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« Artificial neural networks with stacked autoencoders detected Alzheimer’s dementia patients based
on EEG and structural MRI variables.

« Classification accuracies over control participants reached 80% (EEG), 85% (MRI), and 89% (both).

o These results motivate future multi-centric, harmonized prospective and longitudinal cross-
validation studies.
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Stacked Artificial Neural Networks (ANNs) Objective: This retrospective and exploratory study tested the accuracy of artificial neural networks
with Autoencoders (ANNSs) at detecting Alzheimer’s disease patients with dementia (ADD) based on input variables extracted

from resting-state electroencephalogram (rsEEG), structural magnetic resonance imaging (sMRI) or both.
Methods: For the classification exercise, the ANNs had two architectures that included stacked (autoen-
coding) hidden layers recreating input data in the output. The classification was based on LORETA source
estimates from rsEEG activity recorded with 10-20 montage system (19 electrodes) and standard sMRI
variables in 89 ADD and 45 healthy control participants taken from a national database.

Results: The ANN with stacked autoencoders and a deep leaning model representing both ADD and con-
trol participants showed classification accuracies in discriminating them of 80%, 85%, and 89% using
rsEEG, sMRI, and rsEEG + sMRI features, respectively. The two ANNs with stacked autoencoders and a
deep leaning model specialized for either ADD or control participants showed classification accuracies
of 77%, 83%, and 86% using the same input features.
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Conclusions: The two architectures of ANNs using stacked (autoencoding) hidden layers consistently
reached moderate to high accuracy in the discrimination between ADD and healthy control participants
as a function of the rsEEG and sMRI features employed.
Significance: The present results encourage future multi-centric, prospective and longitudinal cross-
validation studies using high resolution EEG techniques and harmonized clinical procedures towards
clinical applications of the present ANNSs.

© 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights

reserved.

1. Introduction

In aging, the most prevalent progressive neurodegenerative
dementing disorder is Alzheimer’s Disease (AD), which induces
progressive cognitive deficits, loss of autonomy/independence in
activities of everyday, and behavioral symptoms (Braak and
Braak, 1995).

The US National Institute on Aging-Alzheimer’s Association
(NIA-AA) and the International Working Group (IWG) have recom-
mended the use of the following in-vivo biomarkers for the assess-
ment of AD patients in clinical research studies (Forstl and Kurz,
1999; Dubois et al., 2014; Albert et al., 2011; Jack et al., 2010,
2018; McKhann et al., 2011; Sperling et al., 2011). For diagnostic
purposes, measures of amyloidosis and tauopathy in the brain
can be extracted from cerebrospinal fluid (CSF) or maps of positron
emission tomography (PET), while measures of AD-related neu-
rodegeneration or synaptic dysfunction tauopathy can be derived
from structural magnetic resonance imaging (sMRI) and
18Fluorodeoxyglucose-PET (Forstl and Kurz 1999; Dubois et al.
2014; Karami et al., 2018; Jicha, 2011; Jack et al.,, 2018; Ottoy
et al,, 2019).

The above biomarkers are valid and reliable but partially or
totally invasive and relatively expensive for screening millions of
old seniors with cognitive deficits and risk of AD (Rossini et al.,
2020). Therefore, research studies have been testing noninvasive
and cost-effective techniques including the spectral analysis of
resting state electroencephalographic (rsEEG) rhythms, especially
at delta (<4 Hz), theta (4-8 Hz), and alpha (8-12 Hz) frequency
bands (Babiloni et al., 2020a,b). Those rhythms mainly reflect par-
tially overlapping neurophysiological oscillatory mechanisms of
synchronization of neural activity in thalamocortical, corticothala-
mic, and corticocortical circuits involved in the regulation of vigi-
lance in quiet wakefulness (Babiloni et al., 2020a,b).

In the past decades, investigations in AD patients with dementia
(ADD) and amnesic mild cognitive impairment (ADMCI) have
reported that rsEEG may be promising disease neurophysiological
markers. In relation to normal elderly (Nold) subjects, groups of
ADD patients showed abnormally high power of widespread delta
and theta rhythms, as well as low power of posterior alpha and/or
beta (13-30 Hz) rhythms (Dierks et al., 1993, 2000; Huang et al.,
2000; Jeong, 2004; Ponomareva et al., 2003).

In the review by Jonkman (1997), 16 qualified rsEEG studies,
appeared in 1983-1995, reported a classification accuracy ranging
from 54% to 100% (median of 81%) in the discrimination between
Nold and ADD individuals. In another review with more stringent
selection criteria (Jelic and Kowalski, 2009), 46 qualified rsEEG
studies appeared until 2008 reported a classification accuracy
ranging from 80% to 85% (median of 81%) in the discrimination
between ADD patients (or MCI) and control subjects (Nold and
patients with other dementing disorders).

Recently, we have developed a research line to evaluate the
hypothesis that Nold and ADD individuals may be classified with
at least a moderate accuracy (70-80%) using rsEEG source activities
estimated by the standard LORETA toolbox (Pascual-Marqui et al.,
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1994). Specifically, LORETA source estimates of rsEEG rhythms
were used to derive a single variable - occipital delta/alpha ratio
- that allowed a classification accuracy of 75% in the discrimination
of 120 ADD patients and 100 matched Nold seniors by the compu-
tation of receiver operating characteristic (ROC) curves (Babiloni
et al., 2016). In another study, we re-analyzed that database giving
4 LORETA source estimates (i.e. delta/alpha 1 and theta/alpha 1
ratios in posterior cortical lobes) as an input to resilient backprop-
agation ANNs, confirming a moderate classification accuracy of
77% (Triggiani et al., 2017).

In the framework of that research line, the present retrospective
and exploratory study aimed at testing three novel hypotheses
based on the use of LORETA source estimates. The first hypothesis
was that more advanced ANNs such as those based on autoen-
coders (AEs) may produce a classification accuracy > 80% in the dis-
crimination between Nold and ADD individuals by LORETA source
estimates. The second hypothesis was that based on these ANNs,
the classification accuracy between Nold and ADD individuals
may be similar using LORETA source estimates and standard sMRI
markers of brain neurodegeneration. The third hypothesis was that
the combined use of those LORETA source estimates and sMRI
markers may produce the best discrimination accuracy in this
exercise.

The study was designed to compare performances of two differ-
ent architectures and learning processes of autoencoder-based
ANNs for testing the hypothesis of moderate to high classification
accuracies of both architectures in the discrimination between
Nold and ADD individuals based on rsEEG and sMRI markers. The
confirmation of this hypothesis may indicate the general robust-
ness of the present methodological approach.

To achieve the study aim, we used a national database of clini-
cal, rsEEG, and sMRI data in 45 Nold seniors and 89 ADD patients,
including 16 Nold (35%) and 27 ADD (30%) individuals who already
participated in our previous study by Triggiani and colleagues
(Triggiani et al., 2017). Of note, a previous study of an independent
research group successfully used autoencoder-based ANNs in the
discrimination (>80% of accuracy) between Nold, ADD, and ADMCI
individuals by a combination of relatively invasive or expensive
markers of AD derived from sMRI, PET, and CSF in Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) cohorts (Suk et al., 2015).

2. Materials and methods
2.1. Subjects

The clinical, rsEEG, and sMRI data of the present study refer to
89 ADD and 45 Nold subjects, matched for age, education years,
and gender. Local institutional ethics committees have endorsed
the information collection and the analysis for scientific reasons.
In accordance with the World Medical Association Code of Ethics
(Declaration of Helsinki), each participant or caregiver subscribed
a written informed consent.

