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ABSTRACT
Dilatancy is of importance for understanding the micromechanical behavior of materials such
as cemented sand, mortar joints, and the interfaces of masonry-like structures. Rough interface
contacts are able to result in dilatancy and lead to an increase in the material’s volume. How-
ever, as far as the authors’ knowledge very few works are present regarding such phenomenon in
composite materials. The present work aims at investigating the effect of dilatancy on composite
materials with rigid particles connected by rough elastic interfaces. Different hexagonal shapes
as rigid particles are considered by a series of geometric parameters. The stiffness properties
of the rough interface can be obtained by employing a statistical distribution function of the
roughness termed contact density model. A homogenization procedure based on an energetic
equivalence criterion is used to derive the constitutive parameters. The homogenized continuum
results to be a micropolar continuum with an additional degree of freedom (the microrotation)
and is known to be able to give an effective result in modeling the behavior of materials with
micro-structures. A 2D plane slope composed of material with various roughness interfaces
is analyzed under the effect of dilatancy. This study shows the validity of the micropolar the-
ory when considering the rough microstructure, which is essential for capturing more realistic
behavior of composite materials.

1. Introduction
The presence of internal microstructures such as joints, cracks, and voids can complicate the studies on composite

materials, especially for themicrostructure with rough interfaces. Rough interfaces are able to induce a dilatancy effect,
namely bring coupling between normal and shear behavior, under load applied [1, 2]. The dilatancy effect has been
studied in granular materials [3, 4, 5], rock joints [2, 6, 7], mortar joints and brick-mortar interfaces [8] and porous
materials [9, 10]. However, there is scarce attention paid to the effect of dilatancy on composite materials, since it may
affect the macroscopic mechanical behavior.

Understanding the behavior of the microstructure especially with a rough interface is of importance in the study of
composite materials. Discrete element models in general can accurately predict the mechanical behavior of complex
materials, but this approach requires a huge computational cost [11, 12]. Alternatively, homogenizing such materials
as an equivalent continuum can provide fast and satisfactory results [13, 14, 15]. However, the successful application
of such approach needs to select proper continuum theory and homogenization method, transforming heterogeneous
materials to equivalent continua [16, 17, 18, 19, 20, 21].

When dealing with microstructured materials in which the internal lengths are not negligible compared to the
structural length scale, it is well-known that the classical and local Cauchy (grade 1) continuum is not able to sat-
isfactorily describe the real mechanical behavior of materials and can result in ill-posed problems. That is because
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this continuum ignores the internal length parameter. However, the mechanical properties for rough interfaces can
vary with scale [22, 23]. Therefore, non-classical and non-local continuum which can retain memory of the internal
structure of the material at a fine scale needed to be developed [24, 25]. In general, the non-local description can
be in two different ways [26, 27, 28]: the first is named explicit/strong non-local description obtained by adding ex-
tra parameters to account for the non-locality of material. This description does not change the classical kinematics
and introduced the evaluation of stress in proper neighborhood of the material points [29, 30, 31]; the second can be
named implicit/weak non-local description obtained by adding extra degrees of freedom. Among implicit non-local
continua, the micropolar continua can be included. Non-local models have been satisfactorily used for studies on com-
posite materials because they reveal microstructures that can influence macroscopic mechanical behaviors [32, 33, 34].
Non-local models allows to properly take into account size effects [15, 16, 17, 28, 35, 36, 37, 38, 39, 40].

The homogenization process is able to provide more reliable models when the classical continuum is equipped with
additional degrees of freedom (i.e. as the the implicit/weak non-local continua) [9, 26, 27, 28, 41, 42, 43]. A peculiar
strain measure of the micropolar model is the relative rotation between the macrorotation and microrotation that can
be used to investigate the micropolar effect. In the work [44], in agreement with the literature [45, 46, 47] it has been
shown that the micropolar effect is more evident when geometrical or load singularities exist such as concentrated
loads and holes.

For the microstructure with a rough interface, such as rough micro-cracks, dilatancy is needed to be considered
when analyzing the mechanical properties of materials. Many studies have demonstrated that roughness plays an
essential role in the interface behavior [6, 48, 49, 50]. On the contrary, for smooth interfaces, sliding dominates the
mechanism of shear. As the roughness of interface increases, interlocking and dilatancy could happen [51]. When the
volume of interface is constrained, the dilatancy can increase the normal stresses acting on the interface, which can
increase resistance of the interface [52]. Moreover, it was found that the shear behavior of the interface depends on the
roughness. Rough interfaces show a higher shear strength than smooth interfaces [53]. That is because the rougher
interfaces own higher interlocking that can mobilize strength of the contact material and thus they result to be more
resistant to shear [54]. The higher shear strength of rough interface can be also observed experimentally in previous
studies [48, 55, 56].

Based on a discrete (crack) interface with interlocking, several dilatancy models had been developed. Baggio
and Trovalusci [57] considered dilatancy for the analysis of friction in brick-block masonry structures. Bažant and
Gambarova [58] proposed a rough crack model which considered interfaces as triangular or saw-tooth asperity surface.
By optimizing the fits of test results, stiffness coefficients including dilatancy stiffness of this model can be obtained
as a function of tractions and displacement in normal and shear directions. As an improvement of the above model,
Gambarova and Karakoç [59] illustrated a better formulation for the relation between tractions and displacements. The
above models can be denoted as empirical models because they are based on experimental results and have empirical
formulations. Physical dilatancy models had also been proposed by assuming the shape of the rough interface. Two
representative physical dilatancy models can be the two-phase model by Walraven [60] and the contact density model
by Li et al. [61]. For modeling purposes, the contact density model is used in this paper to study the dilatancy effect
of rough interfaces. The detailed application of this model can be seen in Section 2.1.

