
Klink: Progress-Aware Scheduling for Streaming Data Systems
Omar Farhat, Khuzaima Daudjee

Cheriton School of Computer Science

University of Waterloo

{obfarhat,kdaudjee}@uwaterloo.ca

Leonardo Querzoni

DIAG

Sapienza University of Rome

querzoni@diag.uniroma1.it

ABSTRACT
Modern stream processing engines (SPEs) process large volumes

of events propagated at high velocity through multiple queries.

To improve performance, existing SPEs generally aim to minimize

query output latency by minimizing, in turn, the propagation delay

of events in query pipelines. However, for queries containing com-

monly used blocking operators such as windows, this scheduling

approach can be inefficient. Watermarks are events popularly uti-

lized by SPEs to correctly process window operators. Watermarks

are injected into the stream to signify that no events preceding their

timestamp should be further expected. Through the design and de-

velopment of Klink, we leverage these watermarks to robustly infer

stream progress based on window deadlines and network delay, and

to schedule query pipeline execution that reflects stream progress.

Klink aims to unblock window operators and to rapidly propagate

events to output operators while performing judicious memory

management. We integrate Klink into the popular open source SPE

Apache Flink and demonstrate that Klink delivers significant per-

formance gains over existing scheduling policies on benchmark

workloads for both scale-up and scale-out deployments.

KEYWORDS
Stream processing; Scheduling; Windows; Watermarks

ACM Reference Format:
Omar Farhat, Khuzaima Daudjee and Leonardo Querzoni. 2021. Klink:

Progress-Aware Scheduling for Streaming Data Systems. In Proceedings
of the 2021 International Conference on Management of Data (SIGMOD ’21),
June 18–27, 2021, Virtual Event, China. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3448016.3452794

1 INTRODUCTION
Streaming systems are popularly used by modern applications

driven by the need to process quickly [50] large volumes of high-

velocity data [14]. Application domains including real-time ana-

lytics, anomaly detection, and real-time object recognition [57]

leverage streaming systems to deliver on their data processing

requirements [16, 31, 35, 39]. Existing stream processing engines

(SPEs) such as Apache’s Flink [12] and Spark [55] are designed to

provide high throughput with low-latency processing in responding

to demands of such applications [35, 50, 54].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 18–27, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3452794

SPEs provide event processing semanticswhere streaming queries
are defined by multiple processing units called operators deployed
over one or more computing nodes [22, 50]. Operators are then

scheduled for execution at run-time on the available CPUs. Sys-

tem designers carefully provision streaming applications such that

the SPE can schedule operators from all queries while limiting

contention and maximizing resource utilization. However, many

applications have heavy input loads, often with fluctuating or un-

predictable load spikes, degrading the SPE’s performance. In such

resource-challenged settings, the SPE runs application(s) under

high resource contention among the concurrent queries. This con-

tention typically causes events to be buffered for relatively long

periods of time in the input queues of operators that are waiting to

be executed, degrading throughput and overall end-to-end latency.

In particular, tail latencies can be significantly affected resulting in

high output latencies. This performance degradation can be severe,

leading to violation of application service requirements.

Modern SPEs maximize throughput [24] by performing micro-

batching [55], query scheduling [6] and elastic resource provision-

ing [21, 34, 45]. Some proposals strive to reduce latency in resource-

challenged settings. In particular, operator scheduling policies such

as Highest Rate [48] aim to reduce output latency by minimizing

the mean propagation delay of events in the pipeline, i.e., the idle

time spent by each event in the input queues of each operator is

minimized. The main intuition behind these policies is that minimiz-

ing the propagation delay of events will yield better performance.

However, these strategies do not perform well if queries contain

latency-sensitive operators such as window and join [25]. Specifi-

cally, window operators block the stream from flowing until their

input is complete. Thus, minimizing the mean event propagation

delay does not necessarily translate to minimized output latency if

deadlines of window operators are not properly taken into account.

For instance, a window operator that is not ready to produce its

output may be scheduled before one whose deadline has already

elapsed yet is still waiting in the scheduler queue for a CPU time

slice.

To exemplify the problem, consider an SPE deployed on a stan-

dard processor core running two queries 𝑞𝑖 and 𝑞 𝑗 . Each query

contains a window operator with 𝑞 𝑗 ’s window having its upcoming

deadline elapse before 𝑞𝑖 ’s deadline. If the SPE is oblivious of 𝑞 𝑗 ’s

input stream progress with respect to its window deadline, the

SPE can process 𝑞𝑖 over 𝑞 𝑗 , thereby inducing unwarranted output

latency. Processing 𝑞 𝑗 first would allow the SPE to prioritize (ear-

lier) production of output. This simple example shows that to be

efficient, scheduling policies aimed at reducing output latency must

account for input completion progress of the window operators.

Efficient scheduling for queries containing window operators,

which are commonly and routinely used in streaming applications,

is a challenging problem to solve because:

https://doi.org/10.1145/3448016.3452794
https://doi.org/10.1145/3448016.3452794

1 4 8 12 16
Throughput (x10 events processed/second)

0.1
0.25

0.5

1.0

1.5

2.0
La

te
nc

y
(s

)

YSB (Default)
YSB (Klink)
LRB (Default)
LRB (Klink)

Figure 1: Average output latency vs. SPE throughput (num-
ber of events processed per second)

(i) Identifying events relevant to window operators is difficult,

i.e., events that the operator must consider when computing

the next windowed output. Events can be arbitrarily delayed

for ingestion due to, e.g., network delays or parallel and

distributed executions, while windows claim events based

on their generation order at the source.

(ii) SPEs are unaware of the time at which windows are due to

be processed. For example, a time-window of five seconds

may need to wait for as much as twenty seconds to account

for any arbitrary delays (e.g., network or event processing

delays). Hence, it is challenging to correctly identify and

prioritize queries that are due to be processed.

In this paper, we show that the best strategy to minimize out-

put latency is to prioritize the propagation of events to window

operators that are due to be processed first and then propagate

their output downstream. This minimizes the blocking of window

operators, which in turn minimizes the output latency of the stream

resulting in faster stream progress.

To further demonstrate the performance impact of this sched-

uling problem, we measured the output latency while varying the

throughput in terms of number of input events processed per sec-

ond for two different query workloads and complexities, namely

the Yahoo! Streaming Benchmark (YSB) [18] and the Linear Road

Benchmark (LRB) [7].

We deployed Flink on a machine
1
to process these two work-

loads using Flink’s Default scheduler as well as Klink, the scheduler
proposed in this paper that implements the aforementioned strat-

egy. Figure 1 shows that given a target throughput level (x-axis),

significant extra output latency of about 50% for both YSB and LRB

is incurred by Default over Klink. This overhead is further exacer-

bated for SPEs under significant resource contention as is typical

in real deployments where network delay is variable, imposing the

aforementioned challenges (i) and (ii). Output latency is small un-

der light loads but increases exponentially as the workload grows,

as expected from a system under resource stress. The significant

performance gains by Klink demonstrates that SPEs can benefit

greatly if schedulers are designed to minimize output latencies even

at comparable throughput performance.

1
See Sec. 6 for the machine’s hardware specs.

In this paper, we present the design and implementation of

Klink, our scheduler that optimizes for stream progress to reduce

output latency for queries running window operators including

joins.

We leverage watermarks [32] that are special events commonly

generated and injected in SPEs to solve aforementioned challenges

(i) and (ii). Watermarks are in widespread use in pipelines encom-

passing window operators [4, 5, 12, 51] and indicate that no further

events are expected beyond a certain timestamp. The periodic prop-

agation of watermarks in the stream encapsulates an indicator of

progress vital to recognizing the input completion level for window

operators. Klink uses this indicator to prioritize the execution of

queries that include window operators that are due to be processed

first. Klink also takes into account memory usage of window oper-

ators so as to avoid the SPE from becoming a bottleneck. Further-

more, Klink’s scheduling strategy is compatible with both stream

processing and micro-batching SPE architectures.

To summarize, the contributions of this paper are five-fold:

(1) We present Klink, a scheduler optimized for runningmultiple

queries, delivering up to 60% mean and tail output latency

reductions over state-of-the-art techniques.

(2) Klink presents a significant advancement over existing sched-

uling policies in that it optimizes to minimize output gener-

ation latency by processing the relevant events to progress

window operators into materializing their results.

(3) Klink’s design is robust to workload changes and is adept at

handling network delay variability and at managing memory

to optimize for performance.

(4) We present a distributed design for Klink capable of achiev-

ing its goal for stream queries running on multiple nodes.

(5) We leverage the generality of Klink’s design to present our

system implementation of Klink that is integrated intoApache

Flink [12], a popular state-of-the-art SPE.

2 BACKGROUND
This section discusses windows, out-of-order processing and wa-

termarks, after which we present our design of Klink.

2.1 Window Processing Semantics
To process computation on a stream of data, SPEs provide semantics

for grouping events that exhibit common properties into structures

called windows. Windows provide flexibility for queries through

hosting complex grouping selections [23].

Following [30], we assume that each event e is an ordered set

of values and includes a timestamp 𝜏 (𝑒) generated at the source,

called event-time. An infinite sequence of events 𝑆 = 〈𝑒1, 𝑒2, . . . 〉 is
called a stream and 𝑆∗ is the set of all streams. A window is a subset

of events in a stream and the set of all windows is 𝑆∗ ⊂ 𝑆∗, while
(𝑆∗)∗ is the set of potentially infinite window sequences. A query q
based on a window and implemented by an operator with 𝑛 input

streams is defined by (i) n window functions 〈𝜔𝑞

1
, . . . , 𝜔

𝑞
𝑛〉 where

𝜔
𝑞

𝑖
: 𝑆∗ → (𝑆∗)∗, (ii) an n-ary operator function F𝑞

: (𝑆∗)𝑛 → 𝑆∗

that, applied to 𝑛 windows from input streams, produces a window

result and (iii) a stream function 𝜙𝑞 : (𝑆∗)∗ → 𝑆∗ that transforms

window results into output stream events.

1243657 Window
3 secs

no more
events

before 1

process
 window

[3, 6]

no more
events

before 5

process
 window

[0, 3]

Event
Timestamp

Processing
Order

Figure 2: Exemplifying progress property of watermarks.