Probable ADD was diagnosed based on the criteria of the Diag-
nostic and Statistical Manual of Mental Disorders, fourth edition
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(DSM-IV-TR; American Psychiatric Association) and the National
Institute of Neurological Disorders and Stroke-Alzheimer Disease
and Related Disorders (NINCDS-ADRDA) working group
(McKhann et al., 1984). Individuals underwent medical, neuropsy-
chological, neurological, and psychiatric evaluations including
Instrumental Activities of Daily Living scale (IADL; Lawton and
Brod, 1969), Mini-Mental State Examination (Folstein et al.,
1975), Clinical Dementia Rating (CDR; Hughes et al., 1982), and
Geriatric Depression Scale (GDS; Yesavage et al., 1982). Criteria
for exclusion included any kind of proof of other types or causes
of dementia such as frontotemporal dementia (The Lund and
Manchester Group, 1994), vascular dementia diagnosed on the
basis of the National Institute of Neurological Disorders and Stroke
and Association Internationale pour la Recherché et I'Enseigne-
ment en Neurosciences (NINDS-AIREN) working group (Roman
et al.,, 1993), Parkinson disease (PD; Gelb et al., 1999), Dementia
with Lewy Bodies (DLB; McKeith et al., 2005), metabolic syndrome,
nutritional deficits, tumors, etc. When before EEG recordings,
given, benzodiazepines, antidepressant and/or antihypertensive
were temporally stopped for about 24 h. This procedure did not
guarantee that a full washout of the drug-longer periods would
not have been valid for apparent ethical reasons-but it made it
possible for patients with ADD to compare the drug situation. Note
that most ADD patients (>95%) followed a long-term therapy with
normal daily doses of acetylcholinesterase inhibitors including
donepezil, rivastigmine, or galantamine in standard dosages. The
Nold subjects were evaluated medically, neurologically, and psy-
chiatrically including Mini Mental Stage Evaluation (MMSE;
Folstein et al., 1975), Clinical Dementia Rating (CDR; Hughes
et al., 1982) and Geriatric Depression Scale (GDS; Yesavage et al.,
1982), to exclude topics with a history of neurological or psychi-
atric disorders (including substances abuse) from the research.
Finally, according to the Alzheimer‘s Disease Neuroimaging Initia-

tive (ADNI; http://adni.loni.usc.edu), another exclusion criterion
was a score below 27 for the Nold topics at the MMSE and above
24 for the AD topics.

Table 1 summarizes the subjects’ population and some clinical
information. T-tests assessed age, education, MMSE score, and
Individual Alpha Frequency peak (IAFp; see below for a description
of this index) differences (p < 0.05, one-tailed) between groups
(Nold and ADD).

For the MMSE score (p < 0.0001; higher MMSE score in the Nold
than in the ADD group) and for the IAFp (p < 0.0001; higher IAF in
the Nold than in the ADD group), as expected, there was no statis-
tically significant difference in age, gender, and education
(p > 0.05).

2.2. EEG recordings and preliminary processing of data

As a premise, this retrospective and exploratory study is based
on experiments performed in the framework of different clinical
studies over time, so some methodological procedures were equal
or very similar across the participating clinical units, while others

Table 1

Demographic and clinical characteristics of the subjects; mean * standard deviation.
Subjects Nold (n = 45) AD (n = 89)
Gender (Female/Male) 30/15 53/36
Age 70.55 + 7.31 72.5 £ 8.42
Education (years) 9.43 + 4.59 83 %45
MMSE score 29 +1.49 18.5 £3.16
IAF 9.35 + 1.08 8.13 £1.54

Nold: normal elderly subjects; AD: Alzheimer’s Disease; MMSE score: Mini Mental
Stage Evaluation; IAF: Individual Alpha Frequency for individual analysis of rsEEG
frequency and band power; rsEEG: resting-state electroencephalogram.
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showed some differences. Furthermore, EEG procedures used in
the present study are based on some assumptions and the results
must be interpreted as related to those assumptions. Specifically,
we followed the procedures of preliminary rsEEG data analysis
used in previous investigations of our research group to enrich
the interpretation of the present results (Babiloni et al., 2016;
Triggiani et al., 2017).

Instructions to participants for the rsEEG recordings were very
similar in all clinical units. All subjects were kindly asked to stay
in a relaxed state with the eyes closed during the experiments.
They were also kindly asked not to move or talk and keep the mind
wandering without focused mentalization. During the experimen-
tal recordings, the experimenters noted down, in the experimental
sheet: drowsiness, eyes opening, gentle verbal warnings given to
the participants when signs of drowsiness, significant muscle ten-
sions or movements appeared, and hand and/or head movements
or other confounding events disturbing EEG recordings.

In all experiments, at least 5 minutes of electrophysiological
data were recorded by professional digital EEG systems licensed
for clinical applications (i.e., EB-Neuro Be-light, Micromed, Brain
vision, etc.) from 19 exploring scalp electrodes placed according
to the 10-20 montage system (i.e., Fp1, Fp2, F7, F3, Fz, F4, F8, T3,
C3,Cz,C4, T4, T5, P3, Pz, P4, T6, 01, and 02). The ground electrodes
were placed in the posterior midline, while the reference elec-
trodes were located in different positions across participating clin-
ical units (i.e., linked earlobes, mastoids, vertex, etc.) in relation to
local standard protocols and trials. This difference did not affect the
present findings as the LORETA toolbox produces cortical source
estimates independent of the placement of ground and reference
electrodes. In other words, it provides the identical EEG source
estimate using any placement of ground and reference electrodes
(Pascual-Marqui et al., 1994).

During the rsEEG recordings, electrode impedances were kept
below 5 KOhm. The rsEEG recordings were performed using
128 Hz or higher sampling rate (128-1,024 Hz) with an antialias-
ing bandpass between 0.01 Hz and 60-100 Hz.

In parallel to the rsEEG recording, bipolar vertical and horizon-
tal electrooculographic (EOG) signals and one-channel electrocar-
diographic (ECG) signals were also acquired using the same
sampling frequency adopted to record the rsEEG data (128-
1,024 Hz). Consequently, rsEEG, EOG, and ECG signals had the same
sampling rate, so EOG and ECG signals could be used for the artifact
detection and their off-line correction when adequate.

As mentioned above, some rsEEG datasets were recorded using
a relatively low sampling frequency of 128 Hz (<20% of the rsEEG
datasets collected). It should be remarked that such a sampling fre-
quency is sub-optimal for an ideal reconstruction of rsEEG signal
beyond 40 Hz without aliasing. Ideally, a factor of 3-4 between
the low-band pass limit and the rsEEG sampling frequency should
be set (Burgess, 2019).

In the preliminary analysis, the rsEEG data were split into 2-s
epochs and analyzed off-line centrally. This segmentation allowed
the use of standard toolboxes for the spectral analysis of rsEEG
activity such as Fast Fourier Transform (FFT) and eLORETA source
estimation, which assume the stationary of rsEEG activity. Further-
more, it allowed to minimize the rejection of rsEEG data around a
short of period of artifactual activity. The use of those procedures
allowed a better understanding of the present results in light of
previous reference evidence of our research line (Babiloni et al.,
2016; Triggiani et al., 2017), but it implied the focus on the linear
components of rsEEG signals for the classification purposes.

