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Nomenclature

A = action space

a = velocity error reward coefficient
AT (Xg, ) = advantage function

Bo = policy learning rate

Bw = critic learning rate

o = bound on policy update

n = positive reward constant

g = gravity vector [m/s?]

y = discount factor

1 = image observation

Isp = specific impulse [s]

J(0) = objective function

K = position error coefficient
L(6) = proximal policy optimization objective function
L(w) = critic cost function

m = spacecraft mass [kg]

M = markov decision process
O(x) = observation function

Ok = observation at step k

OVF = observation - value function
Ory = observation - value function
o = policy

state transition distribution

P(xper|xx, ux)

pr(6) = policy probability ratio
O™ (X, ug) = state-action value function
R(xg, ug) = reward function

Tk = reward signal at step k

r = position vector [m]

ro = initial position [m]

ry = final position [m]

ry = target position [m]
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reference position above target for reward
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position x component [m]
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thrust [N]

trajectory

reward time constant 1 [s]

reward time constant 2 [s]

time-to-go

thrust x component [N]

thrust y component [N]

thrust z component [N]

minimum thrust [N]
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policy parameters

control at step k
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I. Introduction

LANETARY autonomous landing is becoming increasingly important for solar system exploration. With the Artemis
Pprogram renewing the interest in the Moon[1]] and the ongoing Mars exploration program[2]], a new level of
autonomy will be needed for the next generation of spacecraft and landers. Such autonomous systems must be able
to integrate critical Guidance, Navigation and Control (GNC) functions, such as algorithms for precision or pinpoint
landing (< 10 meters accuracy), with hazard avoidance approaches to enable safe and accurate landing on the desired
location on the planetary surface. More specifically, the GNC system must be able to 1) process the data in real-time to
navigate during the powered descent toward the surface and 2) execute maneuvers conducive to pinpoint-landing while
enabling real-time decision making that ensures safe landing on the selected planetary location. In standard spacecraft
architectures, the overall GNC functions are decoupled and designed separately. The navigation subsystem determines
position and velocity of the lander from sensors information, whereas the guidance subsystem determines/computes the
appropriate level of thrust and its direction as function of the current state (i.e. lander position and velocity). Finally the
control subsystem is responsible for implementing the desired guidance command in a closed-loop fashion.

Guidance algorithms are generally composed of two major segments, i.e. a) a targeting algorithm and b) a
trajectory-following, real-time guidance algorithm. The targeting algorithm computes the reference trajectory driving
the lander to the lunar surface. The latter is generally computed to ensure minimum fuel while satisfying appropriate
thrust and path constraints. Conversely, the real-time guidance algorithm computes the acceleration command that
must be implemented by the lander thrusters to track the reference trajectory for a precise and soft landing. The
original Apollo real-time targeting and guidance algorithm [3]], was based on an iterative method that generated a
nominal trajectory consisting in a quartic polynomial. Importantly, the feedback Apollo real-time guidance was derived
by approximating the nominal trajectory by a 4th-order McLaurin expansion of the reference trajectory [3, 4]. The
methodologies used today are in general based on variations of the Apollo-era off-line procedures. A reference trajectory
is usually computed on the ground (man in the loop) and successively given as input to the lander’s guidance and control
algorithm. Normally, the off-line reference trajectory is computed by solving an Optimal Control Problem (OCP). This
can be achieved through two different approaches: indirect and direct methods. In indirect methods, the calculus of
variations is exploited together with the Pontryagin Minimum Principle to retrieve the optimal control and the first order
necessary conditions from the Hamiltonian of the problem. This procedure leads to writing a Two Point Boundary
Value Problem (TPBVP), which is made up of a set of differential equations in terms of states and costates. Commonly,
TPBVPs are solved via shooting methods [5]. However, although this approach provides very accurate optimal solutions,
it suffers from the high sensitivity of the initial guesses on the optimal solution. In order to overcome this limitation,
novel and accurate approaches have been proposed, including Theory of Functional Connections (TFC) [6] and the
Universal Powered Guidance (UPG) [7]]. The first has been used to solve some space guidance problems, such as energy

[8] and fuel [9] optimal landing trajectories on Moon and Mars. The crucial results of these papers have been the



machine-level accuracy of the solution and the exceptionally low computational time, which makes this approach very
suitable for a future on-board implementation. The second, develops a generalized optimal powered guidance approach
to obtain the optimal guided trajectory for a powered descent on large planetary bodies (e.g. precision landing systems
to deliver large spacecraft with humans on the surface of Mars [[7])

On the other hand, direct methods relies on the discretization of the original continuous OCP into a finite constrained
optimization problem. This leads to the transcription of continuous problem into a Non-linear Programming (NLP)
Problem [10], which is usually solved via traditional algorithms, such as the interior point [11], the trust region [[12]
or the Nelder-Mead [13]] algorithms. These approaches are very computationally demanding and they do not provide
any guarantees about the convergence to the optimal solution if the problem is non-convex. However, the so-called
convexification technique [14] has been recently proposed to transform non-convex problems into convex problems,
whose convergence to the optimal solution is guaranteed in a finite number of steps, and therefore they can be solved
more easily and faster. Many works have employed such a method to obtain fast and accurate optimal powered descent
trajectories in large and small planetary bodies [[15H18]].