The present work aims to investigate the dilatancy effect on composite materials made of hexagonal particles
and rough elastic interfaces. The dilatancy can result from the rough interface, of which the roughness is obtained
by assuming a density function for the interface shape. Three hexagonal geometries termed regular, hourglass, and
asymmetric are considered by changing geometry parameters of regular hexagon but keeping equal side length. 2D
composite assembly is homogenized as a micropolar continuum according to an energetic equivalence introduced for
the first time in [16]. Since the present homogenization consider the internal length scale, such effect is investigated
by selecting different scales of the particles. The simulations are performed on a slope case under load on a limited
area, using a standard finite element method based on the micropolar theory, with mixed interpolation functions for
the displacement (quadratic) and rotation (linear) fields. The results are presented in graphical form for displacements,
stresses, and relative rotation.

This work is structured as follows. After the introduction section, the methodology used in this paper is illustrated
in Section 2. Section 2.1 introduces the dilatancy model applied on rough interfaces and derives the formulations of
interface stiffness. Section 2.2 presents micropolar continuum model and introduces current quantities and symbols.
Section 2.3 gives the numerical finite element method for the micropolar continuum. Geometries of microstructured
composites are introduced in Section 2.4. Numerical simulations are presented in Section 3. Roughness and stiffness
matrices of interfaces are determined in Section 3.1. Section 3.2 reports the constitutive matrices of different RVEs for
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both micropolar and Cauchy models. Section 3.3 illustrates the numerical applications of a 2D slope case subjected to
loads and boundary conditions with different material configurations. Finally, conclusions and remarks are drawn in
Section 4.

2. Methodology
2.1. Dilatancy model

A rough interface in open state is able to transmit a significant amount of shear (aggregate interlock) [62]. This is
accompanied by dilatancy, which implies that when displacement is introduced along an open interface, not only shear
stress but also normal compressive stress are induced accompanied by the opening of the interface. Now consider an
open interface that is planar but microscopically rough as shown in Fig. 1. The interface constitutive relation can be
expressed as a function of total relative displacements [58]:

t =  (u) (1)
where  represents the vector of generic functions of the relative displacements to be defined according to the selected
model, t⊤ = [tn tt] is the interface stress vector and u⊤ = [Δun Δut] collects the relative displacements, where
subscripts n and t represent normal and tangential components. In the following function  is specified for a particular
case based on experimental evidence.

This relation (1) is assumed to be linear:
t = Ku (2)

where K indicates the stiffness matrix of the rough interface and the stiffness coefficients can be defined by:

K = t
( )
)u

)⊤ (3)

Li et al. [61] proposed a successful physical crack-dilatancy model called contact density model . In this model, the
roughness of a crack surface is idealized as a collection of segments (called contact units) each with a given inclination
(� ∈ [−�∕2, �∕2]) with respect to a horizontal crack plane. The overall distribution of these inclinations can be
described by a contact density function. The contact stresses are proposed to be fixed and act perpendicular to the
individual contact planes. This model is based on three assumptions:

• The density function Ω(�) is assumed as a trigonometric function independent on the size, the grading and the
strength of the interface aggregates.

• The contact stress is computed with a elastic-perfectly plastic model for the contact stress prediction �con. Aspointed out in previous studies [1], some friction is likely to be present. Therefore, shear contact pressure �sheis also considered.
• When the normal displacement Δun is larger enough than the surface roughness, an effective ratio of contact

areaH(Δun) represents the loss of contact area.
By transforming the contact pressures from the local coordinate to global coordinate, interface constitutive equation

(1) becomes:

t = ∫

�∕2

−�∕2

[

cos � − sin �
sin � cos �

] [

�con(u)
�she(u)

]

H(Δun)At Ω(�) d� (4)

where At represents the ratio between the interface area and sectional area of the interface plane, that in the followingwill be considered to be related to Ω(�) as:

At =

[

∫

�∕2

−�∕2
Ω(�) cos � d�

]−1

(5)
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Figure 1: Sketch of rough crack surface including definitions and notations in the contact density model.

The effective ratio of contact areaH(Δun) can be expressed by an exponential function:

H(Δun) = 1 − exp
(

1 −
0.5Gmax
Δun

)

≥ 0 (6)
where Gmax is the maximum aggregate size present at the material interface.

Please note that, the compressive stress tn and the closing displacement Δun are defined as positive, whereas the
shear stress and shear displacement are defined to be positive when the negative side of the contact plane (see Fig. 1)
moves towards the positive direction of the x axis.

In the following the contact density function Ω(�) takes the trigonometric form:
Ω(�) = AΩ cos � (7)

at the same time the relation below should be satisfied according to Li et al. [61]:

∫

�∕2

−�∕2
Ω(�) d� = 1 (8)

For instance, if AΩ = 0.5 thus At = 1.27 in order to satisfy Eq. (8), which means that the surface area is 1.27 times
of the sectional area of the interface.

The contact compressive �con and shear �she stresses acting on the crack interface is calculated using an elas-
tic–plastic constitutive law [61] expressed by

�con = Rs!� , �she = Rt�� (9)
where Rs and Rt are elastic rigidities per unit of length. According to Li et al. [61]:

Rs = Asfc� , Rt = �Rs, for � = G∕E (10)
where � is the ratio between shear and normal stiffness (generally between 1/3 or 1/2 for known values of Poisson
ratio for granular materials) and As and � are coefficients to be carried by experimental testing. fc is the compressive
strength of the joint (e.g. concrete, rocks, etc.). !� and �� are local normal and tangential displacements of the contact
surface. The coordinate transformation relation of displacements are:

!� = Δun cos � + Δut sin �
�� = Δun(− sin �) + Δut cos �

(11)
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From the above mentioned, the constitutive relation can be carried out by the contact density model (4), as well as
the stiffness matrix for open cracks with different roughness. The roughness is decided by three terms in the model
[1]:

• Gmax, the maximum size of aggregate. Larger aggregate sizes can correspond to higher roughness indexes.
• At, when At ≈ 1 interface is almost flat whereas higher values (recorded up to approximately 1.30) indicate

rougher surfaces.
• Ω(�), the contact density function, represents the distribution of unit surface direction. The direction distribution

has a larger density in the directions near ±�∕2 corresponding to the steeper direction or higher roughness of
the surface.

