The Series contains volumes of the proceedings of the annual conferences of the Scientific Society UID – Unione Italiana per il Disegno and the results of international meetings, research and symposia organised as part of the activities promoted or patronised by UID. The topics concern the Scientific Disciplinary Sector ICAR/17 Drawing with interdisciplinary research areas. The texts are in Italian or in the author’s mother tongue (French, English, Portuguese, Spanish, German) and/or in English. The international Scientific Committee includes members of the UID Scientific Technical Committee and numerous other foreign scholars who are experts in the field of Representation.

The volumes of the series can be published either in print or in open access and all the authors’ contributions are subject to double blind peer review according to the currently standard scientific evaluation criteria.

Scientific Committee

Giuseppe Amoruso Politecnico di Milano
Paolo Belardi Università degli Studi di Perugia
Stefano Bertocci Università degli Studi di Firenze
Mario Centofanti Università degli Studi dell’Aquila
Enrico Cicalò Università degli Studi di Sassari
Antonio Conte Università degli Studi della Basilicata
Mario Doci Sapienza Università di Roma
Edoardo Dotto Università degli Studi di Catania
Maria Linda Falcidieno Università degli Studi di Genova
Francesca Fatta Università degli Studi Mediterranea di Reggio Calabria
Fabrizio Gay Università IUAV di Venezia
Andrea Giordano Università degli Studi di Padova
Elena Ippoliti Sapienza Università di Roma
Francesco Maggio Università degli Studi di Palermo
Anna Osello Politecnico di Torino
Caterina Palestini Università degli Studi “G. d’Annunzio” di Chieti-Pescara
Lia Maria Papa Università degli Studi di Napoli “Federico II”
Rossella Salerno Politecnico di Milano
Alberto Sdegno Università degli Studi di Udine
Anna Osello Politecnico di Torino

Members of foreign structures

Caroline Astrid Bruzelius Duke University - USA
Pilar Chías Universidad de Alcalá - Spagna
Frank Ching University of Washington - USA
Livio De Luca UMR CNRS/MCC MAP Marseille - Francia
Roberto Ferraris Universidad Nacional de Córdoba - Argentina
Glaucia Augusto Fonseca Universidade Federal do Rio de Janeiro - Brasil
Pedro Antonio Janeiro Universidade de Lisboa - Portogallo
Jacques Laubscher Tshwane University of Technology - Sudáfrica
Cornelie Leopold Technische Universität Kaiserslautern - Germania
Juan José Fernández Martín Universidad de Valladolid - Spagna
Carlos Montes Semano Universidad de Valladolid - Spagna
César Otéro Universidad de Cantabria - Spagna
Guillermo Peris Fajarnes Universitat Politècnica de València - Spagna
José Antonio Franco Taboada Universidade da Coruña - Spagna
Michael John Kirk Walsh Nanyang Technological University - Singapore

Graphic design and cover by Enrico Cicalò and Paola Raffa
This volume is published in open access format, i.e. the file of the entire work can be freely downloaded from the FrancoAngeli Open Access platform (http://bit.ly/francoangeli-oa). On the FrancoAngeli Open Access platform, it is possible to publish articles and monographs, according to ethical and quality standards while ensuring open access to the content itself. It guarantees the preservation in the major international OA archives and repositories. Through the integration with its entire catalog of publications and series, FrancoAngeli also maximizes visibility, user accessibility and impact for the author.

