
A new combinatorial branch-and-bound algorithm for
the Knapsack Problem with Conflict Graph

Stefano Coniglio

University of Southampton, Southampton, United Kingdom
School of Mathematical Sciences

s.coniglio@soton.ac.uk

Fabio Furini

Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”
Consiglio Nazionale delle Ricerche (IASI-CNR), Roma, Italy

f.furini@iasi.cnr.it

Pablo San Segundo

Universidad Politécnica de Madrid (UPM), Madrid, Spain
Center of Automation and Robotics (CAR), Madrid, Spain

pablo.sansegundo@upm.es

Abstract

We study the Knapsack Problem with Conflict Graph (KPCG), a generalization of the Knap-
sack Problem in which a conflict graph specifies pairs of items (vertices of the graph) which
cannot be simultaneously selected in a solution. The KPCG asks for determining a maximum-
profit subset of items of total weight no larger than the knapsack capacity which do not violate
any of the item conflicts. In this work, we propose a novel combinatorial branch-and-bound
algorithm for the KPCG based on an n-ary branching scheme. Our algorithm effectively
combines different procedures for pruning the branch-and-bound nodes based on different
relaxations of the KPCG. Key to the algorithm is its high pruning potential and the low
computational effort that it requires to process each branch-and-bound node. An extensive
set of experiments carried out on the benchmark instances typically used in the literature
shows that, for edge densities ranging from 0.1 to 0.9, our algorithm is faster by up to two or-
ders of magnitude than the state-of-the-art method and by up to several orders of magnitude
than a state-of-the-art mixed-integer linear programming solver.

Keywords: Knapsack Problem with Conflict Graph, Maximum Weighted Clique Problem,
Branch-and-Bound algorithm.

1. Introduction

Given a set V of n items with a positive integer profit pi and a positive integer weight
wi, for all i ∈ V , and an integer capacity c, the classical Knapsack Problem (KP) asks for
identifying a subset of items of maximum profit whose total weight is no larger than c. The
KP is one of the most studied problems in combinatorial optimization: it is known to be

Preprint submitted to . . . February 4, 2020



NP-hard (albeit weakly) since the seminal work of Karp [26], and very effective algorithms
are available for its solution [33]. For a comprehensive survey on algorithms and applications,
we refer the reader to [27, 32].

In this paper, we study a generalization of the KP known as Knapsack Problem with Con-
flict Graph (KPCG). Given a simple undirected (conflict) graph G = (V,E) with n = |V |
vertices and m = |E| edges, where the sets of vertices and edges represent, respectively,
knapsack items and conflicts between pairs of them (i.e., {i, j} ∈ E if and only if items i and
j cannot be simultaneously contained in a solution), the KPCG asks for a maximum-profit
conflict-free subset of items whose total weight does not exceed the knapsack capacity. If the
item weights are ignored, the KPCG admits the Maximum Weighted Independent Set Prob-
lem (MWISP) as a special case. As the MWISP is strongly NP-hard and inapproximable in
polynomial time to within any polynomial factor unless P = ZPP [24], the same hardness
result applies to the KPCG. This shows that the problem is considerably harder than the
KP.

The KPCG plays an important role in the Operations Research literature. It arises as
pricing subproblem when solving with branch-and-price algorithms both the Bin Packing
Problem (BPP) (with a Ryan-Foster branching scheme) [51] and the Bin Packing Problem
with Conflicts (BPPC) (with any branching scheme) [4]. Besides its role as a subproblem,
the KPCG is of interest on its own right. Real-world applications arise in any context where
a subset of items has to be selected subject to a capacity (or budget) constraint and a set of
incompatibility/conflict constraints prevent the decision maker from selecting certain pairs
of items. This is the case, for instance, of profit-maximization scheduling problems with
a single machine, in which G is a graph with vertices corresponding to tasks and conflicts
represent pairs of tasks which cannot be executed in parallel (due to, e.g., requiring the same
nonpreemptible resource).

1.1. Notation

In the remainder of the paper, we adopt both terms “vertex” and “item” to identify the
members of V , preferring the former when referring to the conflict-graph aspect of the KPCG
and the latter when referring to its knapsack aspect. We will use the word node only when
referring to a node of the branch-and-bound tree.

Throughout the paper, we call a subset of vertices a clique if every pair of its vertices
are neighbors. We denote by G = (V,E) the complement graph of G, where E is the
set of nonedges of G, i.e., E = {e = {i, j} with i, j ∈ V : e /∈ E}. We call a subset
of vertices an independent set (or stable set) if it forms a clique in G. For each i ∈ V ,
we denote its neighborhood by N(i) := {j ∈ V : {i, j} ∈ E} and its antineighborhood by
N(i) := {j ∈ V : {i, j} ∈ E}. For each i ∈ V , δ(i) ⊆ E denotes the subset of edges incident
with i. For each U ⊆ V , we denote by G[U ] = (U,E[V ]) the graph induced by U , where E[U ]
corresponds to the subset of edges incident with two vertices in U .

Given a subset of items I ⊆ V , we denote their total profit and weight by:

p(I) =
∑
i∈I

pi and w(I) =
∑
i∈I

wi.

Notice that, for I to be a feasible solution to the KPCG, it must be an independent set and it
must satisfy w(I) ≤ c. Given any V̂ ⊆ V and ĉ ∈ R+ with ĉ ≤ c, we denote by KPCG(V̂ , ĉ)

2



the optimal solution value of the KPCG on an instance with vertex set V̂ , capacity ĉ, and
conflicts corresponding to the edges of G[V̂ ].

Throughout the paper, we assume that the vertices of G are sorted in nonincreasing order
of profit-over-weight ratio. That is, we assume that the vertex set V = {1, 2, . . . , n} is ordered
so to satisfy the following relationship:

pj
wj
≥ pj+1

wj+1

j = 1, . . . , n− 1. (1)

1.2. Illustrative Example

Figure 1 reports an illustration of a KPCG instance with 7 vertices and 5 conflicts (n = 7
and m = 5) and capacity c = 8. Part (a) depicts the conflict graph G along with the indices
of the vertices. Part (b) reports the profit and weight of each vertex separated by a comma
(first the profit and then the weight). The vertices in the independent set I = {1, 3, 7},
highlighted in red, correspond to an optimal KPCG solution (of value KPCG(V, 8) = 10).

3

2

1

7

6

5

(a)

4

3, 2

2, 1

3, 1

4, 5

5, 6

3, 3

(b)

4, 3

• n = 7 = |V |, m = 5 = |E|, c = 8

• p1
w1

= 3
1
≥ p2

w2
= 2

1
≥ p3

w3
= 3

2
≥ p4

w4
= 4

3
≥ p5

w5
= 3

3
≥ p6

w6
= 5

6
≥ p7

w7
= 4

5

Figure 1: (a) A conflict graph G with n = 7 vertices (items) and m = 5 edges (conflicts); the numbering
corresponds to the indices of the vertex set. (b) The profit and weight of each vertex are reported separated
by a comma; the independent set I = {1, 3, 7} (whose vertices are highlighted in red) is an optimal KPCG
solution, of value KPCG(V, 8) = 10 and total weight equal to 8.

1.3. Contributions and outline of the paper

In this work, we propose a novel combinatorial branch-and-bound algorithm for solv-
ing large instances of the KPCG which employs an n-ary branching scheme based on the

3



“branching and pruned set” approach. Our method effectively combines the two main as-
pects of the problem, its capacity (or KP) aspect and its conflict (or MWISP) aspect, by
relying on different bounding procedures for pruning the individual branch-and-bound nodes
as well as for reducing the number of child nodes that are generated during the branching
phase.

The paper is structured as follows. Section 2 summarizes previous works on the KPCG
and on closely related problems. Section 3 introduces three Integer Linear Programming
(ILP) formulations for the KPCG. The new branch-and-bound algorithm that we propose in
this paper is presented in Section 4. The bounding procedures used to reduce the size of the
branching tree are described in Section 5. The implementation details and an illustration of
the execution of the algorithm are reported in Section 6. The results of an extensive set of
experiments carried out to compare our algorithm to the state-of-the-art approaches and to
assess the relevance of its components are reported in Section 7. Finally, Section 8 draws
some concluding remarks and highlights directions for future works.

2. Previous and related works

The KPCG is originally introduced in [53], where the authors propose a local-search
and a branch-and-bound method, the latter based on the Lagrangian relaxation obtained by
dualizing the conflict constraints. In [21], a method is proposed which combines a primal
heuristic with a fixing procedure based on the lower bound provided by the former to reduce
the problem size, after which the (reduced) problem is solved via an ILP-based branch-and-
bound algorithm. A reactive-search method is proposed in [20], whereas [1] introduces a
heuristic based on an integer programming formulation, which also relies on the notion of
local branching [14]. In[22] and [19], a scatter-search and an iterative rounding search-based
heuristic are proposed, respectively. The state-of-the-art exact algorithm for solving large
instances of the KPCG is presented in [4]. It consists of a branch-and-bound algorithm based
on binary branching, relying on a fathoming procedure which combines a bounding technique
often used for solving the MWISP, see, e.g, [18], with the KP aspect of the KPCG.

Some work has been carried out for the case where the graph G has a special topology.
In particular, [36] presents pseudopolynomial-time algorithms capable of producing exact
solutions when G is either a chordal graph or a graph with bounded tree width, and illustrates
how to extend such algorithms to obtain fully polynomial-time approximation schemes. The
same paper shows, in contrast to the MWISP, which is polynomial-time solvable on perfect
graphs [17], that the KPCG is strongly NP-hard when G is perfect. This property does not
hold for every perfect graph though, since, as shown in [40], the KPCG is weakly NP-hard
when G is an interval graph.

As we mentioned, the KPCG arises as pricing subproblem when solving with branch-
and-price algorithms the BPP and the BPPC (adopting, for the former, a Ryan-Forster
branching scheme). In this context, [13] proposes a two-step algorithm which first applies
a greedy heuristic and then, if no column with negative reduced cost has been found, re-
sorts to solving the KPCG with a state-of-the-art ILP solver. In [11], the KPCG is tackled
by solving it directly using an ILP formulation. In [40], an exact approach based on a
depth-first branch-and-bound algorithm is proposed and, for the case where G is an interval
graph, a pseudopolynomial-time algorithm based on dynamic programming. In [51], an ex-

4



act (exponential-time in the worst case) label-setting algorithm is proposed which relies on
fathoming and dominance rules to reduce the search space. To the best of our knowledge,
the latter constitutes the state of the art when tackling the special type of KPCG instances
which arise when solving the BPP/BPPC with a branch-and-price method. As the authors
of [51] state, their algorithm does not compete with the one proposed in [4] when tested on
the (harder) instances used in the latter work.

Notwithstanding the large amount of works on the KP, see [33] for the state-of-the-art
method, as well as the surveys [27, 32], such works are highly problem-specific and often
difficult to extend to more general problems. Differently, many of the works on the MWISP
or on the Maximum Weighted Clique Problem (MWCP), which is obtained from the MWISP
by complementing G, have a general enough structure that lends itself well to extensions.
For surveys on these problems, we refer the reader to [52]. While many approaches based on
mathematical programming are known for solving the MWISP/MWCP, see [35, 6, 39, 2, 38,
15, 3, 7, 16, 8], the most efficient methods known in the literature for these problems and their
variants are based on combinatorial branch and bound, see [50, 42, 18, 34, 23, 48, 46, 47]. In
particular, for large instances, [47] and [46] are the state-of-the-art exact algorithms for the
cases with weights on the vertices and on the edges, respectively.

3. Integer Linear Programming Formulations for the KPCG

Before introducing our novel branch-and-bound algorithm, we present three Integer Linear
Programming (ILP) formulations for the KPCG. We will compare them to our algorithm from
a computational standpoint in Section 7.

Letting, for each item i ∈ V , the variable xi ∈ {0, 1} take value 1 if and only if vertex i
is part of the solution, a natural ILP formulation for the KPCG reads as follows:

max
x∈{0,1}|V |

∑
i∈V

pi xi (2)∑
i∈V

wi xi ≤ c (3)

xi + xj ≤ 1 {i, j} ∈ E. (4)

The objective function (2) corresponds to the total profit of the chosen items. Constraint (3)
imposes that the total item weight be no larger than the knapsack capacity c. Constraints (4)
impose that, from each edge {i, j} ∈ E of the conflict graph G, at most one vertex among i
and j be selected. We refer to this formulation as ILP1.

A reformulation, originally introduced in [9] for the MWCP, featuring fewer constraints
than ILP1 can be obtained by replacing Constraints (4), whose cardinality is m = O(n2), by
the following constraints, whose cardinality is only n:∑

j∈N(i)

xj ≤ |N(i)|(1− xi), i ∈ V. (5)

Constraints (5) prevent any vertex in the neighborhood of a vertex i ∈ V from being selected
if i is contained in the solution (this has to be the case since all vertices in N(i) are in conflict

5



with i). We refer to this formulation as ILP2. Note that, while featuring fewer constraints
than ILP1, the Linear Programming (LP) relaxation of ILP2 is no tighter than that of ILP1.
This is because Constraints (5) can be obtained by linear combination of Constraints (4)
(as, for each i ∈ V , the constraint among Constraints (5) corresponding to i is obtained by
linearly combining with unit weights the N(i) constraints in (4) corresponding to all edges
{i, j} ∈ δ(i)).

