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Abstract. The unstructured shock-fitting algorithm originally proposed in Ref. [3] has been

further developed to make it capable of dealing with shock-wave/boundary-layer interactions

(SWBLIs). This paper illustrates the algorithmic features of the technique and its application to

2D flow-configurations featuring different SWBLIs, including the transonic turbulent flow past

a symmetrical airfoil and a laminar oblique-shock reflection.

1 INTRODUCTION

Accurate skin-friction and wall heating predictions of flows featuring SWBLIs require the

numerical modeling of the shock-wave, a task which can be achieved using either shock-capturing

(S-C) or shock-fitting (S-F). The S-C method is built upon the integral, conservation-law form

of the governing equations: no special treatment is required for modeling the discontinuities, but

their thickness depends on the local mesh-spacing, which may be orders of magnitude larger than

the true (physical) shock-width. A different way to proceed is offered by the S-F approach: it

consists in identifying and tracking the motion of the discontinuities, which are treated as internal

boundaries of zero thickness which bound regions of the flow-field where a continuous solution

of the governing PDE exists. In the S-F approach the speed of the discontinuity and its upstream

and downstream states are computed by solving the Rankine-Hugoniot (R-H) jump relations,

whereas the flow in the smooth regions can be approximated using a gas-dynamic solver. The

S-F technique has been developed by Gino Moretti [1, 9] and his collaborators since the late

1960s. Its algorithmic complexity, partly related to the used of structured grids, contributed to

the gradual dismissal of the technique: by the turn of the century nearly all high-speed flows

were simulated using the S-C approach. Over the last decade, however, two of the authors [2, 3]
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have been developing a novel, unstructured S-F technique which allows to relieve much of the

algorithmic complexity that plagued the “traditional” S-F techniques developed in the structured-

grid framework. This paper describes a recently developed version of the unstructured S-F

algorithm, which allows to compute compressible viscous flows featuring SWBLIs; the results

obtained using both S-C and S-F simulations on nearly identical triangular meshes have been

compared to the experimental data in order to highlight the differences between the two shock-

modeling approaches.

2 SHOCK-FITTING ALGORITHM

The present S-F technique for unstructured grids was first published by two of the authors in [3]

and later improved and enhanced in [4, 5, 6]. Even though the technique has already been

used [7, 8] to simulate viscous flows, those flow-cases did not involve SWBLIs, which require

the additional algorithmic ingredients described here and in a recent, previous publication [11].

The present paper completes the description of the algorithmic developments and broadens the

SWBLIs considered. The S-F algorithm relies on the use of a background triangular mesh,

fixed in space, which covers the entire two-dimensional computational domain, and a one-

dimensional shock-mesh, which describes the moving discontinuity. As shown in the sequence

of frames of Fig. 1, these two geometrical discretizations are merged to form what we call the

“computational” mesh. More precisely, Fig. 1a is the “background” mesh, which will also be

used to perform all the S-C calculations presented in Sect. 3. The shock-mesh, which is shown

in all frames of Fig. 1 using a red line, is made up of an ordered sequence of shock-points,

which are mutually connected using straight shock-edges. Both the shock-points and shock-

edges are duplicated items that share the same geometrical location: the shock-upstream and

shock-downstream flow states along the shock-mesh are stored within each pair of shock-points

and, by also duplicating the shock-edges, the fitted-shock behaves like an interior boundary of

zero thickness. Observe from Fig. 1a that the geometrical location of the shock-points is totally

un-related to the location of the grid-points of the background triangulation. Let us now assume

that the solution at time t is known within all the grid-points of the background mesh and all

pairs of shock-points. The algorithm that updates the field solution and the shock-states and

position at time t +∆t consists in five steps, which will be described hereafter.

2.1 Step 1: cell removal around the shock front

The first step consists in removing those triangles of the background mesh which are crossed

by the discontinuity, and also the triangular cells that have at least one of their vertices that is

too close to the shock-front. By doing so, a mesh-less hole, which contains the discontinuity, is

carved within the background mesh, as shown in Fig. 1b.