It should be noted that there is a relationship between Gmax and fc . The change in Gmax may also induce a change
in fc . In any case, approaches for estimating the surface roughness only based on the maximum aggregate size Gmaxshould be improved by also accounting for the influence of the surface strength [1]. But as suggested by Li et al. [61],
since the maximum size of coarse aggregate is much larger than the interface width, it is reasonable to presume the
effective ratio of contact area to be negligible. The value ofH(Δun) can be simplified to be unity. It can also be seen
that At is actually a function of Ω(�) (Eq. 5). Therefore, the effect of roughness can be investigated under different
Ω(�).

Here, contact surfaces with different roughness can be defined by considering different contact density functions
Ω(�). According to Eq. (4), the constitutive relations become:

tn = ∫

�∕2

�
(�con cos � − �she sin �)AtΩ(�) d�

tt = ∫

�∕2

�
(�con sin � + �she cos �)AtΩ(�) d�

(12)

where � is an angular parameter that can be set � ∈ [−�∕2, 0] and At ∈ [1, 1.3]. The stiffness coefficients are:

K11 = ∫

�∕2

�

(

)�con
)Δun

cos � −
)�she
)Δun

sin �
)

AtΩ(�) d�

K12 = ∫

�∕2

�

(

)�con
)Δut

cos � −
)�she
)Δut

sin �
)

AtΩ(�) d�

K21 = ∫

�∕2

�

(

)�con
)Δun

sin � +
)�she
)Δun

cos �
)

AtΩ(�) d�

K22 = ∫

�∕2

�

(

)�con
)Δut

sin � +
)�she
)Δut

cos �
)

AtΩ(�) d�

(13)

where K11, K22, and K12 are respectively the normal, shear and dilatancy stiffness of the interface. Then considering
Eq. (9), Eq. (13) becomes:

K11 = ∫

�∕2

�
(Rs cos2 � + Rt sin

2 �)AtΩ(�) d�

K12 = ∫

�∕2

�
(Rs − Rt) sin � cos �AtΩ(�) d�

K21 = ∫

�∕2

�
(Rs − Rt) cos � sin �AtΩ(�) d�

K22 = ∫

�∕2

�
(Rs sin

2 � + Rt cos2 �)AtΩ(�) d�

(14)
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where clearly K12 = K21 so the stiffness matrix is symmetric as expected. By considering Eq. (10), finally:

K11 = ∫

�∕2

�
Asfc

�(cos2 � + � sin2 �)AtΩ(�) d�

K12 = ∫

�∕2

�
�Asfc

� sin � cos �AtΩ(�) d�

K22 = ∫

�∕2

�
Asfc

�(sin2 � + � cos2 �)AtΩ(�) d�

(15)

As suggested by Li et al. [61], the contact units are in directions from � = arctan ΔunΔut
to �∕2. The region with

directions from −�∕2 to � = arctan ΔunΔut
give no contribution to the contact force. As Δun,Δut > 0, the integral range

should be within [0, �∕2].
2.2. Micropolar continuum

The micropolar (i.e. Cosserat) continuum has shown a good implementation in the investigation of mechanical be-
havior of microstructures [63, 64, 17]. This continuum, according to [28], belongs to the implicit non-local continuum
theories since it considers the microrotation of the material particles in addition to the classical (Cauchy continuum)
displacement field. For the sake of simplicity, a 2D framework of the micropolar continuum is considered in this study.
Therefore, there are three degrees of freedom (DOFs) for each material particle, i.e. two macro-displacements u1, u2and one microrotation !. By assuming a linearized kinematics, the kinematic compatibility equations can be written
as:

"11 = u1,1, "22 = u2,2, "12 = u1,2 + !, "21 = u2,1 − !, �1 = !,1, �2 = !,2 (16)
where "ij (i, j = 1, 2) are the components of the strain tensor and �i (i = 1, 2) are the micropolar curvatures, subscripts
,1 and ,2 stand for the partial derivatives with respect to x1 = x and x2 = y. It should be noticed that in the micropolar
model, the tangential strain components are not reciprocal, "12 ≠ "21. Note that, the microrotation (!) in this model
is different from the local rigid rotation (macrorotation, #), which is defined as the the skew-symmetric part of the
gradient of displacement # = 0.5(u2,1 − u1,2). The difference between macrorotation and microration (# − !), named
as relative rotation, can be a measurement to investigate the effect of the micropolar model.

The work conjugate stress and microcouple measurements �ij and �i for i, j = 1, 2 to "ij and �i, respectively.The stress components are not reciprocal, �12 ≠ �21. The stresses and microcouples should satisfy the equilibrium
at external boundary. Therefore, the surface traction ti and moment traction mi can be expressed as ti = �ijnj and
mi = �jnj , respectively. where nj is the components of the outward normal to the boundary. From the virtual work
principle, balance equations can be carried out:

�ij,j + bi = 0, �j,j − eij3�ij = 0 (17)
where bi are the body force components, eij3 is the permutation tensor. The linear 2D micropolar stress-strain relations
can be written in matrix form as:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�11
�22
�12
�21
�1
�2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A1111 A1122 A1112 A1121 B111 B112
A2211 A2222 A2212 A2221 B221 B222
A1211 A1222 A1212 A1221 B121 B122
A2111 A2122 A2112 A2121 B211 B212
B111 B122 B112 B121 D11 D12
B211 B222 B212 B221 D21 D22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

"11
"22
"12
"21
�1
�2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(18)

In the case of hyperelastic materials, the above constitutive matrix shows major symmetries as: Aijℎk = Aℎkij ,
Bijℎ = Bℎij , Dij = Dji (i, j, ℎ, k = 1, 2). The symbols Aijℎk = Aℎkij , Bijℎ = Bℎij , and Dij = Dji can be collected in
the matrices A, B, and D. Thus, the constitutive relation can be presented in a compact form as:

{

�
�

}

=
[

A B
B⊤ D

]{

"
�

}

(19)
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where the stress and microcouple components in the vectors:
�⊤ =

{

�11 �22 �12 �21
}

, �⊤ =
{

�1 �2
} (20)

similarly, the strain and micropolar curvature components are ordered as:
"⊤ =

{

"11 "22 "12 "21
}

, �⊤ =
{

�1 �2
} (21)

2.3. Finite element implementation
The 2Dmicropolar linear elasticity problem can be solved by a standard displacement-based finite element method.

