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Abstract

In this paper we investigate how stability and optimality of consensus-based distributed filters depend on the number of
consensus steps in a discrete-time setting for both directed and undirected graphs. By introducing two new algorithms, a
simpler one based on dynamic averaging of the estimates and a more complex version where local error covariance matrices are
exchanged as well, we are able to derive a complete theoretical analysis. In particular we show that dynamic averaging alone
suffices to approximate the optimal centralized estimate if the number of consensus steps is large enough and that the number
of consensus steps needed for stability can be computed in a distributed way. These results shed light on the advantages as
well as the fundamental limitations shared by all the existing proposals for this class of algorithms in the basic case of linear
time-invariant systems, that are relevant for the analysis of more complex situations.
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1 Introduction

The availability of low-cost sensors and the diffusion of
wireless networks have contributed in recent years to
the development of applications based on wireless sensor
networks for target tracking and estimation in a broad
range of areas such as environmental monitoring (?),
airborne target tracking (?), space situation awareness
(?), spacecraft navigation (?) etc. Mainly due to this
surge of interest in the application of wireless sensor
networks to large-scale estimation and control problems,
distributed estimation and filtering has become one of
the most active topics in the area of filtering theory (?).

Distributed estimation is based on the usage of mul-
tiple sensor nodes to cooperatively perform large-scale
sensing tasks that cannot be accomplished by individual
devices. The use of redundant and cooperating sources
of information in a completely distributed architecture
may enhance flexibility of deployment, efficiency, robust-
ness and accuracy of the estimates. A distributed algo-
rithm dictates the way in which the information is ex-
changed and elaborated by the nodes of the network in
order to reach a shared estimate of the target systems
state under the constraint that each node can commu-
nicate only with its neighbors. Additional challenges in-
clude the limited processing power of the single nodes,

that usually are low-cost devices, limited communication
bandwidth, dynamic network topology, the presence of
unreliable communications channel and/or communica-
tion delays, heterogeneity of the sensor with respect to
the measurements that they have of the target system,
and limited energy (?). It is often assumed that nodes
can either be communication nodes, that only have com-
munication and processing capabilities, or sensor nodes
that in addition have sensing capabilities (?). In view
of this, a distributed estimation algorithm is evaluated
with respect to: a) accuracy of estimates, the optimal
reference being, in the case of linear Gaussian systems,
the centralized Kalman filter that makes use of the mea-
surements of all the sensors; b) consensus on estimates
among nodes, that is particularly relevant when the es-
timates are used for control purposes (??); c) communi-
cation cost, expressed as the amount of information ex-
changed among adjacent nodes; d) capability of guaran-
teeing stability under minimal requirements of network
connectivity and system collective observability (?).

In this paper we consider linear time invariant sys-
tems in discrete-time. The case of linear time-varying
or nonlinear systems is studied among many others in
(????????). We also do not consider the presence of
model uncertainties (?), intermittent observations (?),
delays (??), asynchronous communication (?), unreli-
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able communication links (??), sensor bias (?), etc.

In consensus-based filters the information exchanged
among adjacent nodes can either be the local state es-
timates (consensus on estimates, CE) as in the Kalman
Consensus Filter (KCF) (?), see also ? and ?, or the
information (matrix-vector) pair (consensus on infor-
mation, CI (?)) or the innovation information pair
(consensus on measurements, CM). The CI filters (???)
reduce to the covariance-intersection method (?) when
only one consensus step is performed. They do not usu-
ally converge to optimal centralized estimates whatever
the number of consensus steps and fusion strategies due
to the fact that they underweight the innovation terms,
but have good stability properties and generate unbi-
ased and consistent local estimates even for a limited
number of consensus iterations. CM filters include the
CM Kalman filter (CMKF) originally proposed in (?)
and its related variants (???) and gossip versions (?), as
well as the Iterative Consensus Fiter (ICF, ?). These fil-
ters recover the optimal centralized performance when
the number of consensus steps tends to infinity but
they do not preserve consistency of local estimates. To
address this problem the Hybrid CM and CI (HCMCI)
filter of ? proposes a double consensus iteration on
both the priors estimates and the new measurements,
thus attaining error stability and consistency with any
number of consensus steps. Finally, in a distributed op-
timization perspective ? derive a CI filter that converges
to the optimal centralized estimate.