Two independent experimenters (G. N. and R. L.) performed a
visual analysis of EOG and rsEEG data blind to the clinical diagnosis
associated with the electrophysiological datasets. They rejected
those with artifacts due to instruments, electronic noise, head-
neck movements, and face muscle tension. They also rejected
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rsEEG epochs with amplitude values exceeding 100 pV. Particular
attention was given to the contamination of ocular activity (i.e.,
blinking) on electrophysiological data recorded at frontal (i.e., F7,
F3, Fz, F4, and F8) and frontopolar (Fp1 and Fp2) electrodes. This
specific exam was based on the comparison of EOG and rsEEG
traces. The rsEEG epochs with artifacts marked as eye movements
and blinking were given as inputs to a software toolbox based on
an autoregressive model for their possible correction. Technical
details and performances of this procedure were reported else-
where (Moretti et al., 2003). Noteworthy, the outcome of this pro-
cedure was visually revised by the two experimenters (G. N. and R.
L.). All Nold and ADD datasets showed less than 20% of artifact-free
rsEEG epochs, without significant differences between the Nold
and ADD groups (t-test, p > 0.05).

To harmonize rsEEG data recorded using different reference
electrodes and sampling frequency rates, artifact-free rsEEG
epochs were off-line frequency-band passed at 0.1-45 Hz and
down sampled, when appropriate, to make the sampling rate of
all artifact-free rsEEG datasets in the Nold and ADD participants
equal to 128 Hz. For sake of harmonization of all datasets, the
recorded rsEEG data were re-referenced to the common average
reference.

Spectral power density of rsEEG rhythms was computed by Fast
Fourier Transform (FFT, Welch algorithm, Hanning window, no
phase shift) using 0.5 Hz as frequency resolution. According to pre-
vious rsEEG studies carried out in Nold and ADD seniors (Babiloni
et al., 2005, 2006, 2011, 2013; Jelic et al., 1996; Besthorn et al.,
1997; Chiaramonti et al., 1997), the following standard frequency
bands were considered: delta (2-4 Hz), theta (4-8 Hz), alpha 1
(8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), beta 2
(20-30 Hz), and gamma (30-40). The contiguous frequency bands
shared a bin of frequency in line with the assumption of partially
overlapping neurophysiological oscillatory mechanisms
(Klimesch, 1999; Babiloni et al., 2020b).

2.3. rsEEG rhythms cortical sources computation by LORETA

To estimate cortical source activity (i.e., neural current density)
from rsEEG rhythms, the official LORETA toolbox (Pascual-Marqui
et al, 1994; http://www.unizh.ch/keyinst/NewLORETA/LOR-
ETAO1.htm) was used. It solves the EEG linear inverse problem
estimating neural currents in 2,394 voxels with 7 mm of spatial
resolution that form the spherical cortical source model of the LOR-
ETA toolbox. The other two compartments of the head model are
those representing electrical properties of scalp and skull. Those
voxels of the cortical comportment are co-registered to the Talair-
ach probability brain atlas developed in the Brain Imaging Center
of the Montreal Neurological Institute (Talairach and Tournoux,
1988).

As EEG inverse problem solutions are typically under-
determined and unconditioned due to the greater number of
unknown samples (current density at each voxel) than scalp elec-
trodes, LORETA toolbox regularizes inverse solutions selecting the
maximally smooth source activity solution explaining input scalp-
recorded EEG data (Pascual-Marqui et al., 1994).

We used the LORETA toolbox to estimate rsEEG cortical source
activities in all 2,394 voxels from 1 to 45 Hz. Afterward, we nor-
malized LORETA source estimates by the following procedure.
For each participant, we averaged LORETA source estimates across
all voxels and frequency bins from 1 to 45 Hz. This averaged value
served as a denominator to normalize (i.e., ratio) LORETA source
estimates at all cortical voxels and for all frequency bins. This nor-
malization method typically fits rsEEG power density into a Gaus-
sian distribution and decrease its variability between subjects
(Nuwer, 1997; Leuchter et al.,, 1993). After the above normaliza-
tion, the LORETA solutions lost the original physical dimension

235

Clinical Neurophysiology 132 (2021) 232-245

and are represented by arbitrary units. In the normalized scale,
the value “1” at all frequencies (0.5-45 Hz) and cortical volume
voxels was equivalent to the mean of the dipole current density.

In line with the LORETA intrinsic low-spatial resolution of its
solutions, we averaged the normalized LORETA source estimates
for bilateral ROIs representing cortical lobes of the head model.
Specifically, the LORETA solution for a given lobar ROI was
obtained averaging the normalized LORETA source estimates
across all the voxels of that ROI. The bilateral lobar ROIs were
the following: (pre)frontal, central (i.e., Brodmann areas 6, 4, 3, 2,
and 1), parietal (except Brodmann areas 3, 2, and 1), temporal,
occipital, and limbic (Table 2).

2.4. The rsEEG features used as inputs for ANNs

In total, we used 42 rsEEG features as inputs for the present
ANNSs. They are listed in the following: LORETA source current den-
sity in the parietal, temporal, occipital, limbic, central, and frontal
ROIs systematically combined with delta, theta, alpha 1, alpha 2,
beta 1, beta 2, and gamma frequency bands. For example, the fol-
lowing 6 rsEEG source estimates (features) were extracted for the
delta band: “frontal delta”, “central delta”, “parietal delta”, “occip-

ital delta”, “temporal delta”, and “limbic delta.”

2.5. Recording and analysis of sMRI data

Proton density, T1- and T2-weighted sMRIs were acquired
based on the standard research settings mostly by 1.5 or 3.0 Tesla
scanners at the following clinical neuroimaging centers based on
local neuroimaging scientific platforms: Sapienza University of
Rome (Italy), IRCCS Fatebenefratelli of Brescia (Italy), IRCCS San
Raffaele Pisana of Rome (Italy), IRCCS SDN of Naples (Italy), IRCCS
Oasi Maria SS of Troina (Italy), and Service of Neurophysiopathol-
ogy of the University of Genova (Italy). Some of these units (IRCCS
SDN of Naples; Sapienza University of Rome and Service of Neuro-
physiopathology of the University of Genova) provided the MRIs
based on the ADNI protocol (http://www.adni-info.org/). All 1.5
Tesla MRI scanners used harmonized sequences and scan parame-
ters for image acquisition. In the same line, all 3.0 Tesla MRI scan-
ners used harmonized sequences and scan parameters for image
acquisition.

The centralized analysis of all MRIs was performed by the group
of the Department of Physiology and Pharmacology “Vittorio
Erspamer” at Sapienza University of Rome. The MRI scans were
visually checked to confirm that they were free from structural
defects or technical artifacts. The MRI scans were also checked as
general quality of the images, signal-to-noise ratio, and well-
balanced number of MRI datasets at 1.5 and 3.0 Tesla in the Nold
and ADD participants to allow a combined use of 1.5 and 3.0 Tesla
MRIs as inputs to ANNs for classification purposes.

The analysis of MRIs was conducted using the Functional Mag-
netic Resonance Imaging of the Brain (FMRIB) Software Library

Table 2

List of the used Brodmann areas of the cortical sources of
rsEEG (resting-state electroencephalogram) rhythms by
LORETA software to define the ROIs (regions of interest).