The displacement and rotation components in the micropolar model are ordered as:
u⊤ =

{

u1 u2
}

, ! =
{

!
}

, d⊤ =
{

u !
} (22)

Based on the virtual work principle, the weak form of the current problem within a domain A and boundary Γ can
be written as follows to implement the finite element method,

∫
�"⊤� + ��⊤� d = ∫

�u⊤b d + ∫Γ
�u⊤t + �!⊤m dΓ ∀�u, �! (23)

where � is the variational operator, b is the body force vector. t and m are the traction and couple-traction vectors
applied on the boundary Γ.

It should be noted that lagrangian shape functions can be adopted because the number of equations is equal to the
number of kinematic parameters [65]. The displacement and microrotation fields can be approximated by interpolation
functions as

u = Nuũ, ! = N!!̃ (24)
whereNu andN! are the matrices of lagrangian shape functions for u and !. ũ and !̃ are nodal displacement and mi-
crorotation values of each element, respectively. In the present study, in order to avoid element locking, different shape
functions are considered for displacement and microrotation [40], i.e. bi-quadratic shape functions for displacements
and bi-linear shape functions for microrotations. Nine-node quadrangular elements are used in this study, thus, the
displacements at any point of element is approximated by values at all nine nodes, while the microrotation by values
at four corner nodes. The shape functions can be expressed in matrix form as:

Nu =
[

N1
u 0 … N9

u 0
0 N1

u 0 … N9
u

]

, N! =
[

N1
! … N4

!] (25)

where classical quadratic and linear shape functions are considered, respectively. The micropolar strains in Eq. (16)
can be given by:

" = Lu +M!, � = ∇! (26)
where, ∇ is the gradient operator, L andM can be expressed as:

L =

[ )
)x1

0 )
)x2

0

0 )
)x2

0 )
)x1

]⊤

, M =
[

0 0 1 −1
]⊤ (27)

Substituting Eq. (24) into Eq. (26), we can obtain:
" =

[

LNu MN!
] {

ũ !̃
}⊤ = B"d, � =

[

0 ∇N!
] {

ũ !̃
}⊤ = B�d (28)

where d is the unknown vector of nodal displacements. B" and B� represent the matrices including the derivatives of
the shape functions. Consequently, the constitutive relations Eq. (18) can be expressed as:

� = AB"d + BB�d, � = B⊤B"d + DB�d (29)
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Figure 2: General hexagonal assembly with RVE and single particle with geometric parameters �1 = 25◦, �2 = 45◦, �3 =
30◦, lr = 40.

Note that matrix B accounts for the coupling between classical and micro-polar effects. Finally, the weak form Eq.
(23) (by excluding body forces) of the present micropolar problem becomes:

�d⊤ ∫e

(

B⊤"AB" + B
⊤
"BB� + B

⊤
�B

⊤B" + B⊤�DB�
)

de

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ke

d = �dT ∫Γe

⎡

⎢

⎢

⎣

N⊤
u t

N⊤
!m

⎤

⎥

⎥

⎦

dΓe

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
F e

∀�d (30)

where Ke and F e represent the stiffness matrix and the nodal force vector of the adopted finite element for describing
a 2D linearly elastic micropolar body. The integral terms in Eq. (30) are computed by a classical Gauss-Legendre
integration with 3 × 3 grid. The solution is carried out by a classic Gauss elimination algorithm after a standard finite
element assembly procedure.

The above finite element method is implemented in an in-house finite element MATLAB code which has been
developed as an extension of a classical 2D Cauchy continuum as presented in [65].
2.4. Microstructure geometry

In this study, the equivalent micropolar model is considered to be made by hexagonal particles interacting by
rough elastic interfaces (microstructures). 7-blocks representative volume element (RVE) is selected as it gives more
accurate results than 4-blocks RVE [66]. As shown in Fig. 2, the single hexagonal particle is made of a parallelogram
and two isosceles triangles with the base attached to the two shortest opposite sides of the parallelogram as presented
in [64]. A general hexagon can be defined by a series of geometric parameters: three angle �1, �2, �3, the relative
length lr defined as the ratio between the length of AE (or BD) and the perpendicular distance between AE and BD,
and the particle scale s. From Fig. 2, the nodal coordinates of the single hexagon are: A = (0, 0), B = (l1, t), C =
(l1 + l5, t + l2∕2), D = (l1, t + l2), E = (0, l2), F = (−l4, l2∕2), where l2 = s(lr∕100), l1 = s − l2, t = l1 tan �1, l4 =
(l2∕2) tan �2, l5 = (l2∕2) tan �3.In the following simulations, three hexagonal patterns termed regular, hourglass, and asymmetric are considered
by fixing �1 = 0◦, lr = 100∕(1∕

√

3 + 1) and changing the below parameters as:
1. Regular: �2 = �3 = 30◦,
2. Hourglass: �2 = �3 = −20◦,
3. Asymmetric: −�2 = �3 = 30◦.
In the micropolar model, the mechanical behavior of microstructures can be retained by using the procedure in-

troduced in [16]. In order to investigate the effect of scale effect of microstructures, three scales are considered for all
three hexagonal RVE as s = 1.0, 0.5, 0.25.
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3. Numerical simulation
3.1. Roughness and stiffness

Contact density functions with different roughness (At) can be constructed based on the density function proposedin Eq. (7) to investigate the effect of dilatancy. Note that all these density functions satisfy the condition indicated in
Eq. (8). Following the form in Eq. (7), a general cosine-style contact density function can be formulated as:

Ω(�) = � cos (��) (31)
where � and � are coefficients. According to Eq. (8), Eq. (31) satisfies:

∫

a

−a
� cos (��) d� = 1 (32)

where the inclination angle � has to be distributed within the indicated domain with a ∈ [0, �∕2]. By solving Eq. (32),
we can obtain a = arcsin (�∕2�)∕�, thus, � should belong to [−2�, 2�]. It can be seen that � and a are both functions
of �. Here we set � = 2�, therefore a = �∕4�. By selecting � = 5, 0.8, 0.7, 0.6, 0.5, respectively, the selected contact
density functions are given below:

Ω1(�) = 5 cos (10�), |�| ≤ �
20

Ω2(�) = 0.8 cos (1.6�), |�| ≤ �
3.2

Ω3(�) = 0.7 cos (1.4�), |�| ≤ �
2.8

Ω4(�) = 0.6 cos (1.2�), |�| ≤ �
2.4

Ω5(�) = 0.5 cos �, |�| ≤ �
2

(33)

where not indicated, the functions are equal to zero, thus, they cannot take negative values. A graphical representation
of these functions can be found in Fig. 3. We can observe that the functionΩ5(�) occupies more angles close to ±�∕2,
which indicates a more rough interface. Ω1(�) occupies angles very close the 0, representing a nearly smooth interface.