2.2 Step 2: local re-meshing around the shock front

The hole is separately re-meshed using a constrained Delaunay triangulation (CDT), see Fig. 1c:

the shock-edges and the boundaries of the hole are constrained to belong to the final CDT and

no further grid-point is added. Re-meshing is localized around the discontinuity and, therefore,

it has a limited computational cost.
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2.3 Step 3: grid assembly

The “computational” mesh that will be used to advance the solution in time from t to t +∆t

is made up of the two different grids that have been generated in the previous two steps, see

Fig. 1d: the background mesh with the hole and the CDT that fills the hole. When merging these

two meshes, it is important to remove the duplicated nodes and ensure a consistent numbering

of both the grid-points and the triangular cells.

(a) Background mesh and shock at time t (b) Generation of the hole in the background

mesh

(c) Generation of the CDT within the hole (d) Computational mesh obtained by

merging grids 1b and 1c

Figure 1: Sequence of steps for the generation of the computational mesh at time t

2.4 Step 4: calculation of the tangent and normal unit vectors to the shock front

The tangent and normal unit vectors along the shock-front are needed within each shock-point

in order to apply the R-H relations (step 5). These unit vectors are computed using finite-

difference (FD) formulae which involve the coordinates of the shock-point itself and those of

its neighboring shock-points. As described in [3], the FD stencil, either upwind or centered, is

chosen depending on the local shock-downstream flow regime. Moreover, the presence of the

boundary layer requires special provisions to be made concerning the calculation of the normal

vector within the shock-point closer to the wall. This is because in viscous flows the no-slip

condition prevents the shock from reaching the wall, which implies that it is not any longer

possible to use the wall geometry to compute the shock-slope, as one would do when dealing

with inviscid flows, which can be supersonic all the way down to the wall. For instance, this is

the situation that occurs when dealing with the transonic turbulent flow past an airfoil, a test-case

that will be extensively investigated and discussed in Sect. 3.2. Figure 2a shows the computed

Mach-number field which is characterized by the presence of a supersonic pocket bounded on its

downstream side by a shock-wave, shown using a black solid line in Fig. 2. As shown in Fig. 2b,
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which shows a zoom centered around the foot of the shock, the shock originates at a certain

distance above the wall, due to the coalescence of compression waves. Since the intensity of

the shock wave in the first shock-point (SP) is certainly very small, it can be assumed, as done

in [9], that the local shock-slope coincides with that of the local Mach line; therefore, the vector

normal to the shock can be taken perpendicular to the Mach line, as shown in Fig. 2b.

(a) Mach flood computed using S-F

technique. The fitted shock is drawn

using a black solid line.

(b) Enlargement around the foot of

the shock: the shock originates due

to the coalescence of characteristic

curves, drawn in blue.

Figure 2: Transonic flow past a 18% circular arc airfoil: modeling of the shock-point closer to

the wall.

2.5 Step 5: solution update using a S-C code and enforcement of the R-H relations

Using the computational grid as input, a single time-step calculation is performed using an

unstructured, vertex-centered, S-C solver eulfs [10], which returns updated nodal values at time

t+∆t. However, the dependent variables within the shock-points located on the downstream side

of the shock need to be corrected by enforcing the R-H relations across each pair of shock-points:

this amounts to solve a system of non-linear algebraic equations which also supplies the local

shock-speed, as described in detail in [3]. Finally, knowledge of the shock-speed within all pairs

of shock-points allows to move the shock-mesh from its current location to the updated one at

time t+∆t so that solution can be advanced over the next time-interval by repeating steps 1 to 5.

3 NUMERICAL RESULTS

SWBLIs turn out to be an important test-bench to evaluate the capability of the proposed

unstructured S-F technique to deal with both laminar and turbulent flows featuring SWBLIs.