Read more:
http://www.francoangeli.it/come_pubbicare/pubblicare_19.asp

Readers who wish to find out about the books and periodicals published by us can visit our website www.francoangeli.it and subscribe to our “Informatemi” (notify me) service to receive e-mail notifications.
REPRESENTATION CHALLENGES
Augmented Reality and Artificial Intelligence in Cultural Heritage and Innovative Design Domain

Scientific Committee
Salvatore Barba
Università di Salerno
Marco Giorgio Bevilacqua
Università di Pisa
Stefano Brusaporci
Università dell’Aquila
Francesca Fatta
Università Mediterranea di Reggio Calabria
Andrea Giordano
Università di Padova
Alessandro Luigini
Libera Università di Bolzano
Michele Russo
Sapienza Università di Roma
Cettina Santagati
Università di Catania
Alberto Sdegno
Università di Udine
Roberta Spallone
Politecnico di Torino

Peer Reviewers
Marinella Arena
Università Mediterranea di Reggio Calabria
Salvatore Barba
Università di Salerno
Marco Giorgio Bevilacqua
Università di Pisa
Cecilia Bolognesi
Politecnico di Milano
Stefano Brusaporci
Università dell’Aquila
Francesca Fatta
Università Mediterranea di Reggio Calabria
Andrea Giordano
Università di Padova
Massimo Leserri
Università di Napoli “Federico II”
Stefania Landi
Università di Pisa
Massimiliano Lo Turco
Politecnico di Torino
Alessandro Luigini
Libera Università di Bolzano
Pamela Maiezza
Università dell’Aquila
Diamerico Medati
Università Mediterranea di Reggio Calabria
Cosimo Monteleone
Università di Padova
Michele Russo
Sapienza Università di Roma
Cettina Santagati
Università di Catania
Alberto Sdegno
Università di Udine
Roberta Spallone
Politecnico di Torino
Marco Vitali
Politecnico di Torino

Scientific Coordination
Andrea Giordano
Università di Padova
Michele Russo
Sapienza Università di Roma
Roberta Spallone
Politecnico di Torino

Editorial Committee
Isabella Friso
Università IUAV di Venezia
Fabrizio Natta
Politecnico di Torino
Michele Russo
Sapienza Università di Roma

The texts as well as all published images have been provided by the authors for publication with copyright and scientific responsibility towards third parties. The revision and editing is by the editors of the book.


Cover image: Michele Russo

Copyright © 2021 by FrancoAngeli s.r.l., Milano, Italy.
This work, and each part thereof, is protected by copyright law and is published in this digital version under the license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

By downloading this work, the User accepts all the conditions of the license agreement for the work as stated and set out on the website https://creativecommons.org/licenses/by-nc-nd/4.0
Index

AR&AI theoretical concepts

23
Francesco Bergamo
The Role of Drawing in Data Analysis and Data Representation

29
Giorgio Butacci, Sara Corta, Michele Rosi
Artificial Intelligence, Big Data and Cultural Heritage

35
Marco Ferrarini, Lodovico Valetti
Virtual Tours and Representations of Cultural Heritage: Ethical Issues

41
Claudio Marchese, Antonino Nastasi
The Magnificent AI & AR Combinations: Limits? Gorgeous Imperfections!

47
Valerio Palma
Data, Models and Computer Vision: Three Hands-on Projects

53
Alberto Sdegno
Drawing Automata

59
Marco Vitali, Giulia Bertola, Fabrizio Natta, Francesca Ronca

AR&AI virtual reconstruction

67
Alessio Bortot
Physical and Digital Pop-Ups. An AR Application in the Treatises on Stereotomy

73
Maurizio Marco Bocconcino, Mariapaola Vozzola
The Value of a Dynamic Memory: from Heritage Conservation in Turin

79
Antonio Calandrello
Augmented Reality and the Enhancement of Cultural Heritage: the Case of Palazzo Mocenigo in Padua

85
Cristina Càndito, Andrea Quartara, Alessandro Meloni
The Appearance of Keplerian Polyhedra in an Illusory Architecture

91
Marco Grazia Cozzi, Daniele Colia, Sara Calzare, Francesca Paolo Mandelli
Digital Tools at the Service of Public Administrations

97
Riccardo Florio, Raffaele Catugno, Teresa Dello Corte, Veronica Marina
Studies for the Virtual Reconstruction of the Terme del Foro of Cumae