The stiffness matrices can be obtained fromEq. (15) by assuming the integral region as [0, �∕2] for each continuous
function and the following parameters As = 343, fc = 38, � = 1∕3, and � = 1∕2. The results are listed in Table 1.

Figure 3: Graphical representation of the selected contact density functions.
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Table 1
Roughness and stiffness values for different contact density functions Eq. (33).

At K11 K12 K22

Ω1 1.0023 576.58 16.407 290.31
Ω2 1.0968 581.88 91.664 366.75
Ω3 1.1289 585.64 101.11 390.68
Ω4 1.1806 593.42 111.68 427.62
Ω5 1.2732 611.77 122.35 489.42

Table. 1 lists the roughness and stiffness results of the different selected contact density functions. It can be seen
that At shows an increasing trend from Ω1 to Ω5. Ω5 brings the roughest interface, while the roughness of the Ω1 isvery close to 1. Thus, the interface brought by this function could be regarded as a smooth surface. Moreover, we
can also observe that the dilatancy stiffness (K12) variation cannot be considered for fixed values of K11 and K22 bythis model. In fact, all four stiffnesses increase monotonously with the roughness. The increasing stiffness indicates a
higher dilatancy effect and interface resistance with roughness, which is in agreement with the works [22, 54].

The rotation stiffness of elastic interface can be derived as in [16]:
kr = K11(d∕2)2 (34)

where d is the current interface length between two blocks in contact.
3.2. Constitutive matrices

Three hexagonal patterns (regular, hourglass, and asymmetric) are used to form different RVEs [40]. The generation
of the hexagonal geometry can be seen in Section 2.4. For these three hexagonal patterns, three scales are considered
with different side lengths: s = 1.0 (l = 0.3660), s = 0.5 (l = 0.1830), and s = 0.25 (l = 0.0915) where s represents
the scale of the hexagonal pattern and l is the side length. All the used hexagonal RVEs are depicted in Fig. 4. In
Fig. 4, the centroids of the particles and outward unit normal vectors at the interfaces are showed in order to compute
the micropolar constitutive matrix through a homogenization procedure described in [16], where the adopted spring
stiffness at the elastic joint interfaces is listed in Table 1. For comparison, the constitutive matrices for classical Cauchy
model can be calculated from the micropolar constitutive matrices as follows:

Â1111 = A1111
Â1122 = A1122
Â2222 = A2222
Â1112 = (A1112 + A1121)∕2

Â2212 = (A2212 + A2221)∕2

Â1212 = (A1212 + A2121 + 2A1221)∕4

(35)

where the Cauchy constitutive components are characterized by the ̂ symbol. All micropolar and Cauchy constitu-
tive matrices used in this paper are listed in Tables 2-7, of which components with all zeros are not reported. The
superscripts (1.0), (0.5) and (0.25) indicate the constitutive components when s = 1.0, 0.5, 0.25, respectively. When such
specification is not present it means that the quantity does not change with the material scale.
3.3. Simulation results

A slope case was used to investigate the dilatancy effect with different contact density functions (Ω1 ∼ Ω5). Theslope is a right trapezoidal domain with height and top base of 9.6 m and bottom base equal to 19.2 m. Fig. 5 presents a
sketch and finite element mesh (32×15) of the slope domain which is fixed at the bottom and symmetrically restrained
at the right side. It is subjected to a top load acting on half of the top base of the slope with pressure p = 10 MPa.

Since the quadratic and linear interpolation functions have been assumed for the displacements and rotations re-
spectively, the displacements are modeled with nine nodes and the microrotation is related to the four corner nodes.
Three hexagonal patterns including regular, hourglass and asymmetric RVEs are used to perform simulations with
different contact density functions. The simulation results are shown below.
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(a) Regular (s = 1.0) (b) Regular (s = 0.5) (c) Regular (s = 0.25)

(d) Hourglass (s = 1.0) (e) Hourglass (s = 0.5) (f) Hourglass (s = 0.25)

(g) Asymmetric (s = 1.0) (h) Asymmetric (s = 0.5) (i) Asymmetric (s = 0.25)

Figure 4: Hexagonal pattern RVE at different scales.

3.3.1. Regular
Table 2 lists the micropolar constitutive components for RVE assembled from the regular hexagonal particles. It

can be seen that the values ofA1112,A1121,A2212 andA2221 are non-zeros, meaning there is dilatancy effect. A1112 and
A1121 relate horizontal stress and two tangential strains and A2212 and A2221 relate vertical stress and two tangential
strains. It should be noted that A1112 and A1121 are opposite, which results in no dilatancy effect for Cauchy model
(Â1112 = 0). The same phenomenon can be observed for A2212 and A2221 and their corresponding Cauchy constitutivecomponent (Â2212 = 0), see Table 3. A Poisson effect occurs in this RVE, whereas there is no coupling between
stresses/curvatures and microcouples/strains (B = 0). The matrix A remains unchanged with the scales, while matrix
D depends on the scales. The relationship between D matrices from different scales is D(1.0) ≅ 4D(0.5) ≅ 16D(0.25).
D12 gives negligible values. The values of D11 and D22 are comparable for the regular RVE.

The simulation results of the regular case are shown in Figs. 6-11.
The vertical displacements u2 (Fig. 6) concentrate in the area below the applied load. The micropolar model

shows a comparable u2 distribution with the Cauchy model. There is no evident difference among different scales for
micropolar results. u2 also shows no obvious changes as roughness increases for the two models.