A third ILP formulation, originally proposed in [4], considers a collection C̃ (V ) of cliques
of G covering all the edges in E (i.e., such that, for each edge {i, j} of E, both i and j belong
to some clique C ∈ C̃ (V )). We refer to this formulation as ILP3. To obtain it, it suffices to
replace Constraints (4) by: ∑

i∈C

xi ≤ 1 C ∈ C̃ (V ). (6)

Constraints (6) impose that no more than a single vertex be selected from each clique
C ∈ C̃ (V ). The LP relaxation of ILP3 is at least as tight as that of ILP1 as, for each
of Constraints (4) in ILP1, ILP3 contains a constraint among those in (6) which features
more variables in the left-hand side while having the same right-hand side, thus being at
least as tight. Different heuristic procedures can be used for creating C̃ (V ), among which
the one proposed in [4].

4. A new combinatorial branch-and-bound algorithm

In this section, we describe our new combinatorial branch-and-bound algorithm for solving
the KPCG. The algorithm is based on an n-ary branching scheme relying on the notion of
“branching and pruned sets”, which we define in what follows. In particular, we rely on
several effective bounding techniques to reduce the size of the branching tree by pruning its
nodes.

The nodes of the branch-and-bound tree are obtained by adding to the current solution
one item at a time in a recursive fashion, avoiding any conflicting items and guaranteeing that
the capacity constraint be satisfied. Given a node of the tree, let Î ⊆ V be the independent
set corresponding to the partial solution associated with it. Let also LB be the value of the
incumbent solution Iinc. If, at any node, p(Î) > LB holds, both Iinc and LB are updated.

We denote by V̂ the set of vertices not in Î with the property that, if any vertex i ∈ V̂
is individually added to Î, the resulting set Î ∪ {i} remains an independent set. Formally, V̂
corresponds to the intersection of the antineighborhoods of the vertices in Î, i.e.:

V̂ :=
⋂
i∈Î

N(i). (7)

Notice that, by definition, V̂ contains all vertices which are potential candidates for branching.
In particular, V̂ is used to derive the branching and pruned sets, as we will describe later.
Throughout our algorithm, the elements of V̂ preserve the order introduced in (1) for V .
With each set V̂ , we associate a residual capacity defined as:

c(V̂ ) := c− w(Î). (8)

6



Such quantity corresponds to the knapsack capacity that is still available for selecting vertices
from V̂ after those in Î have been chosen. At each node of the branching tree, we update the
definition of V̂ by removing from it any vertex i ∈ V̂ with weight larger than the residual
capacity (i.e., with wi > c(V̂ )).

Our branching scheme relies on partitioning the vertex set V̂ into two subsets: the branch-
ing set B and the pruned set P . 1 The overarching idea is to determine a set P ⊆ V̂ of
vertices such that the incumbent solution cannot be improved by adding any feasible subset
of P to it. For a given set P , the set B is defined as P ’s complement, i.e., B := V̂ \ P .
Since at least one item from B is necessary to improve the incumbent solution, we can avoid
branching on any of the vertices in P at the current node of the tree. As a consequence, the
larger P the smaller the number of child nodes of a given branch-and-bound node.

After P and, consequently, B, have been determined, we carry out a |B|-ary branching
operation, creating a tree node per vertex i ∈ B by adding i to Î. The effective procedure
we adopt to construct a “small” branching set B and, therefore, a “large” pruned set P is
described in the next subsection.

4.1. Constructing the branching and pruned sets B and P : the PARTITION procedure

In principle, the largest pruned set P and the corresponding smallest branching set B
can be obtained by solving the following problem

P := arg max
P̄⊆V̂

{
|P̄ | : LB − p(Î) ≥ KPCG(P̄ , c(V̂ ))

}
and B := V̂ \ P (9)

which, unfortunately, can be computationally very hard. 2 Aiming at an efficient branch-and-
bound method, it is therefore crucial to design an efficient heuristic procedure for constructing
the set P .

The procedure we propose in this paper, which we refer to as PARTITION, is constructive
and relies on an efficient method for computing an upper bound UB(P ) on KPCG(P, c(V̂ ))
and for updating it alongside P . In particular, the procedure operates in a greedy fashion,
maintaining the following invariant:

LB − p(Î) ≥ UB(P ), (10)

which, as it is clear, implies LB − p(Î) ≥ KPCG(P, c(V̂ )). For each node of the branch-
and-bound tree, PARTITION starts by letting B := V̂ and P := ∅. It then, iteratively, takes
every vertex j ∈ B into account and checks if, by adding j to P (and removing it from B),
the following condition is satisfied:

LB − p(Î) ≥ UB(P ∪ {j}).

If this is the case, we let P := P ∪ {j}. If not, j remains in B and the next vertex in B is

1Similar branching schemes are used in the majority of the most effective combinatorial branch-and-bound
algorithms for the MWISP/MWCP and their variants, see, e.g., [25, 28, 29, 30, 41, 42, 43, 44, 45, 47].

2Indeed, the problem is a ΣP
2 -hard bilevel programming problem. This can be proved by following an

argument similar to the one used in [46] in the context of the maximum edge-weighted clique problem.

7



examined. The procedure stops when all vertices in V̂ have been examined.
The upper bound UB(P ) we rely on for constructing P is similar to those often used in

branch-and-bound algorithms for the MWISP/MWCP, see, e.g, [18, 29, 47]. It is obtained
by considering a relaxation of the formulation ILP3 with vertex set P which features only a
subset P(P ) of the collection of cliques in G[P ] forming a partition of the vertices, dropping
the capacity constraint in (3) as well as any integrality constraints on the variables. The
bound UB(P ) is provided by the following primal-dual pair of LPs:

max
x≥0

{∑
i∈P

pi xi :
∑
i∈C

xi ≤ 1, C ∈P(P )

}
= min

π≥0

{ ∑
C∈P(P )

πC : πC(i) ≥ pi, i ∈ P
}
,

where, for all i ∈ P , C(i) is the unique clique in P(P ) containing item i. The unique optimal
solution to the dual is obtained by letting π∗C := maxi∈C{pi}, which leads us to the following
clique partition upper bound:

UBC(P ) :=
∑

C∈P(P )

π∗C . (11)

We remark that, differently from our algorithm, the works in [18, 29, 47] consider a clique
cover of P , rather than a partition. While employing a cover could result in a tighter upper
bound, it would come at a higher computational cost, as it would require the generation of
a (much) larger number of cliques and it would not allow for a closed-form computation of
the bound.

In our algorithm, the PARTITION procedure constructs P(P ) iteratively alongside the
corresponding upper bound UBC(P ). When it halts, P corresponds to the union of the
vertices of the cliques that have been created. The procedure, which is inspired by the
greedy sequential independent-set coloring algorithm proposed in [42] for the MWCP with
unit weights, takes as input the set V̂ , the solution value LB of the incumbent, and the total
profit p(Î) of the solution Î that corresponds to the current branch-and-bound node. Key to
PARTITION is the notion of budget, defined as:

budget := LB − p(Î)− UBC(P ), (12)

which we use for checking whether an item i ∈ B can be added to P without violating the
invariant (10).

The PARTITION procedure builds the cliques in P(P ) one at a time. When building clique
C (starting from the empty set), it examines each vertex i ∈ B and checks whether C ∪ {i}
is a clique. If this is the case, it further tests whether, with the value of π∗C that would be
obtained by adding i to C, the value of budget would be nonnegative. If both conditions
hold, vertex i is removed from B and added to C and P . If not, vertex i remains in B and the
next vertex is examined. The procedure halts when either (i) no additional vertices in B can
be added to P without resulting in a negative budget (which implies that no more vertices
can be added to C without violating the invariant) or (ii) P = V̂ . Whenever the procedure
finds that adding a vertex i ∈ B to C would result in a negative budget, i is discarded as,
by construction of the algorithm, such vertex would lead to a negative budget even if it were
added to one of the cliques the procedure is yet to construct.

The PARTITION procedure considers the vertices in V̂ in reverse profit-over-weight order

8



(i.e., in reverse order w.r.t. the order in (1)). This way, P is more likely to contain vertices
with low profit-over-weight ratio, leaving those with a higher ratio in the set B. As we branch
by adding the vertices in B to the current solution Î one at a time, with this choice we are
more likely to obtain solutions with high profit at the earlier stages of the algorithm.

5. Bounding procedures for pruning individual nodes

In our algorithm, we consider different bounds for pruning individual nodes of the branch-
and-bound tree. They are of two families. The first family is based on the KP relaxation of
the KPCG that is obtained by dropping the conflict constraints. The second family relies
on the Multiple-Choice Knapsack Problem (MCKP), a special case of the KPCG in which
the conflict graph is a collection of pairwise disjoint cliques. 3 The MCKP has been widely
studied in the literature, see, e.g., [37, 49], and Ch. 11 of [27].

We remark that, in spite of the KPCG being stronglyNP-hard, all the bounds we consider
correspond to weaklyNP-hard problems (the KP and the MCKP) and to relaxations of either
of them which are computable in polynomial time. As better explained in the following, in our
algorithm we compute the polynomial-time bounds at each branch-and-bound node, while
we compute the weakly NP-hard ones only once (at the root node) in such a way that they
are valid in every node of the branch-and-bound tree, and store them in lookup-tables (see
Sections 5.1.1 and 5.2.1).

All the upper bounds that we introduce in the following are valid for KPCG(V̂ , c(V̂ ))
(the instance of the KPCG corresponding to the current branch-and-bound node with vertex
set V̂ and residual capacity c(V̂ )). A branch-and-bound node with vertex set V̂ can be
pruned whenever the upper bound on KPCG(V̂ , c(V̂ )) is less or equal than LB − p(Î) as, if
KPCG(V̂ , c(V̂ )) ≤ LB− p(Î), no subset of vertices in V̂ suffices to create a feasible solution
better than the incumbent.

We introduce the following notation, which will be used in the remainder. For a given
set V̂ of cardinality ` := |V̂ | ≤ n and with items respecting the order in (1), let α be a
function which, given the position j ∈ {1, . . . , `} of an item in V̂ , returns its index αj(V̂ ) in

V . An example of V̂ and its mapping is provided in Figure 4. Given V̂ , we define V̌ as the
superset of V̂ obtained by considering all the items in V of index, in V , greater than or equal
to α1(V̂ ) (which corresponds to the first item in V̂ ). Notice that there are as many sets V̌
as the number of items n, equal to {j, . . . , n} for all j ∈ V .

5.1. KP-based upper bounds

Consider the KP relaxation of the KPCG obtained by ignoring the conflict graph, namely
the following upper bound:

UBKP (V̂ ) := max
x∈{0,1}|V̂ |

{∑
i∈V̂

pi xi :
∑
i∈V̂

wi xi ≤ c(V̂ )

}
. (13)

3Notice that, while, traditionally, the MCKP asks for selecting exactly one item per clique, the problem
asking for selecting at most an item per clique can be reduced to the traditional one by adding a dummy
item to each clique with 0 profit and 0 weight.

9



At each branch-and-bound node, to avoid computing the bound (13) for the associated
vertex set V̂ (which would be too time consuming), we consider two strategies that are in
line the previous works [4, 40].

5.1.1. KP-based lookup-table upper bound

The first strategy derives an upper bound on (13) by considering a further relaxation of
the associated KP problem where, rather than V̂ , its superset V̌ is considered. The upper
bounds UBKP (V̌ ) of (13) associated with all possible sets V̌ (i.e., with all possible sets
{j, . . . , n}, j ∈ V ) and all possible capacity values s = {0, . . . , c} can be precomputed at the
root node of the branch-and-bound tree in O(n c) via the classical Dynamic Programming
(DP) algorithm for the KP, see, e.g., [32], and stored in a lookup-table. The DP algorithm
relies on the following recursive equation:

f(j, s) := max{f(j + 1, s), f(j + 1, s− wj) + pj},

where f(j, s) is the optimal solution value of a restriction of the problem to the items in
{j, . . . , n} and a capacity of s ≤ c. The recursion starts with j = n and proceeds backwards
(the next item of the recursion being j = n − 2). The function f(j, s) returns value 0 if
j = n+ 1 for all s ≥ 0 and it returns −∞ if s < 0. By accessing the lookup-table in position
j = α1(V̂ ) and s = c(V̂ ), we can recover the following KP-based lookup-table upper bound in
O(1):

UBL1(V̂ ) := f(α1(V̂ ), c(V̂ )). (14)

5.1.2. Martello-Toth upper bound

The second strategy considers the vertex set V̂ and it relaxes the integrality of the vari-
ables. For this purpose, we rely on the classical Martello-Toth upper bound valid for the
KP [31], which improves over the Dantzig upper bound (see, e.g., [32]). Let t be the po-
sition of the critical item in V̂ , i.e., the position in {1, . . . , |V̂ |} taken by the first (w.r.t.
the order in (1)) item in V̂ with the property that the total weight of the items in the
set {α1(V̂ ), . . . , αt(V̂ )} exceeds the residual capacity c(V̂ ) while the total weight of those
in the set {α1(V̂ ), . . . , αt−1(V̂ )} does not. Let c̄(V̂ ) be the difference between the residual
capacity c(V̂ ) and the capacity consumed by all the items preceding the critical one, namely:
c̄(V̂ ) := c(V̂ )−

∑t−1
j=1wαj(V̂ ). The Martello-Toth bound reads:

UBMT (V̂ ) := max

{
UB0(V̂ ), UB1(V̂ )

}
, (15)

where

UB0(V̂ ) :=
t−1∑
j=1

pαj(V̂ )+

⌊
c(V̂ )

pt+1

wt+1

⌋
and UB1(V̂ ) :=

t−1∑
j=1

pαj(V̂ )+

⌊
pt − (wt − c(V̂ ))

pt−1

wt−1

⌋
.