The SWBLI patterns that are more commonly encountered in nature are the following two. The

first one consists in the coalescence of compression waves within the supersonic part of the

boundary layer, leading to the formation of a shock-wave. The second one consists in a weak

oblique shock-wave which penetrates the supersonic boundary layer, gradually weakening until

it completely disappears when it reaches the sonic line. The first patterns occurs in the regular

reflection of an impinging shock, which will be addressed in Sect. 3.1, whereas the latter occurs
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when dealing with shock formation over a transonic airfoil, and will be addressed in Sect. 3.2.

In addition to a qualitative comparison between the two shock-modeling options, the computed

results will be compared against the available experimental data and a quantitative assessment

of the order-of-convergence of the two techniques will be made, using Richardson Extrapolation

(RE) techniques.

3.1 Regular oblique-shock reflection

The interaction between an oblique shock and a boundary-layer is termed “strong” whenever it

causes boundary-layer separation, see Fig. 3a. This is the case of the experimental and numerical

study conducted by Degrez et al. [12], whose free-stream flow conditions are reported in Tab. 1.

Parameter Value

Mach 2.2

Re∞/m 1.2106

Total temperature 293 K

Table 1: Oblique-shock reflection: free-stream conditions.

A sketch of the flow pattern and the computational domain used for reproducing the experimental

conditions are shown in Fig. 3a and 3b, respectively. The incident shock of Fig. 3a, which

forms because of the flow-deflection imparted by the shock generator in Fig. 3b, crosses the

leading edge (L.E.) shock first and then impinges on the boundary layer which develops along

the lower wall. The interaction between the incident shock and the boundary layer leads to

boundary-layer separation; the region of recirculating flow extends from the separation point, S,

to the re-attachment point, R. The flow deflection caused by the recirculating bubble leads to the

formation of compression waves, both upstream of S and downstream of R: these compression

waves coalesce at some distance from the flat plate to form the separation and re-attachment

shocks.

(a) Schematic of the flow-field due to SWBLI. Re-

printed from [12], with permission.

(b) Computational domain geometry.

Figure 3: Oblique-shock reflection: flow-field sketch and computational domain description.

In order to compare the grid-convergence properties of the S-C and S-F solutions, three nested
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grid levels have been obtained by recursively coarsening the finest one; their characteristic are

summarized in Tab. 2. The unstructured triangular grids have been obtained from structured

ones by dividing each quadrilateral cell into two rectangular triangles. S-C calculations have

been performed using the eulfs code and the same background meshes also used in the S-F

calculation. The comparison between Fig. 1a (the background mesh) and Fig. 1d (the computational

mesh) clearly reveals that the S-C and S-F simulations have been performed using nearly identical

grids: differences between the two are limited to the region close to the fitted shock, where

local re-meshing has been used to accommodate the shock-mesh inside the background mesh.

These differences are quantitatively summarized in Tab. 2, where the percentage increase in the

grid-point and cell count is also provided for all three S-F grids. On each grid level the S-C

calculations have been run first. Then, a shock-detection algorithm, such as the one described

in [13], has been used to extract from the S-C calculation the approximate shape and location

of the fitted discontinuities; the fitted discontinuities and the flow solution computed by means

of S-C supply the initial condition to the S-F calculations. The S-F technique has been used

in an hybrid manner: the discontinuities have been fitted, but their mutual interaction has been

captured.

Table 2: Oblique-shock reflection: features of the three nested grid levels.

S-C S-F % Nof.

Grid level mesh mesh increase shock-points

coarse
triangles 10000 11004 10.04

592
grid-points 5151 5650 9.69

intermediate
triangles 40000 42132 5.33

1253
grid-points 20301 21364 5.24

fine
triangles 160000 164260 2.66

2495
grid-points 80601 82729 2.64

The comparison between the dimensionless density flow-field around the interaction region,

computed on all three grid levels using both S-C and S-F, is shown in Fig. 4. It clearly reveals

the superior performance of the S-F technique: due to the finite width of the captured shocks

the interaction region is poorly solved, particularly on the coarse grid, see Fig. 4a. When

using S-C, the incident shock can be clearly identified only on the finest grid level, Fig. 4f,

whereas the S-F technique represents the incident shock (drawn using a white solid line in