The vertical stress �22 (Fig. 7) shows a percolation [67] in both models. We can also observe that �22 concentrated
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Table 2
Micropolar constitutive components for regular RVE.

Ω1 Ω2 Ω3 Ω4 Ω5
A1111 874.71 914.69 929.93 956.04 1006.6
A1122 123.96 93.152 84.416 71.792 52.981
A1112 -14.209 -79.384 -87.564 -96.715 -105.96
A1121 14.209 79.384 87.564 96.715 105.96
A2222 874.71 914.69 929.93 956.04 1006.6
A2212 -14.209 -79.384 -87.564 -96.715 -105.96
A2221 14.209 79.384 87.564 96.715 105.96
A1212 626.79 728.38 761.10 812.46 900.67
A1221 123.96 93.152 84.416 71.792 52.981
A2121 626.79 728.38 761.10 812.46 900.67

D11
(1.0) 79.822 94.465 99.141 106.44 118.89

D12
(1.0) -0.47592 -2.6588 -2.9328 -3.2393 -3.5490

D22
(1.0) 65.291 83.545 89.245 98.028 112.68

D11
(0.5) 19.956 23.616 24.785 26.611 29.723

D12
(0.5) -0.11898 -0.66471 -0.73321 -0.80983 -0.88726

D22
(0.5) 16.323 20.886 22.311 24.507 28.170

D11
(0.25) 4.9889 5.9041 6.1963 6.6527 7.4308

D12
(0.25) -0.029745 -0.16618 -0.18330 -0.20246 -0.22181

D22
(0.25) 4.0807 5.2216 5.5778 6.1267 7.0426

Table 3
Cauchy constitutive components for regular RVE.

Ω1 Ω2 Ω3 Ω4 Ω5
Â1111 874.71 914.69 929.93 956.04 1006.6
Â1122 123.96 93.152 84.416 71.792 52.981
Â2222 874.71 914.69 929.93 956.04 1006.6
Â1212 375.38 410.77 422.76 442.13 476.83

p

45◦

19.2m

9.
6m

4.8m

x

y

Figure 5: Sketch of the slope case with its finite element mesh.

under the applied load increases slightly as the scales decrease, meaning that there is a small scale effect on �22 dueto the change in matrix D. As mentioned in [63], higher values of the D components would result in a reduction of
stress gradients. According to the roughness, it can be seen that there is no evident effect of roughness on �22 for both
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Table 4
Micropolar constitutive components for hourglass RVE.

Ω1 Ω2 Ω3 Ω4 Ω5
A1111 429.44 440.21 445.05 453.90 472.43
A1122 -92.006 -69.140 -62.656 -53.286 -39.324
A1112 10.546 58.921 64.993 71.784 78.648
A1121 9.9385 55.524 61.246 67.646 74.114
A2222 1867.8 1967.4 2004.2 2066.3 2184.4
A2212 -25.604 -143.04 -157.79 -174.27 -190.94
A2221 -10.546 -58.921 -64.993 -71.784 -78.648
A1212 1421.1 1631.7 1699.9 1807.5 1993.5
A1221 -92.006 -69.140 -62.656 -53.286 -39.324
A2121 256.04 309.90 326.96 353.47 398.31

D11
(1.0) 29.916 30.621 30.944 31.540 32.798

D12
(1.0) -0.10001 -0.55872 -0.61630 -0.68071 -0.74579

D22
(1.0) 145.36 172.60 181.29 194.85 217.93

D11
(0.5) 7.4790 7.6551 7.7360 7.8851 8.1996

D12
(0.5) -0.025002 -0.13968 -0.15408 -0.17018 -0.18645

D22
(0.5) 36.339 43.150 45.322 48.712 54.483

D11
(0.25) 1.8698 1.9138 1.9340 1.9713 2.0499

D12
(0.25) -0.0062505 -0.034920 -0.038519 -0.042544 -0.046612

D22
(0.25) 9.0847 10.788 11.331 12.178 13.621

Table 5
Cauchy constitutive components for hourglass RVE.

Ω1 Ω2 Ω3 Ω4 Ω5
Â1111 429.44 440.21 445.05 453.90 472.43
Â1122 -92.006 -69.140 -62.656 -53.286 -39.324
Â1112 10.242 57.222 63.120 69.715 76.381
Â2222 1867.8 1967.4 2004.2 2066.3 2184.4
Â2212 -18.075 -100.98 -111.39 -123.03 -134.79
Â1212 373.28 450.83 475.39 513.60 578.29

micropolar and Cauchy models.
The relative rotation #−! for the micropolar model is depicted in Fig. 8. #−! can be mainly observed in the area

near the applied load. The values of # − ! are small and close to zero for all configurations, indicating a very small
micropolar effect in the case of regular RVE, as discussed by the authors in [44].

Figs. 9 and 10 show the tangential strains of both models. Asmentioned above, for the micropolar model "12 ≠ "21,whereas these two values are equal for the Cauchy model. Thus, the figures for the Cauchy model in Figs. 9 and 10
are the same. The contour plots show a pair of opposite tangential strains concentrated below the two sides of the
applied load and spread towards the boundary. There can be seen a scale effect for both two tangential strains in the
case of the micropolar model, the magnitudes of tangential strains (whether positive or negative) increase as the scale
decreases. For the micropolar model, these two tangential strains show different trends with the change of roughness.
For "12, the positive tangential strain in the right side of the slope decreases with respect to roughness, while the
negative tangential strain in the left side does not change obviously. On the contrary, for "21, the negative tangentialstrain in the left side recedes with roughness and the positive tangential strain in the right side has no obvious change.
The Cauchy model shows that the magnitudes of tangential strains on both sides decrease with roughness, but such a
decrease is less evident than that in the micropolar model. This is because there is no dilatancy effect in the Cauchy
model for the regular RVE. The decrease in strain with roughness can be attributed to the variation of other constitutive
components. It can also be seen that two tangential strains of the micropolar model show a close behavior to that of
the Cauchy model, especially for the smooth interface (Ω1), which reveals that the regular RVE has a similar behavior
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Table 6
Micropolar constitutive components for asymmetric RVE.

