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NUMERICAL SIMULATION OF 3D SURFACTANT-COVERED
DROPS IN A STRONG ELECTRIC FIELD

Abstract. The numerical literature for 3D surfactant-laden drops placed in electric fields is
extremely limited due to the difficulties associated with the deforming drop surfaces, inter-
face conditions and the multi-physics nature of the problem. Our numerical method is based
on a boundary integral formulation of the Stokes equations and the leaky-dieletric model;
it is able to simulate multiple drops with different viscosities covered by an insoluble sur-
factant; it is adaptive in time and uses special quadrature methods to deal with the singular
and nearly-singular integrals that appear in the formulation. In this proceeding we will show
how the method is able to maintain a high quality representation of the drops even under
substantial deformations due to strong electric fields.

1. Introduction

There is currently a growing interest in the applications of electric-field induced dy-
namics on deformable particulate suspensions. Biomedical applications span from
separation and detection, to selective manipulation, drug delivery and so on [1]. Other
engineering applications are represented by mixed emulsions where a specific material
needs to be isolated as a water-in-oil emulsion where high-viscosity oils combined with
asphaltenes or resins (or in general substances that behave like surfactants) make it hard
to extract the water and an electric field can be applied to accelerate the sedimentation
process. The study and understanding of the physics of these systems is then necessary
to design apposite biotechnological devices for the above mentioned purposes.

The influence of either surfactants or electric fields on drops have been largely studied
in 2D, whilst in 3D the literature is not so wide. The combined effect of surfactants
together with electric fields is however a new and almost unexplored area of research
[5]. A detailed summary of the available literature can be found in [8], where we de-
veloped a highly accurate method for the numerical simulation of these systems. It
is a challenging problem due to the multi-physics involved and the complex moving
geometries, especially for objects such as drops or bubbles that present a deformable
interface (and then respond differently in electric field as compared with solid parti-
cles).

In this proceeding we will show the robustness of the method presenting simulations
of surfactant-covered drops placed in strong electric fields, both uniform and linear.
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2. Mathematical formulation

Below we use some standard notation in electrohydrodynamics, whose definitions can
be found, for example, in [10].
We consider N drops suspended in an ambient fluid. The Stokes equations read

— ;A VP(x) =0
o du(x) + VP(x)
V-u(x) =0
for every x inside the i-th drop (i = 1,...,N) or in the exterior region (i = 0), where u is

the fluid velocity, P is the pressure and y; is the viscosity. The fluid motion is coupled
to the interface motion via the kinematic boundary condition

(2.2) x =u(x), forall xeS*,

where x is the position vector and §* = [ J; S; denotes the union of all drop surfaces.
The permittivity € and the conductivity ¢ are discontinuous across the interface. A
stress balance at the interface establishes the flow and electric field interaction:

2.3) [[n (ze! +Zhd)]]5* —f

where [[-[|gx denotes the jump across the interface (e.g., [[G]ls, = 60 —0)), n is the
outward pointing unit normal, X¢ is the electric stress, £ is the hydrodynamic stress.
Denoting by v = y(x) the interfacial tension, the interfacial force is defined by:

24) f=2y(x)H (x)n(x) - Vs¥(x),

where H = %Vs -n denotes the mean curvature and Vg = (I —nn)V is the surface
gradient. For a clean drop, the surface tension coefficient y(x) will be constant, and the
second term in (2.4), the so-called Marangoni force, will vanish.

The electric stress £ is given by the Maxwell stress tensor, defined as,

~ 1
2.5) z! = &e)(EQE — 5 [E[*T)

where € is the permittivity of the vacuum and E denotes the electric field; the hydrody-
namic stress tensor is given by

(2.6) s — _PI 4+ u(Va+Vul).

To solve for the drop evolution under flow and electric fields, we use a boundary inte-
gral equation (BIE) method.

Using the non-dimensionalization described in [8], equations (2.1) and (2.3) can be
reformulated as the following boundary integral equation:

. (i + Du(xo) = _;Nl (417[ L _,- (2(2 _fE(X)) .G(xo,x)dS(x)>

N1
+Z( 47
j=1

J u(x)-T(xO,x)-n(x)dS(x)>, forall xe S*
Sj
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where f was defined in (2.4), f£ is the electric force on the interface f£f = [[n- yel 1] g
Cag is the electric capillary number and A; = Z’—(’) denotes the viscosity contrast of the
i-th drop. The tensors G and T are the Stokeslet and the Stresslet ones,

(2.8) G(x0,x) = I/r+%%/r’, T(x0,X) = —6X&X/r’,

with & = xp —x and r = |%|. It is important to remark that at X = X¢, the kernels
G and T have a singularity, and the integrals are to be understood as principal value
integrals. It should also be noted that when x is very close to one drop surface, we have
a quasi-singularity; this means that the computation of the corresponding integral must
be performed by using a rule that takes into account this quasi-singularity. Thus, all
integrals of the above type must be computed by using proper quadrature formulas, that
take the above singular and quasi-singular behaviors into account, as better explained
in the next section.