UB0(V̂ ) is an upper bound obtained when the critical item t (we assume t > 1 and t < |V̂ |)
is not part of the solution, whereas UB1(V̂ ) is an upper bound for the case where it is. The
upper bound UBMT (V̂ ) can be computed very efficiently, in O(|V̂ |) time.

10



We remark that, while UBL1(V̌ ) is defined for a superset of V̂ and retains the integrality
of the variables, UBMT (V̂ ) is defined for V̂ and considers continuous variables. Therefore,
the two bounds do not dominate each other.

5.2. MCKP-based bounds

Let P(V̂ ) be a clique partition of V̂ . We consider the following MCKP relaxation of the
KPCG which provides the following upper bound:

UBMCKP (V̂ ) := max
x∈{0,1}|V̂ |

{∑
i∈V̂

pi xi :
∑
i∈V̂

wi xi ≤ c(V̂ ),
∑
i∈C

xi ≤ 1, C ∈P(V̂ )

}
. (16)

As solving the MCKP in (16) at each branch-and-bound node (associated with the corre-
sponding vertex set V̂ ) can be computationally expensive, we consider different relaxations.
Before resorting to them, though, we check whether the problem in (16) can be solved in
closed form the set V̂ at hand.

Let, for each C ∈ P(V̂ ), i(C) := arg maxi∈C{pi} be the index of an item of maximum
profit in C (breaking ties by smallest weight). If {i(C)}C∈P(V̂ ) is a feasible solution, i.e.,
if it satisfies the capacity constraint, the optimal value of the MCKP instance in (16) is∑

C∈P(V̂ ) pi(C). If the condition is not satisfied, we resort to two upper bounds which we now
introduce.

5.2.1. MCKP-based lookup-table bound

Consider the superset V̌ = {j, . . . , n} of V̂ as done in Section 5.1.1, and a clique partition
P(V̌ ) of V̌ . The upper bound UBMCKP (V̌ ) on (16) associated with all sets V̌ and all possible
capacity values s ∈ {0, . . . , c} can be computed in O(n c) via a well-known DP algorithm for
the MCKP, see, e.g., [36]. The algorithm is based on the following recursive equation:

gj(s, `) := max

{
max

i∈C`:wi≤s

{
gj(s− wi, `− 1) + pi

}
, gj(s, `− 1)

}
, (17)

where gj(s, `) is the optimal solution value of the restriction of the MCKP obtained by
considering the first ` cliques (` ≤ |P(V̌ )|), their items, and a capacity of s ≤ c. The
recursion starts with ` = 1 and proceeds onwards (the next clique of the recursion being
`+ 1). The function gj(s, `) returns 0 if ` = 0 for all s ≥ 0.

Differently from the recursion of Section 5.1.1, where the lookup-table can be entirely
constructed in O(n c) by simply examining the items in reverse order of V̌ , in this case we
need to run the DP algorithm for the MCKP n times, once for each item j ∈ V . This
results in an O(n2 c) algorithm. Thus, we obtain the following MCKP-based lookup-table
upper bound:

UBL2(V̂ ) := gα1(V̂ )(c(V̂ ), h), (18)

where h := |P(V̌ )|, i.e., the number of cliques of the clique partitioning P(V̌ ) which is
uniquely determined by α1(V̂ ). For this reason, as for UBL1(V̂ ), UBL2(V̂ ) only depends on
α1(V̂ ) and on c(V̂ ). An example of the construction of this lookup-table is given in Section
6. By nature, since UBL2(V̂ ) considers the internal conflicts in each of the cliques which in
UBL1(V̂ ) are entirely ignored, it is stronger than the latter for any clique partition.

11



5.2.2. LP-relaxation-based upper bound

Consider the dual of the LP relaxation of the MCKP as defined in (16):

UBMCKP−LP (V̂ ) := min
π,β≥0

{ ∑
C∈P(V̂ )

πC + c(V̂ ) β : πC(i) + wi β ≥ pi, i ∈ V̂
}
, (19)

where the dual variables π and β are associated with the primal constraints of the MCKP.
This dual problem asks for covering the weight pi of each item i ∈ V̂ by either the variable
πC(i) associated with the unique clique C(i) containing i or by the variable β or by both.
Intuitively, β acts as a “super” clique covering each item proportionally to its weight but
having an objective function cost which, rather than unitary as for the π variables, is equal
to the capacity c(V̂ ).

Algorithms for solving either the dual problem (19) or its primal are known in the lit-
erature. They rely on the notion of slope. Considering the items in each clique C ∈ P(V̂ )
by nondecreasing weight and ignoring any dominated items (see [27] for further details), a
slope is associated with each pair of nondominated items j and j − 1 in each clique C and is
defined as follows:

sj :=
pj − pj−1

wj − wj−1

,

with sj =
pj
wj

if j is the first item of the clique.

In what follows, we sketch the algorithm to solve the primal problem which has inspired
the new bound that we propose in this section. The key idea, also see [27], is to start with
an empty solution and create a set of metaitems, one per slope. These metaitems have as
profit the difference of two consecutive items of a clique, and as weight the difference of the
weights. The algorithm then follows the standard Dantzig algorithm for the KP problem (see
[32]), inserting these metaitems in the knapsack in order of nonincreasing profit-over-weight
ratio and halting when the capacity is fully saturated. The effect of taking a metaitem is
that, by definition of its profit and weight, a swap is (implicitly) performed in the solution
to the original problem (defined over items, rather than metaitems), according to which the
j − 1-th item is replaced with the j-th of the corresponding slope. The algorithm runs in
O(|V̂ | log |V̂ |), since it requires to sort all the items as well as all the slopes.

Consider now Figure 2, where we report the slopes associated with the clique partition
C1 = {1, 2}, C2 = {3, 4}, C3 = {5, 6}, and C4 = {7} of the instance reported in Figure 1. In
C1, there is a unique metaitem associated with the slope s1 = 3

1
(since item 2 is dominated).

In C2, there are two metaitems associated with the slopes s3 = 3
2

and s4 = 4−3
3−2

. In C3, there

are two metaitems associated with the slopes s5 = 3
3

and s6 = 5−3
6−3

. Finally, in C4 there is a

single metaitem associated with the slope s7 = 4
5

(which is not depicted in Figure 2 as C4 is
a singleton).

After sorting, the Dantzig algorithm attempts to insert the metaitems in the knapsack
in the following order: s1 ≺ s3 ≺ s4 ≺ s5 ≺ s7 ≺ s6. It halts after examining the metaitem
with slope s7, by which the capacity of 8 units is fully saturated, adding 1

5
of this metaitem

to the solution. It then determines the optimal value β∗ = 4
5

as the slope associated with
the metaitem 7, which leads to the following value of the π variables: π∗C1

= 11
5

, π∗C2
= 8

5
,

π∗C3
= 3

5
, and π∗C4

= 0. The primal solution is x∗1 = 1, x∗4 = 1, x∗5 = 1, and x∗7 = 1
5
, with all

12



the other variables set to 0. The optimal solution value is 54
5

.

In the literature, algorithms such as [10, 54] are known for solving the dual (19) in O(|V̂ |)
by determining the optimal value β∗ of β (which can be shown to be equal to the slope of the
metaitem that is taken fractionally by the Dantzig algorithm). Such value is then used to
compute the optimal values π∗ of π in closed form. These algorithms, however, can be time
consuming in practice, especially if used at every node of the branch-and-bound tree—see
Section 7, where we report the computational results obtained with a version of our algorithm
modified to use the state-of-the-art implementation of the dual algorithm described in [37].

To reduce the computational effort, we propose a greedy heuristic which constructs a
good-quality dual solution very efficiently. The algorithm is inspired by the exact primal
algorithm we just illustrated but, differently from it, it does not require any sorting nor any
pre-processing phase in which dominated items are removed.

Specifically, our heuristic computes a (potentially suboptimal) value β̄ for β defined as
the ratio pj̄/wj̄ of what we call the MCKP-critical item j̄ ∈ V̂ . This item is obtained as

follows. The procedure keeps track of a clique profit p̄(C) for each clique in P(V̂ ) as well
as of a total residual capacity w̄. Initially, the clique profits are all set to zero and the total
residual capacity w̄ is set to c(V̂ ). Next, we iterate over the items in V̂ according to the order
in (1). Let j ∈ V̂ be the current item under consideration, and let C(j) be the (unique) clique
containing it. If pj ≤ p̄(C(j)), item j is discarded and the algorithm proceeds to examine the
next item. Otherwise, if wj ≤ w̄, the clique profit p̄(C(j)) is set to pj and the total residual
capacity w̄ is updated (reduced) as follows:

w̄ := w̄ −
(
pj − p̄(C(j)

) wj
pj
.

Note that the reduction corresponds to the fraction of the item weight which is necessary to
cover the difference in profit between pj and p̄(C(j)). If wj > w̄, i.e., if item j exceeds the
residual capacity, the algorithm halts and item j becomes the MCKP-critical item. Note that
such item always exists since, if the MCKP relaxation as defined in (16) admits an optimal
solution in which the capacity is not saturated, we always solve it to optimality in closed
form as described in Section 5.2.

Once the value β̄ is computed, and in order to obtain a complete feasible dual solution,
we determine the values π̄ of the π variables as follows:

π̄C := max

{
0,max

i∈C

{
pi − β̄ wi

}}
C ∈P(V̂ ). (20)

This leads us to the following partition-based upper bound :

UBp(V̂ ) :=

 ∑
C∈P(V̂ )

π̄C + β̄ c(V̂ )

 . (21)

While the computation of this bound requires the same time, O(V̂ ), as the dual algorithms,
it is extremely faster in practice and it produces very tight upper bounds for the instances
we consider (see Section 7).

13



w1

C1 = {1, 2}p

3

2

w

p C2 = {3, 4}

3

4

2 311
4

w

p C3 = {5, 6}

3

5

97
24

3 617
4

Figure 2: Demonstration of our greedy bounding procedure on the example of Figure 1.

We now demonstrate the way our new bound (21) is computed using the same example
depicted in Figure 1. Initially, the clique profits are set to 0 and the total residual capacity w̄
is set to 8 units. The procedure examines the items according to the order in (1), so that item
1 is selected first, resulting in a clique profit p̄(C1) = 3 and in a reduction of the total residual
capacity by w1, i.e., w̄ = 8−1 = 7. After item 2 is discarded (as its profit is smaller than p1),
the procedure considers item 3, which results in p̄(C2) = 3 and w̄ = 7− (3− 0) 2

3
= 5. The

next item to be processed is item 4, which results in p̄(C2) = 4 and w̄ = 5− (4− 3) 3
4

= 17
4

.
Item 5 is then added, resulting in p̄(C3) = 3 and w̄ = 5

4
. At this point, the total residual

capacity is strictly smaller than the weight of item 6. Thus, item 6 becomes the MCKP
critical item with β̄ = 5

6
and π̄C1 = 13

6
, π̄C2 = 3

2
, π̄C3 = 1

2
, and π̄C4 = 0. The resulting

bound is UBp(V̂ ) = 65
6

, which is very close to the optimal solution value 54
5

obtained with
the optimal value of β, equal to β∗ = 4

5
.

Figure 2 illustrates the behavior of our greedy procedure. In the part of the figure that
refers to C1, after items 1 and 2 are considered we can read the values p̄(C1) = 3 and w̄ = 1. In
the central part of the figure concerning C2, we can read the clique profit p̄(C2) = 4 and infer
the total residual capacity w̄ = 7 − 11

4
= 17

4
, which is obtained after examining items 3 and

4. Finally, in the rightmost part we can see that the capacity is fully saturated after taking
3
4
-th of item 6, which leads to a clique profit of p̄(C3) = 97

24
. Finally, the profit-over-weight

ratio of item 6 becomes β̄.

6. Outline of the algorithm and demonstration

In this section, we provide an outline of our new combinatorial branch-and-bound algo-
rithm, which we refer to as CFS (the acronym corresponds to the initials of the last names
of the three authors of this work). This algorithm consists of two phases: (i) a preprocess-
ing phase in which we compute an initial feasible solution and we reduce the size of the
input graph by pegging some of the vertices (see Section 6.1); (ii) a branch-and-bound pro-
cedure described in the previous sections which finds an optimal solution to the problem (see

14



Section 6.2 for the implementation details).

6.1. Preprocessing phase and heuristic algorithm

Before running the branch-and-bound procedure, CFS computes a heuristic solution by
resorting to two simple and fast heuristics. The first one is a greedy heuristic which considers
the items in nonincreasing order of profit-over-weight ratio and adds them to the solution
only if they do not conflict with the previously-added ones and as long as the capacity is not
exceeded. We run this heuristic n times, forcing, each time, one of the items in V to be in
the solution and storing the best solution found. The second heuristic is a diving heuristic
guided by the LP relaxation of ILP2 (which can be computed very efficiently, see Table 4).
Starting from the empty solution, the method iteratively solves the LP relaxation and checks
whether the first (in order of profit-over-weight ratio) fractional item can be added to the
current solution without violating any constraints. If this is the case, the item is added to
the current solution, whereas, if not, it is forced out of it. The method stops when no more
fractional items are available, thus finding a feasible heuristic solution.

