task interval
(mean±SE across participants, N = 17) were 9.5 ±
0.9 %MVC and 9.9 ± 1.0 %MVC for the extensor
digitorum muscle in ExtR and ExtL, respectively,
and 5.5 ± 0.9 %MVC and 6.3 ± 1.2 %MVC for the
flexor digitorum muscle in GraspR and GraspL,
respectively. The activation levels in the rest inter-
val (mean±SE across participants, N = 17) were
1.3± 0.1 %MVC and 1.3 ± 0.2 %MVC for the exten-
sor digitorum muscle in ExtR and ExtL, respec-
tively and 1.8 ± 0.3 %MVC and 2.5 ± 0.8 %MVC for
the flexor digitorum muscle in GraspR and GraspL,
respectively.

3.2. CMC and IMC grand average
patterns

Figures 3 and 4 show the grand average CMC (pan-
els (a) and (c)) and IMC (panels (b) and (d)) pat-
terns observed for the right and left finger extension
and grasping, respectively. As expected for a healthy
experimental group, no significant CMC and IMC
values were observed for the side contralateral to the
movement.

As for right and left Ext movements (Fig. 3), we
found the highest CMC values for connections involv-
ing mainly the target muscle (ED) and most of the
bilateral sensorimotor EEG electrodes, in alpha and
beta bands. At higher frequency bands (gamma and
HF), CMC values were lower and less muscle spe-
cific. We also found that the left Ext movement (non-
dominant hand; left hand, Fig. 3(c)) was character-
ized by EEG-EMG connections involving mainly the
target ED muscle and other proximal muscles (e.g.
deltoid), whereas the same movement executed with
the dominant hand (right hand, Fig. 3(a)) showed
connections also with the antagonist FD (across
all frequency bands). As for the IMC patterns,

we found significant patterns for both right and
left Ext movement only in beta, gamma and HF
bands. None or isolated EMG-EMG connections
were found in alpha band. The highest IMC values
were observed between target ED and FD for both
left and right Ext. For all movements, IMC patterns
in HF appeared to be less specific, i.e. involving all
muscles.

As for right and left Grasp movements (Fig. 4),
we found lower CMC values than in Ext. The EEG-
EMG connections mainly involved the target mus-
cle FD in alpha band, whereas ED and proximal
muscles were involved in higher frequency bands.
Similar to what observed for Ext, the involvement
of bilateral sensorimotor areas characterized these
CMC patterns. Like the Ext movement, the IMC
patterns in both left and right grasping movement
showed significant connections in beta, gamma and
HF bands, with more muscles progressively involved
at higher frequencies. A strong connection between
ED and FD across these frequency bands is con-
firmed for Grasp movement executed with both left
and right hand.

3.3. Movement Classification

Task-rest classification

The task-rest classification performances expressed
as AUC, Accuracy, Specificity and Sensitivity are
shown in Table 1. Overall, higher classification
performances were observed for Ext with respect
to Grasp, whereas performances are comparable
between left and right movements.

The ANOVA on task-rest classification AUC
revealed a significant effect of MOVEMENT
(F(1,16)=13.16, p < 0.01) and MOVEMENT×
SIDE (F(1,16)=6.06, p =0.03) factors. No sig-
nificant effect of the SIDE factor was observed
(F(1,16)=0.19, p = 0.67). The Tukey post-hoc
analysis revealed significant differences (p < 0.01)
between movements (Ext and Grasp) for both the
right and the left side, as already suggested from the
mean values in Table 1 (see Fig. A.1).

The analysis on selected features revealed that
about 60 features were selected by the stepwise
regression for each iteration and participant: 62 ±
3 ExtR, 64 ± 3 ExtL, 57 ± 3 GraspR, 52 ± 5
GraspL, presented as mean± standard error. Fig-
ure 5 illustrates the most recurrent features across
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Fig. 3. Grand average coherence patterns during finger extension. Corticomuscular (CMC) and Intermuscular (IMC)
patterns for the right finger extension movement (Ext) (panels (a) and (b) for CMC and IMC, respectively) and left Ext
(panels (c) and (d) for CMC and IMC, respectively) and for each frequency band: alpha (8–12 Hz), beta (13–30 Hz),
gamma (31–60 Hz) and high frequency, HF, band (61–100 Hz). The representation is seen from the above: scalp with nose
pointing toward the top of the page and arms in front of the participant. Only statistically significant CMC/IMC values
are represented (paired t-test between task and rest intervals, α = 0.05 FDR correction). The color bar codes for the
CMC/IMC average value (across participants, N = 17) in the task interval.
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Fig. 4. Grand average coherence patterns during grasping. Corticomuscular (CMC) and Intermuscular (IMC) patterns
for the right grasping movement (Grasp) (panels (a) and (b) for CMC and IMC, respectively) and left Grasp (panels (c)
and (d) for CMC and IMC, respectively) and for each frequency band: alpha (8–12 Hz), beta (13–30 Hz), gamma (31–60 Hz)
and high frequency, HF, band (61–100 Hz). The representation is seen from the above: scalp with nose pointing toward
the top of the page and arms in front of the participant. Only statistically significant CMC/IMC values are represented
(paired t-test between task and rest intervals, α = 0.05 FDR correction). The color bar codes for the CMC/IMC average
value (across participants, N = 17) in the task interval.
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Table 1. Classification performances (AUC, Accuracy, Specificity and
Sensitivity) of the CMC + IMC approach, reported as mean (standard
error) across 17 participants, of the task-rest classifier. ExtR: finger exten-
sion with the right hand; ExtL: finger extension with the left hand;
GraspR: grasping with the right hand; GraspL: grasping with the left
hand.