As introduced above, the guidance algorithms, regardless of the architecture, must be integrated with the navigation
system, which is responsible for determining lander position and velocity. The most common approach to Relative
Terrain Navigation (RTN) [19] is to define algorithms that can process optical images to reconstruct the spacecraft
state in real-time. The relative position and velocity are estimated on-board by extracting and correlating/registering
landmarks on the planetary bodies [20] and tracking them across frames. An example of such technique is called
Natural Feature Tracking (NFT) which was used on the ongoing mission OSIRIS-REx [21]]. Recently, studies have
demonstrated that a spacecraft can navigate by tracking unknown lunar surface features without ever solving for the 3-D
location of those surface features [22].

The aforementioned methods summarize the state-of-the-art in trajectory optimization and navigation for powered
descent and landing. However, they have a major drawback in that they are not robust against un-modeled dynamics
as well as against uncertainties on lander state estimation. Consequently, the ability of the system to quickly respond
and adapt, is limited. Moreover, both direct and indirect methods are designed to compute open-loop trajectories,
which means that a navigation algorithm and a control modules are required to effectively track those trajectories. New
methods have been proposed to fastly compute optimal trajectories on-board to overcome these limitations, potentially
enabling new levels of autonomy and precision. This also complies with NASA’s Vision for Space Exploration program
[23]], which imposes a new set of requirements to automatize the tasks requested for the planetary landing to minimize
the crew members’ routine tasks. Within this framework, adaptive guidance is exploited by tuning its parameters
depending on the specific environment. One interesting example of this approach is the Chinese lander Chang’e 3 that
successfully landed on the Moon using a combination of optical and radar sensors [24]. The lander in this case selects

the landing site dynamically to meet the hazardous requirements in complete autonomy. The law adopted between



~ 2.4km and ~ 100m is a modified polynomial guidance, which allows fast trajectory computation.

Over the past few years, there has been a growing interest in Machine Learning (ML) as applied to space GN&C. In
the past decade, the interest in ML has increased, also due to its application in many fields, including computer vision,
natural language processing, robotics, to mention a few. Many of the recent ML approaches come from the past century
but the relatively low computational power then available has limited its fields of application. With the new millennium
and a rapid increase in computational power availability, both with massive parallelization of CPUs and GPUs, ML and
neural networks specifically, have seen a major developments. Today, ML is ubiquitous; it is used both for data analysis
and for robotic motion tasks. In the last few years, ML has gained recognition as a method to solve adaptive spacecraft
guidance problems, but it is still underutilized. There have been some early examples of deep neural networks being
trained using supervised learning to compute landing trajectories on Mars [25[], on the Moon [26} 27], on asteroids
[28], and for interplanetary trajectories together with evolutionary techniques in [29]. Such approaches assume one
has access to the complete knowledge of the spacecraft state. To overcome this limitation, deep convolutional neural
networks have been used in [30] in a supervised fashion to map the thrust from a sequence of images for 1D and 2D
lunar landing trajectories, effectively removing the need to know the spacecraft state. The dataset was created using fuel
optimal trajectories generated via GPOPS [31]].

Although these examples prove the viability of machine learning for trajectory optimization, in the recent years
it has become apparent that classical neural networks trained via supervised learning are not sufficient to achieve
high level of accuracy in uncertain environments with complex constraints. Simultaneously, reinforcement learning
(RL) [32], the third branch of machine learning, has started to gain recognition. Differently from standard supervised
learning for trajectory optimization, RL optimizes a parametrized policy by direct interaction with a simulated or real
environment without a teacher (i.e. training set). Recently, the field of RL has experienced a dramatic growth with
multiple breakthrough discoveries in the last decade. RL agents have been able to solve complex tasks [33]], even when
the input space is high dimensional (i.e. image input) [34]. In the last few years, a multitude of applications to spacecraft
guidance have been developed, ranging from planetary landing [35H37]], to path planning for asteroid hopping rovers
[38]], rendezvous [39H41]], low thrust trajectory design [42H45]] and formation flying [46]. RL is capable of creating
guidance laws in complex environments in all these applications, even with non-convex constraints scenarios [47, 48]
with the added advantage of having a low computational cost at the test phase. This is in general achieved using state of
the art RL algorithms, namely Policy Gradient (PG), Deep Deterministic Policy Gradient (DDPG) [49] and Proximal
Policy Optimization (PPO) [50].

What most of these examples do not address, however, is the robustness to uncertain spacecraft model and
environment. While it is true that neural networks learn well within the training distributions, they generally fail when
performing extrapolation. This may pose a risk of unstable behavior in the guidance law when visiting states that are

outside the training envelope. Another major shortcoming when it comes to classical RL is sample inefficiency: many



samples are needed to learn trivial tasks, and the problem gets worse as the number of parameters and input variables
increases. Reinforcement Meta-Learning (RML) was introduced [51]] to address these shortcomings. Meta-Learning or
learning to learn and its RML version, trains the policy on a distribution of environments or Markov Decision Processes
(MDP) making the system adaptable to quickly learn in new situations. Consequently, the system tends to converge
faster to quasi-optimal solutions. RML can play a pivotal role in space exploration. There have been a few recent
publications that proved the viability of RML in space guidance applications and its superiority with respect to classical
RL when uncertain environments and actuator failures are considered. For example, Gaudet et al. [52,/53] show that a
guidance law based on RML achieve good performances in a six degrees-of-freedom mars landing scenario. Moreover,
in [52] RML is used to create a guidance law for hovering on irregularly shaped asteroids using LIDAR sensor data.
RML achieves this by training a recurrent neural network on a distribution of different environments whose parameters
are randomly sampled. The resulting agent can adapt more easily to uncertain environments, leading to a much more
robust guidance architecture than classical RL [54].