103
Maurizio Perniceni, Chiara Calegari
Making the Invisible Visible: Virtual/Interactive Itineraries in Roman Padua

AR&AI heritage routes

111
Marinella Arena, Giunluca Lox
Saint Nicholas of Myra. Cataloguing, Identification, and Recognition Through AI

117
Stefano Buiaugurini, Pamela Massaro, Alessandra Tata, Fabio Graziosi, Fabio Franchi
Prosthetic Visualizations for a Smart Heritage

123
Gerardo Maria Cennamo
Advanced Practices of Augmented Reality: the Open Air Museum Systems for the Valorisation and Dissemination of Cultural Heritage

129
Serena Fumero, Benedetta Frezzati
The Use of AR Illustration in the Promotion of Heritage Sites

135
Alessandro Luigi, Stefano Buiaugurini, Alessandro Rusta, Pamela Massaro
The Sanctuary BVMA in Pescara: AR Fruition of the Pre-Conciliar Layout

141
Alessandra Raglano, Greta Attakorna, Anna Lisa Pecora
Phytosarchaeology for the Phlegrean Fields

147
Andrea Rolando, Domenico D’Uva, Alessandro Scadiffidio
A Technique to Measure the Spatial Quality of Slow Routes in Fragile Territories Using Image Segmentation

153
Giorgio Verdiani, Vincenzo Celino, Massimiliano Masullo, Andrea Pascale, Luigi Matti
When the Real Really Means: VR and AR Experiences in Real Environments

159
Ornella Zerlenga, Vincenzo Celino, Massimiliano Masullo, Andrea Pascale, Luigi Matti
Drawing, Visualization and Augmented Reality of the 1791 Celebration in Naples

AR&AI classification and 3D analysis

167
Marco Giorgio Bevilacqua, Anthony Fedeli, Federico Copricusi, Antonello Gidi, Cosimo Monteleone, Andrea Piemonte
Immersive Technologies for the Museum of the Charterhouse of Calci

173
Massimiliano Campi, Valerio Cera, Francesco Cutugno, Antonello di Lugga, Domenico Ivano, Antonio Orsilia
CHROME Project: Representation and Survey for AI Development

179
Pietro Cini, Roberto Periccioli, Romano Quattrini, Emanuele Fantoni, Romano Negreca
Deep Learning for Point Clouds Classification in the Ducal Palace at Urbino

185
Pierpaolo D’Aquista, Federico Minelli
Automated Modelling of Masonry Walls: a ML and AR Approach

191
Elisabetta Caterino Giovanni
Data Modelling in Architecture: Digital Architectural Representations
AR&AI urban enhancement

223 Giuseppe Amoruso, Paola Aminenka, Valentina Zanchi Rebuilding Amsterdam: Representation, Experience and Digital Artifice

229 Paolo Belardi, Valeria Menchetelli, Giovanna Ramacroni, Margherita Mario Ristori, Carmela Siragusa AR+AI = Augmented (Retail + Identity) for Historical Retail Heritage

235 Fabio Biancucci, Marco Filippucci, Marco Secaroni New Interpretive Models for the Study of Urban Space

241 Marco Canciani, Giovanna Spadafora, Mauro Saccone, Antonio Canessa Augmented Reality as a Research Tool, for the Knowledge and Enhancement of Cultural Heritage

247 Alessandro Fuglione Augmenting Angri: Murals in AR for Urban Regeneration and Historical Memory

253 Cesare Politi, Alessandro Basso Evolutionary Time Lines, Hypothesis of an AI+AR-Based Virtual Museum

259 Daniele Rossi, Federica O. Opponisoni Marche in Tavola. Augmented Board Game for Enogastronomic Promotion

AR&AI museum heritage

267 Giuseppe Amedo, Daniele Calabrese An Immersive Room Between Sylla and Charybdis

273 Francesco Borella, Isabella Friso, Ludovica Galeazzo, Cosima Mantovane, Elena Svalduz New Interfaces on the Gallerie dell’Accademia in Venice