Window functions are count-based or time-based, if the windows
they produce are defined on the number of included events or the

event-time frames they span, respectively. Window functions on

a stream are each characterized by a size 𝑠 and a slide 𝑙 ; these

two parameters, combined, define deadlines; a window’s deadline

identifies when that window contains all events needed to produce

its output. More formally, consider a window function 𝜔 (𝑠,𝑙) that,
when applied on a stream 𝑆 , produces a sequence of windows

〈w1,w2, . . . 〉. A count-based 𝜔 function will produce a window

w𝑖 = 〈𝑒𝑘 , . . . , 𝑒𝑚 〉 where 𝑚 = 𝑘 + 𝑠 − 1 and whose deadline is

the event 𝑒𝑚 . Conversely, a time-based 𝜔 function will produce

a window w𝑖 and next window w𝑖+1 = 〈𝑒𝑘′, . . . , 𝑒𝑚′ 〉 such that

𝜏 (𝑒𝑚) − 𝜏 (𝑒𝑘) ≤ 𝑠 , 𝜏 (𝑒𝑚+1) − 𝜏 (𝑒𝑘) > 𝑠 , 𝜏 (𝑒𝑘′) − 𝜏 (𝑒𝑘) ≤ 𝑙 and

𝜏 (𝑒𝑘′+1) − 𝜏 (𝑒𝑘) > 𝑙 where the deadline is met every 𝑙 time units.

Output generation for a given window w𝑖 can be triggered on the

windowed operator as soon as the corresponding deadline is met.

Windows are important as query operators such as join, ag-

gregation, and selection are executed on a per window basis [30].

However, the order of events received by event-time windows may

not necessarily mirror the order of events generated at the source.

Such out-of-order events occur in SPEs for multiple reasons: (i)

events generated from different remote origins, transmissions or

channels may take different paths incurring different delays, and

(ii) operators that group or join several streams running in parallel

or distributed executions on multiple machines can incur varying

latencies associated with communication and coordination within,

and across, machines.

For SPEs, late events make window input completeness difficult

to attain as deadlines cannot be guaranteed. Window operators

cannot ascertain that all events to be included for a window’s com-

putation to proceed were collected as events can be arbitrarily

delayed up to an unspecified amount of time, while not accounting

for these events can lead to incorrect output. SPEs deal with these

challenges by adopting one of the following approaches:

• In-order processing (IOP): the SPE uses mechanisms that enforce

events to be processed in the order defined by their event-time. This

approach typically imposes large performance overheads [32] as

in-order processing can perilously delay the processing of events

until they are appropriately re-ordered to guarantee correctness.

• Out-of-order processing (OOP): the SPE allows window operators

to be unblocked without imposing any ordering constraints on

the stream [28, 32]. Late events can be discarded or pushed as out-

put that may be considered by the receiving application to correct

previous output.

Most modern SPEs such as Flink, Spark and Storm [4, 5, 12]

support both IOP and OOP processing by using watermarks.

2.2 Watermarks
Watermarks [32] are timestamped events denoting that no events

preceding their timestamp should be further expected. If we con-

sider awatermark event ¤𝑒𝑘 in a stream 𝑆 such that 𝑆 = 〈𝑒1, . . . , 𝑒𝑘−1, ¤𝑒𝑘 ,
𝑒𝑘+1, . . . 〉, an operator 𝑂 processing ¤𝑒𝑘 may expect that any event

𝑒𝑖 following ¤𝑒𝑘 has a larger timestamp, i.e. 𝜏 (𝑒𝑖) > 𝜏 (¤𝑒𝑘) ∀𝑖 > 𝑘 .

Watermarks essentially represent a contract between the user

and the SPE to ensure input completeness and output correctness.

Watermarks also hold another significance: the progress of the

stream in event-time can be interpreted from their frequency of

propagation. More specifically, by continuously receiving water-

marks, window operators can reason about their progress in terms

of input completion (even in cases where no event is injected by

the sources). Watermarks are crucial to correctly implement OOP

with streams where events may not be ordered by their timestamps.

Once a watermark reaches an operator, the operator can advance

its (internal) event time clock to the value of the watermark, and

check which window deadlines have been met. Recall that the

watermark’s semantics imply that all events relevant for these win-

dows have already been received by the operator [5]. In particular,

a windowed operator implementing a query 𝑞 that receives a wa-

termark with timestamp 𝜏 (¤𝑒) will check which windows have a

deadline that elapsed by 𝜏 (¤𝑒) and will trigger the computation of

the corresponding outputs using its function 𝜙𝑞 .

To illustrate this with an example, consider Fig. 2 where a

window operator with window function𝜔 (3,3) spanning three
seconds starts operating at event time 0. The stream sequence

contains both watermarks (green dashed boxes) and events

(blue boxes). The window operator initially receives water-

mark 1, indicating that no events before 1 are marked to arrive

and further indicating window [0, 3] is due for processing

next. The window then receives events 2 and 4, each of which

is sorted into the appropriate window. Watermark 3 is then

processed indicating that it is safe to process and generate

the output of the first window [0, 3]. The window [3, 6] with
event 6 and watermarks 5 and 7 is similarly processed next.

Watermarks take the form of punctuations [49, 52] and are in-

jected into the stream either (i) at the source, or (ii) by a specific

operator that periodically emits them [4, 12, 20]. In both cases,

applications decide on their implementation logic for generating

watermarks. Typically, they are injected periodically. For example,

a periodic watermark can be generated every five seconds holding

a timestamp of the current time minus five seconds. In such cases,

each watermark means that events can be delayed at most five

seconds. The watermark injection frequency generally is not tied

to the input data rate and does not depend on the pipeline size or

on the characteristics of its operators (e.g., their window sizes).

Watermarks are propagated by the SPE in the application pipeline

and are expected to be received with monotonically increasing

timestamps by operators. Operators are required to completely pro-

cess events that precede a given watermark before forwarding it

downstream. SPEs implement watermark propagation using vari-

ous approaches (e.g., dropping late events, buffering, reordering).

For example, the Flink SPE [12] drops late watermarks, i.e., when

they arrive out-of-order at the SPE.

STREAM PROCESSING ENGINE

STREAM OPERATORSTREAM OPERATOR

KLINK SCHEDULER

RUNTIME
DATA

ACQUISITION

KLINK EVALUATOR

SWM PRIORITIZATION

MEMORY MANAGEMENT

QUERY EXECUTOR

mem_util < b

NO

YES

STREAM OPERATOR

Figure 3: Klink Architecture

In the example of Fig. 2, note that different watermarks have

different meanings for the window operator.Watermarks 1 and 5 act

as progress indicators for the window, hinting at stream progress.

While watermarks 3 and 7 act as progress indicators, they also

signal input completion by the window’s deadline, consequently

triggering the operator to compute the corresponding output.

Given a window, we define the first ingested watermark that

signals input completion to push the window to produce output as

a sweeping watermark (SWM). In Fig. 2, watermark 3 is the SWM

that signals input completion for window [0, 3]. Since 5 arrives

after watermark 3, 5 is not an SWM for window [0, 3]. Watermark

7 is also an SWM as it is the first to signal input completion for

window [3, 6]. Note that applications do not need to be concerned

with knowing or identifying if any of their generated watermarks

are SWMs.

SWMs are important for SPEs since processing them pushes

window operators to emit their output. Two key invariants hold

in processing SWMs: (i) propagating an SWM to a window oper-

ator implies that all the events to be included in windows whose

deadlines precede the SWM timestamp have already been collected

by the window operator, and (ii) propagating an SWM to the out-

put operator guarantees that all events produced by the relevant

window were flushed as output. The first invariant guarantees that

all events to be included in a window’s computation that precede

an SWM have already been ingested and that SPEs do not need

to re-order events to deal with input incompleteness. The second

invariant is enforced by the order of execution of window opera-

tors. More specifically, window operators emit their output events

followed by SWMs that are received by the output operator after

the window output events. Therefore, all the events to be included

in a window’s computation are guaranteed to have been processed

beforehand.

The aforementioned invariants give rise to the following two

important observations:

(i) Minimizing end-to-end propagation delay of SWMs implies

that the output latency is minimized since the SWM delay is

a function of the delay of completing the window’s input and

the propagation delay of the emitted events to the output

operator.

(ii) The propagation delay of SWMs is a factor of the number of

events in the stream at the time of ingestion. More specifi-

cally, the cost of propagating an SWM to a window operator

is a function of the number of queued events in the stream.

Therefore, it is necessary to process queued events before

the ingestion of the SWM to achieve minimized propagation

delay.

Thus, it is essential to minimize the propagation delay of SWMs

to the output operator to minimize output latency. The aforemen-

tioned observations form the basis of Klink’s design.

3 KLINK: DESIGN AND ALGORITHMS
We now present the design of Klink including its algorithmic details.

Klink (Fig. 3) is composed of (i) a module that acquires runtime

data, and (ii) a stream analysis algorithm, Klink Evaluator, that

implements two query prioritization policies: SWM Prioritization

that prioritizes queries to minimize output latency (Sections 3.1 and

3.2), and Memory Management that prioritizes queries to minimize

memory utilization stress (Sec. 3.4). Klink uses the former policy

unless the measured runtime memory utilization meets or exeeds

a configurable bound b, which makes Klink transiently switch to

the latter policy. The Klink architecture also includes a third com-

ponent, which is a distributed design that enables the priority to

be computed at each node and then propagated in a decentralized

manner, enabling scaling with the SPE infrastructure (Sec. 4).

In a nutshell, Klink’s main loop periodically acquires runtime

data, computes a priority for each query, and schedules execution

of the query with the largest priority. Priorities are assigned to

speed up the propagation of events to window operators that are

due to be processed first. If the memory stress condition is met (i.e.,

𝑚𝑒𝑚_𝑢𝑡𝑖𝑙 ≥ 𝑏 in Fig. 3), Klink’s strategy prioritizes scheduling of

those operators whose execution will release the most memory.

Klink examines the semantics of the set of deployed queries

(including parallelization of operators) denoted by Q. Query-level

scheduling is performed to reduce the complexity of the scheduling

algorithm, and to yield a schedule of subsequent operators capable

of processing the flow of events end-to-end.

Calculating the priority of each query requires the scheduler

to maintain runtime characteristics that include network delay,

queue size, cost, and selectivity. The window operators with the

latest deadline in query 𝑞 at time 𝑡 that will unblock the stream

are selected by the algorithm to yield output events. Based on the

deadlines of each query 𝑞, Klink logically divides the stream into

epochs whereby each epoch is demarcated by an SWM. Specifically,

the (𝑛 + 1)𝑡ℎ epoch starts after the ingestion of the 𝑛𝑡ℎ SWM. For

example, Fig. 2 contains two epochs: the first defined between time

0 and SWM 3, and the second between SWMs 3 and 7. Note that the

second epoch overlaps with two windows, i.e., tumbling window

[3, 6] followed by [6, 9]. Similarly, for a sliding window of size five

seconds and slide one second, the first epoch is defined between

time 0 and SWM 5, the second epoch between SWMs 5 and 7. Thus,

with each processed window, Klink progresses the query to the next

epoch. Klink also groups the collected information on a per-epoch

basis to impart temporal context to future estimations.