Ω1 Ω2 Ω3 Ω4 Ω5
A1111 583.14 609.79 619.96 637.36 671.09
A1121 9.4728 52.922 58.376 64.476 70.641
A2222 1312.1 1372.0 1394.9 1434.1 1510.0
A2212 -21.314 -119.08 -131.35 -145.07 -158.94
A1212 940.19 1092.6 1141.7 1218.7 1351.0
A2121 417.86 485.59 507.40 541.64 600.45

B111
(1.0) 2.6005 14.528 16.025 17.700 19.392

B221
(1.0) 2.6005 14.528 16.025 17.700 19.392

B222
(1.0) 91.385 92.224 92.819 94.053 96.962

B122
(1.0) 1.9503 10.896 12.019 13.275 14.544

B212
(1.0) 2.6005 14.528 16.025 17.700 19.392

B111
(0.5) 1.3002 7.2641 8.0127 8.8500 9.6962

B221
(0.5) 1.3002 7.2641 8.0127 8.8500 9.6962

B222
(0.5) 45.692 46.112 46.410 47.027 48.481

B122
(0.5) 0.97517 5.4481 6.0095 6.6375 7.2721

B212
(0.5) 1.3002 7.2641 8.0127 8.8500 9.6962

B111
(0.25) 0.65011 3.6320 4.0063 4.4250 4.8481

B221
(0.25) 0.65011 3.6320 4.0063 4.4250 4.8481

B222
(0.25) 22.846 23.056 23.205 23.513 24.240

B122
(0.25) 0.48758 2.7240 3.0048 3.3188 3.6361

B212
(0.25) 0.65011 3.6320 4.0063 4.4250 4.8481

D11
(1.0) 48.176 52.006 53.333 55.500 59.446

D12
(1.0) -0.47592 -2.6588 -2.9328 -3.2393 -3.5490

D22
(1.0) 111.86 132.55 139.15 149.46 167.03

D11
(0.5) 12.044 13.002 13.333 13.875 14.862

D12
(0.5) -0.11898 -0.66471 -0.73321 -0.80983 -0.88726

D22
(0.5) 27.965 33.137 34.788 37.365 41.757

D11
(0.25) 3.0110 3.2504 3.3333 3.4687 3.7154

D12
(0.25) -0.029745 -0.16618 -0.18330 -0.20246 -0.22181

D22
(0.25) 6.9913 8.2843 8.6970 9.3413 10.439

Table 7
Cauchy constitutive components for asymmetric RVE.

Ω1 Ω2 Ω3 Ω4 Ω5
Â1111 583.14 609.79 619.96 637.36 671.09
Â1112 4.7364 26.461 29.188 32.238 35.321
Â2222 1312.1 1372.0 1394.9 1434.1 1510.0
Â2212 -10.657 -59.540 -65.675 -72.535 -79.470
Â1212 339.51 394.55 412.27 440.09 487.86

to the classical continuum. As the dilatancy effect increases in micropolar model, the difference in tangential strains
between two models becomes more evident with increasing roughness.

Micropolar microrotation ! and Cauchy macrorotation # are comparable as shown in Fig. 11. There is no obvious
difference between these twomeasures, i.e. # ≈ !, resulting in very small relative rotations as shown in 8, however Fig.
11 displays the gradient of such quantity which is not represented by the relative rotation in Fig. 8. The distributions
of these two rotations in the slope domain are similar to tangential strains. A pair of opposite rotations is mainly
distributed below the two sides of the applied load and diffuse away from the load. The positive ! and # below the
right side of the applied load show a slight decrease as the roughness increases. However, there is no obvious scale
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Figure 6: Vertical displacement u2 for regular RVE.

Figure 7: Vertical stress �22 for regular RVE.

effect on ! for the micropolar model.
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Figure 8: Cosserat relative rotation # − ! for regular RVE.

Figure 9: Tangential strain "12 for regular RVE.

3.3.2. Hourglass
Table 4 lists the micropolar constitutive components for the hourglass RVE. Similarly to regular RVE, there is no

coupling between stresses/curvatures and microcouples/strains (B = 0). An auxetic (negative Poisson effect) nature is
observed. The dilatancy components (A1112, A1121, A2212 and A2221) are non-zeros, meaning there is dilatancy effect.
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Figure 10: Tangential strain "21 for regular RVE.

Figure 11: Cosserat microrotation ! and Cauchy macrorotation # for regular RVE.

Here, A1112 ≠ A1121 and A2212 ≠ A2221, which result in dilatancy effect in Cauchy model (Â1112 and Â2212 are notequal to 0) in Table 5. It is noted that only matrix D depends on the scale and the ratio of D among three scales is the
same as in the previous cases (D(1.0) ≅ 4D(0.5) ≅ 16D(0.25)). D12 also gives negligible values, whereas D11 is smaller
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than D22.The simulation results are depicted in Figs. 12-17. u2 (Figs. 12) , has comparable behavior with respect to the
correspondent regular cases but they have smaller intensity. The concentrated u2 is close to zero far from the applied
load, showing the effect of the negative Poisson ratio in the hourglass case. Moreover, u2 shows a slight decrease trendwith the increasing roughness for both two models.

Figure 12: Vertical displacement u2 for hourglass RVE.

�22 (Fig. 13) shows better percolation and higher stress value than the ones of the correspondent regular case in
Fig. 7. The vertical stress percolation reduces with the increase in roughness for both models. For the micropolar
model, the concentrated �22 increases slightly with the decrease in scale due to the small D values for small scale
cases.

Relative rotation, #−!, shows a clear micropolar effect in the hourglass case. A pair of opposite relative rotations
are concentrated below the two sides of the applied load. # − ! below the left side of load shows negative values of
relative rotation, whereas #−! below the right side shows positive values. It can be seen that the value of #−! trends
to increase as scale decreases. The micropolar effect decreases as the roughness increases, which means that such a
micropolar effect is stronger for smoother interfaces. This result is in line with Brahimian et al. [51] who also found a
higher microrotation in the smooth boundaries of granular Cosserat materials.