Regions of interest LORETA Brodmann Areas

Frontal 8,9, 10, 11, 44, 45, 46, 47
Central 1,2,3,4,6

Parietal 5,7, 30, 39, 40, 43
Temporal 20, 21, 22,37, 38, 41, 42
Occipital 17, 18,19

Limbic 31, 32, 33, 34, 35, 36

rsEEG: resting-state electroencephalogram.
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(FSL), to identify the probability that a given voxels under the skull
may belong to gray matter (GM), white matter (WM) or cere-
brospinal fluid (CSF). Specifically, the following method estimated
the probability that a given voxel may belong to GM. First, the FSL-
BET pipeline conducted an atlas-based parceling operation to seg-
ment subject’s brain regions from MRIs automatically. This was fol-
lowed by a single-channel segmentation using the FAST tool of FSL.
It produced a-posterior probability maps in the space of the indi-
vidual subject for GM, WM, and CSF, with each voxel in the range
0-1 where 1 is the maximum probability (Zhang et al., 2001). FAST
is specifically based on Hidden Markov Random Field (HMRF)
model and a related Expectation Maximization (EM) algorithm
(Zhang et al., 2001). This HMRF model has benefits regarding the
manner that MRI spatial information is encoded through nearby
voxels, which leads to spatial regularization and decreasing noise
impact on the segmentation. The HMRF model is integrated by
an EM algorithm to obtain precise and robust segmentations
(Zhang et al., 2001). In order to fit and provide a standard labeled
template, non-linearly normalizations (FSL-FNIRT tool) were com-
puted for the determination of the GM probability. The output of
this procedure was an associated spatial transformation matrix
from the subject’s space to a standard template space. This model
was based on averaged high-resolution MRIs obtained from the
subjects of this research, which included anatomical channels
(T1-, T2-, and proton density-weighted images), tissue channels
(CSF probability, GM probability, WM probability, and tissue
labels), and two cortical parcellation maps, namely the TZO map,
using the model of Tzourio-Mazoyer et al. (2002), and the so-
called LPBA40 map, based on the LONI Probabilistic Brain Atlas of
40 subjects (Willis-Shattuck et al., 2008).

Based on this parcellation of the MRIs, the following 16 sMRI
markers were obtained and used as inputs for the AE ANNs: vol-
ume of the Total Intracranial Volume (TIV; cm?), GM (cm?), WM
(cm®), CSF under the skull (CSF; cm?), left hippocampus (L-
Hippo; cm?®), left hippocampus normalized to the TIV (L-
HippoTiv), left hippocampus normalized to the GM (L-HippoGM),
right hippocampus (R-Hippo; cm?), right hippocampus normalized
to the TIV (R-HippoTIv), right hippocampus normalized to the GM
(R-HippoGM), total hippocampus (T-Hippo; cm?), total hippocam-
pus normalized to the TIV (T-HippoTiv), total hippocampus nor-
malized to the GM (T-HippoGM), cortical GM (Cortex; cm?),
cortical GM normalized to the TIV (CortexTiv), and cortical GM nor-
malized to the total GM (CortexGM). Of note, we measured both
volume (i.e., number of voxels) and concentration (ratio by TIV)
of gray matter to be sensitive to complementary and informative
dimensions of the AD-related neurodegenerative process in the
cerebral cortex and hippocampus to improve the detection of
ADD patients (Weiner et al., 2017; Lee et al., 2020).

2.6. ANN architecture and procedures

Fig. 1 depicts a block diagram summarizing the two architec-
tures of the present ANNs (i.e., SAE and AEs) developed for the clas-
sification between the Nold and ADD individuals based on the
sMRI and/or rsEEG features of the input datasets (i.e., the “pat-
terns”). In some classification trials, the input datasets included
only sMRI features. In other classification trials, they included only
rsEEG features or a combination of the rsEEG and sMRI features.

A diagram of the adopted SAE is reported in Fig. 2A. These ANNs
had an input layer receiving those input features, two stacked
autoencoding hidden layers recreating input data in the output,
and a softmax output layer (SAE ANN) or a layer for the computa-
tion of the distribution of the reconstruction error (AE ANNS) to
produce the classification outcome (Liao et al., 2015).

Referring to Fig. 2A, the information of the input features repre-
sented in the first autoencoding hidden layer (H1 in Autoencoder
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Fig. 1. Block scheme of two developed architectures for Alzheimer’s disease
patients with dementia (ADD) vs Nold classification used in the present study: a
stacked autoencoder (SAE) with a softmax output layer and a pair of internal
specialized AEs with an output layer based on the reconstruction error (MSE). Three
different input datasets were considered including sMRI and resting state
electroencephalographic (rsEEG) features, separately and together. The labels
indicating the correct output class are used in both schemes but at different levels
of the processing steps. Nold: normal elderly subjects; SAE: stacked autoencoder;
sMRI: structural magnetic resonance imaging.

A) was used as an input for the second autoencoder (Autoencoder
B) creating a new hidden representation encoded into H2. This iter-
atively compresses the feature dimensional representation space
containing all needed information for the reconstruction. The hid-
den layers H1 and H2 build up the SAE, which contains a softmax
output layer which reformulates the hidden layers representation
into a probability distribution, to provide the classification of the
individual dataset of rsEEG and/or sMRI features as “Nold” or
“ADD".

The second approach consists in training separately two AEs,
each one specialized for reconstructing only one of the two classes.
As depicted in Fig. 2B, during the testing phase, the two AEs are
tested with all the testing patterns, and their outputs are processed
in a comparison layer, where the class selection is chosen accord-
ing to the minimum of the reconstruction error (MSE) computed
separately by the two networks specialized for “Nold” or “ADD”.

Overall, in the classification procedure, the “low-level” sMRI
and rsEEG features of the input datasets were used to derive a
“high-level” representation of latent features by the deep learning
using the stacked autoencoding hidden layers.

To optimize their structure and parameters, the present ANNs
(i.e., SAE and AEs) were subjected to a learning process developed
in two phases: 1) the pre-training of the stacked autoencoding
hidden layers to achieve optimum original parameters in a greedy
layer-wise manner and 2) the main training allowing the fine tun-
ing of the deep network to choose the optimum parameters across
all the mentioned layers.

In the pre-training phase, the learning process in the two
autoencoding hidden layers exploited an optimization algorithm
based on the scaled conjugate gradient descent (Mgller, 1993)
and did not use the class label (i.e., “Nold” or “ADD”) of the avail-
able patterns (i.e., the datasets with the selected sMRI and/or rsEEG
features). In the learning process of the softmax layer, the class
label was, instead, used to categorize the output feature vectors
autoencoding hidden layers. As mentioned above, the outcome of
the learning process in the deep network was the probability of
an input pattern to be classified as ADD vs. Nold. It must be noticed
that the initialization of the network weights via this pre-training
phase makes different the deep network with respect to a conven-
tional ANN, reducing the problem of local minima (Larochelle et al.,
2009).
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Fig. 2. Diagrams of the adopted autoencoder structures: (A) stacked autoencoder used for classification and its construction (see text for details). (B) Second approach: the
outputs of two specialised AEs are compared to decide about the class of the presented testing pattern. AD: Alzheimer’s Disease; ADD: Alzheimer’s disease patients with
dementia; AE: autoencoder; MSE: reconstruction error; Nold: normal elderly subjects.

In the main training phase, the results obtained for the deep
neural network were improved by performing a further learning
phase on the whole multi-layer network. This phase stacked the
input layer together with the two autoencoding hidden layers
and the final classification layer. In this phase, the fine tuning of
the network was performed on the training data using a supervised
learning approach. The learning algorithm adopted to optimize the
entire deep network was the gradient descent back propagation.
Summarizing, in this learning process, sparse learning of the
enhanced feature vectors (i.e., a concatenation of the initial low-
level features and the stacked autoencoding hidden layers-
learned features) was used to select the regressed features of tar-
gets effectively, namely the clinical diagnosis of Nold or ADD.