The collected information is continuously updated to infer the

expected ingestion time of the next SWM and the expected emission

time of the window operator. For query 𝑞 at epoch 𝑛, we denote by

D𝑞
𝑛 the set of cumulative network delays incurred by each event.

The network delay can be estimated simply by the ingestion times-

tamp of the event minus its generation timestamp. In addition, Klink

also maintains the total number of events queued, and the cost of

executing them end-to-end, represented by 𝑐𝑜𝑠𝑡𝑞 (𝑡). As in [33],

cost is estimated by considering both selectivity (ratio of output

events to an input event per operator) and operator processing time

(time taken to process a single event per operator). As discussed in

[33], the cost of processing an event can be represented by using

the standard measures of per operator mean processing latency,

queuing delays, and communication latencies between operators.

These factors for estimation of the processing cost are encapsulated

in a tuple I provided by the runtime data acquisition module. The

priority of each query is then computed based on the retrieved

information, and on the currently applied policy. The query with

the highest priority is returned and is then scheduled for execution.

Klink does not impose requirements on the query execution model:

operators are deployed by the SPE (and per its standard behavior)

as threads/processes on available computing cores and are then

executed with priorities defined per Klink’s policy.

To keep the overhead to a minimum, Klink is inactive while the

operators are executing, and recommences only when the opera-

tors finish their planned execution. Then, Klink re-evaluates the

priorities and selects new queries to execute. Every such evaluation

round, or cycle, runs for 𝑟 milliseconds. In general, a small value

of 𝑟 is expected to incur higher overhead while a large value im-

plies missing the deadlines for idle queries. As shown in Section 6,

Klink’s scheduling overhead is low.

Klink’s priority evaluator aims to minimize the propagation

delay of SWMs. This is achieved by selecting queries with lowest

slack, defined by the idle time a query can mask without processing

its queued events to avoid missing deadlines. For an epoch 𝑛, we

express the slack time for query 𝑞 at time 𝑡 by:

𝑠𝑙𝑞 (𝑡) = (𝑤𝑞

𝑛+1 − 𝑡) − 𝑐𝑜𝑠𝑡𝑞 (𝑡) (1)

where 𝑤
𝑞

𝑛+1 represents the ingestion time of the (𝑛 + 1)𝑡ℎ SWM.

Thus, as the stream progresses towards ingestion time, the query’s

slack value attenuates. The query with least slack is then selected

for execution.

To estimate the slack time (Eq. 1), it is essential to determine

𝑤
𝑞

𝑛+1. We describe Klink’s robust estimation technique next.

3.1 Estimating SWM Ingestion
Klink estimates the ingestion of SWM for query 𝑞 at epoch 𝑛 by

two important factors: the expected network delay denoted by the

random variable 𝑑
𝑞
𝑛 , and the periodicity of SWMs 𝑝𝑞 . The estimated

ingestion time for the (𝑛 + 1)𝑡ℎ SWM is represented by:

𝐸 [𝑤𝑞

𝑛+1] = 𝐸 [𝑑𝑞𝑛 + 𝑝𝑞] (2)

To proactively compute 𝐸 [𝑑𝑞𝑛] before the collection of all events

pertaining to the 𝑛𝑡ℎ epoch, Klink relies on historical data captured

during the previous epochs to profile the newest epoch. This allows

Klink to estimate the arrival times of the SWM at the beginning of

each new epoch. The accuracy of the estimation then increases with

the stream progress as long as the query is continuously ingesting

events and is monitoring the network delay. Once the epoch is

finalized,𝑑
𝑞
𝑛 as a random variable is then represented by only events

constituting the 𝑛𝑡ℎ epoch. We compile this definition into the

following equation:

𝜇
𝑞
𝑛 =

{
1

|D𝑞
𝑛 | ×

∑
𝑑∈D𝑞

𝑛
𝑑 if 𝑡 ≥ 𝑤

𝑞
𝑛 ,

1

𝑛−1 ×∑𝑛−1
𝑖=0 𝜇

𝑞

𝑖
otherwise.

(3)

We define 𝜒
𝑞
𝑛 as the square of each distribution in the following

equation:

𝜒
𝑞
𝑛 =

{
1

|D𝑞
𝑛 | ×

∑
𝑑∈D𝑞

𝑛
𝑑2 if 𝑡 ≥ 𝑤

𝑞
𝑛 ,

1

𝑛−1 ×∑𝑛−1
𝑖=0 𝜒

𝑞

𝑖
otherwise.

(4)

For the case of 𝑡 < 𝑤
𝑞
𝑛 , we observe that the random variable 𝑑

𝑞
𝑛

is a function of the expected delay over the previous epochs. Hence,

by the Central Limit Theorem, 𝑑
𝑞
𝑛 is normally distributed, and in

turn,𝑤
𝑞

𝑛+1 is also normally distributed. To better understand this

distribution, we calculate the mean (Eq. 5) and variance (Eq. 6) of

𝑤
𝑞

𝑛+1:

𝐸 [𝑤𝑞

𝑛+1] = 𝐸 [𝑑𝑞𝑛 + 𝑝𝑞]

=
1

𝑛 − 1

𝑛−1∑
𝑖=0

𝐸 [𝑑𝑞
𝑖
] + 𝐸 [𝑝𝑞] = 𝜇

𝑞
𝑛 + 𝑝𝑞

(5)

𝑉𝑎𝑟 [𝑤𝑞

𝑛+1] = 𝐸 [(𝑤𝑞

𝑛+1)
2] − 𝐸 [𝑤𝑞

𝑛+1]
2

=
1

𝑛 − 1

[𝜒𝑞𝑛 + 1

𝑛 − 1

𝑛−1∑
0≤𝑖≠𝑗

𝜇
𝑞

𝑖
𝜇
𝑞

𝑗
] − (𝜇𝑞𝑛)2

(6)

Thus,𝑤
𝑞

𝑛+1 is normally distributed with mean 𝜇
𝑞
𝑛 + 𝑝𝑞 and variance

denoted by Eq. 6. By exploiting this distribution, we can estimate

a time-interval to infer the range of SWM’s ingestion timestamp.

This is discussed further in the next section (Sec. 3.2).

Studying the distribution of𝑤
𝑞

𝑛+1 allows us to estimate the arrival

of the SWM with high confidence. We present next an algorithm

that exploits this characteristic to compute the slack time 𝑠𝑙𝑞 for

query 𝑞.

3.2 Estimating Slack Time
To compute the slack time of each query, Klink initially computes

the likelihood of SWM ingestion for each possible time-range that

spans the execution duration. That is, a sliding window of size 𝑟 is

passed through the time-range at which the SWM can be ingested.

Then, for every window spanning 𝑟 milliseconds, the likelihood of

SWM ingestion at that time is computed. The slack value is then

computed based on the likelihood of each range. We discuss the

details of Algorithm 1 in the rest of this section.

The algorithm starts first by sliding the window of size 𝑟 over

a time-range at which the SWM is expected to be ingested. How-

ever, since this range may span a lengthy duration, we optimize

the algorithm’s performance by limiting the range to a provided

confidence value 𝑓 . This is represented by the following equation:

𝑃 (𝑡𝑞
𝑛,𝑚𝑖𝑛

≤ 𝑤
𝑞

𝑛+1 ≤ 𝑡
𝑞
𝑛,𝑚𝑎𝑥) = 𝑓 (7)

where 𝑡
𝑞

𝑛,𝑚𝑖𝑛
and 𝑡

𝑞
𝑛,𝑚𝑎𝑥 enclose a time-range where the probability

of 𝑤
𝑞
𝑛 falling in this range is 𝑓 . Note here that selecting a small

interval would yield less accurate slack estimations while selecting

a large interval would lead to performance inefficiencies. Thus, an

𝑓 value needs to be selected (discussed further in Sec. 6).

After delimiting the search space, Klink slides a window of size

𝑟 over the time-range computed by Eq. 7. Then, for each window

slide, the slack value is computed as:

𝑠𝑙𝑞 (𝑡) =
𝑡
𝑞
𝑛,𝑚𝑎𝑥∑

𝑥=𝑡
𝑞

𝑛,𝑚𝑖𝑛

𝑃 (𝑥 ≤ 𝑤
𝑞

𝑛+1 ≤ 𝑥 + 𝑟 |𝑡)

×((𝑥 + 𝑟 − 𝑡) − 𝑐𝑜𝑠𝑡𝑞 (𝑡))

(8)

where 𝑥 is incremented by 𝑟 milliseconds.

Eq. (8) illustrates that the slack time for query 𝑞 is calculated by

computing the likelihood of ingesting the SWM in each time-range,

then calculating the slack value for that ingestion time-range. The

conditional probability (in Eq. 8) can be computed as:

𝑃 (𝑥 ≤ 𝑤
𝑞

𝑛+1 ≤ 𝑥 + 𝑟 |𝑡) =

𝑃 (𝑥≤𝑤𝑞

𝑛+1≤𝑥+𝑟)
𝑃 (𝑤𝑞

𝑛+1≥𝑡)
if 𝑥 ≤ 𝑡,

0 otherwise.