In this paper, we build upon those foundations by introducing optical observations. Here the goal is to employ a
RML approach to devise a deep network that maps, in a closed-loop fashion, sequence of images and radar altimetry
data directly into trust. The latter poses a completely new challenge: since the network input is comprised by sequences
of 2D images as well as ranging observations, the closed-loop NN policy become much larger in the parameter spaces.
Importantly, a novel integrated environment for photo-realistic rendering which interfaces in real-time with the learning
algorithm, is developed for fast training and validation. Specifically, we created a simulator that integrates dynamics
and sensor data acquisition seamlessly in a python environment, that generates accurate images using lunar digital
terrain models (DTM) and a physically-based rendering engine. We leverage the python-based Blende platform with
dynamical models to create the powered descent and landing simulation environment accounting for both sensing and
dynamics. The proposed RML policy integrates guidance and navigation in a single compact system that is capable
of mapping sequences of observations to thrust command. This is carried out in an adaptive way within the defined
distribution boundaries. Specifically, some parameters of the environment, such as the gravity acceleration and the initial
spacecraft mass, are randomly sampled within some distributions, which allows the meta-learner to learn over a wide
distribution of instances of a stochastic environment. Moreover, random actuator failures are introduced during training,
which makes the algorithm robust to such events as well. This approach allows to obtain a complete integration of
guidance and navigation in a image-based closed-loop system that is robust to perturbations and un-modeled dynamics.

The rest of the paper is structured as follows. In Section [[| the machine learning frameworks, specifically RL and
RML, and how they are implemented in our method are described, in Section [[II] the details about how the guidance law
based on RML is implemented are presented, in Section[[V|the performances of the proposed algorithm for different

input configurations are discussed. Finally, in Section[V]some final remarks are given as a conclusion statement.

*https://www.blender.org/



I1. Machine Learning Frameworks
In this section, Reinforcement Learning and its extension Reinforcement Meta-Learning formulations are introduced

as foundations for the learning procedure based on Proximal Policy Optimization (PPO) [50] employed in this work.

A. Reinforcement Learning

In Reinforcement Learning (RL), repeated interaction with an environment is used by an agent to learn how to
complete a single or a series of tasks. In general, this environment is described as a Markov Decision Process (MDP) in
which the state at a particular time depends only on the previous state. The MDP can be considered a representation of the
environment with a continuous state and action space S, A, a state transition distribution P(xy41 |xk, uy) that describes
the probability of transitioning to the next state given a certain action and a reward function rp = R(xy, uy), where
x € S,u € A and r is a scalar reward signal at step k. When the state cannot be observed directly, or the information
is affected by noise, the MDP becomes a partially observable MDP (POMDP). In a POMDP, the state x becomes a
hidden state, and the observations o are provided through an observation function O (x). This is what happens in image
or LIDAR based navigation where the observation embeds the information about the state without it being explicitly
available to the agent. The agent operates in the environment defined by the POMDP using a parametrized policy 7y,
generating an action u based on the observation o, receiving a reward 7, and the following observation og.. It should
be noted that in this case, it is not true that each observation retains all the possible information about the system. The
complete history of the sequence of observations is needed to predict the following states. The reinforcement learning
algorithm task is to optimize the policy 7y such that it maximizes the sum of the rewards collected along an episode.

All path and control constraints can be included in the reward function and will be accounted for during training.

B. Reinforcement Meta-Learning

RL algorithms have demonstrated to perform well in time-dependent problems. However, because of the sample
inefficiency of RL algorithms, which usually requires a vast number of trials to learn new tasks, it can be challenging to
face all the uncertainties that can arise in realistic environments. On the other hand, the Reinforcement Meta-Learning
(RML) algorithm is based on how human beings learn. Humans learn new tasks exploiting their previous knowledge:
this concept can be summarized as "learning how to learn" through experience. Hence, to deal with the multitude of
uncertainties related to the landing problem, RML is employed in this work. The main advantage that RML has over
RL is that it is possible to learn over a distribution of tasks, which is more computationally efficient than learning a
sequence of specific tasks from scratch.

The implementation of such concept is not straightforward. In general RL algorthms work by mapping an observation

state to an action using a neural network describing a policy. Learning is then achieved using roll-outs of such policy as
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it interacts with a specific environment: the optimal policy is then the one that maximizes the cumulative reward:
6" = argmaxyE () [R(7)] = fre (M) (1)

where 6* are the optimal parameters of the parametrized policy 7y, R(7) is the cumulative reward over a trajectory T
and M is the MDP or POMDP. In the case of RML, the rollouts come from a distribution of tasks, which in this case
are different environment conditions. This in theory allows the agent to learn how to adapt to an uncertain environment.

Using the same formalization as for classical RL:

n
9" = argmax g Z Eﬂ¢i (1) [R(T)] (2)
i=1

where ¢; = fy(M;) is a function of the i-th MDP corresponding to the i-th task.

There are two methods to implement RML. The first is based on the traditional policy gradient algorithm: it works
by training the model on a distribution of tasks obtaining a general model, and fine-tuning its parameters in the test-phase
using a small number of rollouts, in what is termed Model Agnostic Meta Learning (MAML) [51]]. The second approach,
adopted in this paper, is based on Recurrent Neural Networks (RNN), inspired by the work of Wang et al. [55]. We
synthesize the policy as a RNN, a particular NN capable of mapping temporal relationships in a sequence of inputs to
the output. This is done by the inner nodes (gates) that retain information about the input data’s temporal variation: this
property makes RNN suitable to be used within the RML framework. Figure[T|shows a representation of an RNN. In
this paper, the adopted RNN is a Gated Recurrent Unit (GRU) [56].