The mentioned main training phase was developed in two
steps. In the first step, the best number of the artificial neurons
in the two autoencoding hidden layers was defined based on sys-
tematic simulation trials and the generation of classification per-
formance maps. Specifically, the simulation trials were performed
changing systematically the number of the artificial neurons in the
first (from 5 to 25 with step 5) and the second (from 2 to 8 with
step 2) autoencoding hidden layers. The activation function
adopted for the neurons was the logistic sigmoid function (i.e., log-
sig). In this exercise, the following three learning parameters were
optimized. The first parameter was the “iteration”, namely the
numbers of models created and used to develop the performance
statistics. For each model, the topology and learning parameters
remained unchanged, while the division of the individual datasets
(i.e., Nold and ADD individuals associated with rsEEG and/or sMRI
features) in learning (80%) and testing (20%) patterns was differ-
ently randomized, performing a parameter optimization through
internal cross-validation. The second parameter was called
“MaxEpoches”, namely the maximum number of learning epochs
used for the autoencoding hidden layers and the softmax layer.
The third parameter was called “MaxEpoches Stacked”, namely
the maximum number of learning epochs used for a fine-tuning
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of the complete stacked network. As a criterion of best classifica-
tion performance, we considered both the mean classification
accuracy in the testing phase and the standard deviation of that
accuracy across the iterations. Ideally, the best number of artificial
neurons in the two autoencoding hidden layers was producing the
highest classification accuracy combined with the lowest standard
deviation.

Of note, the optimization of the “iteration”, “MaxEpoches”, and
“MaxEpoches Stacked” in the simulation trials must be considered
as one of the most important aspects of the procedure. Considering
the relatively high number of rsEEG and/or sMRI input features and
the relatively limited number of individual Nold and ADD datasets
associated with those features, an important challenge in the
learning process of the deep network model was to avoid the over-
fitting of the learning datasets. The risk of this overfitting increases
when the learning error in the training phase become too low, thus
predicting a poor generalization capability of the ANN to classify
independent testing datasets (not used in the training phase) cor-
rectly. To tackle this risk, we optimized the above three parameters
in the simulation trials to balance the learning errors in fitting the
learning patterns and the classification accuracy in the discrimina-
tion of the testing patterns. In line with previous evidence
(Lawrence and Giles, 2000), the key solution to mitigate the over-
fitting of the training patterns was the use of a relatively low num-
ber of learning epochs for the fine tuning of the networks. As an
outcome, the optimal setting of the three parameters for the SAE
was 500 iterations, 250 MaxEpoches, and 10 MaxEpoches Stacked.
Furthermore, that setting for the SAE was 500 iterations and 20
MaxEpochs.

In the second step, each network was trained using the learning
parameters optimized as mentioned above to determine the con-
nection weights among all the neurons in the layers. These weights
had the functionality to optimize the association between the indi-
vidual sMRI and/or rsEEG features, coded as an input in the autoen-
coding hidden layers, and the correct classification in the output
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neurons as “Nold” or “ADD”. To this purpose, we used new training
datasets (i.e., Nold and ADD individuals) of sMRI and/or rsEEG fea-
tures not used in the first step of the procedure. As an outcome of
this second step, a sparse learning on the augmented feature vec-
tors, i.e. a concatenation of the original low-level features and
the stacked autoencoding hidden layers-learned features, was
applied to select features that efficiently regressed the targets,
namely the clinical diagnosis (i.e. Nold or ADD).

Finally, we used or fused the selected sMRI and rsEEG features
via ANNs for the classification of testing individual datasets as
“Nold” or “ADD”. In this phase of the classification exercise, the
network performance was evaluated in the discrimination
between the Nold and ADD individual datasets using a testing sub-
set never used in this experiment.

The performance of the ANNs was expressed as percentages (%)
by the following indices:

(1) Sensitivity, defined as the ADD rate of the test datasets prop-
erly categorized as AD; this index was referred as True Pos-
itive (TP) or TP rate (TPR).

(2) Specificity, defined as the Nold rate of the testing datasets
correctly classified as Nold; this index was called as True
Negative (TN) or TN rate (TNR).

(3) Accuracy, defined as the sum of the TP and the TN divided by
the all number of the datasets including the two classes
(ADD and Nold).

This step-by-step classification process with optimization of the
ANNSs, training phase, and testing phase was repeated 500 times
(iterations). Any iteration resulted in different values of sensitivity,
specificity, and accuracy. The final reports in the “Results” section
referred to the average sensitivity, specificity, and accuracy values
over all 500 iterations.

In general, the above procedure was valid for the two classifica-
tion architectures used in the present study (i.e., SAE and AE). In
the first model, the training phase of the SAE was performed with
both Nold and ADD feature datasets as input to the unique stacked

Mean Accuracy - rsEEG input
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network. In the second architecture, a pair of AEs were trained with
Nold and ADD feature datasets, separately. The testing datasets
were given to both specialized AEs, and the AE with the lower
mean squared reconstruction error was considered as the best clas-
sification. If the AE trained with the Nold (ADD) feature datasets
produced the lowest reconstruction error, the individual dataset
was associated with a Nold (ADD) individual.

The above classification procedure was repeated three times for
the optimization of the networks specific for the classification of
the 42 rsEEG features, the 16 sMRI features, and 58 rsEEG + sMRI
features, respectively.

3. Results

Considering the proposed architecture, the first step performed
was associated with identification of the optimal number of
hidden-layer neurons. The adopted performance index is the clas-
sification accuracy, and a series of maps were reproduced for the
three different subsets of input features. Fig. 3 depicts the classifi-
cation performance maps for the SAE network, illustrating the
topology of the selected structures, on the basis of the input fea-
tures, as reported in Table 3.

The same procedure was adopted for the classification architec-
ture based on the specialized AE, and the obtained results indicate

Table 3

Best performing SAE (stacked autoencoder) network topology
optimized based on the classification accuracy as depicted in
Fig. 2. Depending on the selected input features the optimal
number of hidden neurons was defined.

Input features Network topology

rsEEG 42-20-6-2
SMRI 16-10-8-2
rsEEG & sMRI 58-20-4-2

rsEEG: resting-state electroencephalogram; sMRI: structural
magnetic resonance imaging.
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Fig. 3. Accuracy maps performed to identify the optimal topology in terms of a number of hidden neurons for the SAE, depending on the input features. The simulation trials
were performed changing systematically the number of the neurons in the first (from 5 to 25 with step 5) and the second (from 2 to 8 with step 2) hidden layers; for each
configuration 500 iterations were performed. The selected topology is indicated with a red circle. rsEEG: resting-state electroencephalogram; SAE: stacked autoencoder;

SMRI: structural magnetic resonance imaging.
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that the performances change very slightly. Therefore, we consid-
ered the same topology with 10 hidden neurons for both AE, inde-
pendently from the selected input features.

Based on the SAE topology optimized with the first step of the
procedure, the two levels of training and the testing phases were
performed. The classification rate obtained adopting this proce-
dure is reported in Table 4: for the classification of the 42 rsEEG
features, we observed a sensitivity of 89%, a specificity of 64%,
and an accuracy of 80.3%; for the classification of the 16 sMRI fea-
tures, we observed a sensitivity of 90%, a specificity of 76%, and an
accuracy of 85%; finally, for the classification of the 58 rsEEG-sMRI
features, we observed a sensitivity of 93.3%, a specificity of 81%,
and an accuracy of 89%.

Table 4

Classification performance for the SAE (stacked autoencoder) depending on the input
features. The mean percentage * standard deviation of sensitivity, specificity, and
accuracy, over 500 iterations are reported.