Figs. 4b, 4d and 4f) as a true discontinuity on all grid levels. A preliminary and qualitative

grid-convergence study has been performed by analyzing both the skin friction (Fig. 5) and

wall pressure (Fig. 6) distributions computed on all grid levels using the two different shock-

modeling options. Figures 5a and 6a respectively show the skin-friction and wall-pressure

distributions computed using S-C on all three grid levels, whereas the S-F computed results

are displayed in Figs. 5b and 6b. When looking at the S-C and S-F calculations, both are seen

to converge towards the same fine-grid solution as the mesh is refined, but S-F appears to be

converging faster. For instance, the S-F simulation already reveals on the coarsest grid level

the skin friction and pressure plateau within the separation region, whereas the same feature

becomes visible on the intermediate grid level using the S-C approach. As far as the wall

pressure distribution is concerned, the agreement between the two shock-modeling options, and
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also with the experimental data available in [12], is good.

(a) S-C computation: coarse grid. (b) S-F computation: coarse grid.

(c) S-C computation: intermediate grid. (d) S-F computation: intermediate grid.

(e) S-C computation: fine grid. (f) S-F computation: fine grid.

Figure 4: Oblique shock reflection: zoom of the SWBLI region using the three grid levels and

shock-modeling options.

(a) S-C on all grid levels. (b) S-F on all grid levels. (c) S-C vs. S-F on the finest grid.

Figure 5: Oblique-shock reflection: skin friction distribution.
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(a) S-C on all grid levels. (b) S-F on all grid levels. (c) S-C vs. S-F on the finest grid.

Figure 6: Oblique-shock reflection: wall pressure distribution.

A quantitative assessment of the grid-convergence properties of the two different shock-modeling

options has been conducted using Richardson Extrapolation (RE), and it is presented in Tab. 3,

which shows the location of the separation and re-attachment points (their abscissae have been

measured relative to the L.E. and have been normalized by the distance, Xsh = 80 mm) and the

size of the recirculation bubble computed using both modeling options on all three mesh levels.

The observed order of accuracy, ñ, is calculated as follows:

ñ =
log R−1

log r
(1)

where:

R =
u2 −u3

u1 −u2

(2)

is the so-called convergence monitor and the grid-refinement-ratio, r, is constant and equal to

r = 2. In Eq. (2) ui denotes the variable of interest computed on the i-th grid level, where

the subscript i = 1,2,3 refers to the coarse, intermediate and fine grid levels, respectively. In

Table 3: Oblique-shock reflection: grid-convergence study and RE in the separation region.

Shock capturing Shock fitting

Grid (Xsep/Xsh) (Xre/Xsh) Bubble size (cm) (Xsep/Xsh) (Xre/Xsh) Bubble size (cm)

coarse 0.87±(0.13) 1.22±(0.12) 2.73±(1.98) 0.86±(0.11) 1.21±(0.09) 2.78±(1.58)

intermediate 0.80±(0.04) 1.27±(0.05) 3.77±(0.67) 0.80±(0.03) 1.26±(0.02) 3.71±(0.42)

fine 0.78±(0.01) 1.30±(0.02) 4.13±(0.23) 0.78±(0.01) 1.28±(0.01) 3.96±(0.11)

ñ 1.79 1.30 1.55 1.86 1.99 1.92

experimental values 0.78±(0.01) 1.28±(0.02) 4.00± (0.3) 0.78±(0.01) 1.28±(0.02) 4.00± (0.3)

particular, the observed order-of-accuracy of the S-F solutions is very close to the design order

(n = 2) of the discretization scheme, which is an indication [14, 15] that the S-F solutions are in

the asymptotic range of convergence. The analysis can be further expanded by computing the

Grid Convergence Index (GCI) [14]. On the i-th grid level:

GCIi = 1.25 |ui − ũRE | (3)
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where the same notation of Eqs. (1) and (2) has been used and:

ũRE = u3 −
u2 −u3

rñ −1
. (4)

is the extrapolated value. The GCI is a measure of the numerical error, just like the experimental

uncertainty; GCI values of the bubble size, separation and re-attachment locations are reported

between brackets alongside each numerical value in Tab. 3, whereas bracketed values beside the

measured data refer to the experimental uncertainty [12]. Observe that almost all GCI values

are smaller for the S-F solutions than the corresponding ones for S-C, highlighting a faster

convergence of the former technique over the latter.