Indeed, for this algorithm, the policy is represented by a RNN, where its hidden states are updated through a specific
task depending on the time-step, while the weights are learned across tasks using normal gradient descent. This approach
allows the RNN to retain the knowledge about the tasks it has faced. Once trained, the net can eventually recognize a

task by the temporal evolution of the input states and act accordingly.



The agent interacts with the environment using the action, which modifies the environment itself. Then, new
observations and the reward signal are passed to the agent, and the cycles repeat until the task is completed or the
constraints are violated. Initially, the agent’s actions are random, which allows the agent to explore the state and action
spaces and gather information about the environment and which action is to be preferred, given a particular observation.
The information about the goodness of an action is embedded in the reward signal. As the learning progresses, the
exploration is reduced in favor of the exploitation of the knowledge of the environment. For most applications (landing

guidance is one of them), the policy is deployed as a deterministic law in which exploration is switched off.

C. Learning Procedure

In this section, the learning process is described. Note that this procedure is common for both RL and MRL. Let x;
be the observation, coming from either MDP or POMDP, provided by the environment to the agent at time-step k. Each
episode results in a sequence of observations which we will call trajectory. A step in each trajectory at time 74 can be
represented as (og, Uy, rr) where oy and ry are the observation and the reward returned by the environment and uy is
the action taken. The reward can be a function of both the observation and the action. The reward is then typically
discounted the further it is in the future. This is done to put a finite horizon to the task and facilitate temporal credit

assignment. Then the sum of discounted rewards for a trajectory can be defined as the return:

T
(=) 7'n 3)

i=0
where T = [Xg, Uy, . . ., X7, ur | denotes the trajectory, y € [0, 1) is the discount factor and r; is the reward at step i. The

objective function that RL methods seek to optimize is given by:

J(8) =By [r(1)] = /T F(T)po(r)dr 4

where:

po(t) = P(xo) )

T
l_[ P (X1 |Xk, ug)
k=0

where E, () denotes the expectation of the reward over the trajectories. Now if we consider the action uy as a stochastic

function of 0, or uy ~ mg(ug|Xy), then the policy gradient expression becomes:

T M T
Vol (0) = / D (e, w) Vologrma (ulxi)po(t)dr = Y 3" ri(xy, u) Vologme (uf[x}) (©6)
Tk=0 i=0 k=0

where the integral over the trajectory 7 is approximated using the monte-carlo rolluts samples 7% ~ py(7), given the

environment’s transition probabilities, p(Xg+1|Xx), which in this case are the deterministic equations of motion. The
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expression in[6]is the policy gradient equation and is the basic concept on which the REINFORCE [57] algorithm is
based. In general this is used as a baseline as this was later improved through the years. In particular it was shown
that, instead of using the actual reward ry (xx, ug), one can use the action-value function Q7 (xg, uy) called normally
Q-function. Moreover, to reduce the variance of the policy gradient, a state dependent basis can be subtracted from
Q7 (Xk,ug). This basis is normally called value function V7™ (x;) and the quantity that is then used to approximate the
policy gradient is the advantage function A™ (xy, ux) = Q7 (X, ux) — V™ (Xt ). This value function can be approximated
using the rollouts by training a second neural net which is normally referred to as critic. This method is known as

Advantage-Actor-Critic (A2C) Method [S8] and the policy gradient using this method becomes:

M T
Vol (0) = > > Vologme(ul|xi) AT (x, uf) (7)
i=0 k=0

Once the gradient is calculated, it is used to update the policy by simply moving in its direction:
0" =60"+pogVeJ(0)lo=0- ®)
where B¢ > 0 is the learning rate.

D. Proximal Policy Optimization

What we used to optimize the policy in this case is a derivation of the A2C method. The PPO approach [50] belongs
to the family of policy gradient algorithms and has demonstrated state-of-the-art performances on many benchmark RL
problems. It is developed as a derivation of the Thrust Region Policy Optimization (TRPO) Method [59]. This method
formulates the policy optimization problem in a way such that the size of the gradient step taken during each iteration is

restricted using a dynamically calculated constraint. The TRPO policy update problem is formulated as:

7o (ug|xy) AT (g up)
w ’

p(T) T 6,14 (ug|xg) 9)

min E
9
s.t. EP(T) [KL(ﬂg(uklxk)’ﬂ-Quld (uglxp))] <6

where K7, is the Kullback-Leibler divergence [60] between the present and the old policy. The parameter ¢ is a tuning
parameter that imposes a bound on the update. It is proven that if the update is bounded at each iteration by a parameter
C (K1), the policy improves monotonically towards the optimal. This in general leads to prohibitively small update so
Equation [9 with a constant constraint parameter is used instead. Additionally, Equation[9]is approximately solved using
the conjugate gradient algorithm, which approximates the constrained optimization problem given by Equation [9] with
a linearized objective function and a quadratic approximation for the constraint. The PPO method approximates the

TRPO optimization process by accounting for the constraint on the policy update with a clipped objective function. This
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can be expressed in terms of the probability ratio py (6) given by,

i (0) = ToUkIXD) (10)

010 (W Xk )

The objective function is then:
L(8) =Ep(r) [min[pk(0), clip(pr(6), 1 — €, 1+ €)]AJ, (xx, up) | (11)

As stated above, we use an approximation of the advantage function that is the difference between the empirical return
(discounted reward) and a state value function baseline and gives information about how much better an action is with

respect to the average action:

T
Z)’H{r(ul,xl)

1=k

AL (Xi, ue) = - Vi (%) (12)