279 Laura Caltelloni, Marco Foscolo, Flavia Camagni Wood Inlays and AR: Considerations Regarding Perspective

285 Giuseppe D’Acunto Augmented Reality and Museum Exhibition. The Case of the Tribuna of Palazzo Grimani in Venice

291 Giuseppe Di Gregorio The Rock Church of San Miscordio of the Pantalica Site and 3DLAB VR/AR–Project

297 Elena Ippoliti Understanding to Enhance, Between the Technical and Humanist Approaches

303 Gabriella Lisa, Massimiliano Cammarota Illusory Scene and Immersive Space in Tintoretto’s Theatre

309 Francesca Pampaloni, Dina Panigoso, Antonio Gambina Medua Touch, Feel, Think: Survey, Catalog and Sensory Limitations

AR&AI building information modeling and monitoring

299 Venerando Bagaria, Raifane Argolas, Nicola Palmi Communicating Architecture. An AR Application in Scan–to–BIM Processes

335 Marcella Balzani, Fabio Rana, Mario Mantuori Integrated Technologies for Smart Buildings and PREdictive Maintenance

341 Fabrizio Baroni Extended Reality (XR) and Cloud–Based BIM Platform Development

347 Carlo Baglio, Vincenzo Ricci, Irene Villarosi H-Bim to Virtual Reality: a New Tool for Historical Heritage

353 Fabio Biancucci, Marco Filippucci, Giulo Pelliccia Experimental Value of Representative Models in Wooden Constructions

359 Davide Campanella, Paolo Boni Automatic Recognition Through Deep Learning of Standard Forms in Executive Projects

365 Matteo Del Giudice, Daniele De Luca, Anna Olgia Interactive Information Models and Augmented Reality in the Digital Age

371 Marco Filippucci, Fabio Biancucci, Michele Meschina Survey and BIM for Energy Upgrading. Two Case Study

377 Rossella Garzotto A Proposal for Masonry Bridge Health Assessment Using AI and Semantics

383 Federico Maria La Russa AI for AEC: Open Data and VPL Approach for Urban Seismic Vulnerability


AR&AI education and shape representation

397 Maria Linda Falcidieno, Maria Elisabetta Ruggiera, Ruggero Torri Visual Languages: On–Board Communication as a Perception of Customercaring

403 Emanuela Lanaro, Mara Capone Genetic Algorithms for Polycentric Curves Interpretation

409 Anna Lisa Piccione The Drawn Space for Inclusion and Communicating Space

415 Marta Salvatore, Leonardo Baglioni, Graziano Mario Valentì, Alessandro Martinelli Forms in Space. AR Experiences for Geometries of Architectural Form

421 Roberto Spinolli, Valerio Palma AR&AI in the Didactics of the Representation Disciplines

427 Alberto Tono, Meher Shashwat Ngam, Sasthaya Fdaniwa Arifmuzaffar, Ahmadnia, Greek Boligrow Limitations and Review of Geometric Deep Learning Algorithms for Monocular 3D Reconstruction in Architecture
Wood Inlays and AR: Considerations Regarding Perspective

Laura Carlevaris
Marco Fasolo
Flavia Camagni

Abstract

The contribution reflects on the options provided by recent Augmented Reality (AR) applications to the knowledge and enhancement of a nationally and internationally renowned cultural asset: perspective wood inlays. The methodology envisages two closely-connected stages initially involving perspective decoding and ensuing reconstruction of the illusory model, followed by the creation of a set-up for the AR pursuant to the digitalization of the three-dimensional model. In AR, perspective is the ideal tool to virtually experience the space represented in the decoration; at the same time it provides the most suitable solutions required to optimise the AR project.

Keywords
wood inlays, perspective, augmented reality, immersivity, dynamic perception.
Introduction

This contribution [1] focuses in particular on wood inlays that primarily use a perspective approach to create the image, i.e., early Renaissance and sixteenth–century intarsia that exploit an elegant perspective technique to produce wood decorations.