After two two heuristics have been run, the initial lower bound LB is then set to the value
of the best solution found by either of them. Then, we compute the MCKP-based lookup-
table described in Section 5.2.1. These bounds are then used in every branch-and-bound
node of the tree.

The algorithm performs then an additional phase with the goal of pegging some items,
i.e., either eliminating them from the instance or forcing them to be in the solution of the
problem. For each item i ∈ V , we consider the following first pegging condition:

LB ≥ UB(N(i), c− wi) + pi, (22)

where as upper bound we adopt the one which, among the ones we introduced, is the tighest
on the problem instance restricted to the items in N(i) and to a capacity of c − wi. If the
condition is satisfied, we drop item i from V since no feasible solutions containing it can
improve on the incumbent (of value LB). For each item i ∈ V , we also consider the following
second pegging condition:

LB ≥ UB(V \ {i}, c), (23)

where as upper bound we adopt the one which is the tightest on the problem instance
restricted to the items in V \ {i} and to a capacity of c. If the condition is satisfied, we drop
item i from V and add it to the (partial) root-node solution Î (since any solution which can
improve on the incumbent must contain it).

6.2. Implementation details

During the exploration of the branching tree, CFS examines the vertex set V̂ induced by
the branching operations (see Section 4), attempting to prune its node by relying on the up-
per bounds proposed in Section 5. More precisely, it first computes the bound UBL2(V̂ ) (18)
(which can be read from the MCKP-based lookup-table). Next, it computes the bound
UBMT (V̂ ) (15). If both bounds are insufficient to prune the node, the PARTITION procedure
is called (ignoring the condition on the budget which would halt the procedure if the intro-
duction of any extra nodes were to make it negative) to compute a clique partition of the

15



entire set of vertices V̂ . Finally, we compute the bound UBP (V̂ ) (21) based on the obtained
partition.

If all these attempts fail, we resort to the branching operations described in Section 4.1,
which are based on the branching and pruned sets B and P constructed by the PARTITION

procedure. The nodes of the branch-and-bound tree are explored in a depth-first fashion and,
naturally, the recursion stops whenever the branching set B is empty.

Finally, let us mention that our implementation relies on a very efficient bitstring rep-
resentation to encode the conflict graph G as well as the sets of vertices V̂ and the clique
partitions.

6.3. Demonstration of the branch-and-bound algorithm CFS

We now illustrate in detail the operations carried out by the CFS algorithm on the instance
of Figure 1.

6.3.1. Preprocessing and upper bounds

The algorithm starts with an initial lower bound LB = 9, which corresponds to the
feasible solution {1, 3, 5}, of total weight 6. We use this solution for illustrative purposes.

Table 1 reports the KP-based lookup-table that is obtained by solving the KP relaxation
of the KPCG by dynamic programming (which is used to compute the bound UBL1 defined
in (14) of Section 5.1). For each pair (j, s), the table contains the optimal solution value of
the KP relaxation restricted to the items in {j, . . . , 7}, for all values of j = 7, 6, . . . , 1, and
to a capacity of s = 0, . . . , c (the capacity of the instance is 8). Notice that the items are
processed in reverse order, starting from the last item of index n = 7.

Table 2 contains the MCKP-based lookup-table that is obtained by solving the MCKP
relaxation of the KPCG by dynamic programming (which, in the algorithm, is used for
computing the bound UBL2 defined in (18) of Section 5.2.1). Let us consider the clique
partition

P(V ) = {C1 = {1, 2}, C2 = {3, 4}, C3 = {5, 6}, C4 = {7}}.

For each pair (j, s), the table contains the optimal solution values of the MCKP relaxation
restricted to items in {j, . . . , n}, for all values of j = 7, 6, . . . , 1, and to a capacity of s =
0, . . . , c = 8. The rows of this lookup-table are filled sequentially according to Equation (17)
and by considering the partition of the vertices in V̌ . In Table 3, we show how the row of
item 4 in Table 2 is obtained with the partition P(V̌ ) = {{4}, {5, 6}, {7}} from the row of
clique {7} of Table 3. In Table 3, we report in boldface the bounds which are strictly stronger
than the bounds showed in Table 1. It is worth noticing that the bound UBL2(V ) is equal
to 10 and that it corresponds to the optimal KPCG solution value.

During the preprocessing phase, the CFS algorithm eliminates item 2 thanks to the first
pegging condition (22), as LB = 9 ≥ UBL2(N(2)) + p2 = 7 + 2 = 9. Indeed, we have
N(2) = {3, 5, 6, 7} (equal to V̂ ), c(V̂ ) = c−w2 = 8− 1 = 7, and the bound can be read from
the MCKP-based lookup table in row j = 3 (which is the first element in V̂ ) and column
s = 7. Item 6 is eliminated in a similar fashion. None of the other items can be removed by
either of the pegging conditions (22), (23).

After the pre-processing phase, V̂ = V \ {2, 6} and the clique partition becomes P(V̂ ) =
{{1}, {3, 4}, {5}, {7}}. As far as UBP (V̂ ), as defined in (21) of Section 5.2.2 is concerned,
the value of β̄ is equal to 4

5
, which corresponds to the profit-over-weight ratio of item 7.

16



Table 1: KP-based lookup-table for the demonstration instance of Figure 1.

s = 8 s = 7 s = 6 s = 5 s = 4 s = 3 s = 2 s = 1 s = 0
Item 7 4 4 4 4 0 0 0 0 0
Item 6 5 5 5 4 0 0 0 0 0
Item 5 7 5 5 4 3 3 0 0 0
Item 4 8 7 7 4 4 4 0 0 0
Item 3 10 7 7 7 4 4 3 0 0
Item 2 10 9 9 7 6 5 3 2 0
Item 1 12 12 10 9 8 6 5 3 0

Table 2: MCKP-based lookup-table for the demonstration instance of Figure 1.

s = 8 s = 7 s = 6 s = 5 s = 4 s = 3 s = 2 s = 1 s = 0
Item 7 4 4 4 4 0 0 0 0 0
Item 6 5 5 5 4 0 0 0 0 0
Item 5 7 5 5 4 3 3 0 0 0
Item 4 8 7 7 4 4 4 0 0 0
Item 3 8 7 7 6 4 4 3 0 0
Item 2 9 9 8 6 6 5 3 2 0
Item 1 10 10 9 7 7 6 3 3 0

Table 3: Optimal solution values (for each possible value of capacity) of the MCKP relaxation for the clique
partition P(V̌ ) = {{4}, {5, 6}, {7}} for item 4 and the demonstration instance of Figure 1 .

s = 8 s = 7 s = 6 s = 5 s = 4 s = 3 s = 2 s = 1 s = 0
Clique {4} 4 4 4 4 4 4 0 0 0
Clique {5, 6} 7 7 7 4 4 4 0 0 0
Clique {7} 8 7 7 4 4 4 0 0 0

Accordingly, the values of the different π variables are π̄C1 = 11
5

, π̄C2 = 8
5
, π̄C3 = 3

5
, and

π̄C4 = 0. The bound UBP (V̂ ) is 54
5

.
After the preprocessing phase, the CFS algorithm starts exploring the nodes of the branch-

and-bound tree, which is reported in Figure 3. The CFS algorithm explores in a depth-first
fashion 8 nodes in total (including the root node). The incumbent solution is updated only
at node 3, where the algorithm finds the optimal solution {1, 3, 7}. Figure 3 reports, for each
node of the tree, the sets V̂ and Î. If a node is pruned, we report the value of the bound
which allowed for pruning it, whereas, if pruning did not take place, we report the branching
and pruned sets B and P . In the following section, we describe in detail the operations
performed by the CFS algorithm on the different nodes of the branching tree.

6.3.2. Processing the root node and the first node

At the root node, Î is the empty set and V̂ corresponds to the initial vertex set V
minus the items 2 and 6, which have been removed by the preprocessing procedure. The
attempt to prune the node fails since UBL2(V̂ ) = 10, UBMT (V̂ ) = 11, UBP (V̂ ) = 10
and all these upper bounds are greater than LB = 9. Therefore, the CFS algorithm starts

17



V̂ = V \ {2, 6}
Î = ∅
B = {1, 3, 4}
P = {5, 7}

p(Î) = 0, w(Î) = 0

LB = 9, UBC(P ) = 7

V̂ = {3, 4, 5, 7}
Î = {1}
B = {3, 4, 5}
P = {7}

p(Î) = 3, w(Î) = 1

LB = 9, UBC(P ) = 4

V̂ = {5, 7}
Î = {3}

UBL2
(V̂ ) = 5

pruned

V̂ = {5, 7}
Î = {4}

UBL2
(V̂ ) = 4

pruned

V̂ = {5, 7}
Î = {1, 3}
B = {7}
P = {5}

p(Î) = 6, w(Î) = 3

LB = 9, UBC(P ) = 3

V̂ = {5}
Î = {1, 4}

UBL2
(V̂ ) = 3

pruned

V̂ = ∅
Î = {1, 5}
B = ∅
P = ∅
p(Î) = 6, w(Î) = 4

V̂ = ∅
Î = {1, 3, 7}
B = ∅
P = ∅
p(Î) = 10, w(Î) = 8

LB = 10

Î ∪ 3 Node 6Î ∪ 1 Node 1 Î ∪ 4 Node 7

Î ∪ 3 Node 2 Î ∪ 4 Node 4 Î ∪ 5 Node 5

Î ∪ 7 Node 3

Figure 3: Branch-and-bound tree produced by the CFS algorithm when solving KPCG on the instance
reported in Figure 1.

18



the branch-and-bound phase by creating the branching and pruned sets B and P . The
execution of the clique-partitioning algorithm PARTITION (see Section 4.1) generates two
cliques: C1 = {7}, C2 = {5}, which lead to P := {5, 7}.

The clique-partition bound (as defined in (11)) is UBC(P ) = π∗C1
+ π∗C2

= 3 + 4 = 7 ≤
LB = 9. It is worth noticing that all the profits pi corresponding to items not in P are
strictly greater than the available budget, which is equal to LB − UBC(P ) = 2. For this
reason, the procedure PARTITION cannot further enlarge the set P and it halts. The initial
sets P and B are P = {5, 7} and B = {1, 3, 4}. Three nodes are then created by branching
on the items contained in B.

First, the algorithm branches on item 1, creating node 1, in which the set V̂ is {3, 4, 5, 7}
and the set Î is {1}. The attempt to prune the node fails because UBL2(V̂ ) = 7, UBMT (V̂ ) =
8, and UBp(V̂ ) = 7, and they are all greater than LB − p(Î) = 9− 3 = 6.

The execution of PARTITION generates the single clique C1 = {7}, which leads to the
branching and pruned sets P = {7} andB = {3, 4, 5} The clique-partition bound is UBC(P ) =
π∗C1

= 4 ≤ LB = 9. Since we have budget = LB − UBC(P )− p(Î) = 9− 4− 3 = 2 and all
the profits of the items in B are strictly greater than budget, the procedure halts. At this
point, branching is carried out on the items in B, generating 3 additional child nodes.

6.3.3. Processing the remaining nodes

In node 2, the set V̂ is {5, 7} and the set Î is {1, 3}. According to the mapping of the
vertices defined in Section 5.1, we have α1(V̂ ) = 5, α2(V̂ ) = 7. Part (a) of Figure 4 reports
in green the vertices in Î and in blue the vertices removed from the instance during the
pre-processing phase, whereas part (b) reports in red the vertices of V̂ . The branching Set
B is the singleton {7} and the pruned set P is the singleton {5}.

3

2

1

7

6

5

(a)

4

2α2(V̂ )=7

1

α1(V̂ )=5

(b)

Figure 4: (a) Instance graph with the set Î = {1, 3} of node 2 of the branch-and-bound tree (reported in
Figure 3) highlighted in green and the items eliminated during the pre-processing phase highlighted in blue.
(b) The graph G[V̂ ] induced by the vertices in the common anti-neighbourhood of the vertices in Î; the
vertices in V̂ = {5, 7} are highlighted in red and reindexed from 1 to |V̂ | = 2. The figure also reports the
mapping for each j ∈ V̂ to its index αj(V̂ ) in V , as explained in Section 5.1; dashed lines represent edges

(conflicts) involving vertices not in V̂ .

19



In node 3, the set V̂ is the empty set and the set Î is {1, 3, 7}. Therefore, the node
corresponds to a leaf of the branch-and-bound tree on which no further branching operations
take place. In this node, both the incumbent solution Iinc and the corresponding incumbent
solution value LB are updated.

In nodes 4, 6, and 7, the MCKP-based lookup-table bound is strong enough to prune the
nodes.

In node 5, V̂ becomes empty since the residual capacity of the node c(V̂ ) is 4, which is
greater than the 5 units of weight of item 7. Accordingly, both the branching and pruned
sets become empty.

As no further nodes are left, the CFS algorithm terminates.

7. Computational Experience

In this section, we present the results of an extensive computational campaign carried
out to assess the performance of our new branch-and-bound algorithm CFS. Our main goal
is threefold:

(i) comparing CFS to the ILP formulations presented in Section 3 (Section 7.1.1)

(ii) evaluating the strength and the impact of the different bounding procedures used by
CFS (Sections 7.1.2 and 7.1.3)

(iii) comparing the performance of CFS to the state-of-the-art algorithm from the literature
introduced in [4] which, in the following, we refer to as BCM; the implementation of BCM
has been kindly provided by the authors of [4] (Section 7.1.4).