Input features Sensitivity Specificity Accuracy
rsEEG 88.9 +8.0 64.1 £ 15.9 803 +7.1
SMRI 89.4+75 759 £ 153 84.6 £ 6.9
rsEEG & sMRI 93.3+6.8 81.0 £12.9 89.1+58

rsEEG: resting-state electroencephalogram; sMRI: structural magnetic resonance
imaging.
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The learning procedure, followed for the SAE, is fundamental to
obtain this performance. In particular, the role of the fine tuning of
the whole network is crucial as demonstrated in Fig. 4, where the
learning and testing performances, using all the 58 features, are
reported comparing the results obtained during the first and sec-
ond learning phase. Similar behavior is also verifiable, considering
a reduced input space.

The results obtained for the SAE were compared with the sec-
ond architecture with specialized AE. The classification rate
obtained adopting this model is reported in Table 5. For the classi-
fication of the 42 rsEEG features, we observed a sensitivity of
86.5%, a specificity of 58%, and an accuracy of 77%. For the classifi-
cation of the 16 sMRI features, we observed a sensitivity of 78.8%, a
specificity of 89.7%, and an accuracy of 82.4%. Finally, for the clas-
sification of the 58 rsEEG-sMRI features, we observed a sensitivity
of 92.3%, a specificity of 74.2%, and an accuracy of 86.2%.

Fig. 5 shows the distribution of the MSE for the ADD and Nold
AE comparing learning and testing phases. Adopting the criterion
above (maximization of the accuracy over the testing datasets)
and selecting “MaxEpoch” equal to 20 (see “Methods” for more
detail), the learning and testing Gaussian shape distributions were
similarly arranged over the error axis. Smaller values in the learn-
ing epochs may have led to larger training errors, whereas larger
ones may have caused overfitting of the learning datasets
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Fig. 4. Performance obtained with the SAE in terms of Sensitivity, Specificity, and Accuracy, when all the 58 input features are provided. The learning and testing phase results
are reported before (A) and after (B) the fine-tuning of the network. Within each statistical distribution, the central mark is the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points the algorithm considers to be non-outliers, and the outliers are depicted individually as “+”. ACC:
Accuracy; SAE: stacked autoencoder; TNR: true negative rate; TPR: true positive rate.
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Table 5

Classification performance for the specialized AE (autoencoder) depending on the
input features. The mean percentage + standard deviation of sensitivity, specificity,
and accuracy, over 500 iterations are reported.

Input features Sensitivity Specificity Accuracy
rsEEG 86.5 £ 11.2 58.0+17.3 77.0+73
sSMRI 78.8 £ 10.6 89.7 £ 15.3 824+73
rsEEG & sMRI 92.3+69 742 £14.2 86.3£6.0

rsEEG: resting-state electroencephalogram; sMRI: structural magnetic resonance
imaging.

(patterns) significantly affecting the error distributions between
learning and testing (classification accuracy of testing datasets)
patterns.

The performance obtained comparing learning and testing
phase using Sensitivity, Specificity, and Accuracy, when all the 58
input features were provided, is reported in Fig. 6. This perfor-
mance presents some similarities with the results reported in
Fig. 5, related to the SAE network, in terms of the statistical distri-
bution of the performance indexes.

To test the discriminant value of those rsEEG and sMRI variables
at the group level, a control analysis was performed. We compared
those rsEEG and sMRI variables between the groups of Nold and
ADD participants as follows.

Concerning the rsEEG part, the normalized LORETA source
activities (dependent variable) were compared by an ANOVA
design the exploratory statistical threshold of p < 0.01. This ANOVA
used three factors such as Group (Nold and ADD), Band (delta,
theta, alpha 1, alpha 2, beta 1, beta 2, and gamma), and ROI (fron-
tal, central, parietal, temporal, occipital, and limbic). The individual
variability of the alpha power peak in the spectrum was considered
by the variable called individual alpha frequency peak (IAFp;
Klimesch, 1999). For each subject, the IAFp was defined as the fre-
quency bin showing the maximum global power density in the
range between 6 and 13 Hz, averaging the power density values
across all scalp electrodes (Klimesch, 1999). Results showed that
the mean IAFp was higher in frequency in the Nold group
(9.4 Hz, +0.2 standard error of the mean, SE) than the ADD group
(8.0 Hz, £0.2 SE) as revealed by a t-test (p = 0.000005).

Fig. 7 shows the grand average of the normalized rsEEG source
activities (i.e., regional normalized LORETA solutions) relative to a
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p < 0,00001) among the factors Group, Band, and ROl The IAFp
was used as a covariate. A Bonferroni correction was applied for
7 bands X 6 ROIs = 42 (p < 0.05/42 = 0.001). In the figure, the nor-
malized rsEEG source activities exhibit marked differences
between the Nold and ADD groups. As compared to the Nold group,
the ADD group shows that the rsEEG source activities at the alpha 1
and alpha 2 bands are generally smaller, confirmed by the post-hoc
Duncan test (p < 0.000005). The differences at the alpha 1 and
alpha 2 bands are observed in the posterior ROIs including the
parietal, temporal, occipital, and limbic lobes (p < 0.000005). As
compared to the Nold group, the ADD group also shows greater
normalized rsEEG source activities at the delta band. This effect
was confirmed by the post-hoc Duncan test in the frontal, central,
parietal, temporal, and occipital lobes (p < 0.001-0.00001).

Overall, the results of the above control analysis suggest that
present LORETA-based rsEEG source activities showed marked dif-
ferences between the Nold and ADD groups as a solid basis for their
use as an input for the ANN classification exercise.

Concerning the sMRI part of the control analysis, the standard
biomarkers used for the classification exercise were compared
between the Nold and ADD groups by univariate Kruskal-Wallis
H tests using with the exploratory statistical threshold of
p < 0.01 (one tail predicting signs of greater atrophy in the ADD
group than the Nold group). These sMRI biomarkers comprised
what follows: white matter (WM) hyperintensity, gray matter
(GM) volume normalized by the total intracranial volume (TIV),
left hippocampus volume, left hippocampus volume normalized
by the TIV, right hippocampus volume, right hippocampus normal-
ized by the TIV, left hippocampus volume normalized by the GM,
total hippocampus volume, total hippocampus volume normalized
by the TIV, total hippocampus volume normalized by the GM, cere-
bral cortex volume, cerebral cortex volume normalized by the TIV,
and cerebral cortex volume normalized by the GM. Results showed
that most of those sMRI biomarkers exhibited statistically signifi-
cant abnormalities in the ADD group as compared to the Nold
group (p < 0.01-0.001). These abnormalities pointed to a remark-
able atrophy in the ADD group in practically all variables repre-
senting cerebral cortex and hippocampus (Table 6).

Overall, the results of the above control analysis suggest that
present LORETA-based rsEEG source activities showed marked dif-
ferences between the Nold and ADD groups as a solid basis for their

statistically significant ANOVA interaction effect (F = 16,7; use as an input for the ANN classification exercise.
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Fig. 5. Distribution of the reconstruction error (MSE) for the specialized ADD and Nold AEs during the learning and testing phase. Performance obtained in terms of
Sensitivity, Specificity, and Accuracy, when all the 58 input features are provided. ADD: Alzheimer’s disease patients with dementia; AE: autoencoder; Nold: normal elderly

subjects.
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4. Discussion

In a previous study, resilient backpropagation ANNs have been
reported to reach 77% of accuracy in classifying ADD vs. Nold indi-
viduals using (LORETA) rsEEG cortical source activities as input
features for the classification (Triggiani et al., 2017). Here we used
another class of ANNs with stacked autoencoding hidden layers to:
1) obtain higher classification accuracy (>80%) in the discrimina-
tion between Nold and ADD individuals by LORETA source esti-
mates and 2) compare the classification accuracy of LORETA
source estimates in relation to standard sMRI markers of brain
neurodegeneration and a combination of LORETA source estimates
and those sMRI markers. Two different architectures and learning
processes of autoencoder-based ANNs were used and perfor-
mances compared to evaluate the general robustness of the pre-
sent methodological approach.