There have been many recent examples of AR/VR applications used in environments embellished by wood inlay decorations. In particular the ones in Federico da Monfeltro's studiolo in Gubbio and Urbino which were developed to virtually recreate the rooms' artistic quality [2]. Said studies focused more on communicating the cultural asset rather than speculating on the perspective–geometry used to create the illusory space, achieved due to the sfondamento of the plane of the wooden cladding.

This contribution will instead concentrate on the common projective origin of the two representative models: on the one hand the perspective model, on the other the digital model behind the AR experience that can be visualised on an ad hoc display.

Our goal regarding the projective and perspective features linking the perspective sfondato with its AR version is to verify whether these features are the key elements required to successfully recreate the spatial complexity of this particular artistic genre.

To test the methodology we selected an intarsia made by Brother Damiano Zambelli around the year 1530 and inserted in the backrest of the choir stalls in the presbytery of the Basilica of San Domenico in Bologna (opening image, left). When an onlooker looks at this intarsia, or at any other perspective inlays, he perceives an illusory space beyond the wooden frame, in this case a quadrangular hall with a Lombard–style coffered ceiling resting on two rows of three pilasters, the remains of a building in the middle ground, and a temple in the background [3].

Considerations Regarding Perspective and AR

Two features betray the similarities between perspective and AR: one involves the fundamental elements of projection, the other concerns the elements participating in the creation of the perceptive experience of amplifying space.

The first step is to verify parallelism between the centre of projection, the picture plane, and the model to be represented as crucial elements of the perspective, and, respectively, the virtual camera, the target, and the three–dimensional digital content in the AR.

The effect of amplifying real space is created by skillfully using the perspective technique; it is effectively similar to the AR experience after accurate correlation is established between perspective construction and the design of the virtual fruition application.

The illusory space conjured up in the wooden intarsia is possible thanks to the observer’s sensitivity and visual and artistic knowledge, while the perceptive functioning of the AR is generated by superimposing suitably designed digital contents on real space; these contents are activated by establishing a specific target.

In this respect, we must carefully consider the element to be used as a target to recognise the virtual model that we can presume to be either the inlay itself or an orthorectified image of the inlay itself.

As we all know, perspective theory allows for endless positions of the model to be represented compared to the picture plane (in fact the object can be between the centre of projection and the plane, beyond the plane, or even astride the plane). Nevertheless,
when we look at a wooden intarsia the perceptive effect sought after and recreated by the artist is to place this space ‘beyond’ the physical limit of real space, i.e., beyond the inlay, which, in turn, can be equated to the perspective picture plane (fig. 1). Instead in AR, after activating the application the digital model appears in front of the target (fig. 2). In perspective intarsia applications this disorients the onlooker who no longer easily perceives the continuity between the two–dimensional perspective image and the reconstructed space in the digital model (fig. 2).

To restore the immersive effect a solution could come from the nature itself of the wood inlays and their dimensional characteristics. In fact, inlays are primarily framed by a scansion of the wood surface so that the dimensions of each sfondato corresponds to that of an opening (door or window). The space imagined beyond the wooden plane appears to be divided into as many sfondamenti as the number of perspective panels, usually bordered by a compositional element that acts as a frame for the intarsia. This allows us to theorise that the latter is the element tasked with mediating the shift from the perspective image to its digital reconstruction by inserting, in the model, an element present in the target.

Let’s now focus on the case study, i.e., the inlay in the choir stall in the Basilica of San Domenico. We have outlined the aforementioned considerations because in AR the digital model is visualised in front of the target; the chosen target is in fact the intarsia itself, while the one perceived by the onlooker is a model that does not ‘pierce’ the wooden plane, but instead exits it and is projected forward into real space, nullifying the illusory effect of spatial depth beyond the inlay. To eliminate this undesired effect, a decision was taken to make part of the target (i.e., the frame around the scene) an element of the model produced for the AR application. The outcome was a virtual frame perfectly superimposed on the physical target in front of said urban scene.