Where y € [0, 1) is the discount factor and is closer to one the more the algorithm should care about rewards collected
far into the future. Note that the subscript w was added to underline the fact that the advantage function depends on
the approximation of the value function performed by the critic. The value function V] (xx) is learned using the cost

function:

1 M
L(w) = 71~ > max[Ly, Lo]? (13)
i=1

where L and L, are the normal and clipped value function as per OpenAl baselines [61]:

Li=Vi(x}) -

T
> y""r(ul,xl)l (14)
=k

T
Lz = [ijvt,old + Cllp (VZVr - Vvi)r,old’ —€, 6)] - Zyl_kr(ul,xl)l (15)
1=k

and M is the number of rollout trajectories. In practice, policy gradient algorithms update the policy using a batch
of trajectories (roll-outs) collected through interaction with the environment. Each trajectory is associated with a
single episode, with a sample from a trajectory collected at step k consisting of observation xg, action ug, and reward

ri (Xg, uy). Finally, gradient ascent is performed on 6 and gradient decent on w. The update equations are:

wh=w — IBWVWL(W)lw:w’ (16)

0" =67 +BogVoJ(0)|g=0- (17)

where ,, and B¢ are the learning rates for the value function, V7, and policy, 7 (ux|Xx), respectively. The policy

and value function are learned concurrently. The exploratory action distribution is a Gaussian distribution with mean
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mg(Xr) and a diagonal covariance matrix. Because the log probabilities are calculated using the exploration variance,
the degree of exploration automatically adapts during learning so that the objective function is maximized. It should be
mentioned that the parameters 6 are dependent on the neural network used. In this work the neural network is a recurrent
neural network (RNN), which, following the work by Wang et al. [55]] , enables the agent to achieve meta-learning.

The pseudo-code training algorithm can be seen in Algorithm I]

Algorithm 1 Meta-RL - Recurrent network

1: procedure WHILE TRAINING

2 for i in tasks do

3 initialize hidden state hg

4 for t in time-steps do

5: sample an action from 7j,

6 obtain next observation s,,; and reward r;

7 update policy hidden state h,; = fg(hy, s;, as, S41,7¢)

8 compute advantage A7 (X, Uy) = [ZIT:k yl‘kr(ul, xl)] - VI(xx)
9: for epoch in epochs do

10: for minibatch in minibatches do

11: update value function parameters w* = w™ — 8,,V,, L(W)|,y=y- using loss in Eq.
12: compute clipped advantage L(6) = Ep (1) [min[pk(e), clip(pg(0),1 —€,1+ e)]Afv(xk,uk)]
13: update policy parameters 8% = 6~ + B9V J(6)]g=9-

III. Reinforcement Meta-Learning Guidance Algorithm Implementation

A. Environment and Sensor Specification: Blender Environment for Reinforcement Learning (BERL)

1. Equations of motion

In this paper, the 3 Degrees of Freedom (3DOF) lunar soft landing problem is considered. The lander’s attitude
is not taken into account, whereas the translational motion is described in an ortho-normal inertial reference frame
centered on the nominal landing target (here simply referred to as I frame). The z-axis of the I frame is supposed to

point upwards. Hence, the equations of motion are:

T
F=g+— (18)
m
i )
Isp 80

wherer = [ry, 1y, r.]T is the state in I frame, g is the gravity vector, in this case supposed to be constant since a
flat surface is considered, and T is the thrust vector in the same [ frame T = [T, Ty, TZ]T Note that the lander is
equipped with throttable thrusters, capable of providing a variable thrust in all three directions. The guidance problem

is the following: given the initial position and velocity, find the thrust commands to reach the desired final position and
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velocity while fulfilling both path and control constraints. Thus, the boundary conditions are

r(0) =ry

v(0) =1(0) = vy 0)

I‘(tf) =TIy

V(lf) S i‘(l‘f) =Vyr

where rg, vo, ¢ and v represent the initial and final position and velocity vectors respectively. As mentioned before, a
path constraint is taken into account, and it consists of a fictitious flat surface, located at a certain target altitude, that

cannot be overcome by the lander. Also, thrust constraints are given by:
0< Tmin < ”T” < Tmax (21)

where T,,,;,, and T4 represent the minimum and maximum thrust provided by the thrusters.

The initial mass and the gravity vector are varied among the episodes to consider a more general environment for
the reinforcement meta-learning algorithm. Moreover, possible engine failures are also considered randomly at the
initial time instant of each episode. This is done by reducing the computed commanded thrust along the z-axis and

along one of the other two axes using a scale factor.

2. Blender Environment for Reinforcement Learning (BERL)

(. @blender‘ )

Ray Tracing [+ Light Source

@ python

Dynamic Renderer |+ Mesh DTM
Generator

N\ )

Image

Fig.2 Blender environment for reinforcement learning

The spacecraft is assumed to have various devices, such as (but not limited to) radars and optical sensors, that can
provide a multitude of information inherent to its position and velocity. Hence, the policy is continuously fed with

this information. The optical sensor’s boresight is always aligned with the negative direction of the z-axis of the /
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frame; thus, it is always pointed towards the ground. The images coming from the optical sensor are generated within a
simulated environment built in the open-source software Blender. Specifically, the DTM representing the Apollo 16
landing site, taken from the Lunar Reconnaissance Orbiter (LROC) databaseﬂ is imported into Blender and it is used to
generate a realistic ground model. Images are then generated using a renderer within Blender by simulating a camera
moving in such an environment. In particular, we use Cycles, a physically-based ray tracer that computes light traces
from all the light sources in the scene and their interactions with the objects. This allows simulating the parallel light
rays’ interaction coming from the simulated Sun with the lunar surface material, which is generally characterized by high

roughness and low reflectivity. Figure 3]shows the DTM and a rendered view of the ground model using the raytracer.