The experiments are run on a 20-core Intel(R) Xeon(R) CPU E5-2690 v2@3.00GHz, with
128 GB of main memory, running a 64-bit Linux operating system. Both CFS and BCM are
implemented in C++, compiled with gcc 4.8.4 (with the -o3 optimization setting), and run
on a single core. On this machine, the performance of the algorithm dfmax, commonly used
for comparing the efficiency of machines with different hardware, is of 0.189, 1.155, and 4.369
seconds for the benchmark graphs r300.5, r400.5 and r500.5, respectively. Throughout
the section, all CPU times are reported in seconds. On each instance and each run, we
adopt a time limit of 600 seconds. The ILP formulations are solved using the state-of-the
art commercial MILP solver CPLEX, version 12.8.0 (called just CPLEX in what follows), run in
single-threaded mode, leaving all its parameters to their default value.

As main testbed for our experiments, we consider the instances tested in [4], which feature
conflict graphs with nine values of density, ranging from 0.1 to 0.9. The same set of instances
has been considered in other works, including [11, 13, 40]. In particular, all these instances
were obtained starting from the Bin Packing Problem instances proposed in [12]. We refer
to this testbed as the main testbed (results are reported in Section 7.1).

Along the lines of [4], we also consider a second testbed containing instances on which
BCM, which is a combinatorial branch-and-bound algorithm, is outperformed by the branch-
and-cut algorithm based on mathematical programming techniques implemented in CPLEX.
Similarly to BCM, CFS is not as efficient as CPLEX on these instances (while still resulting more
efficient than BCM). We report the experiments on those instances in Section 7.2. We refer to
this testbed as the very sparse testbed.

20



7.1. Results on the main testbed

The main testbed features instances belonging to one of eight types and to one of two
classes. Each of them is obtained adopting one of four capacity multipliers. The type
specifies the number of items and their weight structure, the class the profit structure, and
the capacity multiplier the value by which the capacity is scaled. In all instances of type one
to four, the items have weights uniformly distributed in [20, 100] and the (unscaled) knapsack
capacity c is equal to 150. In them, the number of items n (equal to the number of vertices
of the conflict graph |V |) is 120, 250, 500, and 1, 000, respectively. Instances of types five
to eight feature items with weights uniformly distributed in [250, 500] and c equal to 1, 000.
For these instances, the number of items n is 60, 120, 349, and 501, and each triplet of
items forms an exact packing (i.e., it perfectly fits the knapsack, saturating its capacity).
The two classes specify the way the item profits are determined. The instances of the first
class, the random class, which we identify by the letter “R”, feature items with random
profits uniformly distributed in [1, 100]. The instances of the second class, the correlated
class, which we identify by the letter “C”, feature items with correlated profits equal to
pi = wi + 10, i = 1, . . . , n. As to the capacity multiplier, according to [4] we consider
instances with: (i) the original capacity (150 or 1, 000, based on the instance type) (ii) three
times the original capacity, and (iii) ten times the original capacity. Since high values of the
knapsack capacity c tend to make the instances harder to solve, in this work we also consider
a fourth setting leading to more challenging instances: (iv) fifteen times the original capacity.
When referring to an instance in the main testbed, the natural number that follows the letter
C or R identifies the multiplier adopted for the knapsack capacity. For each choice of type,
class, and multiplier, the testbed contains 90 instances (10 instances for each of the 9 density
values of the conflict graph), comprising, overall, 5760 instances.

7.1.1. Performance of the ILP formulations

First, we experiment with the three ILP formulations ILP1, ILP2, and ILP3, which we
presented in Section 3, and assess the strength of their LP relaxations, which we denote by
LP1, LP2, and LP3. We recall that, as mentioned in Section 3, for the construction of the
clique collection C̃ (V ) for ILP3 we adopt the procedure proposed in [4]. For this experiment,
we consider a subset of instances of the main testbed of class C, capacity multipliers 1, 3,
and 10, and one instance for all eight types and nine densities. The subset contains a total
of 216 instances.

When comparing the three ILP formulations by solving them with CPLEX, we observe
that CPLEX manages to solve 168 instances with ILP1 (77%), 175 with ILP2 (81%), and 157
with ILP3 (72%). The results are better summarized in the performance profile in Figure 5,
which provides a graphical representation of the relative performance of CPLEX with the three
formulations.4 The figure confirms that the best performances are obtained with ILP2.

4For each instance, we compute the normalized time τ as the ratio of the computing time of the considered
algorithm (which is ∞ if the instance is not solved to optimality) over the minimum computing time taken
by all the algorithms we tested. For each value of τ on the horizontal axis, the vertical axis reports the
percentage of instances for which the corresponding algorithm spent at most τ times the computing time of
the fastest algorithm. At τ = 0, the value of the curves is equal to the percentage of instances in which the
corresponding algorithm has proven to be the fastest. At the right end of the chart (for τ approaching ∞),

21



 0

 20

 40

 60

 80

 100

 1  10  100

%
 o

f 
in

s
ta

n
c
e
s

�

ILP1

ILP2

ILP3

Figure 5: Performance profile comparing the three ILP formulations ILP1, ILP2, and ILP3 on a subset of
instances of the main testbed.

To better understand why ILP2 outperforms the other two formulations, we have assessed
the strength of the three corresponding LP relaxations. Table 4 reports the computing time
needed to solve each of them, aggregating the instances by class, capacity multiplier, and
density. Average results over eight instances are reported for each combination of the three.
As the table shows, the optimality gaps obtained with the three LP relaxations become very
large for larger values of the capacity multiplier as well as for larger values of the graph
density.

It is worth mentioning that these gaps, as well as all the gaps reported in the following
sections, are computed, for each instance, as the percentage difference between the value of
the upper bound and the optimal solution value. In order to be able to fairly compare the
gaps, we use as denominator the optimal solution value of the instance. In case an instance
is not solved to optimality, the gap is computed by resorting, rather than to the optimal
solution value, to the best solution value found by any of the algorithms presented in this
work.

By looking at Table 4, on, for instance, the C instances with density equal to 0.6 and a
capacity multiplier ranging from 1 to 10, the average gaps range from 3.26% to 192.52% for
LP1, from 3.84% to 196.00% for LP2, and from 1.68% to 113.68% for LP3. Similarly, on the
C instances with capacity multiplier equal to 10 and for densities ranging from 0.1 to 0.9,
the average gaps range from 5.69% to 417.94% for LP1, from 7.22% to 424.42% for LP2, and
from 2.09% to 234.97% for LP3.

When comparing the average strength of the three bounds and the corresponding average
gaps over all instances used in this experiment, the table shows that the gaps obtained
with LP1 (63.6% on average) are smaller than those obtained with LP2 (65.4% on average),
although not by a large margin. Moreover, it shows that this small improvement comes
at a computing time of, on some instances, about two orders of magnitude larger, with an
average of 0.7 seconds with LP1 and one of 0.01 seconds with LP2. The gaps obtained with

each curve corresponds to the percentage of instances solved by a specific algorithm. The best performance
is achieved by the algorithm whose curves occupy the upper part of the chart.

22



LP3 are smaller (37.36% on average) than either of those obtained with LP1 and LP2 but,
unfortunately, solving LP3 can be extremely time consuming (up to about three and a half
orders of magnitude more), with an average computing time of 3.9 seconds.

For these reasons, we will adopt LP2 as the baseline for assessing, in the next set of
experiments, the strength of the bounds we introduced in Section 5 for our novel algorithm
CFS.

Table 4: Performance of the upper bounds provided by LP1, LP2, LP3 (subset of instances).

LP1 LP2 LP3

class/mult dens time LP gap time LP gap time LP gap

C1 0.1 0.11 0.73 0.00 0.82 1.04 0.73

0.3 0.30 1.62 0.01 2.14 3.75 1.55

0.6 1.01 3.26 0.01 3.84 6.22 1.68

0.9 1.38 10.31 0.02 10.97 4.75 5.63

C3 0.1 0.11 0.64 0.00 1.54 0.99 0.57

0.3 0.27 3.75 0.01 5.04 3.63 1.99

0.6 1.05 14.70 0.01 16.12 6.67 9.75

0.9 1.36 59.66 0.02 61.48 5.11 45.81

C10 0.1 0.10 5.69 0.00 7.22 0.99 2.09

0.3 0.28 52.87 0.01 54.81 3.59 29.87

0.6 0.83 192.52 0.02 196.00 5.98 113.68

0.9 1.22 417.94 0.03 424.42 4.77 234.97

7.1.2. Assessing the strength of the upper bounds adopted in CFS

We now assess the strength of the different bounds we introduced in Section 5, aiming at
understanding which ones are better suited for their adoption in our CFS algorithm. For this
experiment, we take into account a subset of instances of the main testbed of both classes C
and R, of types 1, 4, 5, and 8 and with capacity multiplier of value 1 and 15.

Using the LP relaxation LP2 as baseline, we compare the tightness of two KP-based
upper bounds, i.e., the Martello-Toth bound UBMT (15) and the KP-based lookup-table
bound UBL1 (14), and of four MCKP-based upper bounds, i.e., the MCKP-based lookup-
table bound UBL2 (18), the partition-based bound UBP (21), the bound obtained by solving
to optimality the LP relaxation of the MCKP relaxation of the KPCG (18), which we refer
to here as UBP̃ , and the bound obtained by solving to optimality the unrestricted (i.e., with
integer variables) version of the MCKP relaxation of the KPCG (16), which we refer to here
as UBP ∗ . The latter two are computed via the MCKNAP.c code developed by Pissinger, which
is available online.5

It is important to mention that while UBMT , UBL1 , UBL2 , and UBL2 can all be obtained
in a negligible amount of computing time, UBP̃ and UBP ∗ require a higher computational
effort. Since in CFS these bounds are employed as a pruning mechanism at each node of the
branch-and-bound tree, in order to obtain an efficient algorithm it is crucial that the time
spent to compute them bounds be extremely small.

5 http://hjemmesider.diku.dk/~pisinger/codes.html

23



We measure the quality of the upper bound in Tables 5 and 6. The results are reported
aggregated by class, capacity multiplier, and type in Table 5, and by class, capacity multiplier,
and density in Table 6. For each combination of these, we report average results obtained
over nine instances (one per value of density) in Table 5, and over eight instances (one per
type) in Table 6.

As to the KP-based bounds, the tables show that UBMT is often close to LP2 when the
capacity multiplier is equal to 1, whereas UBMT becomes substantially worse than LP2 when
the capacity multiplier is equal to 15 (on, in particular, instances of type 1, 4, and 5). UBL1

is, by construction, at least as tight as UBMT and, as the table shows, their difference, while
observable for low-capacity instances with a multiplier of 1 and a large density, is not too
pronounced. UBL1 turns out to be stronger than LP2 on instances with a small capacity
multiplier and, in particular, a low density. As to the MCKP-based bounds, the tables show
that these are always tighter than the KP-based ones (UBL2 is, by construction, at least
as tight as UBL1), and that they are much stronger than LP2. When comparing them, we
observe that the MCKP-based lookup-table bound provided by UBL2 may differ from the
optimal solution value of the MCKP relaxation UBP ∗ by being (see the C15 instances) tighter
than it. This is because, in our implementation, UBL2 is enhanced by considering a second
clique partition which is constructed by taking the vertices (items) into account greedily
according to a non-decreasing profit-over-weight ratio, i.e., in reversed order w.r.t. the order
introduced in (1). The MCKP-based lookup-table bound which we report in Tables 5 and 6
(which is used in CFS) is set to the best among the values provided by both partitions. It
follows that UBL2 is at least as tight as UBP ∗ , as the latter only considers one of the two
partitions.

We conclude this set of experiments with Table 7, which compares the results obtained
with CFS to those obtained with a modified version of the algorithm which employs as MCKP-
based bound either UBP̃ or UBP ∗ , rather than UBP . In this table (as well as in the other
ones in the remainder of the paper), the number of steps reported for CFS refers to the number
of calls to the recursive procedure. It is worth noting that the recursion is implemented with
a lookahead of one step thanks to which the leaf nodes of the branch-and-bound tree do not
count as steps. A similar implementation detail is described in [46].

The table shows that, while the adoption of these two tighter MCKP bounds reduces, in
general, the number of steps (for, in particular, low-density instances), this reduction comes
at a high computational cost which, ultimately, results in a smaller amount of instances being
solved within the time limit. This set of experiments suggests the adoption in CFS of UBMT ,
UBL2 and UBP , which achieve a good trade-off between strength and computational burden,
allowing, as we will better show in the remainder of the section, for an effective algorithm
for solving the KPCG.

7.1.3. Assessing the impact of the different components of our branch-and-bound algorithm

Based on the experimental analysis we illustrated before, our implementation of CFS relies
on three upper bounds: UBMT , UBL2 and UBP . We now report the results of an experiment
carried out to assess the impact on the overall performance of CFS of each of these three
bounds. We experiment with four variants of CFS which employ either only two of the three
bounds or none of them, namely:

• CFS no UBMT , obtained by removing the bounding procedure based on UBMT

24



Table 5: Gap of the upper bounds on C and R instances grouped by class (subset of instances).