(9)

Since𝑤
𝑞

𝑛+1 is normally distributed, the probabilities can be ap-

proximated by the Guassian Q-function as in Eq. 9:

𝑃 (𝑥 ≤ 𝑤
𝑞

𝑛+1 ≤ 𝑥 + 𝑟)

= 𝑄 (
𝐸 [𝑤𝑞

𝑛+1] − (𝑥 + 𝑟)
𝑉𝑎𝑟 (𝑤𝑞

𝑛+1)
) −𝑄 (

𝐸 [𝑤𝑞

𝑛+1] − 𝑥

𝑉𝑎𝑟 (𝑤𝑞

𝑛+1)
)

(10)

Algorithm 1 Klink’s Slack Computation

1: procedure ComputeConfInterval(𝑞)
2: 𝜇

𝑞
𝑛 = 1

ℎ

∑𝑛−1
𝑖=𝑛−ℎ 𝜇

𝑞

𝑖
; 𝜒

𝑞
𝑛 = 1

ℎ

∑𝑛−1
𝑖=𝑛−ℎ 𝜒

𝑞

𝑖

3: 𝐸 [𝑤𝑞

𝑛+1] = 𝜇
𝑞
𝑛 + 𝑝𝑞 ; 𝜎 [𝑤𝑞

𝑛+1] =
√
(𝐸𝑞. 6)

4: /* Compute ≥ 95% interval */
5: 𝑡

𝑞

𝑛,𝑚𝑖𝑛
= 𝐸 [𝑤𝑞

𝑛+1] − 2𝜎 [𝑤𝑞

𝑛+1]
6: 𝑡

𝑞
𝑛,𝑚𝑎𝑥 = 𝐸 [𝑤𝑞

𝑛+1] + 2𝜎 [𝑤𝑞

𝑛+1]
7: return 𝑡

𝑞

𝑛,𝑚𝑖𝑛
,𝑡
𝑞
𝑛,𝑚𝑎𝑥

8: end procedure
9: procedure ComputeExpectedSlack(𝑞, 𝑡) ⊲ Eq. (8)

10: 𝑡
𝑞

𝑛,𝑚𝑖𝑛
, 𝑡
𝑞
𝑛,𝑚𝑎𝑥 = ComputeConfInterval(q)

11: 𝑠𝑙𝑞 = 0; 𝑥 =𝑚𝑎𝑥 (𝑡, 𝑡𝑞
𝑛,𝑚𝑖𝑛

)
12: for 𝑥 ≤ 𝑡

𝑞
𝑛,𝑚𝑎𝑥 do

13: 𝑝𝑟 =
𝑃 (𝑥≤𝑤𝑞

𝑛+1≤𝑥+𝑟)
𝑃 (𝑤𝑞

𝑛+1>𝑡)
14: 𝑠𝑙𝑞 = 𝑠𝑙𝑞 + 𝑝𝑟 × [(𝑥 + 𝑟 − 𝑡) − 𝑐𝑜𝑠𝑡𝑞 (𝑡)]
15: 𝑥 = 𝑥 + 𝑟

16: end for
17: return 𝑠𝑙𝑞

18: end procedure
19: procedure KlinkEvaluator(Q, I)
20: unpack(I);𝑚𝑖𝑛_𝑠𝑙 = 0;𝑚𝑖𝑛_𝑞 = null
21: for each query 𝑞 do
22: 𝑠𝑙𝑞 = ComputeExpectedSlack(𝑞, 𝑡)

23: if 𝑠𝑙𝑞 ≤𝑚𝑖𝑛_𝑠𝑙 then
24: 𝑚𝑖𝑛_𝑠𝑙 = 𝑠𝑙𝑞 ;𝑚𝑖𝑛_𝑞 = 𝑞

25: end if
26: end for
27: return𝑚𝑖𝑛_𝑞

28: end procedure

We detail the aforementioned slack time estimation in Algo-

rithm. 1. Initially, the procedure KlinkEvaluator (line 19) is invoked

Join
1 second

1

2

3

14
123

time2345
time

2345

Figure 4: Example illustrating a window operator joining
two input streams of SWMs into an output stream of SWMs.

by Klink’s main loop where the set of queries and collected in-

formation are passed as parameters. The algorithm then unpacks

the collected runtime information (line 20). The set I contains

important information per query 𝑞: upcoming window deadline,

last watermark processed, experienced network delays D𝑞
, and

the data collected over previous ℎ epochs 𝜇
𝑞
𝑛 and 𝜒

𝑞
𝑛 . The set also

contains information per operator including mean selectivity, mean

processing cost, current queue size, and current memory utilization.

The procedure then loops over all deployed queries to compute

the slack for each (line 24). The query with the minimum slack

time is then selected and returned for execution (line 24 and line

27). To compute the estimated slack, first the confidence value is

calculated (line 1). The confidence value in this function is calcu-

lated by estimating the mean, and the standard deviation for SWM

ingestion (line 2). For high accuracy, this pseudo-code runs for a de-

fault 𝑓 = 95% confidence value. After computing 𝑡
𝑞

𝑛,𝑚𝑖𝑛
and 𝑡

𝑞
𝑛,𝑚𝑎𝑥 ,

the slack is then computed as in Eq. 8 (lines 12-16). At first, the

algorithm divides the time-range into smaller ranges whereby each

small range’s probability is calculated (line 13). Then, 𝑠𝑙𝑞 is updated

(line 14), and the smaller range is then translated by 𝑟 milliseconds.

Finally, the slack value is returned (line 17).

3.3 Handling Join Operators
Klink is designed to rapidly unblock window operators by priori-

tizing the input streams based on the anticipated arrival of SWMs.

For join operators that perform windowed joins over multiple input

streams, the join operator is unblocked once all input streams prop-

agate an SWM elapsing the window deadline. This is done to ensure

correctness – by guaranteeing that the relevant elements were prop-

agated through all input streams – and is typically achieved by (i)

maintaining the last watermark propagated by each stream, then (ii)

computing the minimumwatermark timestamp, and (iii) comparing

it to the window deadline to evaluate if it unblocks the operator.

In this section, we discuss Klink’s mechanism to efficiently handle

join operators.

To illustrate joins, consider the Fig. 4 example of a 1-second

window operator joining two input streams into one output

stream. At time 𝑡 = 2, two SWMs of equivalent timestamp

of 1 were ingested effectively unblocking the operator and

pushing the SWM to the output stream. Note here that the

value of the SWM in the output stream implies that no event

before 1 is further expected by the two input streams. At

time 𝑡 = 3, an SWM of timestamp 2 was ingested. However,

the window with deadline 𝑑𝑑𝑙 = 2 was not unblocked until

the ingestion of SWM 3 at the top stream. Although SWM 3

unblocked the window with 𝑑𝑑𝑙 = 2, it did not unblock the

window with 𝑑𝑑𝑙 = 3 since no SWMs were propagated by the

bottom stream. The window with 𝑑𝑑𝑙 = 3 is then unblocked

at the ingestion of SWM 4 from the bottom stream.

Although watermarks propagating through each input stream

can be perceived as SWMs in the context of window deadlines, they

do not necessarily unblock the windowed join operator. This is

problematic as an input stream can be scheduled for execution yet

the deadline can be extendedwell beyond the anticipated time of the

SWM in the other input streams. Consequently, computations are

hindered, translating to delayed SWM propagation in other queries.

As such, it is important to maintain accurate prioritization of each

input stream and account for the different rates of watermarks’

propagation.

Klink solves this problem by computing multiple different slack

values, one for each input stream that has a different watermark

propagation rate and network delay. The slack of the query is then

calculated as the minimum of each stream. Thus, the procedure

call in Algorithm 1 (line 27) returns the minimum slack for query 𝑞.

This design ensures that accurate prioritization is determined and

maintained.

3.4 Klink’s Memory Management
While latency optimization is a prominent goal in stream process-

ing, application workloads can impose heavy memory constraints

on SPEs from a resource utilization viewpoint. For example, op-

erators that store transient state while processing events require

extra memory that may not be available. Operator instances can

contend on scarce memory resources, thereby blocking stream flow

and increasing output latency [8, 17, 19]. Many SPEs implement a

backpressure mechanism that throttles the input rate to ease mem-

ory utilization on the system. Unfortunately, this simple heuristic

approach negatively impacts output latency by slowing down the

whole stream.

Klink introduces a new approach to address memory utilization

stress that, independently from existing backpressure mechanisms,

prudently exploits information on how the running application

works. The fundamental idea is to prioritize the flow of events

toward low selectivity operators to reduce the number of events

“in flight” in the application and thus alleviate the overall memory

usage. For example, a filter operator that discards one every four

observed events can reduce memory utilization by 25%. Window

operators that support partial computations (e.g., aggregations that

can be computed online, or online joins [32]) can reduce memory

utilization before emitting their output, and exhibit low selectiv-

ity when they ingest SWMs. Klink leverages these characteristics

through prioritizing the execution of queries that contain opera-

tors with large queue size, have low selectivity, and support partial

computations, i.e., the queries that provide the largest potential

reduction in memory utilization.

Initially, for each query 𝑞, Klink looks up operators having se-

lectivity
2
values lower than 1, such as filter and window operators.

Then, Klink computes the number of queued events that would

be reduced by processing all events queued in ancestor operators

downstream to the 𝑘𝑡ℎ operator. To express this mathematically,

2
Selectivity value is retrieved from the SPE or can be computed through maintaining

the ratio of output to input events per operator.

we denote by 𝑠𝑧
𝑞

𝑘
the number of queued events from the first non-

source operator of 𝑞 until the downstream operator 𝑘 , and by 𝑆
𝑞

𝑖

the selectivity of the 𝑖𝑡ℎ operator in query 𝑞. Then, the number of

events processed can be expressed by 𝑝
𝑞

𝑘
= 𝑠𝑧𝑞 × (1 − ∏𝑘

𝑖=1 𝑆
𝑞

𝑖
),

where 𝑝
𝑞

𝑘
refers to the number of processed events obtained from

scheduling 𝑞’s pipeline downstream to the 𝑘𝑡ℎ operator.

The intuition behind this metric is to schedule the sequence of

operators that would provide the largest reduction in the number of

events. Since Klink runs queries for 𝑟 milliseconds before commenc-

ing the subsequent scheduling cycle, Klink computes the number

of events that can be processed within 𝑟 by factoring in the cost

of each operator. After identifying all pipelines that maximize the

value 𝑝
𝑞

𝑘
, Klink selects the query with the least slack, thereby opti-

mizing also for output latency. The selected sequence of operators

are then scheduled for execution.

Klink runs its memory management algorithm only when mem-

ory utilization reaches a level at which Klink’s least slack policy

experiences lessened effect. When a memory usage threshold 𝑏 is

reached such that operators would start contending on memory,

Klink activates its memory management algorithm. Klink guaran-

tees that each cycle of the algorithm runs for only a targeted period

specified by a set memory availability percentage or by a specified

time interval. For example, the memory manager can run until half

of the consumed memory has been freed or after three seconds have

elapsed. We discuss sensitivity of these values in the evaluation

section (Sec. 6). While reducing memory utilization instead of slack

may not always reduce output latency, it ensures that Klink can

continue to apply its least slack policy while attaining robust low

mean and tail output latencies, as demonstrated in Section 6.