The tangential strain "12 (Fig. 15) is smaller than that in regular RVE, whereas "21 (Fig. 16) shows much higher
values than for regular RVE. The tangential strain of the Cauchy model is not close to the two tangential strains of
the micropolar model but lies in the middle of them. For the micropolar model, the magnitudes of "12 and "21 bothincrease with a decrease in scale. For both models, the tangential strain decreases as roughness increases.

Micropolar microrotation ! and Cauchy macrorotation # (Fig. 17) show similar distribution as the regular case.
However, the difference between these two rotations becomes more obvious than for the regular RVE, indicating a
more obvious micropolar effect for the hourglass RVE. For both models, these two rotations show a decreasing trend
as roughness increases. For the micropolar model, the magnitude of ! has no evident scale effect. For both models, !
and # decreases as the roughness increases.

A reduction trend with roughness can be found here especially for measurements like rotation (including microro-
tation, macrorotaion, and relative rotation) and tangential strains. This can be attributed to the increasing interlocking
and dilatancy effect with roughness as mentioned above. The magnitudes of dilatancy constitutive components in-
creasing with roughness (Tables. 2-7), indicating a higher degree of interlocking for the rougher interface. With
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Figure 13: Vertical stress �22 for hourglass RVE.

Figure 14: Cosserat relative rotation # − ! for hourglass RVE.

higher interlocking, rougher interfaces are more resistant to against deformation [22, 68, 69]. Therefore, the measure-
ments decrease as interface roughness increases. Such phenomenon can be also observed in the cases of regular and
asymmetric RVEs.
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Figure 15: Tangential strain "12 for hourglass RVE.

Figure 16: Tangential strain "21 for hourglass RVE.

3.3.3. Asymmetric
Tables 6 and 7 list the constitutive components for the asymmetric RVE. It can be seen that there is less non-zeros

components of matrix A. No Poisson effect is observed, while the dilatancy effect still exist for both micropolar and
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Figure 17: Cosserat microrotation ! and Cauchy macrorotation # for hourglass RVE.

Cauchy models. The matrix B ≠ 0, meaning a coupling between stresses/curvatures and microcouples/strains occurs.
B and D depend on the scale. The ratio of B among three scales is B(1.0) ≅ 2B(0.5) ≅ 4B(0.25) and the ratio of D is the
same as previous ones (D(1.0) ≅ 4D(0.5) ≅ 16D(0.25)). The values of D11 are smaller than that of D22 and the values of
D12 are negligible again.Figs. 18-23 present the simulation results for the asymmetric RVE. All measurements of this case have similar
behavior with the correspondent hourglass case but with different intensities. u2 (Fig. 18) is larger than the hourglass
RVE but smaller than the regular case. The level of �22 (Fig. 19) percolation is lower than that of the hourglass case
but higher than that of the regular case. The magnitude of stress percolation can be related to the anisotropy degree
of material [67, 70]. The most evident percolation is shown in the hourglass case as the higher degree of anisotropy,
whereas the regular case has the lowest percolation as this case behaves like an isotropic material as described already
in [40]. The relative rotation #−! (Fig. 20) is less evident than in the case of the hourglass because of the introduction
of the non-zeros matrix B. The tangential strain "12 (Fig. 21) is greater than that in hourglass results but smaller than
in regular results; on the contrary, "21 (Fig. 22) show much smaller values than that in hourglass results but greater
than in regular results.

4. Conclusions
This work presents the mechanical behavior of composite materials with hexagonal microstructures described as

equivalent micropolar continuum. In particular, the dilatancy effect is investigated by changing interface roughness of
the microstructure. Dilatancy stiffness computed by the contact density model increases with the interface roughness.
Three hexagonal geometries termed regular, hourglass, and asymmetric are selected and each one of them shows some
peculiar characteristics. The size effect of the microstructure is investigated by considering three internal length scales
that affects the scale-dependent micropolar constitutive constants. For comparison, the results of classical Cauchy
model is also presented here.

For three different hexagonal geometries, the regular one shows a behavior similar to the classical continuum,
therefore it has weaker dependence on the dilatancy and scale effects compared with the other two geometries. The
hexagonal geometries with different anisotropic degrees influence the percolation of load. An increasing degree of
anisotropy corresponds to a significant percolation of stress. The hourglass hexagon shows the greatest percolation of
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Figure 18: Vertical displacement u2 for asymmetric RVE.

Figure 19: Vertical stress �22 for asymmetric RVE.

vertical stress in the slope panel, followed by asymmetric and regular patterns. There is no significant effect of dilatancy
on the displacements and stresses. For the rotations (including the relative rotation andmicrorotation for the micropolar
model and macrorotation for the Cauchy model) and non-symmetric tangential strains, the effect of dilatancy is more
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Figure 20: Cosserat relative rotation # − ! for asymmetric RVE.

Figure 21: Tangential strain "12 for asymmetric RVE.

evident. In general, the magnitudes of these measurements decrease with the roughness, indicating that the increasing
dilatancy effect can alleviate rotation distribution as well as the micropolar effect. This is because rougher interface is
more interlocked and can provide higher interface resistance compared to smooth interfaces. Moreover, the percolation
of stress also decreases with the increasing roughness, meaning that the increase in dilatancy can suppress the diffusion
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Figure 22: Tangential strain "21 for asymmetric RVE.

Figure 23: Cosserat microrotation ! and Cauchy macrorotation # for asymmetric RVE.

of stress.
The scale effect is more evident for the measurements of vertical stress, relative rotation, and tangential strains.

An increase in the scale of microstructure can alleviate these results, i.e. bring smaller relative rotation, stress, and
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tangential strains as scale increases. This aspect could be underlined due to the introduction of micropolar model. With
the extra rotation degree of freedom compared with the Cauchy model, the micropolar continuum is able to investigate
the relative rotation, non-symmetric stresses/strains, and their scale effect. This paper shows a clear dilatancy effect on
the micropolar continuumwith hourglass and asymmetric microstructures. The effect of dilatancy on other mechanical
problems such as layered rock with rough joints is expected to be investigated in future studies.
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