In the present paper we consider that the surfactant-covered drops are subjected to the
electric field E,, applied far away from the drop, where E,, = E, (x) is defined on
the whole space, and in particular we will consider uniform and linear fields. The
electric field is described by the leaky—dielectric model, in which the electric charges
are assumed to be present only at the interface and not in the bulk. The boundary value
problem for the electric field can be written as:

(2.9a) ~V-E=0 in RAS*
(2.9b) [6Ea]lgx =0
(2.9¢) Ex)>E, (x) as [|x|—>®

where E, = E - n is the normal component of E. For simplicity we will assume the
viscosity ratio A = ”—(’) the conductivity ratio R = g—é and the permittivity ratio Q = :—(’)
to be the same for all the drops, i = 1,...,N. Using these definitions, eq. (2.9b) implies

(2.10) E° = RE!.

We will henceforth omit the superscript O for the normal component of the electric
field.

Denoting by E; = (I —nn) - E = E — E,;n the tangential components of E, the electric
force on each interface i can be written in terms of E,, and E, [4]:

_ &g 0

D10~ 2B~ (1~ QFIn +820(1 — DIEE.

Q11 ff= [[n-zelﬂs*

The electric force on the membrane needs to be computed by solving (2.9) for a given
drop shape. Since (2.9) is a linear partial differential equation, similar to the fluid
problem, we can recast it using a boundary integral formulation [4]:

N ) E if xo inside S*,
£ o
212)  E,(x0)- Y L e IEAS() = { SEO 4B irsges”,
J=172 E°¢ if X¢ outside S*.
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Eq. (2.12) exactly satisfies the far-field condition (2.9c) and gives an integral equation
for E,, by taking its inner product with the normal vector and using (2.10):

R R-—1Y [ %n 1
2.1 K, - - 2K, — —E,(xo).
@13) B n(xo) + +1,.21L,. 23 En(0)dS(x) = 5 Ey(x0)

The tangential component of the electric field is given by

E'+E 1+R
2 2R
The presence of an insoluble surfactant on the drop surface will affect the interfacial
tension . It is related with the surfactant concentration by the equation of state. Differ-
ent equations of state can be used, as the Szyszkowski equation (also called Langmuir
equation of state) which is given, in dimensionless form, by:

(2.14) E,

E,n.

(2.15) Y(T) = 1+ Eln(1 —x,T)

where E is the elasticity number and x; is the surface coverage, 0 < x; < 1. The equa-
tion governing the evolution of the surfactant concentration is a convective-diffusion
equation given in dimensionless terms by:

or 1 _,
(2.16) — +Vs-(Tw) — —ViT'+2H(x)['(u-n) =0,

ot Pe
where Pe is the Péclet number.
To summarize, given the initial shape of the drop and the initial surfactant concentra-
tion, we need to solve the system composed by eqs. (2.2)-(2.9)-(2.16) with boundary
condition (2.3), where the solution for the velocity u and the electric field E is obtained
via the boundary integral formulations presented (respectively eq. (2.7) and (2.13)) and
the interfacial tension is updated via the equation of state (2.15).

3. Numerical Method

We will use a Galerkin formulation to solve the system composed by eqs. (2.7,2.13,2.16).
The numerical method is described in details in our previous papers [7, 8]. Here we will
just summarize the main numerical tools we have used to apply the above formulation.
These are:

» Spherical Harmonics expansion representation:
All the variables (position vector, surfactant concentration, electric field) will be
represented by a spherical harmonics expansion truncated at order p:

)4 n
(3.17) Yp(0,0) =1 > Yi¥um(8,0),

n=0m=-—n

where {(0,0) : 6 € [0,7],0 € [0,27)} and V,,,, are the normalized scalar spherical
harmonic functions of degree n and order m.
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* Regular, singular and nearly-singular integration:
The quadrature rule for regular integrals is defined as follows:

p 2p+1
(3.18) fydvz DT w8, 00)W (8,00,
S j=0 k=0
where w; = %Si:(—’éj) and W (0, ¢y) is the infinitesimal area element of the surface
S.