4 DISTRIBUTED KLINK DESIGN
SPEs leverage distributed computing to achieve greater scalability

and meet performance goals [40]. Distribution is typically attained

at the granularity of operators where SPEs disseminate them across

the available resources. Each compute node would then have a

subset of the operators that, collectively, would execute the query

exactly as they had been deployed on a single node. Klink is de-

signed to be decentralized by running autonomously and limiting

its scope to the deployed queries while maintaining common prior-

itization targets shared across all nodes.

The goal of distributed deployment is to distribute query oper-

ators across nodes running the SPE. Initially, applications deploy

their logical queries to the SPE that accordingly devises a physical
plan that establishes one-to-one mappings between the operators

and the nodes [6, 42]. Klink functions orthogonally to the deploy-

ment problem and is designed to work with any physical plan.

Fundamentally, Klink’s primary goal is to minimize the propa-

gation delay of SWMs through minimizing the number of events

queued in the stream before the arrival of SWM. It does so by sched-

uling the query operators on available nodes to which operators

have been assigned by the SPE. However, distribution imposes the

challenge of not having all the necessary information to compute

the global priority of the query. To achieve this goal, Klink initially

identifies operators that constitute the logical query and maintains

the deployment location of each operator over all Klink instances.

Klink Framework
(Node A)

Klink Framework
(Node B)

data data data

deadline,
cost, size

network delay tuple

intra-
node

inter-
node

intra-
nodeSource

O1

data

Map
O2

Window
O3

Output
O4

Figure 5: Klink forwarding information in distributed envi-
ronment.

Klink forwards the necessary information to the corresponding

nodes including the network delay, its frequency, and the cost at

each node. However, not all information is needed by all the nodes.

We illustrate this in the following example.

Consider Fig. 5 that shows a query partitioned over two dif-

ferent nodes (machines) 𝐴 and 𝐵. Node 𝐴 contains the first

two operators of the query while Node 𝐵 contains the last two

operators. Once node B attempts to assess the priority of the

localized query subset, the results will not be optimal since the

necessary information such as network delay stats from the

first two operators are unavailable. However, the two nodes

have sufficient information to assess the cost of executing the

query starting from 𝑂3 to the output operator. Hence, only

the watermark related information needs to be forwarded

from node 𝐴. On the other hand, the Klink instance running

on node 𝐴 needs to gauge the true processing of the query by

acknowledging the status of queued events downstream. To

achieve this, Klink ensures that all nodes that contain subse-

quent operators (which in this case is only 𝐵) send their cost

information to 𝐴 so that 𝐴 can safely measure the priority

value of the query.

To generalize Klink’s information forwarding, consider the fol-

lowing cases:

• Network delay forwarding: All nodes require estimated network

delays value to estimate the priority of the sub-query. However, to

reduce the scheduler overhead and data transmission, we consider

the following optimizations. If the application query generates wa-

termarks at the source, then they will be observed first by the source

operator. Hence, 𝑤
𝑞

𝑛+1 is guaranteed to be localized on the node

running the source operator, so information should be forwarded

to all nodes running downstream operators. If it is the case that

the watermark is generated by an operator in the pipeline, then the

node that contains that operator forwards this information to all

nodes running down- and upstream operators. Otherwise, all wa-

termark timestamps are shared and the maximum value is selected.

• Cost forwarding: Nodes need to assess the cost of executing the

information only downstream. Hence, prior knowledge of earlier

nodes in the query is not required. As such, every node transmits

the necessary information to the nodes containing any of the down-

stream operators. The cost of the operators is then incorporated

into the cost function.

Information about network delay and cost forwarding is sent

between nodes where any one node receives local information from

only one other node. Thus, this limits and reduces dependencies –

no node needs to rely on multiple nodes for information, avoiding

both synchronization with multiple nodes and global dependencies.

Once information is forwarded to nodes, each Klink instance com-

putes its priorities and executes accordingly. The scheduler collects

information from other Klink instances as part of its main loop. We

discuss Klink’s implementation details in the following section.

5 SYSTEM IMPLEMENTATION
This section details our implementation of Klink [1] within the open-

source distributed SPE Apache Flink [12]. Flink is implemented in

Java as a layered system with logical separation between different

layers. The three main layers are named Deploy, Core and API. The

top layer, API, contains two segregated engines DataStream and

DataSet pertaining to stream and batch processing, respectively.

At the Core layer, Flink operates at the granularity of Tasks where
each task is a standalone thread. Tasks are then transformed to

either operators or a chain of operators at the API layer. Flink

schedules the execution of submitted applications in two stages.

At deployment time, the application is analyzed and its operators

(possibly aggregated in chains) assigned for execution on task slots

located on worker nodes. Then, at runtime a task scheduler on

each worker node executes operators as threads in a Java Virtual

Machine (JVM) instance. The JVM’s runtime scheduling of these

Tasks is performed in conjunction with the OS scheduler.

Flink provides no infrastructural support to design or implement

different runtime scheduling policies. To provide support for devel-

opers to implement custom scheduling policies, we added into Flink

a framework to support the implementation of other scheduling

policies at the runtime level. Here we describe this framework and

how we leveraged its capabilities to implement Klink within Flink.

Several SPE architectures that include runtime schedulers have

been proposed [2, 13, 41]. In contrast to a thread-based execution

model in which each incoming event is allocated a thread, Aurora

[13] and Borealis [2] use a state-based execution model for its run-

time scheduler. Specifically, a single scheduler thread that tracks

system state is deployed to orchestrate the execution of threads. In

this design, each operator instance is mapped to a thread. The sched-

uler design adopted by these two systems showed that state-based

schedulers are better suited for SPEs than thread-based schedulers.

Thus, we integrated a state-based scheduler infrastructure into

Flink to maximize efficiency.

Through implementing two additional components into Flink’s

Core layer, we integrated a state-based scheduling framework capa-

ble of running any scheduling policy. Specifically, we implemented

(i) a scheduler responsible for orchestrating operator execution

and retrieving runtime information I (line 20, Algorithm. 1), and

(ii) an independent policy component that leverages the collected

information to determine a scheduling execution order. The first

component is designed with four main API calls: register, collect,
start, and pause. Initially, each Task must invoke the register API
call to inform the scheduler of its existence. Then, the scheduler

will continuously invoke the collect API call with each operator to

collect the necessary runtime information. The runtime informa-

tion then will be passed to the second implemented component,

where the Klink scheduling algorithm is deployed to determine

the set of new Tasks to be executed. Finally, every 𝑟 seconds, the

runtime scheduler will pause the currently running Tasks, and will

start the execution of those newly scheduled Tasks.

Klink’s distributed design exchanges collected runtime informa-

tion across nodes, as described in Section 4. We implement this

functionality by running a remote procedure call (RPC) service as

a background thread on each node that serves to transfer data be-

tween nodes. The RPC service is instantiated by the JobMaster (the
master component of Flink’s distributed architecture) to facilitate

communication between different nodes. The runtime scheduler

provides to the JobMaster information to be sent.

Klink requires the underlying SPE to provide support for OOP,

watermarks, and runtime data acquisition; since modern SPEs share

similar design architectures and provide such support, the design

of our runtime scheduler can be easily ported into those engines.

For instance, Klink can be integrated into Apache Storm [51] by

implementing the four aforementioned system calls into Storm

Bolts. Specifically, after a topology has been submitted and a Storm

Supervisor has been created, a scheduler runtime instance can be

instantiated that Bolts would register with. As in Flink Metrics

API, Klink could retrieve operators’ information through accessing

stored information on eachWorker. Klink could also be implemented

in distributed mode over Storm through implementing the same

RPC service over each Worker.

6 PERFORMANCE EVALUATION
In this section, we present the results of a series of experiments we

conducted to demonstrate the performance advantage that Klink

possesses over the algorithms from prior related work on single

and multi-node environments, and then analyze its overhead.

6.1 Experimental Setup
Our experiments are run on a cluster of nodes each having an Intel

Xeon processor with 24 cores (using hyper-threading) and 32 GB of

memory. Each machine is running Java OpenJDK implementation

v1.8.0_191 on top of Ubuntu 16.04 LTS. Our implementation of

Klink is based on Apache Flink v1.8. One machine is dedicated to

workload generation. Input data is transmitted to the SPE nodes

via Kafka v2.2.1.

6.1.1 Benchmarks. We conduct our evaluation using three well-

known streaming benchmarks: the Yahoo! Streaming Benchmark

(YSB) [18], Linear Road Benchmark (LRB) [7], and the New York

City Taxi (NYT) benchmark [27]. We implement these benchmarks

on Apache Flink and evaluate performance by running different

scheduling policies in each experiment.

LRB simulates a highway toll system [7]. We use the streaming

variation [26] of LRB that has a complex pipeline that includes a

mix of tumbling windows, sliding windows, and join operators.

The sliding window is of size five seconds with a slide of three

seconds. LRB contains a join (group by) over 3 sub-streams of 6.5K

events produced every two seconds per sliding window per query.

The workload is generated using the original driver data from [7].

We implement the accident detection and toll calculation queries

that utilize windows. To study performance when the pipeline is

stressed, we ran LRB with the deadline of the last window operator

to be 1/3 of the earlier window deadlines so that the pressure on the

query pipeline will be intensified at SWM ingestion. NYT covers a

large dataset of taxi trips in NYC spanning six years. The dataset is

rich with information such as the number of passengers, distances,

and fares. This NYT aggregation query over real-world data is

composed of a complex pipeline that includes a sequence of many

stateless operators and a sliding aggregation window of size two

seconds and a slide of one second. NYT generates aggregation of 7K

events produced every second per sliding window per query. YSB

contains a simple pipeline with aggregation of 10K events produced

every three seconds per window per query.

6.1.2 PerformanceMetrics. We compare the algorithms usingmean

latency, tail latency, throughput, and slowdown. Output latency

reflects the time taken by the SPE to materialize results. To mea-

sure SPE latency with minimal overhead, we inject into the stream

events called latency markers that are specially used to measure

the propagation delay from the source to the output operators. La-

tency markers are originally generated by the source operators,

queued with the other events, and are then processed by the stream

operators. To reflect the actual output latency incurred, we mea-

sure the propagation delay of SWMs as indicative of the latency

at which an SPE is able to produce output events. Latency is mea-

sured by subtracting the SWM event-time from the timestamp of

its processing at the output operator. We empirically use the lowest

latency marker frequency to achieve 99% similarity to the actual

event latency without affecting performance. In our experiments,

this amounted to emitting a latency marker from each source every

200 ms. We also measure throughput, by measuring the aggregate

number of events processed per second by each operator. Finally,

slowdown [48] is a metric used to extract the overhead portion

from latency by dividing it by the ideal processing time. This met-

ric is measured by the propagation delay of SWMs divided by the

aggregation of the execution cost of processing a single event at

each operator.