(a) DTM (b) Rendered surface model

Fig. 3 Apollo 16 landing site

The DTM is a 32 bit grayscale image with a resolution of 3000x3000 pixels. Blender uses it as a displacement map,
where each pixel’s value represents the elevation of the terrain at that point. This information is exploited by the renderer
to compute the light bounces of the light emitted by the Sun. Moreover, the simulated camera provides high fidelity
observations with respect to real scenarios, where new features appear as the altitude decreases. This is obtained by
increasing the polygon count of the simulated ground as the camera approaches the surface. This technique also allows
for faster rendering times when the camera is far away from the ground, i.e., in the first part of each trajectory. Since
the reinforcement meta-learning framework is coded in Python, the choice of Blender results to be very convenient
as it has a built-in Python interpreter. Thus, the learning algorithm can be run directly in the Blender environment,
which allows the image observations to be fed directly as a pixel data array to the RML agent (see below). One can note
that the simulator described above can be easily adapted to other frameworks, such as Mars and asteroid landing and

close-proximity and docking operations. The possibilities are only limited by the availability of detailed 3D models and

Thttp://wms.lroc.asu.edu/Iroc
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textures, It should, however, be noted that, even if real 3D models and textures are not available, the simulator can be

used to generate realistic scenarios using the advanced features of 3D modelling and texturing available within Blender.

B. Observed information

In the case of this paper, the environment contains the model of the lander, the equations of motion, and all the
physical constraints of the problem. One should note that, once the training of the net has been carried out, only
the policy is deployed, while the value function approximator (critic) is not. This means that it is possible to feed
the critic with any information that might be useful to improve the learning performance during training. Thus, the
following information are passed to the critic: the velocity error between the true velocity and the reference velocity

Verr = ||V = Viargll, the time-to-go f4,, the lander state (r) and velocity (v) vectors.

OvFE = [Ver lgo Tx Ty T7; Fx Ty 7] (22)

On the other hand, the policy has access to a limited amount of information. In this work, we analyze three different
scenarios according to the information that is passed to the policy. Let I be a 32x32 array representing the raw grayscale
pixel data from the raytracer. The information used for the three scenarios are:

1) In the first scenario, the image acquired by the optical sensor, the vertical position and velocity are employed.

071'9:[1 r; Tl (23)

2) In the second scenario, all the information of the previous case are considered along with the velocity horizontal
components.

Ong =1 17 Fx 7y 7] (24)

3) In the third scenario, the image is not employed and the policy fed with all the components of position and

velocity vectors.

Ong =Frx Fy rz Fx Ty Tg] (25)

We analyzed different input scenarios to test the method with varying amounts of available information depending on
the onboard sensors. In particular, if just a camera and a radar altimeter are available, the first scenario is the one that
should be considered. Indeed, the same sensors could also be used for the second scenario if the horizontsal velocity
is estimated from the images, for example, through optical flow analysis [62,163]. As can be easily understood, the
last scenario is the one that provides the most accurate navigation since more information are available and a more

precise guidance is to be expected. However, at the same time, it is unlikely that the whole state is available for the lunar
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landing problem. The action space is continuous and corresponds to R* as we consider motion in a 3DOF problem. A

schematic representation of the whole system can be seen in Fig. @] To further justify the use of recurrent networks to

Samples Generation obsy Policy Evaluation

Environment

7o (U,x)

Policy Update

Fig. 4 Actor-Critic framework

solve the reinforcement meta-learning problem, we used the hidden states to replace the missing observations that are
not available at the beginning of each trajectory. This is done during interaction with the environment by returning both
the observation-action-reward vector and the policy’s hidden state. The forward pass through the policy then works by
unrolling the batch of inputs before the recurrent layer, reshaping it according to the layer dimension and recurrent steps

(in this case, we consider 100 steps).

C. Reward Function

The most intuitive way to reward the agent in a soft landing task is to give a positive reward if the agent performs a
successful landing (e.g. arrives close to the target with low speed) and penalize it if it violates a constraint. These kinds
of rewards are considered sparse because the agent is rewarded or penalized only at specific time-steps during a rollout.
It is known that reinforcement learning does not perform well with sparse rewards [64]. This is due to the fact that it is
improbable that a successful landing is observed using a randomized exploratory policy. To solve this problem, we
employed a distributed reward function, partially inspired by previous works of the authors [37,[52H54]. The reward at
each time-step is computed as the error between the current velocity vector and a reference velocity. Specifically, the
reference velocity is based on a gaze heuristics potential function that is aligned with the line of sight between the lander
and the target at all times. The target position and velocity are indicated as r, and v; respectively. This ensure pinpoint
but not necessarily soft landing. To ensure that the final velocity is minimized, the agent estimates the time-to-go as
the ratio of the range and the magnitude of the lander’s velocity. It then reduces the targeted velocity as time-to-go

decreases. This is incentivized by giving an additional positive reward at the end of successful trajectories. This reward
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Table 1 Hyperparameters

() n@E) @ n_ 6z (m)
20 100 -0.01 0.01 20

increases in finite increments the closer the final state is to the target state. The reward function has the following form:

r=allv="yviargll + 7+ k(riim1 < Ix(tr) =l < 11im2) +EWiima < [IV(Eg) = Vel < Viim,2) (26)