Task versus Rest

Movement AUC Accuracy Specificity Sensitivity

ExtR 0.95 (0.01) 0.90 (0.02) 0.95 (0.01) 0.85 (0.02)
ExtL 0.98 (0.01) 0.94 (0.01) 0.98 (0.01) 0.90 (0.01)
GraspR 0.89 (0.03) 0.82 (0.03) 0.86 (0.03) 0.79 (0.02)
GraspL 0.87 (0.02) 0.80 (0.02) 0.85 (0.03) 0.76 (0.02)

(a)

(b)

Fig. 5. Features selected in task versus rest classification. Most recurrent EEG-EMG pairs and EMG-EMG pairs selected
by the stepwise regression across participants (N = 17) and cross-validation iterations (IT= 10) in the classification of each
movement versus rest. The matrix shows for each EEG-EMG pair and EMG-EMG pair the number of times, expressed
as percentage, each pair was selected over all participants and all iterations of the cross-validation. EEG-EMG pairs are
identified by boxes from the intersection of EEG channels on the x-axis and EMG channels on the y-axis. EMG-EMG
pairs are identified by boxes from the intersection of EMG channels on the x-axis and EMG channels on the y-axis. Panels
(a) ExtR: finger extension with right hand, (b) ExtL: finger extension with left hand, (c) GraspR: grasping with right
hand, (d) GraspL: grasping with left hand.
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(c)

(d)

Fig. 5. (Continued)

participants (N = 17) and cross-validation iterations
(IT =10). For Ext movements, the IMC feature
between the extensor digitorum muscle and the
flexor digitorum muscle resulted the most recur-
rent (∼70%). As for the type of movements, CMC
features involving the extensor digitorum muscle
were recurrent in Ext movement. The CMC fea-
tures involving distal (extensor and flexor digitorum
muscles) as well as proximal muscles were selected
in the Grasp movement, thus indicating a less
“muscle-specific” selection for Grasp with respect to
Ext movement. The CMC features mostly involved

the central and centro-parietal EEG channels strips
bilaterally, including the midline electrodes. No clear
lateralization of CMC patterns (i.e. involvement of
EEG electrode position contralateral to the move-
ment) was found, except for ExtL (CP2 with the
extensor digitorum muscle).

The same classification approach was applied
separately for CMC and IMC features. The one-way
repeated measures ANOVA on AUC, applied to test
differences among types of features (CMC + IMC,
CMC, IMC), revealed significant lower performance
for IMC features in each of the four movements,

Table 2. Results of the one-way repeated measure ANOVA on AUC considering as
independent variables the type of features (CMC + IMC, CMC and IMC) for each
movement. The last three columns show the results of the Tuckey post-hoc analysis,
— no significant differences, ** significance differences (p < 0.01).

Movement F(p) CMC + IMC CMC + IMC CMC versus
versus CMC versus IMC IMC

ExtR (df = 2, 32) 26.86 (<0.01) — ** **
ExtL (df = 2, 32) 22.37 (<0.01) — ** **
GraspR (df = 2, 32) 43.59 (<0.01) — ** **
GraspL (df = 2, 32) 57.29 (<0.01) — ** **
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as shown in Table 2. We did not observe signifi-
cant differences between CMC and CMC +IMC fea-
tures. The following classification performances for
the three types of features were achieved: 0.92 (0.01)
for CMC + IMC, 0.92 (0.01) for CMC and 0.74 (0.02)
for IMC, presented as mean AUC (standard error)
across movements.