6.1.3 Scheduling Algorithms. In addition to the default Flink sched-

uler (Default), we compare Klink against two standard heuristic al-

gorithms and two state-of-the-art algorithms that we implemented

into the runtime scheduler (Sec. 5):

• Round-Robin (RR) : cycles over the set of active operators and

schedules the first operator that is ready to execute for a fixed time

quantum. Notably, RR avoids starvation.

• First-Come-First-Served (FCFS): processes an input stream in

event arrival order, optimizing for maximum output latency of re-

quests.

• Highest Rate (HR) [48] aims to minimize the average propagation

delay of events across multiple queries running in the system. HR

assigns priority based on the granularity of paths. The priority of

each path is equal to the global output rate, represented by the se-

lectivity of the operator (number of output events per a single input

event) and the execution cost (duration of execution of a single

input event). This policy prioritizes paths with higher productivity.

• StreamBox (SBox) [36] strives to minimize the output latency

of scale-up systems. The algorithm initially looks up the query

with the closest window deadline, then schedules the query for

execution until a watermark is processed. Hence, queries that are

expected to emit their content are scheduled.

La
te
nc
y
(s
)

La
te
nc
y (
s)

(a) Mean latency

40 50 60 70 80 909599
CDF (%)

12
4
8

12
16
20
24
28

La
te

nc
y

(s
)

Default
FCFS
RR
HR
SBox
Klink (w/o MM)
Klink

(b) Latency CDF

1 20 40 60 80
Number of Queries

0
200
400
600
800

1000
1200

Sl
ow

do
wn

Default
FCFS
RR
HR
SBox
Klink

(c) Slowdown

1 20 40 60 80
Number of Queries

0.5

1

1.5

2

2.5

3
3.25

Th
ro

ug
hp

ut
 (x

10
 e

ve
nt

s/
s)

Default
FCFS
RR
HR
SBox
Klink (w/o MM)
Klink

(d) Throughput

1 2 4 8
Number of Nodes

4

6

8

10

12

La
te

nc
y

(s
)

Default
HR
Klink

(e) Distributed

Figure 6: Mean latency, CDF, Slowdown, and Throughput for YSB workload

6.2 Results
To evaluate the performance of Klink, we extensively test its per-

formance over five different experiments. Each experiment lasts 20

minutes. Each data point on the graph is an average over at least

10 independent runs (unless stated otherwise) with 95% confidence

intervals shown as error bars around the means. We also generate

Zipf distributed network delays with a distribution constant of 0.99

[11, 44]. Based on our empirical experimentation, we set Klink’s

size of epochs history ℎ to 400 and the scheduling cycle duration

𝑟 to 120 ms for robust performance. We use a default confidence

value 𝑓 of 95 as the accuracy for estimating SWM ingestion time

(we study the sensitivity of 𝑓 in Section 6.2.5).

6.2.1 YSB Benchmark. The first experiment compares the perfor-

mance of the default Flink scheduler, denoted by Default, as well

as the five other scheduling algorithms (FCFS, RR, HR, SBox and

Klink) on a single node running the YSB benchmark with uniformly

distributed network delays. We also study the performance of Klink

without our memory management policy but with Flink’s backpres-

sure mechanism being able to kick in. We use this policy, which

we name ‘Klink (w/o MM)’, to study the impact on tail latency in

comparison to Klink with memory management.

Each query instance is deployed at a randomized time in the first

20 seconds of the experiment to randomize the uniform distribution

of the window deadlines. We measure the latency cumulative distri-

bution function (CDF) to study the tail latency differences obtained

by setting the number of events generated to 10, 000 per second per

query, and the number of deployed queries ranging from 1–80.

With increase in the number of deployed queries (Fig. 6a), the

mean latency for Klink is capped at 7.3s, reducing the delay to

provide large performance improvements of about 50% over De-

fault, SBox, FCFS and RR, and 45% over HR. FCFS incurs the high-

est latency of 15.5s at 80 concurrent queries. HR and SBox only

marginally increase their performance over Default by incurring

an output latency of 12.8s and 13.5s, respectively, compared to De-

fault’s 15s, with RR’s performance being equivalent to SBox. Since

the other algorithms perform limited or no prioritization of window

deadlines, they do not exhibit much of a performance difference

with each other.

Fig. 6b compares the output latency CDF of Klink with the other

scheduling algorithms and, in particular, shows their tail latency

performance when running 60 concurrent queries. All scheduling

algorithms maintained consistent latency performance between the

40
𝑡ℎ

and 90
𝑡ℎ

percentiles with a significant gap between Klink and

the other algorithms. For the tail latency (90
𝑡ℎ

– 99
𝑡ℎ

percentile),

Default’s performance degraded from 9s at the 90
𝑡ℎ

percentile to

26s at the 99
𝑡ℎ

percentile indicating heavy tail latency. Specifically,

because Default does not prioritize queries that have due window

deadlines, it suffers from high latencies especially under high mem-

ory utilization. FCFS improves tail latencies, providing marginally

better performance than other non-Klink algorithms.

Klink achieves significantly better latency performance across all

percentiles. For instance, at the tail latency of 99
𝑡ℎ

percentile, Klink

significantly reduces latency by 55% over Default. Interestingly,

Klink equipped with the memory management technique (Sec. 3.4)

reduced tail latency over its counterpart by 20%. This demonstrates

that while it is challenging to deliver consistent performance when

SPEs are under memory stress, Klink’s approach to memory man-

agement allows it to deliver robust performance even under this

challenging environment.

Wemeasure the slowdown (Sec. 6.1.2) incurred by each algorithm

in Fig. 6c under the same workload settings as in the last YSB

experiment. The results mirror the prior trend in output latency

and show that Klink delivers significantly better performance than

the other algorithms.

Fig. 6d shows throughput while varying the number of deployed

YSB queries. Default, FCFS, RR, HR, and SBox all achieve the same

throughput of 2.5M events processed per second. Klink (w/o MM)

delivers throughput of 2.65M. Interestingly, the non-Klink algo-

rithms fail to scale their throughput performance past 40 deployed

queries. The performance of these algorithms and their scalabil-

ity is capped by a lack of timely processing of windowed queries

together with inefficient memory utilization that queued events

induce. In all cases where the output latency escalates, this is be-

cause the offered input load outstrips the SPE capacity of processing

events, causing the latency to climb more quickly (e.g., past 40 de-

ployed queries in Fig. 6a). Klink with its memory management

algorithm (Section 3.4) demonstrates better scalability by achieving

a throughput of 3.25M events processed per second delivering a

25% throughput improvement over its competitors. These results

confirm that Klink’s sound memory management approach attains

scalable system performance.

6.2.2 LRB and NYT Benchmarks. Our third experiment runs LRB

and NYTwith network delays under the Uniform distribution. Fig. 7

shows these results. In this experiment, Default, FCFS, RR, HR, and

SBox perform similarly with the latency at 80 queries ranging from

12 − 15s for all algorithms. Klink delivers large latency reductions

of at least 45% over these algorithms for both LRB and NYT. As in

1 20 40 60 80
Number of Queries

1
3
5
7
9

11
13
15

La
te

nc
y

(s
)

Default
FCFS
RR
HR
SBox
Klink

(a) LRB mean latency

1 20 40 60 80
Number of Queries

1
3
5
7
9

11
13
15

La
te

nc
y

(s
)

Default
FCFS
RR
HR
SBox
Klink

(b) NYT mean latency

40 50 60 70 80 90 9599
CDF (%)

4
8

12
16
20
24
28
32
36
40

La
te

nc
y

(s
)

Default
FCFS
RR
HR
SBox
Klink

(c) LRB CDF

40 50 60 70 80 90 9599
CDF (%)

4

8

12

16

20

24

La
te

nc
y

(s
)

Default
FCFS
RR
HR
SBox
Klink

(d) NYT CDF

Figure 7: Mean latency and CDF for LRB and NYT workloads

200 400 600 800 1000
Time (in s)

7.5

10

12.5

15

17.5

M
em

or
y

Ut
iliz

at
io

n
(in

 G
B)

30
40
50
60
70
80
90

CP
U

Ut
iliz

at
io

n
(%

)
Default (MEM)
Klink (MEM)

Default (CPU)
Klink (CPU)

Figure 8: Memory & CPU utilization over time

YSB (Fig. 6a), the latency in Fig. 7 over all environment variables

worsens past 40 queries due to the SPE’s inability to scale with

larger loads. Latency performance under Zipf distribution for YSB,

LRB and NYT is similar to Figs. 6a, 7a and 7b so we omit its graph

due to space constraints.

Figure 7 presents the latency CDF for LRB and NYT. Default’s

latency in LRB increased by a significant 53% from 15 seconds

at the 90
𝑡ℎ

percentile to 32 seconds at the 99
𝑡ℎ

percentile. As for

NYT, Default’s tail latency increased by 45% from 10 to 17 seconds.

Similarly to YSB, these algorithms’ tail latency performance scales

poorly due to inefficient query scheduling under high memory

utilization. In both tests Klink achieves significantly better latency

performance across all percentiles. Specifically, the tail latency

of Klink over Default for LRB and NYT experienced significant

reductions of 60% and 50%, respectively. This difference shows

that tail latencies are affected when the SPE is running under high

memory pressure and that Klink is effective in mitigating its impact

on latency. Finally, these results demonstrate Klink’s robustness

at achieving better mean and tail latencies over other scheduling

algorithms regardless of the workload.

6.2.3 Resource Utilization. As an insight into Klink’s performance

advantages, we measured Klink’s memory and CPU utilization run-

ning the YSB workload at 60 concurrent queries. Figure 8 shows

the observed utilizations over time where each data point is an

aggregate of values sampled every 200ms. The Default scheduler

causes the SPE to continually run close to the maximum memory

threshold (17.5GB in our experiments), as shown in the upper half

of Fig. 8. Conversely, Klink manages memory by periodically in-

creasing and decreasing its usage according to its active scheduling

policy. Overall, Klink maintains significantly lower memory utiliza-

tion. Figure 9a shows Klink’s average and tail memory utilization

compared to Default. Over the throughput range from 8 to 16 (×105
events/sec), Klink consumes between 60% to 25% less memory over

Default. As for tail (90
𝑡ℎ

percentile) utilization, Default hits the

memory threshold much earlier at 8 × 10
5
events/sec while Klink

is able to extend this reach to 16 × 10
5
events/sec, thus doubling

performance.