Where:

-

l-=t%)

Viarg = —V0 (

IIE]

vl

>

r—ry if ry>rp;

>
1l

r —r, otherwise

(27)
v—vpy if r;>rp,
0 =
v —V; otherwise
T if rg>rpg
T =

T, otherwise

with ry =1, + [0, 0, §7] is an intermediate position above the desired final position and:

* « is a negative term that penalizes the error with respect to the target velocity

* 77 is a positive constant that encourages the agent to perform more steps avoiding collisions with the constraints

* « and £ are piecewise bonuses given if the final position and velocity are within certain intervals represented by
[Ftim.1> 1im.2] and [Viim.1, Viim.2], respectively. The boundaries intervals and the corresponding k and & values
can be easily deduced from the plots in Fig. [S| One can note that « and ¢ are both equal to O if ||r — r;|| and
||v — v¢|| are respectively greater than 100 m and 50 m/s. Moreover, the third and fourth terms of the right hand
side of Eq. (26) are evaluated only at the final time-step.

* v is the norm of the initial velocity along a specific rollout trajectory.

A quasi-vertical motion is obtained during the last phase of the landing trajectory by following this reward shaping

function.
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Fig. 5 Parameters « and ¢ vs position and velocity intervals

IV. Training and Testing Results

In this section, test results are presented for each of the three training scenarios previously explained. For all the
cases, the initial position and velocity vectors’ components are sampled randomly from uniform distributions, whose
bounds are reported in Table 2] The nominal initial mass is equal to 1500 kg. The final state is always the same
for all the episodes and it is equal to [0, 0, 200] m for the position and [0, 0, -1] m/s for the velocity. To make the
guidance algorithm more robust to uncertain environments, the initial mass and z component of the gravity vectors are
sampled randomly within the range [0.9my, 1.1m] and [0.9g., 1.1g.], respectively. Instead, the gravity vectors’ x
and y components are sampled randomly within the range [-0.1g,,0.1g.]. Moreover, random engine failures might
manifest themselves as reduced thrust along the z-axis and along one of the other two axes. Indeed, the commanded
thrust is 2/3 of the thrust estimated by the NN. For the three scenarios, the value function is approximated by the NN
whose architecture is shown in Fig. [6] where FC stands for Fully Connected layer. The rest of this section will present in

detail the three test scenarios and the corresponding results.
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Obs. Vector | FC FC FC FC
[V or tooT r}] |neurons: 100| neurons: 22| \neurons: 5| |neurons: 1

Fig. 6 Critic network

Table 2 Initial conditions distribution bounds

Position Velocity

min (m) max (m) min(m/s) max (m/s)

X -200 200 -20 -20
Y -1500 -1000 50 70
Z 1500 1800 -40 -20

A. Case 1: images + vertical position + vertical velocity

In this case, the NN is fed with a sequence of images, the spacecraft’s vertical position, and vertical velocity. The
NN is designed accordingly using a mixed input architecture. In particular, a CNN, which handles the images, is paired
with a Fully Connected (FC) head that processes the vector observations. The output of the mixed layers is then fed into
a GRU. Finally, two FC layers complete the NN. The proposed architecture is shown in Fig. [/|along with the chosen
hyperparameters. The results are reported in Fig. [8| As can be seen from the reward, it starts with a negative value at
the beginning of the training since the spacecraft does not reach the prescribed tolerances at the end of the trajectory and
the only non-null terms in the reward function (Eq. [26) are the negative term related to the velocity error and the small
positive incentive to perform more steps (77). The effect of 5 is clearly visible in Fig. where the increase of the
reward is strictly related to an increasing number of time steps per trajectory. This curve (purple dotted line) reaches a
plateau, while the reward continues to increase due to the decreasing velocity error along the trajectory and the last two
terms corresponding to the final state error. Therefore, the final value of the reward, achieved after 20000 episodes, is
completely positive, which means that a successful trajectory is obtained. Figure [8(b)|shows the 100 trajectories of
the Monte-Carlo simulation, whereas Fig. [B(c)|reports the distribution of the final position and velocity errors, and
the corresponding statistics are shown in Table[3] In particular, the position error in the x-y plane is below 5 m (the z
component is not shown because it is always achieved since the episodes are interrupted when the spacecraft reaches an
altitude of 200 m). The x and y components of the final velocity vector are globally below 2 m/s. The final z component
of the velocity is shown in the last histogram, where it is possible to note that for most of the trajectories, it is about -2
m/s (one should remember that the target velocity is [0,0,-1] m/s). For case 1, 1-0, 2-0- and 3-0 error ellipses for the

final x and y components of position and velocity are shown in Fig.
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CNN CNN CNN CNN
Grayscale |filters: 32| [filters: 32| [filters: 32| [filters: 32

Image - stride: 1 p stride: 2 b stride: 1 | stride: 2
32x32 size: size: size: size: GRU
32x32 || 16x16 || 16x16 8x8 |l recurrent | | FC |} FC
steps: 100 | Ineurons: 30 |neurons: 3
nodes: 58
Obs. Vector__ FC i

[r, 7] neurons: 50

Fig.7 Network architecture for case 1.

B. Case 2: images + vertical position + velocity vector

In the second case, the NN is fed with a sequence of images, vertical position, and the full velocity vector. Even in
this case, the NN is designed using a mixed input architecture. The same architecture of test 1 is used, but with different
hyperparameters. The proposed architecture is shown in Fig. [0]along with the chosen associated hyperparameters. The
results are presented in Fig. [[0} The same considerations about the reward discussed for the previous case are still valid
for Case 2. It is possible to see from Fig. and Table [3] that the position and velocity error ellipses have lower
semi-major axes values with respect to Case 1, which means that accuracy and precision are higher. This was expected
since additional information (the entire velocity vector) is passed to the policy network. However, the uncertainty on the

z component of the velocity is slightly higher than in the previous case.