Ext-Grasp classification

The ability of CMC and IMC features to discrimi-
nate between Ext and Grasp movements was tested
with the same approach used to classify each move-
ment versus rest. The Ext-Grasp classification per-
formances expressed as AUC, Accuracy, Specificity
and Sensitivity are shown in Table 3.

Table 3. Classification performances (AUC, Accuracy, Specificity and
Sensitivity), reported as mean (standard error) across 17 participants,
Ext-Grasp classifier.

Ext versus Grasp

Side AUC Accuracy Specificity Sensitivity

Right hand 0.98 (<0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01)
Left hand 0.99 (<0.01) 0.95 (0.01) 0.96 (0.01) 0.95 (0.01)

(a)

(b)

Fig. 6. Features selected in Ext versus Grasp classification. Most recurrent EEG-EMG pairs and EMG-EMG pairs
selected by the stepwise regression across participants (N = 17) and cross-validation iterations (IT=10) in the classi-
fication of finger extension versus grasping for each side. The matrix shows for each EEG-EMG pair and EMG-EMG
pair the number of times, expressed as percentage, each pair was selected over all participants and all iterations of the
cross-validation. EEG-EMG pairs are identified by boxes from the intersection of EEG channels on the x-axis and EMG
channels on the y-axis. EMG-EMG pairs are identified by boxes from the intersection of EMG channels on the x-axis and
EMG channels on the y-axis. Panels: (a) Right hand movements, (b) Left hand movements.
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Table 4. Results of the one-way repeated measure ANOVA on AUC considering
as independent variables the type of features (CMC + IMC, CMC and IMC) for
each side. The last three columns show the results of the Tuckey post-hoc analysis,
— no significant differences, ** significance differences (p < 0.01).

Side F(p) CMC + IMC CMC +IMC CMC versus
versus CMC versus IMC IMC

Right (df = 2, 32) 16.91 (<0.01) — ** **
Left (df = 2, 32) 22.04 (< 0.01) — ** **

The paired t-test on Grasp-Ext classification
AUC values did not reveal any significant effect of
the SIDE (t = 0.77, p = 0.45). The analysis on
selected features revealed that about 60 features were
selected by the stepwise regression for each itera-
tion and participant: 64 ± 3 ExtR-GraspR, 55 ± 5
ExtL-GraspL, presented as mean± standard error.
Figure 6 illustrates the most recurrent features across
participants (N = 17) and cross-validation itera-
tions (IT = 10). The CMC features mostly involved
the central and centro-parietal EEG channels strips
bilaterally, including the midline electrodes. No clear
lateralization of CMC patterns (i.e. involvement of
EEG electrode position contralateral to the move-
ment) was found.

The same classification approach was applied
separately for CMC and IMC features. The one-way
repeated measures ANOVA on AUC, applied to test
differences among types of features (CMC + IMC,
CMC, IMC), revealed significant lower performance
for IMC features in the task Ext versus Grasp exe-
cuted with the right and the left side, as shown in
Table 4.

We did not observe significant differences
between CMC and CMC + IMC features. The fol-
lowing classification performances for the three
types of features were achieved: 0.98 (<0.01) for
CMC +IMC, 0.98 (<0.01) for CMC and 0.85 (0.02)
for IMC, presented as mean AUC (standard error)
across sides.

4. Discussion

In this study, we identified corticomuscular and
intermuscular synchronization patterns (CMC and
IMC) derived from EEG/EMG multichannel record-
ing performed during the execution of simple hand
movements (Ext and Grasp) in a sample of healthy
participants. The finger extension and grasping

movements could be distinguished by using the com-
bination of CMC and IMC with better (offline)
classification performances for the Ext with respect
to Grasp movement. Furthermore, such combined
CMC +IMC features allowed for successful classifi-
cation of Ext versus Grasp. All in all, these find-
ings represent a first step in designing novel hybrid
BCI systems which better cope with central and
peripheral drive of functional motor recovery after
stroke.

CMC patterns characterization

The CMC grand average patterns showed significant
connections between the whole sensorimotor areas
and the muscles of the limb involved in the move-
ment in the entire frequency range from alpha to
gamma bands. This is in line with previous studies
identifying beta as the typical band for CMC and
alpha and gamma bands as reflecting feedback and
feed-forward EEG-EMG interaction, respectively.52

Focusing on the distribution of those connec-
tions on the scalp, we noticed that the sensorimo-
tor areas bilaterally concurred to the pattern regard-
less of the side and type of movement performed.
Indeed, a prevalent activation of the contralateral
sensorimotor cortex during upper limb movements
would be expected according to common anatomical
and physiological knowledge.53 This lateralized cor-
tical activation has been widely described in several
EEG54–56 and CMC studies.26,28,57 Nevertheless, the
active contribution of the ipsilateral motor cortex
was described to have a facilitatory role in the con-
trol of the moving limb.58