As shown in the lower half of Fig. 8, Klink consistently maintains

high CPU utilization, a result of its superior memory management

and scheduling strategies over Default. Due to high memory con-

sumption, Default’s performance is hindered. Lower CPU utiliza-

tion levels are a manifestation of the SPE not being able to process

events efficiently. Fig. 9b shows that Klink’s average and tail CPU

utilization is consistently higher than Default’s with Klink able to

reach, and sustain, higher tail CPU utilization earlier than Default.

Klink’s CPU utilization scales with throughput while Default fails

to scale its CPU utilization with higher throughput levels.

6.2.4 Distributed Experiments. We evaluate the distributed per-

formance of Klink by deploying it on up to 8 nodes (machines)

and running YSB. We ran both HR and SBox in standalone mode.

HR’s design is not decentralized by default. SBox is unable to run

without complete knowledge of the query pipeline so we run it

in standalone mode for single-node experiments since it cannot

operate in a distributed setting.

Since streaming systems are designed at their core to take ad-

vantage of distributed data processing, Klink embeds this design

by continuously propagating relevant information across the SPE

nodes. Figure 6e shows the performance of the algorithms running

80 YSB queries (each emitting 10, 000 events/s) while varying the

number of nodes (machines) from one to eight. In these experi-

ments, we utilize Flink’s built-in mechanism that considers the

type of operators and memory locality to minimize data mobility

and parallelism levels when distributing query pipelines across

the compute nodes. For latency, we see a continuous decrease for

all algorithms. Klink’s distributed design allows it to lower its la-

tency in comparison to the other scheduling algorithms with Klink

maintaining a 40% performance improvement.

6.2.5 Sensitivity and Overhead. Our last experiment measures the

sensitivity of the watermark ingestion estimator based on the two

widely occurring delay distributions of Uniform and Zipf. The pur-

pose of this test is to measure the robustness of Klink’s SWM inges-

tion estimation approach against network variability. The accuracy

1 4 8 12 16 20
Throughput (x10 events processed/second)

2
4
6
8

10
12
14
16
18

M
em

or
y

Ut
iliz

at
io

n
(in

 G
B)

Default AVG
Default 90th %tile
Klink AVG
Klink 90th %tile

(a) Memory

1 4 8 12 16 20
Throughput (x10 events processed/second)

40

50

60

70

80

90

100

CP
U

Ut
iliz

at
io

n
(%

)

Default AVG
Default 90th %tile
Klink AVG
Klink 90th %tile

(b) CPU

Uniform Zipf
Network Delay Distribution

60

70

80

90
95

100

SW
M

 In
ge

st
io

n
Es

tim
at

io
n

 A
cc

ur
ac

y
(%

)

LR
Klink-90
Klink-95

(c) Sensitivity

100 99 95 90 67
Confidence Value (%)

0

2

4

6

8

10

Ov
er

he
ad

 (a
s %

 o
f t

hr
ou

gh
pu

t)

(d) Overhead

Figure 9: Memory utilization, CPU utilization, watermark sensitivity, and scheduler overhead

rate is measured by the fraction of times an SWM is ingested within

Klink’s estimated time range (Sec. 3.1). The experiment is conducted

with multiple values of 𝑓 (Sec. 3.2). We also provide a scheduler

overhead analysis in these tests.

Figure 9c presents Klink’s accuracy at estimating SWM ingestion

time. The figure shows accuracy performance for two confidence

values of 𝑓 , 95 and 90 represented as Klink-95 and Klink-90 re-

spectively, under the different network delay distributions. We also

implemented gradient descent, a simple linear regression technique

(LR) to show the performance advantage Klink possesses. For both

network delays, Klink-95 provides marginally higher estimation ac-

curacies than Klink-90, which is significantlymore accurate than LR.

While Klink-95 and Klink-90 provide 98% and 95% accuracy rates

respectively, LR guarantees only 80% accuracy. The performance

of LR degrades under the Zipf distribution with accuracy reaching

only 62% while both Klink-95 and Klink-90 maintain higher SWM

ingestion accuracy rate reaching 95% and 85%, respectively. The

overall performance impact is as expected since the Zipf distribu-

tion injects higher unpredictability into network delay.

Figure 9d shows Klink’s runtime overhead due to runtime data

collection, SWM estimation, memory management, and orchestra-

tion with other operators. The overhead is measured as a percentage

of throughput, i.e., the throughput loss that Klink would incur had

the SPE runtime been allocated to processing events instead of run-

ning the scheduling algorithm. Fig. 9d confirms Klink’s efficiency

as it incurs negligible overhead when utilizing resources while de-

livering higher throughput (Fig. 6d). The figure shows a drop in

overhead as the confidence values decrease, but the difference be-

tween the highest confidence value and the lowest is small. Klink’s

scheduler overhead impacts throughput by a negligible 0.5%. Since

Klink’s performance is hardly affected when varying the confidence

values, Klink should be used with high confidence values.

7 RELATEDWORK
Scheduling policies such as First-Come-First-Served (FCFS) [10,

47, 48] and Shortest-Remaining-Processing-Time (SRPT) [38] were

studied for streaming engines. SRPT led to rate-based policies [53]

such as Highest Rate (HR) [48] that delivered better performance

than Aurora’s scheduler [3]. All of these algorithms optimize for

output latency by exploiting particular properties of operators. In

contrast to Klink, they are not optimized for queries employing

window operators and are agnostic of stream progress. Queries can

be prioritized by using user-defined values or by specifying an SLA

[37, 43]. These policies expect as input differentiated heterogeneous

queries and assume that different performance requirements are

fixed for each query. Klink’s algorithm can be complementarily

used with such policies.

Effective scale-up [30, 36, 56] through prudent scheduling can

deliver high performance per node to add to a system’s compute

capacity. StreamBox [36] uses watermarks to demarcate and paral-

lelize substream processing. The substream with the earliest wa-

termark is allocated more resources for effective parallelization.

StreamBox is agnostic of load size, performance-sensitive to water-

mark frequencies, and does not scale with backpressure mechanism.

Haren [41] is a scheduling framework that provides an abstract API

to study multiple scheduling policies. Real-time stream scheduling

[9, 46] relies on understanding the performance of the SPE for meet-

ing execution deadlines [15, 29, 33] and then applying algorithms

from real-time scheduling theory. This class of algorithms does

not consider specifically windowed operators and how they affect

output latency.

Strategies to deploy a query on a distributed cluster [6, 34, 42, 45]

are orthogonal to the problem we address of scheduling deployed

query operators at run time for execution on the available process-

ing cores. The former type of scheduling happens at deployment

time while the latter type happens at runtime. Klink is a solution

to the latter type, integrating nicely into a system in which a query

deployment scheduler works at deployment time.

8 CONCLUSION
We presented Klink, a state-of-the-art SPE scheduler optimized for

executing queries employing window operators. Klink assesses the

progress of each stream over multiple queries by analyzing water-

marks and appropriately prioritizing execution to minimize output

latency. Through integration into industrial-strength Apache Flink

and extensive experimentation, we demonstrated that Klink outper-

forms key prior scheduling techniques. Our experiments show that

Klink can deliver large output latency reductions of up to 50% over

comparable techniques. These results demonstrate the effectiveness

of Klink’s design in delivering superior performance.

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engineering

Research Council of Canada (NSERC), Canada Foundation for In-

novation (CFI) and Ontario Research Fund (ORF). L. Querzoni was

partly funded by “FogAware” grant from Sapienza University of

Rome, Prot.nr. PH120172B230B4D7.

REFERENCES
[1] 2020. Klink Codebase. https://github.com/klink-scheduler/klink.

[2] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch

Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin,

Esther Ryvkina, et al. 2005. The design of the borealis stream processing engine..

In Cidr, Vol. 5. 277–289.
[3] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,

Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003. Aurora:

a new model and architecture for data stream management. the VLDB Journal
12, 2 (2003), 120–139.

[4] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.

MillWheel: fault-tolerant stream processing at internet scale. Proceedings of the
VLDB Endowment 6, 11 (2013), 1033–1044.

[5] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,

Eric Schmidt, et al. 2015. The dataflow model: a practical approach to balancing

correctness, latency, and cost in massive-scale, unbounded, out-of-order data

processing. Proceedings of the VLDB Endowment 8, 12 (2015), 1792–1803.
[6] Leonardo Aniello, Roberto Baldoni, and Leonardo Querzoni. 2013. Adaptive

online scheduling in storm. In Proceedings of the 7th ACM international conference
on Distributed event-based systems (DEBS). ACM, 207–218.

[7] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S Maskey,

Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Linear road:

a stream data management benchmark. In Proceedings of the VLDB Endowment,
Vol. 30. ACM, 480–491.

[8] Brian Babcock, Shivnath Babu, Rajeev Motwani, and Mayur Datar. 2003. Chain:

Operator scheduling for memory minimization in data stream systems. In Pro-
ceedings of the 2003 ACM SIGMOD International conference on Management of
Data. ACM, 253–264.

[9] Pablo Basanta-Val, Norberto Fernández-García, Andy J Wellings, and Neil C

Audsley. 2015. Improving the predictability of distributed stream processors.

Future Generation Computer Systems 52 (2015), 22–36.
[10] Michael A Bender, Soumen Chakrabarti, and Sambavi Muthukrishnan. 1998. Flow

and Stretch Metrics for Scheduling Continuous Job Streams.. In SODA, Vol. 98.
270–279.

[11] Jean-Chrysostome Bolot. 1993. Characterizing end-to-end packet delay and loss

in the internet. In Journal of High Speed Networks (JHSN). 305–323.
[12] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a

single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[13] Don Carney, Uğur Çetintemel, Alex Rasin, Stan Zdonik, Mitch Cherniack, and

Mike Stonebraker. 2003. Operator scheduling in a data stream manager. In

Proceedings 2003 VLDB Conference. Elsevier, 838–849.
[14] Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden, David Maier, John

Meehan, Andrew Pavlo, Michael Stonebraker, Erik Sutherland, Nesime Tatbul,

et al. 2014. S-Store: a streaming NewSQL system for big velocity applications.

Proceedings of the VLDB Endowment 7, 13 (2014), 1633–1636.
[15] Badrish Chandramouli, Jonathan Goldstein, Roger Barga, Mirek Riedewald, and

Ivo Santos. 2011. Accurate latency estimation in a distributed event processing

system. In 2011 IEEE 27th International Conference on Data Engineering. IEEE,
255–266.