KP-based upper bound MCKP-based upper bounds

class/mult type LP2 UBMT UBL1
UBL2

UBP UBP̃ UBP∗

C1 1 9.3 9.5 7.0 2.8 5.3 5.1 2.8
4 5.8 5.8 3.5 2.9 4.6 4.6 2.9
5 1.0 1.0 0.2 0.2 1.0 1.0 0.2
8 0.5 0.5 0.5 0.1 0.4 0.4 0.1

C15 1 508.6 1111.6 1111.6 114.4 161.6 161.6 161.6
4 1596.3 1647.4 1646.9 549.3 705.5 702.3 702.2
5 297.4 496.8 496.6 71.8 93.2 93.2 93.2
8 252.2 252.2 252.1 191.4 215.7 215.5 215.5

R1 1 34.0 34.7 31.2 12.0 15.0 14.9 12.0
4 27.2 27.3 25.9 14.1 15.4 15.3 14.1
5 27.3 27.5 7.1 5.3 19.2 19.2 5.4
8 26.6 26.6 5.3 3.7 24.4 24.4 3.7

R15 1 457.6 937.4 937.4 121.6 121.6 121.6 121.6
4 2260.4 2592.0 2592.0 579.0 579.0 579.0 579.0
5 256.4 519.5 518.6 65.3 65.3 65.3 65.3
8 487.6 495.7 495.4 231.7 231.8 231.8 231.7

Table 6: Gap of the upper bounds on C and R instances grouped by density (subset of instances).

KP-based upper bounds MCKP-based upper bounds

class/mult dens LP2 UBMT UBL1 UBL2 UBP UBP̃ UBP∗

C1 0.1 1.2 1.3 0.2 0.0 1.1 1.1 0.0
0.3 1.9 2.0 0.9 0.3 1.4 1.4 0.3
0.6 4.3 4.3 3.2 1.7 3.0 3.0 1.7
0.9 10.1 10.2 9.0 4.6 6.5 6.3 4.6

C15 0.1 112.8 174.7 174.7 91.5 103.1 103.1 103.1
0.3 374.8 510.7 510.6 218.0 268.1 265.2 265.2
0.6 810.8 1078.0 1077.8 270.7 349.0 348.9 348.9
0.9 1711.8 2224.6 2224.1 180.9 264.6 264.6 264.6

R1 0.1 13.5 13.6 2.1 0.8 12.2 12.2 0.8
0.3 16.9 17.0 5.4 2.2 12.9 12.9 2.2
0.6 29.3 29.5 17.1 8.5 19.1 19.1 8.5
0.9 64.6 64.8 51.2 25.5 33.3 33.1 25.5

R15 0.1 143.5 231.9 231.8 110.8 110.8 110.8 110.8
0.3 422.5 614.8 614.6 227.0 227.1 227.1 227.0
0.6 919.9 1294.8 1294.4 285.7 285.7 285.7 285.7
0.9 1948.9 2696.2 2695.6 195.7 195.7 195.7 195.7

25



Table 7: Comparison on a subset of instances of the main testbed between CFS and a version of CFS which,
as MCKP-based bound, employs either UBP̃ or UBP∗ .

CFS CFS with UBP̃ CFS with UBP∗

class/mult dens time solved steps time solved steps time solved steps

C10 0.1 41.4 47 1,771,531 67.1 43 762,894 108.0 46 81,694
0.2 79.0 50 12,464,774 160.1 45 8,795,802 0.4 30 44,285
0.3 1.6 50 377,895 2.3 50 377,895 3.4 50 377,895
0.4 11.5 70 1,862,474 13.9 70 1,862,474 17.7 70 1,862,474
0.5 28.8 80 3,010,873 33.6 80 3,010,873 39.6 80 3,010,873

R10 0.1 11.2 71 103,812 11.9 70 58,989 16.5 70 51,711
0.2 47.9 59 1,662,823 35.5 52 465,522 18.3 50 294,554
0.3 42.8 70 2,245,549 107.7 68 1,971,012 70.4 61 1,348,133
0.4 2.0 70 150,268 3.1 70 149,961 3.4 70 149,465
0.5 7.2 80 330,597 10.2 80 330,037 11.0 80 329,239

• CFS no UBL2 , obtained by removing the bounding procedure based on UBL2

• CFS no UBP , obtained by removing the bounding procedure based on UBP

• CFS basic, obtained by removing all three bounding procedures.

For this experiment, we consider 240 instances taken from the main testbed, of class C and
R, capacity multiplier of value 1, 3, and 10, all 8 types, and density up to 0.05.

By just looking at the number of instances solved within the time limit, we observe that
both CFS and CFS no UBMT solve 99 instances out of 114 (86.8%), that both CFS no UBL2 and
CFS no UBP solve 96 (84.2%), and that CFS basic only manages to solve 66 (57.9%). While
this shows that at least one of the three bounding procedures is needed for the computational
efficiency of CFS, those numbers may seem to indicate that the benefits of adopting all three
bounds rather than two of them are not too pronounced. This is not the case, though, as
one can see from the results summarized in the performance profile reported in Figure 6,
which considers the instances on which CFS basic takes at least 0.01 seconds to find an
optimal solution. Besides confirming that the performance of the CFS algorithm completely
deteriorates when (in CFS basic) all three bounding procedures are dropped, it shows that
even removing any of the three also leads to a substantial deterioration of the performance
of the algorithm.

A more detailed comparison between CFS and CFS basic is reported in Table 8, where
the instances are aggregated by class, capacity multiplier, and density (up to 0.5). For
each combination of the three, the table reports the average over 8 instances. The table
shows that the difference in performance between the two variants of the algorithm can be
extremely large, up to many orders of magnitude. As an example, we observe that CFS

manages to solve the R3 instances with density 0.2 in less than a second performing less than
200 steps, whereas for their solution CFS basic requires, on average, more than a minute and
more than 100 million steps. Over the whole subset of instances, the table suggests that the
difference between the two variants of the algorithm is particularly large on medium-capacity
instances with a capacity multiplier equal to 3 regardless of their class and of their density,

26



 0

 20

 40

 60

 80

 100

 1  10

%
 o

f 
in

s
ta

n
c
e
s

� 

CFS

CFS no UBMT

CFS no UBL2
CFS no UBP

CFS basic

Figure 6: Performance profile showing the impact of the three bounding procedures UBMT , UBL2
, and UBP

on the performance of the CFS algorithm on a subset of instances taken from the main testbed. The profile
is truncated at one order of magnitude (τ = 10).

further confirming that the impact of the bounding procedures on the performance of CFS is
substantial.

7.1.4. Comparison with the state-of-the-art algorithm BCM

In this section, we compare our algorithm CFS to the state-of-the-art algorithm BCM pro-
posed in [4], as well as to the ILP formulation ILP2 (solved with CPLEX) which, as observed
before, is the better-performing one of three ILP formulations on the main testbed.

 0

 20

 40

 60

 80

 100

 1  10  100  1000

%
 o

f 
in

s
ta

n
c
e
s

� 

CFS
BCM

ILP2

 0

 20

 40

 60

 80

 100

 1  10  100  1000

%
 o

f 
in

s
ta

n
c
e
s

� 

CFS
BCM

ILP2

Figure 7: Performance profile comparing CFS to BCM and ILP2 on the whole main testbed, with instances of
class C on the left and instances of class R on the right.

The results are summarized in the performance profiles reported in Figure 7. Besides
showing that, on the main testbed, the ILP2 formulation yields the worst performance among
the three solution methods, the two profiles clearly show that the CFS algorithm substantially
outperforms BCM. As an example, allowing for one order of magnitude more the time taken
by CFS, BCM manages to solve no more than 40% of the instances, whereas ILP2 only solves
less than 10% of them on both classes C and R. Allowing for two more orders of magnitude
the time taken by CFS, BCM reaches a plateau, still solving less than 90% of the instances,
whereas ILP2 only solves less than 20% of them. While the performance of BCM does not

27



Table 8: Performance of CFS when compared to CFS basic (subset of instances).

CFS CFS basic

class/mult dens solved time steps solved time steps

C1 0.1 8 0.0 1 8 0.0 83
0.2 8 0.0 4 8 0.0 1,477
0.3 8 0.0 4 8 0.0 1,262
0.4 8 0.0 6 8 0.0 1,134
0.5 8 0.0 10 8 0.0 1,132

C3 0.1 8 0.0 234 5 108.9 434,261,687
0.2 8 0.0 3,731 3 61.1 171,596,377
0.3 8 0.5 16,682 5 0.5 2,028,623
0.4 8 0.6 19,372 5 5.2 17,704,019
0.5 8 0.9 63,543 7 13.2 30,227,171

C10 0.1 5 41.5 2,079,125 2 30.4 61,662,582
0.2 5 97.2 15,589,771 4 33.5 12,152,384
0.3 5 1.7 422,801 5 1.1 461,864
0.4 7 12.7 2,128,162 7 8.7 2,271,613
0.5 8 29.3 3,079,190 8 19.7 3,338,595

R1 0.1 8 0.0 7 8 0.0 362
0.2 8 0.0 6 8 0.0 45
0.3 8 0.0 9 8 0.0 598
0.4 8 0.0 12 8 0.0 256
0.5 8 0.0 11 8 0.0 227

R3 0.1 8 0.0 102 4 0.8 2,189,786
0.2 8 0.0 185 6 63.1 102,960,668
0.3 8 0.0 657 6 2.7 3,385,209
0.4 8 0.0 400 7 6.2 2,545,807
0.5 8 0.0 1,096 8 18.4 3,832,851

R10 0.1 7 3.1 64,813 3 0.6 470,881
0.2 6 48.3 1,804,824 5 9.7 3,496,101
0.3 7 42.5 2,226,578 7 83.0 16,191,876
0.4 7 2.0 155,378 7 2.6 584,678
0.5 8 8.2 391,182 8 9.5 1,370,445

improve even if more time is allocated to it, the performance of ILP2 does improve, but very
modestly. Indeed, allowing for three orders of magnitude with ILP2 only about 40% of the
instances can be solved.

A further summary of the results is reported in Table 9, indicating the total number of
instances solved to optimality by each of the three methods within the time limit for different
combinations of class and capacity multiplier. In total, CFS manages to solve 5,389 instances
out of 5,760, whereas BCM successfully solves only 5,201 instances (188 less than CFS), and
CPLEX with ILP2 only 4,569 (820 less than CFS). More detailed results, reporting number of
instances solved, computing time, and steps/number of nodes can be found in the appendix in
Tables 11 and 12. Focusing on CFS and BCM (as CPLEX with ILP2 is substantially outperformed
by the other two algorithms in terms of number of instances solved and average computing
times), we observe that CFS substantially outperforms the state-of-the-art algorithm BCM.
When looking at some groups of instances such as, e.g., the C15 instances of type 1 and 5,
CFS is, on average, faster than BCM by more than 2 orders of magnitude and, for groups of
instances in which the two algorithms solve the same number, CFS always turn out to be
faster, not only on average, but even on each individual instance.

28



Table 9: Summary of the results obtained on all the instances in the main testbed. The results for the
algorithm that solved more instances are reported in boldface.

CFS BCM [4] ILP2

Class/Mult Solved Solved Solved

C1 720 720 720
C3 720 720 584
C10 617 552 446
C15 600 550 428

Total on C instances (out of 2880 instances) 2657 2542 2178

R1 720 720 720
R3 720 720 680
R10 670 630 508
R15 622 590 483

Total on R instances (out of 2880 instances) 2732 2660 2391

Grand total (out of 5760 instances) 5389 5201 4569

7.2. Result on the very sparse testbed

We conclude this section by presenting computational results on the very sparse testbed,
which contains instances with very sparse conflict graphs on which BCM (which is a purely
combinatorial branch-and-bound algorithm) is outperformed by a branch-and-cut algorithms
based on mathematical programming, see [4]. This set was generated along the lines of the
sparser instances used in [21] and in [53]. They comprise graphs with densities equal to 0.001,
0.002, 0.005, 0.01, 0.02 and 0.05, a capacity of 1,000 and 2,000, and sets of 500 and 1,000
items, for a total of 24 groups of instances. All weights are sampled uniformly at random from
the interval [1, 100]. Each group contains 10 random instances (class R) and 10 correlated
ones (class C). The profits are randomly drawn in the former and defined as pj = wj + 10,
i ∈ N , in the latter. Overall, this dataset comprises 480 instances.

Thanks to extensive preliminary computational results, when comparing the performance
of CPLEX with the three ILP formulations ILP1, ILP2, and ILP3, formulation ILP1 turns
out to achieve the best performance. The performance of ILP3 is, while worse, almost
comparable, whereas ILP2 is completely outperformed by the other two. In light of this, we
will now compare, on this testbed, CFS and BCM to ILP1. The results are summarized in
Table 10, while more details can be found in Tables 13 and 14 in the appendix.

The results show that CPLEX with ILP1 manages to solve the largest amount of instances,
429 (89%), whereas BCM only solves 263 instances (54%), which is consistent with the results
reported in [4]. Interestingly, while not as efficient as CPLEX with ILP1 on this testbed,
CFS manages to solve 332 instances (69%), i.e., 69 more instances than BCM. Moreover, for
instances with density up to 0.005, the performance of CFS is comparable to the performance
of CPLEX with ILP1 and substantially better than that of BCM. When considering all the
instances with density up to 0.005 (240 in total), CPLEX with ILP1 manages to solve all of
them and CFS manages to solve all of them but four, whereas BCM fails to solve 29 of them.