Results showed that the ANN with the SAE architecture
achieved a moderate-to-high accuracy in the classification
between the Nold and ADD individuals based on 42 rsEEG (LOR-
ETA) source features spanning over several frequency bands and
cortical lobes. Specifically, there was a moderate-to-high classifica-
tion accuracy (i.e., 80-89%) of the SAE architecture of the ANN in
the discrimination between the Nold and ADD individuals as a
function of the rsEEG (i.e., 80%) and sMRI (i.e., 85%) variables con-
sidered separately, with the best findings obtained when those
variables were combined together (i.e., 89%). Interestingly, the
ANNSs with both SAE and AE architectures exhibited a slightly bet-
ter (i.e., 2-3%) classification accuracy using sMRI as compared to
rsEEG variables (see Tables 4 and 5), thus indicating the robustness
of their outcome.

Results also showed higher (i.e. 5%) classification accuracies by
the SAE over the EA architecture in the present ANNSs. Based on this
finding, there would be a certain advantage in the sue of an ANN
with the SAE architecture able to represent and separate two clin-
ically relevant classes (i.e., Nold and ADD) of patterns in its internal
deep learning model. In that ANN, the SAE deep learning model
developed in the present study may be directly tested in the dis-
crimination between Nold seniors and patients with prodromal
stages of the disease such as ADMCI status without further learning
processes. Of course, this advantage would be concrete only with
the maintenance of moderate to high classification accuracies even
in the discrimination between Nold and ADMCI individuals. We
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expect this similarity based on the prediction that AD neuropathol-
ogy is quite significant in ADMCI patients and may produce rsEEG
and sMRI features qualitatively like those found in ADD patients
(Babiloni et al, 2017, 2018). Differently, the discrimination
between Nold and ADMCI individuals with ANNs based on AEs
would imply the construction and learning of another deep learn-
ing model specialized in the detection of ADMCI patients. This
additional work would have the advantage to specialize that
autoencoder-based ANN based on rsEEG and sMRI markers derived
from ADMCI patients.

These results are in agreement with earlier evidence of our
group; for example, our resilient backpropagation ANNs produced
a discriminant accuracy between Nold and ADD individuals of 77%
using 4 (LORETA) rsEEG source activity as features (i.e. occipital,
temporal, and parietal theta/alpha; occipital delta/alpha;
Triggiani et al., 2017). Furthermore, univariate classifications by
the ROC curves reported accuracies of 75-80% based on LORETA
occipital alpha sources or the ratio between parietooccipital delta
and alpha source activities (Babiloni et al., 2015, 2016; Lizio
et al., 2016).

The present results also extend earlier evidence of other groups
showing that rsEEG scalp-sensor features allow a mild discrimina-
tion between Nold and ADD individuals of about 80% (Brenner
et al., 1986, 1988; Claus et al., 1999; Hooijer et al., 1990; Strijers
et al., 1997). To achieve an accuracy of 84% in the classification
between Nold and ADD individuals, and 78% between ADD and
MCI individuals, Huang et al. (2000) did mix alpha and theta global
field power. Furthermore, Adler et al. (2003) reported that in the
classification of Nold and ADD individuals, the left temporal alpha
coherence and the global theta power density returned an accuracy
of 80%. Moretti et al. (2011) showed that enhanced global theta/
gamma and alpha 3/alpha 2 power density ratios resulted in an
accuracy of 88% in the prediction from MCI to ADD or non-ADD.
Trambaiolli et al. (2011) reported that the temporal energy modu-
lation in the delta, theta, alpha, beta, and gamma bands resulted in
an accuracy of 91% in the classification of Nold and ADD individu-
als. Engedal et al. (2015) reported that 20 rsEEG markers (including
the alpha frequency peak, total power density, and coherence
between electrodes) allowed an accuracy of 90% in the discrimina-
tion between ADD patients and seniors without or with other
forms of dementing disorders (e.g., Dementia with Lewy Bodies).
More information of this literature can be discovered in two
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Fig. 7. Regional normalized low-resolution brain electromagnetic tomography (LORETA) solutions (mean across subjects) of cortical sources of eyes-closed resting state
electroencephalographic (rsEEG) rhythms relative to a statistical ANOVA interaction among the factors Group (normal elderly subjects, Nold, N = 45; patients with
Alzheimer’s Disease Dementia, ADD, N = 89), Band (delta, theta, alphal, alpha2, betal, beta2, and gamma), and Region of interest, ROI (frontal, central, parietal, occipital,
temporal, and limbic). This ANOVA design used the regional normalized LORETA solutions as a dependent variable. Individual alpha frequency peak (IAF) was used as
covariate. Legend: the rectangles indicate the cortical regions and frequency bands in which the LORETA solutions statistically presented a significant LORETA pattern
Nold # ADD (Bonferroni corrected p < 0.05; the Bonferroni correction was applied for 7 frequency bands X 6 ROIs = 42, p < 0.05/42 = 0.001).

Table 6

Results of the sMRI part of the control analysis between normal elderly subjects
(Nold, N = 45) and patients with Alzheimer’s Disease Dementia (ADD, N = 89). Rank-
based nonparametric analysis (Kruskal-Wallis H test) was used to test the differences
between sMRI variables in both group of ADD and Nold. The results show sMRI
variables have statistically significant differences (p < 0.01 to 0.001).

Structural MRI biomarkers Statistical analysis (Kruskal-Wallis H

test; Nold > ADD)
X2(1) = 30.8, p = 0.001

Gray matter volume normalized

by TIV
White matter volume X3(1) =12.6, p = 0.001
Cerebral fluid under the skull X?*(1) =10.3, p = 0.001
Left hippocampus volume X?(1) =222, p = 0.001
Left hippocampus volume X%(1) = 26.8, p = 0.001

normalized by TIV

Right hippocampus volume

Right hippocampus volume
normalized by TIV

Total hippocampus volume

Total hippocampus volume
normalized by TIV

Total hippocampus volume
normalized by GM

Cerebral cortex volume

Cerebral cortex volume
normalized by TIV

Cerebral cortex volume
normalized by GM

X*(1) = 26.8, p = 0.001
X3(1) = 23.6, p = 0.001

X?(1) =23.2, p = 0.001
X?(1) = 33.5, p = 0.001

X3(1) = 27.5, p = 0.001

XX(1)=3.9, p = 0.046
X3(1) = 33.5, p = 0.001

XX(1)=3.9, p = 0.046

TIV: Total Intracranial Volume; GM: gray matter; CSF: Cerebrospinal fluid; sMRI:
structural magnetic resonance imaging.

papers. In of them (Jonkman, 1997) the accuracy of the classifica-
tion of the Nold and AD subjects ranged from 54% to 100% while
the other article (Jelic and Kowalski, 2009) reported accuracy of
about 80-85% between the ADD or MCI patients and individuals
with other forms of dementing disorders.