As already mentioned in the previous section, when computing the integrals in
(2.7), (2.12), and (2.13) we need a special treatment for the singular (X9 = X)
and the nearly-singular (/imy,—,x) cases. These two situations have a very dif-
ferent nature: in the first case it is an analytical problem (the integrand itself is
not properly defined at the singular value) while in the second case it is a purely
numerical issue. In both cases the integrals must be computed using proper nu-
merical strategies: we will treat the two situations separately, exploiting the fact
that spherical harmonics are eigenfunctions of the Laplace operator on the sphere
[3.9] for the singular case, and using an interpolation technique for the nearly-
singular case [7].

* Time-stepping:

The ODE system one obtains for the drop/surfactant, after having applied the
above mentioned (discretized) Galerkin method, is evolved in time using the
combination of the Midpoint Rule for the evolution of the drops with an Implicit-
Explicit IMEX) second-order Runge-Kutta scheme for the evolution of the sur-
factant concentration. This choice allows to treat the convective term that appears
in the surfactant evolution equation (2.16) explicitly, and the diffusive term im-
plicitly. To make the implicit part of the solver efficient also for large diffusion
coefficients, a preconditioner is designed taking advantage of spherical harmon-
ics eigenfunction properties [7]. The overall scheme is adaptive with respect to
drop deformation and surfactant concentration as explained and showed in [6].

* Reparametrization:

Significant distortions of the point distributions representing the drops surfaces
may arise, especially when simulating 3D drops under the influence of a strong
electric field. This can easily lead to aliasing errors and numerical instabilities
and, for this reason, a reparametrization procedure is absolutely necessary. We
developed a spectrally accurate algorithm able to ensure good quality of the sur-
face representation also in the case of strong distortions and able to handle the
surfactant concentration which lives on the surfaces of the drops. A detailed
explanation of the procedure can be found in [7].

4. Results

All the following simulations are performed for an initially spherical drop of radius 1
with uniform surfactant concentration and viscosity ratio A = 1. In Fig. 1 it is shown the
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simulation run with spherical harmonic expansion order p = 11 for a single surfactant-
covered drop placed in a uniform electric field E,, = Cag(0,0,1), where Cag is the
electric capillary number. The surfactant parameters are set to: x; = 0.36, Pe = 100
and E = 0.2. We can see that the drop assumes a prolate shape and at the tips of the
drop the surfactant concentration is lower than on the rest of the surface; this is because
the drop didn’t reach a steady state.

We compared our numerical experiments finding good agreement with the simulations
presented in [2], where a single clean drop is placed in a strong linear field E,, =
Cag(—x,—y,2z). However it’s worth mentioning that Deshmukh and Thaokar assume
the axisymmetric simplification which is valid only for a drop placed in the origin; we
don’t have this restriction. In Fig. 2a we show the simulation presented in [2] Fig. 10c
with the same physical parameters and Cag = 0.5. The final time is 7 = 0.5, while
in Fig. 2b we changed the permittivity ratio to Q = 0.1 and the final time is 7 = 0.1.
Note also that in Fig. 2b the particle is not centered in the origin and for this reason the
resulting electric field is much stronger. For both the simulations we set p = 15.
Finally we also show two surfactant-laden drops interacting in a linear field with R =5,
Q0 =0.5, Cag = 0.6 at the final time 7 = 0.2 run with p = 11. The particles are set
in a symmetric setting and then also the surfactant concentration takes a symmetric
configuration. The two particles interacting in the electric field generate a translation
velocity that, with these physical parameters, results to be attractive.

0.34

0.2

Figure 1: A single surfactant covered drop in a uniform electric field at time 7 = 1.
For this simulation Cag =2, R =20, Q =2 and p = 11. The colorbar denotes the
surfactant concentration.

4.1. Conclusions

In our previous works [7, 8] we presented a highly accurate numerical method for sim-
ulating multiple surfactant-covered drops placed in electric fields, where we validated
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(a) (b)

Figure 2: a) A single clean drop placed in a linear field with R = 1, Q = 20, Cag = 0.5
at the final time 7 = 0.5 run with p = 15.; b) Same as in a) but with Q = 0.1, showed
at the final time 7 = 0.1.

0.39

Figure 3: Numerical simulation of two surfactant-covered drop in a linear electric field
with R =5, Q = 0.5, Cag = 0.6 at the final time 7 = 0.2 run with p = 11. The surfac-
tant parameters are the same of the simulation in Fig. 1 and the colorbar denotes the
surfactant concentration.

our code against experimental, numerical and theoretical results for the physical sit-
uations where the capillary number is below the critical one. In this proceeding we
showed three numerical simulations of clean and surfactant-covered drops to illustrate
the robustness of our method even when the particles are under the influence of strong
electric fields. In all the presented cases the deformation is very pronounced but still
the method is able to capture the electrohydrodynamic of the drops keeping the order
of the spherical harmonics expansions reasonably small (never higher then p = 15) and
the error in the volume conservation is never above 6e-05.
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