Solving the issue of the target is the first step in achieving successful restitution of illusory space. Another inconvenience is the presence of elements in real space that conflict and are visualised with the ones in the digital model – possibly including the target itself. Once again, the solution was found in the common projective origin of the wooden sfondato and AR application. In this case, the applied strategies were instigated by the perspective used in theatrical stage sets and photography.
A box-like environment inspired by photographic box sets was created to isolate the urban scene beyond the frame and stop the real environment from being considered as a background. This involved creating a delimited digital space characterised by neutral textured materials in which the rounded corners did not reveal the change in position of each plane. Inserting the digital model in this box eliminates the presence of real space elements that are thus inserted in virtual space, helping to reinforce the perceived effectiveness of the AR experience (fig. 3, left).

Nevertheless, the digital model and the box set in which it is inserted are both a certain size and can be visualised as an insertion in real space; this is the third element that helps to weaken the illusory sfondato of the wooden surface. Once again the solution lies in the perspective–scenographic origin of the two models, the perspective model of the intarsia, and the illusory AR model; it is reminiscent of the proscenium arch in many theatres or mobile stage sets. When a foreground frames the scene it amplifies the perceptive effect of depth; this has been common knowledge ever since antiquity, especially in the theatrical world; the ‘trick’ is used both in the field of perspective and that of photography.

In a theatre, the proscenium arch in the foreground plays a dual role: apart from framing the stage and interrupting continuity with real space, it makes the space of the stage less immediately ‘measurable’ and isolates the parts of the scenery and machinery that spectators should not see.

Placing this element in the model elaborated for the AR application involves inserting a sort of screen and assigning it certain characteristics and materials so that it isolates the model, but cannot be seen when the application is used. In our case study, for example, this additional insertion of a screen in the foreground, was appropriately cut to show only the part of the sfondamento that the onlooker was allowed to see (fig. 3, right).

The presence of an element of the target in the digital model, coupled with the creation of the box set and insertion of a screen, facilitated seamless exploration of the space of the AR with fruition of the real space where the inlay is situated; it also facilitated a comparison between the digital model and the perspective image.
Conclusions

The use of AR in perspective applications and, in particular, in wood inlays, raises several questions; a suitable solution lies in the realisation that the two systems share a projective origin. Bearing this in mind, and focusing on the world of theatrical stage sets and photographic technique – two technical–artistic mediums with the same roots and same scientific evolution – provides us with important knowledge and helps solving some of these issues. Obviously this contribution ignores other aspects that are nevertheless crucial and should be considered in a much broader study.

In fact, it will be necessary to tackle the question of the implementation of materials, lights and texture in the model for the AR application; these elements can be identified by analysing the inlays themselves, but will have to be correctly managed. Another aspect not tackled here, although inevitable, is the relationship between the position of the observer of the perspective (presumed to be stationary in the environment) and the kinetic nature of AR exploration.

Nevertheless, once again, in the case of perspective inlays, AR proves to be the right tool to enrich the experience of all those who wish to enjoy cultural heritage thanks to an approach which, by increasing perceptive options, also includes scientific contents — all too often relegated to the back burner.

Notes

[1] Although all the authors participated in the whole research, the study of the wooden intarsia, their perspective construction and specific case study was performed by M. Fasolo; the part regarding the relationships between perspective and AR was performed by L. Carlevaris; in-depth operational studies and the creation of the models and contents of the AR application were performed by F. Camagni. The conclusions are part of the joint research project.


References


Authors

Laura Carlevaris, Dept. of History, Representation and Restoration of Architecture, Sapienza University of Rome, laura.carlevaris@uniroma1.it

Marco Fasolo, Dept. of History, Representation and Restoration of Architecture, Sapienza University of Rome, m.fasolo@uniroma1.it

Flavia Camagni, Dept. of History, Representation and Restoration of Architecture, Sapienza University of Rome, flavia.camagni@uniroma1.it

Copyright © 2021 by FrancoAngeli s.r.l. Milano, Italy