Another interesting finding of this research is that the ANNs
with SAEs allowed a moderate classification accuracy with rsEEG

242

(80%) just slightly lower than the accuracy obtained with the sMRI
features (84%). Furthermore, rsEEG and sMRI features were non-
redundant to each other, as their combination gave the highest
classification accuracy (89%). The same conclusions were reached
adopting a different architecture where a pair of AEs was special-
ized to recognize either ADD or Nold related input patterns. These
results enrich the complex picture of the previous multimodal clas-
sification studies using rsEEG and sMRI in AD patients. In this
research line, Colloby et al. (2016) showed that the classification
using rsEEG spectral features had sensitivity of 87% in the detec-
tion of ADD patients and 62% in the detection of DLB patients, even
better than the respective sensitivity values of 77% and 52% based
on sMRI features. Combining rsEEG and sMRI features, Colloby
et al. (2016) reached the highest sensitivity of 93% for ADD patients
and 86% for DLB patients. In the same vein, Polikar et al. (2010)
reported that combined EEG, sMRI, and FDG-PET features showed
that the accuracy of classification between Nold and ADD individ-
uals improved up to 10-20% compared with the outcome of the
single modalities. Moreover, Fernandez et al. (2003) reported that
combined sMRI and rsEEG features pointed to the highest accuracy
of 87% in the same classification task. Analogously, Prieto Del Val
et al. (2016) reached the best classification accuracy of about 80%
(sensitivity 78% and specificity 82%) between Nold and ADD indi-
viduals using combined rsEEG and sMRI features.

An original finding of this study is that the ANNs with SAEs
unveiled high values of sensitivity (89%) in the detection of ADD
individuals, with a less performant specificity in recognition of
Nold subjects (64%). This sensitivity was higher than that obtained
using resilient backpropagation ANNs in our reference study of
Triggiani et al. (2017), which exhibited a sensitivity of 79% and
specificity of 74%. The high sensitivity in the detection of ADD indi-
viduals may make the present ANN procedure of interest for clin-
ical applications as a “gatekeeper” of seniors at risk of ADD to
undergo more complex and expensive diagnostic procedures such
as PET mapping of brain amyloid accumulation or the invasive
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lumbar puncture for the dosing of AB42 and phospho-tau proteins
(Jack et al, 2018). Indeed, EEG techniques are non-invasive, cost-
effective, easily accessible, and replicable in long longitudinal stud-
ies (Jelic and Kowalski, 2009). According to this “gatekeeper” func-
tion, seniors with “ADD-like” rsEEG markers may undergo more
invasive and expensive diagnostic procedures such as PET mapping
of brain amyloid accumulation or lumbar puncture for the dosing
of AB42 and phospho-tau proteins (Dubois et al., 2014; Jack
et al,, 2018). In this perspective, the relatively low specificity of
the present ANN procedure would result in some Nold subjects
“ADD-like” undergoing CSF and neuroimaging diagnostic proce-
dures. This may be a reasonable cost when compared to general
population screening programs in seniors based on CSF and neu-
roimaging diagnostic procedures.

Finally, it is essential to acknowledge some important limita-
tions of the present study, which needs to be replicated in indepen-
dent cohorts of patients with more advanced procedures. In the
present study, we used the traditional clinical 10-20 montage with
19 scalp exploring electrodes (e.g., 10-20 system), which is not
ideal for an optimal spatial sampling of rsEEG rhythms aimed at
estimating underlying cortical sources (Liu et al., 2002). Indeed,
previous evidence showed that EEG source estimates based on
few scalp exploring electrodes led to both blurring of source esti-
mates and incorrect spatial localizations (Michel and Brunet,
2019). These estimation errors may be fatal in the localization of
circumscribed sources of epileptiform activity from < 32 scalp
exploring electrodes, especially in addition to undetected errors
in the placement of electrodes placed over the scalp (Brinkmann
et al., 1998; Lantz et al., 2003; Michel and Brunet, 2019). Moreover,
a further cause of approximation in the present rsEEG source esti-
mation was the use of the standard LORETA cortical model (i.e.,
MNI152 developed by Montreal Neurologic Institute) for all partic-
ipants rather than the use of realistic head models based on their
individual MRIs. Those models would have much better accounted
for the inter-individual variability of cortical mantles.

In the present explorative study, we partially mitigated these
methodological limitations averaging normalized LORETA source
estimates within bilateral lobar ROIs rather than to perform a
localization study at the level of single voxels or small ROIs consid-
ered in each hemisphere separately. The present EEG source esti-
mation at bilateral lobar ROIs may represent an acceptable
approximation for widespread maps of cortical rsEEG rhythms
expected during a condition of quiet wakefulness keeping the eyes
closed in a silent room (Babiloni et al., 2020a,b). Indeed, the LOR-
ETA toolbox was designed to estimate widespread EEG source pat-
terns fitting large distributions of scalp EEG activity (Pascual-
Marqui et al., 1994), as its mathematical regularization procedure
identifies maximally smoothed source current solutions at the cor-
tical level explaining scalp-recorded potential distributions
(Halder et al., 2019). Cortical rsEEG rhythms may have those ideal
features for LORETA source estimations.

5. Conclusions

In the present retrospective and exploratory study, we used
ANNSs with two architectures (i.e., SAE and AE) of stacked (autoen-
coding) hidden layers recreating input data in the output, to exam-
ine the classification accuracy between the Nold and ADD
individuals based on input features derived from sMRI, rsEEG,
and a combination of both variables. The feature database referred
to Nold and ADD individuals enrolled by several clinical units in
different clinical trials.

Results showed that the ANN with stacked autoencoders and a
deep leaning model representing both ADD and control partici-
pants (i.e., SAE) showed classification accuracies in discriminating
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them of 80%, 85%, and 89% using rsEEG, sMRI, and rsEEG + sMRI
features, respectively. The two ANNs with stacked autoencoders
and a deep leaning model specialized for either ADD or control par-
ticipants (i.e., AE) showed classification accuracies of 77%, 83%, and
86% using the same input features.

These findings confirmed the general robustness of this kind of
ANNs for the present application and motivate future resource
investments and use of more advanced procedures in this research
line. Those procedures may include 1) the use of > 48-64 exploring
electrodes and the digitization of their true position on the scalp;
2) the use of individual head models for rsEEG source estimations
at small ROIs localized in each hemisphere to gain spatial detail; 3)
a fine-grain individual analysis of frequency bands based on IAFp
(Klimesch, 1999); 4) a parallel frequency analysis considering the
entire rsEEG power spectrum as a unified statistical representation
of the EEG signal that may take into account age-related 1/f noise
distribution, which may cause a flattening of the EEG power spec-
trum (Voytek et al., 2015); 5) ensuring future studies use consis-
tent EEG and MRI data collection methods across all participants;
and 6) the exploration of further variants of the present stacked
autoencoder ANNs and other reference machine learning tech-
niques (e.g., K nearest neighbors, support vector machines, random
forests or random decision forests, etc.).

If the best combination of those procedures allowed the best
classification accuracy in the discrimination between Nold and
ADD individuals, they may be applied for research purposes in
the classification between Nold seniors and ADMCI patients and
the detection of ADMCI patients with probable rapid trajectories
of progression to dementia.

It should be remarked that even if the above scenarios were
successful, the present ANNs could not be directly translated into
clinical applications. A tentative roadmap for clinical translations
may imply at least the following steps: 1) cross-validation with
extended specificity as a replication of the current model of ANN
classification in a fully independent rsEEG and MRI database col-
lected not only in Nold and ADD individuals but also patients with
dementing disorders typically misdiagnosed as ADD such as
dementia with Lewy bodies (Rizzo et al., 2018) and limbic-
predominant age-related TDP-43 encephalopathy (Nelson et al.,
2019); 2) establishment of the particular combinations of rsEEG-
sMRI patterns that could be clinically relevant for detection of
ADD patients; and 3) definition of a consensus about rsEEG/sMRI
recording guidelines and open-access platforms with toolboxes
for a friendly semi-automatic derivation of significant and informa-
tive rsEEG/sMRI biomarkers and use of the validated ANNs provid-
ing the probability that a senior with cognitive deficits under
examination might suffer from AD or have a rapid clinical
trajectory.
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