[16] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel

Fisher, John C Platt, James F Terwilliger, and John Wernsing. 2014. Trill: A high-

performance incremental query processor for diverse analytics. Proceedings of
the VLDB Endowment 8, 4 (2014), 401–412.

[17] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,

James Hunter, and Mike Barnett. 2018. FASTER: an embedded concurrent key-

value store for state management. Proceedings of the VLDB Endowment 11, 12
(2018), 1930–1933.

[18] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves,

Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry

Peng, et al. 2016. Benchmarking streaming computation engines: Storm, flink

and spark streaming. In 2016 IEEE international parallel and distributed processing
symposium workshops (IPDPSW). IEEE, 1789–1792.

[19] Sergio Esteves, Gianmarco De Francisci Morales, Rodrigo Rodrigues, Marco

Serafini, and Luís Veiga. 2020. Aion: Better Late than Never in Event-Time

Streams. arXiv preprint arXiv:2003.03604 (2020).
[20] Omar Farhat, Harsh Bindra, and Khuzaima Daudjee. 2020. Leaving Stragglers

at the Window: Low-Latency Stream Sampling with Accuracy Guarantees. In

Proceedings of the 14th ACM International Conference on Distributed and Event-
Based Systems (Montreal, Quebec, Canada) (DEBS ’20). Association for Computing

Machinery, New York, NY, USA, 15–26. https://doi.org/10.1145/3401025.3401732

[21] B. Gedik, S. Schneider, M. Hirzel, and K. Wu. 2014. Elastic Scaling for Data Stream

Processing. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2014),
1447–1463.

[22] Lukasz Golab and M Tamer Özsu. 2003. Issues in data stream management.

SIGMOD Record 32, 2 (2003), 5–14.

[23] Michael Grossniklaus, David Maier, James Miller, Sharmadha Moorthy, and

Kristin Tufte. 2016. Frames: data-driven windows. In Proceedings of the 10th
ACM International Conference on Distributed and Event-based Systems (DEBS).
ACM, 13–24.

[24] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert Grimm.

2014. A catalog of stream processing optimizations. ACM Computing Surveys
(CSUR) 46, 4 (2014), 1–34.

[25] Gabriela Jacques-Silva, Ran Lei, Luwei Cheng, Guoqiang Jerry Chen, Kuen Ching,

Tanji Hu, Yuan Mei, Kevin Wilfong, Rithin Shetty, Serhat Yilmaz, et al. 2018.

Providing streaming joins as a service at facebook. Proceedings of the VLDB
Endowment 11, 12 (2018), 1809–1821.

[26] Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park,

Philippe Selo, and Chitra Venkatramani. 2006. Design, implementation, and

evaluation of the linear road benchmark on the stream processing core. In Pro-
ceedings of the VLDB Endowment. ACM, 431–442.

[27] Zbigniew Jerzak and Holger Ziekow. 2015. The DEBS 2015 Grand Challenge. In

Proceedings of the 9th ACM International Conference on Distributed Event-Based
Systems (DEBS). ACM, 266–268.

[28] Yuanzhen Ji, Hongjin Zhou, Zbigniew Jerzak, Anisoara Nica, Gregor Hacken-

broich, and Christof Fetzer. 2015. Quality-driven continuous query execution over

out-of-order data streams. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 889–894.

[29] Nikos R Katsipoulakis, Alexandros Labrinidis, and Panos K Chrysanthis. 2017. A

holistic view of stream partitioning costs. Proceedings of the VLDB Endowment
10, 11 (2017), 1286–1297.

[30] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L

Wolf, Paolo Costa, and Peter Pietzuch. 2016. Saber: Window-based hybrid stream

processing for heterogeneous architectures. In Proceedings of the 2016 ACM
SIGMOD International Conference on Management of Data. ACM, 555–569.

[31] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.

2015. Twitter heron: Stream processing at scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM, 239–250.

[32] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore John-

son, and David Maier. 2008. Out-of-order processing: a new architecture for

high-performance stream systems. Proceedings of the VLDB Endowment 1, 1
(2008), 274–288.

[33] Teng Li, Jian Tang, and Jielong Xu. 2016. Performance modeling and predictive

scheduling for distributed stream data processing. IEEE Transactions on Big Data
2, 4 (2016), 353–364.

[34] Federico Lombardi, Leonardo Aniello, Silvia Bonomi, and Leonardo Querzoni.

2017. Elastic symbiotic scaling of operators and resources in stream processing

systems. IEEE Transactions on Parallel and Distributed Systems 29, 3 (2017), 572–
585.

[35] Yuan Mei, Luwei Cheng, Vanish Talwar, Michael Y. Levin, Gabriela Jacques da

Silva, Nikhil Simha, Anirban Banerjee, Brian Smith, Tim Williamson, Serhat Yil-

maz, Weitao Chen, and Guoqiang Jerry Chen. 2020. Turbine: Facebook’s Service

Management Platform for Stream Processing. In 2016 IEEE 36th International
Conference on Data Engineering (ICDE). IEEE, 589–600.

[36] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S

McKinley, and Felix Xiaozhu Lin. 2017. Streambox: Modern stream process-

ing on a multicore machine. In 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17). 617–629.

[37] Lory Al Moakar, Thao N Pham, Panayiotis Neophytou, Panos K Chrysanthis,

Alexandros Labrinidis, and Mohamed Sharaf. 2009. Class-based continuous query

scheduling for data streams. In Proceedings of the Sixth International Workshop
on Data Management for Sensor Networks. ACM, 9.

[38] Shanmugavelayutham Muthukrishnan, Rajmohan Rajaraman, Anthony Shaheen,

and Johannes E Gehrke. 1999. Online scheduling to minimize average stretch. In

40th Symp. Foundations of Computer Science Science (FOCS). IEEE, 433–443.
[39] Snehal Nagmote and Pallavi Phadnis. 2019. Massive Scale Data Processing at

Netflix using Flink. Flink Forward Conference (2019).
[40] Muhammad Anis Uddin Nasir, Gianmarco De Francisci Morales, Nicolas Kourtel-

lis, and Marco Serafini. 2016. When two choices are not enough: Balancing at

scale in distributed stream processing. In 2016 IEEE 32nd International Conference
on Data Engineering (ICDE). IEEE, 589–600.

[41] Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou. 2019.

Haren: A Framework for Ad-Hoc Thread Scheduling Policies for Data Stream-

ing Applications. In Proceedings of the 13th ACM International Conference on
Distributed and Event-based Systems (DEBS). ACM, 19–30.

[42] Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy Camp-

bell. 2015. R-Storm: Resource-Aware Scheduling in Storm. In Proceedings
of the 16th Annual Middleware Conference (Vancouver, BC, Canada) (Middle-
ware ’15). Association for Computing Machinery, New York, NY, USA, 149–161.

https://doi.org/10.1145/2814576.2814808

https://github.com/klink-scheduler/klink
https://doi.org/10.1145/3401025.3401732
https://doi.org/10.1145/2814576.2814808

[43] Thao N Pham, Panos K Chrysanthis, and Alexandros Labrinidis. 2016. Avoiding

class warfare: managing continuous queries with differentiated classes of service.

Proceedings of the VLDB Endowment 25, 2 (2016), 197–221.
[44] Nicolo Rivetti, Nikos Zacheilas, Avigdor Gal, and Vana Kalogeraki. 2018. Proba-

bilistic Management of Late Arrival of Events. In Proceedings of the 12th ACM
International Conference on Distributed and Event-based Systems (DEBS). ACM,

52–63.

[45] Gabriele Russo Russo, Valeria Cardellini, and Francesco Lo Presti. 2019. Reinforce-

ment Learning Based Policies for Elastic Stream Processing on Heterogeneous

Resources. In Proceedings of the 13th ACM International Conference on Distributed
and Event-based Systems (DEBS). ACM, 31–42.

[46] Sven Schmidt, Thomas Legler, Daniel Schaller, and Wolfgang Lehner. 2005. Real-

time scheduling for data stream management systems. In 17th Euromicro Confer-
ence on Real-Time Systems (ECRTS’05). IEEE, 167–176.

[47] Mohamed A Sharaf, Panos K Chrysanthis, Alexandros Labrinidis, and Kirk Pruhs.

2006. Efficient scheduling of heterogeneous continuous queries. In VLDB. 511–
522.

[48] Mohamed A Sharaf, Panos K Chrysanthis, Alexandros Labrinidis, and Kirk Pruhs.

2008. Algorithms and metrics for processing multiple heterogeneous continuous

queries. ACM Transactions on Database Systems (TODS) 33, 1 (2008), 5.
[49] Utkarsh Srivastava and Jennifer Widom. 2004. Flexible time management in data

stream systems. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. 263–274.

[50] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. 2005. The 8 requirements

of real-time stream processing. SIGMOD Record 34, 4 (2005), 42–47.

[51] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M

Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,

et al. 2014. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data. ACM, 147–156.

[52] Peter A. Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. 2003. Exploit-

ing punctuation semantics in continuous data streams. IEEE Transactions on
Knowledge and Data Engineering 15, 3 (2003), 555–568.

[53] Tolga Urhan and Michael J Franklin. 2001. Dynamic pipeline scheduling for

improving interactive query performance. In PVLDB, Vol. 1. ACM, 501–510.

[54] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali

Ghodsi, Michael J Franklin, Benjamin Recht, and Ion Stoica. 2017. Drizzle: Fast

and adaptable stream processing at scale. In Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 374–389.

[55] Matei Zaharia, Reynold S Xin, PatrickWendell, Tathagata Das, Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J

Franklin, et al. 2016. Apache spark: a unified engine for big data processing.

Commun. ACM 59, 11 (2016), 56–65.

[56] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel

Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. 2019. An-

alyzing efficient stream processing on modern hardware. PVLDB 12, 5 (2019),

516–530.

[57] Tan Zhang, Aakanksha Chowdhery, Paramvir Bahl, Kyle Jamieson, and Suman

Banerjee. 2015. The design and implementation of a wireless video surveillance

system. In Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking. 426–438.

	Abstract
	1 Introduction
	2 Background
	2.1 Window Processing Semantics
	2.2 Watermarks

	3 KLINK: Design and Algorithms
	3.1 Estimating SWM Ingestion
	3.2 Estimating Slack Time
	3.3 Handling Join Operators
	3.4 Klink's Memory Management

	4 Distributed Klink Design
	5 System Implementation
	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