It is well-known that movement preparation
and execution is associated to an event-related
desynchronization (ERD) which is an oscillatory
phenomenon occurring within motor-related EEG
frequency bands.59 While ERD is highly lateral-
ized (i.e. occurs mainly on the sensorimotor areas
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contralateral to the movement) at movement onset,
it has been described to evolve bilaterally on the
scalp as movement progresses.60,61 In our paradigm,
participants were explicitly asked to perform Ext and
Grasp movement slowly (for 4 s) and the time win-
dow for coherence analysis was defined as to start one
second after the actual movement onset (see Fig. 1).
It could be hypothesized that the bilateral involve-
ment of the scalp sensorimotor areas in CMC pat-
terns observed in our experimental condition would
reflect the progression in time of the execution of
the movements. It remains to be elucidated whether
such bilateral scalp involvement will be confirmed
in stroke subjects30 and how this will impact on
appropriate CMC features selection in a rehabilita-
tive hybrid BCI setting.

Regarding the muscle-specificity of the observed
CMC patterns, we found a central role of the agonist
muscle (ED) during Ext movement, especially with
the non-dominant hand. This observation was con-
sistent with the task versus rest classification finding
wherein the ED connections were the most recur-
rently selected among EEG-EMG pairs (see Fig. 5).
The observed difference between dominant and non-
dominant hand patterns did not affect task ver-
sus rest classification performances, which achieved
around 90% for both ExtR and ExtL.

Grand average CMC patterns during Grasp
movement showed lower CMC values than those
obtained for Ext. This finding could reflect a certain
degree of the inter-individual variability in perform-
ing the grasping movement that could be attributed
to the wide spectrum of functional and behavioral
correlates of the grasping movement.62 In a previous
study on healthy participants, we found that motor
imagery of grasping movement was characterized
by behavioral differences among individuals which
significantly impacted on EEG sensorimotor reac-
tivity.63 The CMC patterns of Grasp showed less
muscle-specificity (with respect to Ext). This find-
ing is consistent with that observed for task versus
rest classification where no muscle among the EEG-
EMG pairs appeared more frequently selected than
others (see Fig. 5).

IMC patterns characterization

As for IMC pattern representation, we found
significant differences across frequency bands. Specif-
ically, IMC patterns appeared to be more movement-

specific in beta and gamma bands whereas
unconnected and fully connected IMC patterns were
observed in the alpha and HF band, respectively.
Overall, these findings are in line with previous evi-
dence32 showing that IMC in alpha encodes for pos-
tural and subcortical control whose relevance is likely
marginal in our paradigm (simple hand movements
executed by healthy participants), while beta and
gamma bands reflect cortical control on movement
execution.31,47,64,65

Among EMG-EMG pairs, the con-
nection between ED and FD muscles (i.e. the ago-
nist/antagonist and antagonist/agonist for the Ext
and Grasp movements, respectively), resulted to be
the strongest in our IMC patterns, confirming find-
ings of Kamper and colleagues.47 The occurrence
of spasticity and pathological co-contraction after
stroke results in weakening of the agonist–antagonist
coupling.47 For this reason, the ED-FD synchroniza-
tion will likely be a crucial feature for the implemen-
tation of our hybrid BCI paradigm for stroke sub-
jects’ rehabilitation. Nevertheless, the analysis of the
features selected by the offline classification model
to recognize each movement showed that connec-
tions involving the muscles other than ED and FD
were also recurrent among healthy participants (e.g.
biceps brachii in Grasp). This finding supports our
methodological approach of acquiring information
from multiple muscles (i.e. not limited to the forearm
muscles) as necessary for the accurate classification
of different hand movements. This will be especially
true in the case of stroke subjects, where move-
ment is often characterized by abnormal muscular
activations (motor overflow, agonist–antagonist co-
contractions) whose occurrence we should be capable
of monitoring and discouraging.

Movement classification

Classification results revealed high performance of
CMC/IMC features in discriminating each task
against rest. Lower classification performances were,
however, observed for the Grasp movement with
respect to Ext. This finding is consistent with higher
intra-individual variability for the Grasp already
highlighted by the observation of CMC and IMC pat-
terns. Again, a possible explanation for this could
be found in the complexity of behavioral and func-
tional implications of the grasping movement with
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respect to finger extension.62,63 Overall, our classifi-
cation performances are higher than those reported
in similar studies,66 and this is especially true for
the Ext movement. Of note, finger extension, and
more generally extension movements are commonly
employed in the rehabilitation of stroke subjects,
especially when effectors such as robots or func-
tional electrical stimulation are employed,5,67,68 to
contrast the common pathological flexion synergy of
the upper limb.69

To further evaluate the movement specificity of
CMC and IMC features we tested their ability to
classify Ext versus Grasp in the dominant and non-
dominant upper limb. Performances were again very
high for both sides. The ability to non-invasively
decode different types of movement is potentially
interesting to achieve the so-called “natural control”
of neuroprostheses,70 which is an emerging issue in
the field of BCIs for clinical applications beyond
stroke (e.g. control of hand neuroprostheses after
spinal cord injury71).