One of the main reasons behind the very good performance of CPLEX with ILP1 is that

29



the LP relaxation of ILP1 provides a very strong upper bound when the conflict graph is very
sparse. Indeed, the LP-relaxation gap of ILP1, ILP2, and ILP3 is typically much tighter than
the gap we measured on the main testbed, being, on average, equal to, respectively, 2.8%,
10.8%, and 1.6%. The average computing times are 0.05 seconds for ILP1, negligible for
ILP2, and 0.18 seconds for ILP3. We remark that our algorithm heavily relies on the conflict
graph for reducing the search space after each branching operation and such reduction is
often very modest when the graph is extremely sparse. Moreover, the bounds offered by the
bounding procedures that we use, i.e., UBMT , UBL2 , and UBP , are weaker than the three
LP-relaxation bounds, being equal, on average, to 15.8%, 5.4%, 5.6%, respectively. It is
worth noticing that, when the conflict graph is very sparse, the clique partition adopted in
the MCKP-based bounds is very likely to contain very small cliques, thus only capturing a
fraction of the conflicts in the graph (only those among items in the same cliques), which
results in a weak bound. For these reasons, sparse graphs with densities between 0.01 and 0.05
are not suitable for being solved with our purely combinatorial branch-and-bound algorithm
CFS. On the contrary, when the conflict graph is extremely sparse, with densities up to 0.005,
the conflicts are almost irrelevant and the KP-based bounds are sufficiently strong, which
allows CFS to achieve a performance comparable to that of CPLEX with ILP1.

Table 10: Summary of the results obtained on all the instances in the very sparse testbed. The results for
the algorithm that solved more instances are reported in boldface.

CFS BCM [4] ILP1

Class/Capacity Solved Solved Solved

C1000 88 65 107
C2000 68 44 93

Total on C instances (out of 240 instances) 156 109 200

R1000 103 92 119
R2000 73 62 110

Total on R instances (out of 240 instances) 176 154 229

Grand total (out of 480 instances) 332 263 429

8. Conclusions

In this paper, we have addressed the Knapsack Problem with Conflict Graph (KPCG),
which is an important generalization of the classical Knapsack Problem to the case with
conflicts between pairs of items. The KPCG is particularly relevant as it often appears
as a subproblem when solving other well-known combinatorial optimization problems with
methods based on column generation, such as, e.g., the Bin Packing Problem or the Bin
Packing Problem with Conflict Graph. The KPCG is computationally very challenging,
and solving it via methods based on integer programming is hard for graphs with densities
between 0.1 and 0.9.

30



In this work, we have proposed a new purely-combinatorial branch-and-bound algorithm,
called CFS, which relies on the notions of branching and pruned sets and on a collection of
bounding procedures, based on different relaxations, for fathoming the nodes of the implicit
enumeration tree.

We have extensively assessed the performance of CFS on a large testbed of instances
typically adopted in the literature. The results show that, for graphs with densities equal to
0.1 or more, our algorithm clearly outperforms the state-of-the-art method proposed in [4]
as well as different integer programming formulations solved with CPLEX by, in some cases,
up to several orders of magnitude in terms of computing times.

Future lines of research may include the extension of the ideas proposed in this paper to
other generalizations of the Knapsack Problem with an underlying graph, modeling, for ex-
ample, precedence constraints, such as the Knapsack Problem with Precedences, see, e.g., [5].

References

[1] H. Akeb, M. Hifi, and M. E. Ould Ahmed Mounir. Local branching-based algorithms for
the disjunctively constrained knapsack problem. Computers & Industrial Engineering,
60(4):811–820, 2011.

[2] E. Amaldi, S. Coniglio, and S. Gualandi. Improving cutting plane generation with 0-
1 inequalities by bi-criteria separation. In International Symposium on Experimental
Algorithms, pages 266–275. Springer, 2010.

[3] E. Amaldi, S. Coniglio, and S. Gualandi. Coordinated cutting plane generation via
multi-objective separation. Mathematical Programming, 143(1-2):87–110, 2014.

[4] A. Bettinelli, V. Cacchiani, and E. Malaguti. A branch-and-bound algorithm for the
knapsack problem with conflict graph. INFORMS Journal on Computing, 29(3):457–473,
2017.

[5] N. Boland, A. Bley, C. Fricke, G. Froyland, and R. Sotirov. Clique-based facets for
the precedence constrained knapsack problem. Mathematical programming, 133(1-2):
481–511, 2012.

[6] J.-M. Bourjolly, G. Laporte, and H. Mercure. A combinatorial column generation algo-
rithm for the maximum stable set problem. Operations Research Letters, 20(1):21–29,
1997.

[7] S. Coniglio and M. Tieves. On the generation of cutting planes which maximize the
bound improvement. In International Symposium on Experimental Algorithms, pages
97–109. Springer, 2015.

[8] R. Corrêa, D. Delle Donne, I. Koch, and J. Marenco. General cut-generating procedures
for the stable set polytope. Discrete Applied Mathematics, 245:28–41, 2018.

[9] F. Della Croce and R. Tadei. A multi-kp modeling for the maximum-clique problem.
European Journal of Operational Research, 73(3):555 – 561, 1994.

31



[10] M. Dyer. An O(n) algorithm for the multiple-choice knapsack linear program. Mathe-
matical Programming, 29(1):57–63, 1984.

[11] S. Elhedhli, L. Li, M. Gzara, and J. Naoum-Sawaya. A branch-and-price algorithm
for the bin packing problem with conflicts. INFORMS Journal on Computing, 23(3):
404–415, 2011.

[12] E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. J. Heuristics, 2(1):
5–30, 1996.

[13] A. Fernandes Muritiba, M. Iori, E. Malaguti, and P. Toth. Algorithms for the bin
packing problem with conflicts. Informs Journal on computing, 22(3):401–415, 2010.

[14] M. Fischetti and A. Lodi. Local branching. Mathematical programming, 98(1-3):23–47,
2003.

[15] M. Giandomenico, F. Rossi, and S. Smriglio. Strong lift-and-project cutting planes for
the stable set problem. Mathematical Programming, 141(1-2):165–192, 2013.

[16] M. Giandomenico, A. N. Letchford, F. Rossi, and S. Smriglio. Ellipsoidal relaxations of
the stable set problem: theory and algorithms. SIAM Journal on Optimization, 25(3):
1944–1963, 2015.

[17] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[18] S. Held, W. Cook, and E. C. Sewell. Maximum-weight stable sets and safe lower bounds
for graph coloring. Mathematical Programming Computation, 4(4):363–381, 2012.

[19] M. Hifi. An iterative rounding search-based algorithm for the disjunctively constrained
knapsack problem. Engineering Optimization, 46(8):1109–1122, 2014.

[20] M. Hifi and M. Michrafy. A reactive local search-based algorithm for the disjunctively
constrained knapsack problem. Journal of the Operational Research Society, 57(6):718–
726, 2006.

[21] M. Hifi and M. Michrafy. Reduction strategies and exact algorithms for the disjunctively
constrained knapsack problem. Computers & Operations Research, 34(9):2657–2673,
2007.

[22] M. Hifi and N. Otmani. An algorithm for the disjunctively constrained knapsack prob-
lem. International Journal of Operational Research, 13(1):22–43, 2012.

[23] S. Hosseinian, D. B. M. M. Fontes, and S. Butenko. A nonconvex quadratic optimization
approach to the maximum edge weight clique problem. Journal of Global Optimization,
72(2):219–240, 2018.

[24] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182:105–142,
1999.

32



[25] H. Jiang, C. Li, and F. Manyà. An exact algorithm for the maximum weight clique prob-
lem in large graphs. In Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, pages 830–838, 2017.

[26] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

[27] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[28] C. Li, H. Jiang, and F. Manyà. On minimization of the number of branches in branch-
and-bound algorithms for the maximum clique problem. Computers & Operations Re-
search, 84:1–15, 2017.

[29] C. Li, Z. Fang, H. Jiang, and K. Xu. Incremental upper bound for the maximum clique
problem. INFORMS Journal on Computing, 30(1):137–153, 2018.

[30] C. Li, Y. Liu, H. Jiang, F. Many, and Y. Li. A new upper bound for the maximum
weight clique problem. European Journal of Operational Research, 270(1):66–77, 2018.

[31] S. Martello and P. Toth. An upper bound for the zero-one knapsack problem and a
branch and bound algorithm. European Journal of Operational Research, 1(3):169–175,
1977.

[32] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, Chichester, New York, 1990.

[33] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong bounds for the
0-1 knapsack problem. Management Science, 45(3):414–424, 1999.

[34] E. Maslov, M. Batsyn, and P. Pardalos. Speeding up branch and bound algorithms for
solving the maximum clique problem. Journal of Global Optimization, 59(1):1–21, 2014.

[35] G. Nemhauser and G. Sigismondi. A strong cutting plane/branch-and-bound algorithm
for node packing. Journal of the Operational Research Society, 43(5):443–457, 1992.

[36] U. Pferschy and J. Schauer. The knapsack problem with conflict graphs. Journal of
Graph Algorithms and Applications, 13(2):233–249, 2009.

[37] D. Pisinger. A minimal algorithm for the multiple-choice knapsack problem. European
Journal of Operational Research, 83(2):394–410, 1995.

[38] S. Rebennack, M. Oswald, D. Theis, H. Seitz, G. Reinelt, and P. Pardalos. A branch and
cut solver for the maximum stable set problem. Journal of Combinatorial Optimization,
21(4):434–457, 2011.

[39] F. Rossi and S. Smriglio. A branch and cut algorithm for the maximum cardinality
stable set problem. Operations Research Letters, 28(2):63–74, 2001.

[40] R. Sadykov and F. Vanderbeck. Bin packing with conflicts: a generic branch-and-price
algorithm. INFORMS Journal on Computing, 25(2):244–255, 2013.

33



[41] P. San Segundo and C. Tapia. Relaxed approximate coloring in exact maximum clique
search. Computers & Operations Research, 44:185–192, 2014.

[42] P. San Segundo, D. Rodŕıguez-Losada, and A. Jiménez. An exact bit-parallel algorithm
for the maximum clique problem. Computers & Operations Research, 38(2):571–581,
2011.

[43] P. San Segundo, F. Matia, D. Rodriguez-Losada, and M. Hernando. An improved bit
parallel exact maximum clique algorithm. Optimization Letters, 7(3):467–479, 2013.

[44] P. San Segundo, A. Nikolaev, and M. Batsyn. Infra-chromatic bound for exact maximum
clique search. Computers & Operations Research, 64:293–303, 2015.

[45] P. San Segundo, A. Nikolaev, M. Batsyn, and P. M. Pardalos. Improved infra-chromatic
bound for exact maximum clique search. Informatica, Lithuanian Academy of Sciences,
27(2):463–487, 2016.

[46] P. San Segundo, S. Coniglio, F. Furini, and I. Ljubić. A new branch-and-bound algo-
rithm for the maximum edge-weighted clique problem. European Journal of Operational
Research, 278(1):76–90, 2019.

[47] P. San Segundo, F. Furini, and J. Artieda. A new branch-and-bound algorithm for the
maximum weighted clique problem. Computers & Operations Research, 110:18 – 33,
2019.

[48] S. Shimizu, K. Yamaguchi, and S. Masuda. A branch-and-bound based exact algorithm
for the maximum edge-weight clique problem. In Computational Science/Intelligence &
Applied Informatics, CSII 2018, pages 27–47, 2018.

[49] P. Sinha and A. A. Zoltners. The multiple-choice knapsack problem. Operations Re-
search, 27(3):503–515, 1979.

[50] E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global optimization, 37
(1):95–111, 2007.

[51] L. Wei, Z. Luo, R. Baldacci, and A. Lim. A new branch-and-price-and-cut algorithm
for one-dimensional bin-packing problems. INFORMS Journal on Computing, page
Published online in Articles in Advance 01 Nov 2019, 2019.

[52] W. Wu and J.-K. Hao. A review on algorithms for maximum clique problems. European
Journal of Operational Research, 242(3):693–709, 2015.

[53] T. Yamada, S. Kataoka, and K. Watanabe. Heuristic and exact algorithms for the
disjunctively constrained knapsack problem. Journal of Information Processing (JIP),
43(9):2864–2870, 2002.

[54] E. Zemel. An O(n) algorithm for the linear multiple choice knapsack problem and related
problems. Information Processing Letters, 18(3):123–128, 1984.

34



Appendix

Tables 11 and 12 report the detailed results obtained on all the instances in the main
testbed obtained when comparing our algorithm CFS to the BCM algorithm and to the formu-
lation ILP2 solved with CPLEX. Tables 14 and 13 report the detailed results obtained on all
the instances in the very sparse testbed obtained when comparing our algorithm CFS to the
BCM algorithm and to the formulation ILP1 solved with CPLEX.

35



Table 11: Comparison of CFS, BCM, and ILP2 on all the instances o the main testbed (aggregated by type).