C. Case 3: velocity error + time-to-go + altitude

In this case, the NN is fed with the velocity error between the current velocity and the target v; ¢ originating from
the velocity field as explained in Section|[Il} along with the time-to-go #,, and the altitude. The network architecture is
shown in Fig. [T1] In this case the agent reaches a high level of precision as shown by the error ellipses in Fig. [I2]and
Table 3] with standard deviation both for position and velocity below 0.2 m and m/s respectively. On the other hand, the
relative accuracy of the solution is lacking in comparison, with the target being only contained within the 30 ellipse for
the velocity and being completely out of the 30~ ellipse for the position. This difference between high precision and
lower accuracy could be due to the way the episodes are terminated, which favors the vertical position accuracy with
respect to the x and y components of the position and velocity vectors. Indeed, the episode is terminated when the
altitude falls below 200 meters, no matter what the values of the other position and velocity components are. Although
this behaviour should be considered, it should be noted that in an absolute scale, the accuracy is still better than all the
previous cases as shown by the mean of the distributions. Overall, in this case it is clear that the added information
provided by the velocity error as the agent "sees" it in the reward function, allows it to learn to perform better in such

environment, and consequently produce more accurate results.
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Fig. 8 Results for Case 1.
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CNN CNN CNN CNN
Grayscale [filters: 32| |filters: 32| |filters: 32| [filters: 32
Image — stride: 1 pf stride: 2 pf stride: 1 | stride: 2

32x32 size: size: size: size: GRU
32x32 || 16x16 || 16x16 8x8 recurrent || FC |} FC
steps: 100 | |neurons: 30 |neurons: 3
nodes: 58

Obs. Vector _ FC
[r, 7] neurons: 50

Fig. 9 Network architecture for case 2.

Table 3 Performance statistics for all cases

Terminal position error (m) Terminal velocity error (m/s) Fuel (kg)

Hx Hy Ox Ty Hx Hy Hz Ox Ty Oz H

Casel 0.701 -1.358 0.668 1275 0479 0.030 -1.116 0438 0.679 0.945 123.6
Case2 0246 0229 0.254 0.789 0.104 0387 -0976 0.100 0.618 1.520 111.8
Case3 -0.052 -0.041 0.025 0.042 0.091 -0.142 0.367 0.0413 0.107 0.176 115.9
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Fig. 10 Results for Case 2.
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Obs. Vector _ FC I FC | FC FC
[Verr fg01: 1 |neurons: 50| ineurons: 40| neurons: 30| | neurons: 3

Fig. 11 Network architecture for case 3.

V. Conclusion

In this paper, RML is employed to obtain a closed-loop lunar landing guidance based directly on sensors data,
avoiding the need for a state estimation system. A deep recurrent convolutional neural network is devised to acquire a
sequence of images (coming from the optical camera) and ranging data (coming from the radar altimetry) and generate a
thrust command (sensor-to-thrust). The deep policy network is designed and trained on a distribution of MDPs to enable
quick adaption and learning under uncertain conditions. The method allows for increased robustness against dynamics
uncertainties, such as possible perturbations of the environment, and engine failures, with respect to classical RL. This is
practically obtained by using a GRU layer in the deep architecture, which enables retaining information about previous
experience (i.e. environments) and allows the agent to train accurately and efficiently. Although powerful, this method
relies on staying within the environment distribution used during the training, therefore the performance of the guidance
policy might degrade outside those boundaries. The policy is optimized using an Actor-Critic architecture based on
PPO, in which the critic network always has full access to all the information about the lander’s state, whereas the
actor network is provided with partial observations. Among the available observations are sequences of terrain images
generated using a detailed DTM and a realistic camera model based on ray-tracing. This is achieved using a simulator
built in Blender, which is interfaced with the whole RML framework through a python API. With this approach, we were
able to reach a target state with position and velocity average errors within 2 m and 1 to 2 m/s, respectively, in all cases
taken into consideration. Three different test cases have been analyzed: in the first one, sequences of terrain images and
vertical position and velocity are provided to the actor; in the second one, sequences of terrain images, vertical position,
and the full velocity vector are provided; finally, in the third case the actor has access to the full state. The results clearly
show that increasing the information available to the actor increases the method’s overall performance, both in terms of
accuracy and precision. It is interesting to note that in cases 1 and 2 where the actor has access to reduced information
about the state of the lander, the performance is surprisingly close to case 3 where the full state is fed to the actor. This
proves the capabilities of recurrent networks to map sequences of partial observations to a uniquely determined state,
which ultimately allows for successful guidance. Case 1 is the most interesting as it represents the most realistic case
where observations could be gathered using a camera and a radar altimeter. The proposed method shows good precision
in all cases, with final positions and velocities contained in tight distributions, although a slight offset is observed in the
x and y components of the position and velocity. Note the the described RML approach exhibits low computational cost.

Indeed, once the policy neural network is trained, the network evaluation is a simple sequence of matrix additions and
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multiplications that can be optimized for on-board implementation. Overall, the presented method builds upon the
previous work in the field, introducing optical images as observations. This approach is currently being extended to
integrate autonomous hazard detection, performed via convolutional neural networks, and obstacle avoidance techniques

in order to achieve a higher level of autonomy.
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