In all conditions (task versus rest and Ext versus
Grasp), our hybrid approach did not outperform the
classification results obtained by CMC alone, while
both CMC and hybrid were significantly better than
IMC. However, we would like to stress the fact that
we included IMC in our paradigm with the aim to
monitor the quality of movement rather than that of
improving classification performances. Indeed, in our
application for post-stroke rehabilitation, we want to
reinforce only those movement attempts resembling
physiological movement patterns.

Conclusion, limitations and future steps

Our findings on CMC and IMC obtained from
healthy participants support the validity of the ele-
ments of novelty proposed in our paradigm. First,
the conception of a hybrid BCI which includes EEG
and EMG derived features encoding for physiologi-
cal movement patterns (beyond the mere pursue of
higher classification rates, yet showing satisfying per-
formances). Second, the use of multiple EEG elec-
trodes and EMG from several muscles bilaterally
to compute CMC and IMC, in compliance with
the literature showing that post-stroke changes may
involve brain areas distant from the lesion and
muscles other than the target ones. The characteri-
zation of such CMC/IMC patterns in a population

of stroke subjects is lacking in this study and it
requires the implementation of future investigations
aiming at (i) defining how interactions between cen-
tral and peripheral nervous systems are altered after
stroke and (ii) providing new potential neurophys-
iological markers for post-stroke motor impairment
and recovery along the rehabilitative process.

Furthermore, an additional limitation of the
hybrid BCI system is that it requires recordable
EMG from upper limb muscles, hence individuals
with complete upper limb paralysis (i.e. plegia) may
not be candidates for this BCI approach. Future
studies on patients are needed to identify those
that would benefit most of the proposed approached
based on the amount and characteristics of their
residual upper limb movements. Altogether, we are
confident on the overall applicability of our approach
to stroke patients basing on the recent findings,
showing possibility to detect EMG activity even in
severely impaired patients20,72 and applicability of
the CMC feature in a BCI context.36

Despite the promising findings reported in this
study, further investigations are needed to evaluate
the feasibility of real-time extraction of CMC and
IMC-based features suitable to control a hybrid
BCI system. The proposed multi-channel approach
including signals from the whole sensorimotor areas
and both upper limb muscles has been useful to
comprehensively describe each simple movement by
means of a CMC/IMC pattern highly discriminable
against rest. However, this approach could hardly be
translated as it is in an online BCI paradigm. To cope
with this computational issue, we intend to reduce
the complexity of such multi-channel analysis by
selecting the best individual hybrid features for each
task (e.g. few EEG-EMG/EMG-EMG channels pairs
in specific frequency bands) to eventually be imple-
mented online for a real-time control of a hybrid BCI.
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Appendix A

Fig. A.1. Distribution of task-rest classification perfor-
mance. Boxplot of the distributions (N = 17 partici-
pants) of the Area Under the Receiver Operating Char-
acteristic Curve (AUC) values for each movement (Ext,
finger extension, and Grasp, grasping) executed with
either hand (right and left). A single-subject 10-iteration
cross-validation with a support vector machine classifi-
cation model was implemented to classify each move-
ment versus rest. Before training the classifier, step-
wise regression-based feature selection was applied to
reduce the dimension of the feature domain. The boxplot
offers a complementary view of the results presented in
the paragraph task-rest classification of Movement Clas-
sification. Markers (**) indicate significant differences
(p < 0.01) between groups resulting from the Tukey post-
hoc test. Significant differences were observed between
movements, with higher performance in Ext movement
classification. The intra-group variability, expressed as
interquartile range of each AUC distribution, is higher
for the grasping (0.14 and 0.11 for left and right grasp-
ing, respectively) than for extension (0.02 and 0.07 for
left and right finger extension, respectively). Differences
between sides were not significant.
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Rosenstiel and A. Gharabaghi, Hybrid neuroprosthe-
sis for the upper limb: Combining brain-controlled
neuromuscular stimulation with a multi-joint arm
exoskeleton, Front. Neurosci. 10 (2016) 367.
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