3.2 Transonic, turbulent flow past an airfoil

We have numerically reproduced a test-case which has been experimentally studied by McDevitt

et al. in [17], using the free-stream conditions reported in Tab. 4. It consists in the transonic

flow over a 18%-thick biconvex circular-arc airfoil characterized by a SWBLI leading to fully

turbulent, separated flow. Turbulence closure of the compressible, Reynolds averaged Navier-

Stokes (RANS) equations relies on the one-equation Spalart-Allmaras model (S-A) [16].

Table 4: Transonic, turbulent flow past an airfoil: free-stream flow conditions.

Parameter Value

α∞ 0◦

M∞ 0.783

Re∞/c 107 m−1

T∞ 290 K

c 20.3 cm

The computational domain is displayed in Fig. 7, where all lengths have been made dimensionless

using the airfoil’s chord. The background triangulation has been built by merging a mesh made

of rectangular triangles, which covers the near-wall and wake regions, with a fully unstructured

triangulation. Exponential mesh-stretching has been used in the cross-flow direction to ensure

adequate resolution both within the boundary layer and the wake.

Figure 7: Transonic, turbulent flow past an airfoil: background mesh.

The flow-field is characterized by the presence of a supersonic pocket on the airfoil surface,

bounded by the sonic line on its upstream side and within the boundary layer and closed by a
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shock-wave on its downstream side. Figures 8a and 9a show the density flow-field computed

using S-C and S-F, respectively. The enlarged views of Figs. 8b and 9b again point to the

very different shock-thickness delivered by the two different shock-modeling options. A more

quantitative comparison between the S-C and S-F calculations is shown in Fig. 10, where the

pressure coefficient distribution is plotted along the airfoil’s surface. Also shown are the experimental

data measured by McDevitt et al. [17]. The two different shock-modeling options show nearly

identical distributions of the pressure coefficient, both of which are in fair agreement with

the experimental data. A visible difference between the experimental and computational data

has to do with the location of the shock wave, which is predicted a little bit downstream of

the experimental location in both the S-C and S-F simulations. The origin of the discrepancy

between simulations and experiments appears to be rooted in the turbulence model being used.

This has been assessed by running two additional S-C calculations on the background mesh

using the CFD++ commercial software and both the S-A and k− ε models. These results have

also been plot in Fig. 10 and show that the CFD++ calculation with the S-A model predicts the

same shock position also found in our calculations, whereas the k− ε turbulence model locates

the shock even further downstream.

(a) S-C computation. (b) Grid detail around the

captured shock

Figure 8: Transonic, turbulent flow past an airfoil: S-C computation and grid detail

(a) S-F computation: the fitted shock is shown

using a white line.

(b) Local re-meshing detail

around the fitted shock

Figure 9: Transonic, turbulent flow past an airfoil: S-F computation and grid detail
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Figure 10: Transonic, turbulent flow past an airfoil: pressure coefficient distribution

4 CONCLUSIONS

An unstructured, shock-fitting technique developed by the authors has been successfully extended

to laminar and turbulent viscous flows featuring shock-wave/boundary-layer interactions. Comparisons

have been made between the S-C and the S-F modeling approaches: computed results show that

S-F can significantly improve the quality of the solution and the agreement with the experimental

data when compared to a S-C calculation computed on nearly identical meshes. Moreover, a

grid-convergence analysis reveals that S-F solutions feature a measured order-of-convergence

which is closer to design order than that observed in the S-C calculations. This is tantamount

to saying that a given discretization error can be obtained using S-F on (much) coarser meshes

than those required by S-C. This is of utmost importance for viscous flow numerical simulations,

which are computationally expensive, even more in three spatial dimensions. Therefore, future

work includes the extension of the algorithm to three-dimensional flows characterized by SWBLIs.
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