CFS BCM [4] ILP2

Class type solved time steps solved time nodes solved time nodes

C1 1 90 0.0 10 90 0.0 59 90 0.2 257

2 90 0.0 19 90 0.0 93 90 1.1 687

3 90 0.0 27 90 0.0 164 90 8.2 1,302

4 90 0.0 96 90 0.0 368 90 24.2 4,779

5 90 0.0 10 90 0.0 130 90 0.0 35

6 90 0.0 11 90 0.0 174 90 0.1 79

7 90 0.0 5 90 0.0 175 90 0.5 209

8 90 0.0 5 90 0.0 178 90 3.6 476

C3 1 90 0.0 390 90 0.0 1,931 90 1.5 2,236

2 90 0.0 1,845 90 0.1 11,076 90 25.8 23,911

3 90 0.1 12,293 90 1.3 79,608 54 162.8 179,946

4 90 1.6 117,433 90 27.3 768,841 21 141.9 194,077

5 90 0.0 170 90 0.0 800 90 0.2 277

6 90 0.0 442 90 0.0 2,697 90 2.0 3,035

7 90 0.0 1,751 90 0.1 13,847 90 46.5 45,063

8 90 0.0 8,139 90 0.6 87,145 59 35.3 106,971

C10 1 90 0.1 25,284 90 1.6 390,071 90 3.5 3,375

2 90 25.2 2,973,643 73 31.9 5,538,512 68 126.2 88,374

3 61 15.9 1,278,758 50 18.2 2,868,097 22 166.0 146,267

4 50 47.2 4,892,372 40 108.8 10,917,062 1 575.1 91,400

5 90 0.0 342 90 0.0 8,842 90 0.2 132

6 90 0.5 109,309 90 6.8 1,196,970 90 5.3 7,922

7 86 35.9 5,047,011 70 24.5 5,015,045 65 143.1 180,369

8 60 7.3 1,201,721 49 17.4 2,616,920 20 156.4 444,277

C15 1 90 0.3 94,719 90 20.5 4,630,800 90 2.8 2,450

2 80 27.8 5,710,907 70 26.4 5,389,661 60 112.3 110,218

3 60 6.9 1,079,724 50 19.2 2,868,097 20 238.1 71,065

4 50 48.5 4,892,372 40 114.6 10,917,062 - - -

5 90 0.0 342 90 0.0 8,842 90 0.2 132

6 90 0.4 124,867 90 24.3 5,331,239 90 3.8 4,214

7 80 23.9 4,870,992 70 24.4 5,015,045 58 134.3 152,075

8 60 7.4 1,201,721 50 18.4 2,831,336 20 126.5 161,151

R1 1 90 0.0 3 90 0.0 24 90 0.1 25

2 90 0.0 6 90 0.0 37 90 0.8 68

3 90 0.0 13 90 0.0 75 90 4.8 231

4 90 0.0 23 90 0.1 150 90 10.1 688

5 90 0.0 1 90 0.0 15 90 0.0 2

6 90 0.0 2 90 0.0 28 90 0.1 2

7 90 0.0 3 90 0.0 54 90 0.4 5

8 90 0.0 4 90 0.1 84 90 2.7 11

R3 1 90 0.0 42 90 0.0 277 90 0.4 464

2 90 0.0 115 90 0.0 863 90 5.0 2,840

3 90 0.0 465 90 0.2 4,036 90 55.1 24,645

4 90 0.1 1,942 90 2.3 20,494 50 127.2 73,543

5 90 0.0 17 90 0.0 107 90 0.1 32

6 90 0.0 44 90 0.0 302 90 0.5 625

7 90 0.0 132 90 0.0 1,044 90 5.0 3,933

8 90 0.0 479 90 0.2 3,907 90 64.7 28,637

R10 1 90 0.0 2,192 90 0.1 7,337 90 1.6 1,251

2 90 0.8 66,015 90 9.1 311,111 87 107.4 68,381

3 89 49.9 1,926,944 69 57.0 942,483 33 100.0 223,094

4 51 23.2 597,536 40 25.0 570,826 8 333.6 228,047

5 90 0.0 68 90 0.0 390 90 0.1 38

6 90 0.0 3,919 90 0.2 12,147 90 1.5 1,140

7 90 1.5 130,533 90 17.7 584,911 80 91.7 78,108

8 79 19.5 1,031,967 69 43.2 735,325 30 77.0 227,310

R15 1 90 0.1 19,800 90 0.4 35,524 90 1.6 1,264

2 80 2.4 317,410 80 26.1 1,365,483 82 136.6 61,441

3 70 38.7 2,743,028 60 28.5 1,313,975 26 256.8 67,955

4 50 12.9 559,601 40 22.6 785,357 - - -

5 90 0.0 68 90 0.0 396 90 0.1 37

6 90 0.0 8,913 90 0.3 23,126 90 1.6 1,267

7 82 11.1 672,291 80 20.9 972,270 79 126.7 80,363

8 70 21.3 1,283,377 60 20.1 806,071 26 207.3 180,780

36



Table 12: Comparison of CFS, BCM, and ILP2 on all the instances o the main testbed (aggregated by density).

CFS BCM [4] ILP2

Class dens solved time steps solved time nodes solved time nodes

C1 0.1 80 0.0 1 80 0.0 80 80 0.1 1
0.2 80 0.0 2 80 0.0 81 80 0.2 12
0.3 80 0.0 3 80 0.0 110 80 0.4 51
0.4 80 0.0 5 80 0.0 131 80 0.6 117
0.5 80 0.0 9 80 0.0 133 80 1.3 382
0.6 80 0.0 23 80 0.0 177 80 2.7 962
0.7 80 0.0 32 80 0.0 201 80 5.5 1,351
0.8 80 0.0 66 80 0.0 296 80 14.4 3,300
0.9 80 0.0 66 80 0.0 299 80 17.5 2,627

C3 0.1 80 0.2 48,344 80 0.3 4,218 77 11.2 42,906
0.2 80 0.1 5,216 80 2.4 39,115 79 26.7 17,391
0.3 80 0.4 15,303 80 6.6 109,139 72 27.7 36,378
0.4 80 0.5 20,283 80 9.1 198,950 66 41.3 75,282
0.5 80 0.5 34,620 80 9.6 349,663 52 74.6 163,642
0.6 80 0.2 25,993 80 3.9 256,177 50 41.9 152,269
0.7 80 0.1 8,477 80 1.0 96,129 50 11.0 84,391
0.8 80 0.0 1,892 80 0.2 26,353 66 68.4 41,079
0.9 80 0.0 145 80 0.0 6,945 72 27.2 11,619

C10 0.1 47 41.4 1,771,531 33 37.3 3,781,119 47 53.3 439,083
0.2 50 79.0 12,464,774 30 4.4 1,396,644 30 4.5 240,572
0.3 50 1.6 377,895 50 64.7 13,635,344 30 3.7 111,525
0.4 70 11.5 1,862,474 50 3.7 866,608 48 169.0 86,596
0.5 80 28.8 3,010,873 69 23.6 3,627,158 50 106.4 93,064
0.6 80 1.2 138,326 80 52.5 5,334,419 50 38.2 47,904
0.7 80 0.1 9,393 80 3.7 441,813 50 12.4 39,167
0.8 80 0.0 920 80 0.3 32,404 70 75.8 17,093
0.9 80 0.0 144 80 0.0 7,146 71 28.7 7,375

C15 0.1 30 2.0 609,281 30 129.5 28,335,387 30 1.6 200,530
0.2 50 81.0 16,550,640 30 4.6 1,413,573 30 3.7 97,639
0.3 50 1.6 377,895 50 67.1 13,653,789 30 3.6 78,495
0.4 70 11.7 1,862,474 50 3.8 866,608 48 146.7 62,181
0.5 80 29.6 3,010,873 70 24.9 3,765,881 50 94.4 59,007
0.6 80 1.2 138,326 80 55.2 5,334,419 50 32.4 31,024
0.7 80 0.1 9,393 80 3.9 441,813 50 13.6 23,249
0.8 80 0.0 920 80 0.3 32,404 70 79.4 10,799
0.9 80 0.0 144 80 0.1 7,146 70 36.4 3,368

R1 0.1 80 0.0 4 80 0.0 31 80 0.1
0.2 80 0.0 5 80 0.0 34 80 0.2 5
0.3 80 0.0 9 80 0.0 41 80 0.3 20
0.4 80 0.0 11 80 0.0 54 80 0.6 22
0.5 80 0.0 9 80 0.0 57 80 0.9 31
0.6 80 0.0 8 80 0.0 67 80 1.6 64
0.7 80 0.0 9 80 0.0 75 80 4.8 177
0.8 80 0.0 6 80 0.0 84 80 5.3 331
0.9 80 0.0 2 80 0.0 86 80 7.2 509

R3 0.1 80 0.0 90 80 0.1 269 80 0.1 20
0.2 80 0.0 231 80 0.1 1,225 80 1.0 279
0.3 80 0.0 335 80 0.4 2,900 80 10.9 3,152
0.4 80 0.0 595 80 0.7 5,340 78 35.6 15,568
0.5 80 0.0 783 80 0.8 7,908 70 23.3 28,598
0.6 80 0.0 845 80 0.6 8,380 70 46.3 40,878
0.7 80 0.0 521 80 0.3 5,545 70 53.4 35,082
0.8 80 0.0 194 80 0.1 2,424 74 45.2 20,093
0.9 80 0.0 48 80 0.0 919 78 31.2 7,890

R10 0.1 71 11.2 103,812 69 59.9 451,932 72 16.0 28,850
0.2 59 47.9 1,662,823 50 39.5 1,310,130 43 85.1 198,861
0.3 70 42.8 2,245,549 50 3.9 189,370 44 139.2 221,454
0.4 70 2.0 150,268 70 38.9 1,125,654 50 53.8 149,285
0.5 80 7.2 330,597 70 3.9 149,029 50 51.6 153,972
0.6 80 0.4 23,291 80 11.6 266,952 50 16.2 91,389
0.7 80 0.1 2,738 80 1.3 44,168 54 38.5 57,907
0.8 80 0.0 307 80 0.2 7,968 70 40.4 18,381
0.9 79 0.0 53 79 0.0 1,511 75 44.6 7,949

R15 0.1 32 24.8 1,314,639 30 1.6 142,708 42 127.9 108,082
0.2 50 6.1 778,386 50 70.7 3,441,505 39 96.7 83,026
0.3 70 57.9 3,883,815 50 4.0 264,416 50 125.0 63,217
0.4 70 2.1 155,236 70 37.9 1,623,716 50 39.5 45,185
0.5 80 7.7 338,821 70 3.6 186,837 50 38.9 64,570
0.6 80 0.5 23,309 80 10.6 368,299 50 17.9 39,013
0.7 80 0.1 2,738 80 1.1 53,851 62 107.7 30,982
0.8 80 0.0 307 80 0.2 9,164 70 61.6 8,017
0.9 80 0.0 53 80 0.0 1,629 70 34.0 2,256

37



Table 13: Comparison of CFS, BCM, and ILP1 on the very sparse testbed of correlated instances.

CFS BCM [4] ILP1

Items/Cap Density Solved Time Solved Time Solved Time

500/1000 0.001 10 0.0 10 0.0 10 0.0
0.002 10 0.0 10 0.6 10 0.0
0.005 10 0.2 10 6.7 10 0.0
0.01 10 0.8 9 103.3 10 0.0
0.02 10 56.7 1 272.7 10 0.3
0.05 1 165.8 0 - 10 90.6

500/2000 0.001 10 4.2 10 0.4 10 0.0
0.002 10 0.1 10 5.2 10 0.0
0.005 10 7.3 8 199.6 10 0.0
0.01 7 49.8 0 - 10 0.0
0.02 0 - 0 - 9 6.1
0.05 0 - 0 - 0 -

1000/1000 0.001 10 0.1 10 5.4 10 0.0
0.002 10 0.2 10 11.1 10 0.0
0.005 10 5.9 5 379.9 10 0.0
0.01 7 163.9 0 - 10 0.1
0.02 0 - 0 - 7 2.4
0.05 0 - 0 - 0 -

1000/2000 0.001 10 3.1 9 84.7 10 0.0
0.002 10 45.8 7 210.3 10 0.0
0.005 7 182.0 0 - 10 0.0
0.01 4 0.0 0 - 9 0.1
0.02 0 - 0 - 5 193.8
0.05 0 - 0 - 0 -

Table 14: Comparison of CFS, BCM, and ILP1 on the very sparse testbed of random instances.

CFS BCM [4] ILP1

Items/Cap Density Solved Time Solved Time Solved Time

500/1000 0.001 10 0.0 10 0.0 10 0.0
0.002 10 0.0 10 0.1 10 0.0
0.005 10 0.0 10 0.4 10 0.0
0.01 10 0.1 10 2.1 10 0.0
0.02 10 1.2 10 32.8 10 0.0
0.05 9 132.7 3 133.2 10 1.2

500/2000 0.001 10 0.0 10 0.1 10 0.0
0.002 10 0.0 10 0.3 10 0.0
0.005 10 0.1 10 2.4 10 0.0
0.01 10 10.4 9 190.7 10 0.0
0.02 3 116.5 1 39.6 10 0.1
0.05 0 - 0 - 10 81.2

1000/1000 0.001 10 0.0 10 0.4 10 0.0
0.002 10 0.0 10 1.6 10 0.0
0.005 10 0.1 10 16.8 10 0.0
0.01 10 15.0 8 152.6 10 0.1
0.02 4 125.7 1 468.8 10 0.6
0.05 0 - 0 - 9 255.0

1000/2000 0.001 10 0.0 10 2.3 10 0.0
0.002 10 0.0 10 20.3 10 0.0
0.005 9 69.5 2 189.9 10 0.0
0.01 1 565.8 0 - 10 0.1
0.02 0 - 0 - 10 2.1
0.05 0 - 0 - 0 -

38

View publication statsView publication stats