Motivated by the lack of complete theoretical results in
the literature, in this paper we investigate some basic
properties of consensus filters, namely (i) convergence
to the optimal estimate when the number of consensus
steps increases; (ii) impact of covariance matrices ex-
change on performance and related stability issues; (iii)
computation of the minimal number of consensus steps
to achieve error stability. This analysis highlights funda-
mental limitations and trade-offs that remain valid for
more general classes of systems.

The contributions and novelties of the paper are sum-
marized below.

(1) We describe two CE filters. In the simpler one (Dis-
tributed Kalman Filter, DKF) only estimates are
exchanged. In the other one (Steady-state Modi-
fied Distributed Kalman Filter, SMDKF) also co-
variance matrix are exchanged. By means of simu-
lations we show that SMDKF yields the same per-
formance as CM filters, thus establishing an equiv-
alence between CE and CM consensus filters.

(2) We provide a complete theoretical analysis of these
filters: stability and performance and their depen-
dence on the number of consensus steps. Since we
show that none of the algorithms proposed in the
literature has acceptable performance with only one

consensus step, we argue that in practice this re-
sult is more significant than establishing solely the
stability of the error with any number of consensus
steps.

(3) A prominent and new result of this analysis is that
for a large number of consensus steps the simpler
algorithm that only exchanges estimates tends to
the optimal centralized estimate, in analogy with
the continuous-time case (?).

(4) We prove that, as expected, algorithms that ex-
change covariance matrices reduce the minimum
number of consensus steps needed for mean square
stability of the estimation error.

(5) We prove that for static networks it is possible to
compute in a distributed way the minimal number
of consensus steps needed for stability.

The problem is formalized in Section 2. The DKF and
its properties are the object of Section 3. We consider di-
rected graphs in Section 4 and the deterministic case in
Section 5. Section 6 introduces and studies the SMDKF.
A comparison based on simulations among a few dis-
tributed consensus filters is presented in Section 7 for
a marginally stable and an unstable system. This com-
parison validates the theoretical analysis and highlights
common limitations of the existing approaches.

Notation. R and C denote real and complex numbers.
For a square matrix A, trpAq is the trace and σpAq is the
spectrum. A is said to be Schur stable if σpAq lies inside
the unit circle, i.e. it is in S1 (S1 the open unit circle in
the complex plane). }A}, A P Rnˆm, denotes the matrix
operator norm. Et¨u denotes expectation. b is the Kro-
necker product between vectors or matrices. The oper-
ators rowipq, colipq, diagipq denote respectively the hor-
izontal, vertical and diagonal compositions of matrices
and vectors indexed by i. Spnq P Rnˆn is the set of sym-
metric matrices of size n. Ppnq (resp., P`pnq)Ă Spnq de-
notes the set of positive semi-definite (definite) matrices
in Spnq. In is the identity matrix in Rn and Un “ 1n1Jn ,
1n “ colni“1p1q, is the square matrix of size n having 1
in each entry.

2 Problem formulation and preliminaries

The undirected graph G “ pV, Eq describes the informa-
tion exchange between the agents. V “ t1, 2 . . . , Nu is
the set of vertices representing the N agents and E Ď
V ˆ V is the set of edges of the graph. An edge of G is
denoted by pi, jq, representing that nodes i and j can
exchange information between them. The graph is undi-
rected, that is, the edges pi, jq and pj, iq P E are consid-
ered to be the same. Two nodes i and j, with i ‰ j, are
neighbors to each other if pi, jq P E . The set of neigh-
bors of node i is denoted by N piq :“ tj P V : pj, iq P Eu.
A path is a sequence of connected edges in a graph.

2



A graph is connected if there is a path between every
pair of vertices. The adjacency matrix A of a graph
G is an N ˆ N matrix, whose pi, jq-th entry is 1 if
pi, jq P E and 0 otherwise. The degree matrix D of G
is a diagonal matrix whose i-th entry is the cardinal-
ity of N piq, denoted #N piq. The Laplacian of G is the
N ˆ N matrix L such that L “ ´A ` D. L is sym-
metric if and only if the graph is undirected. Moreover,
0 “ λ1pLq ă λ2pLq ď ¨ ¨ ¨ ď λN pLq, where λipLq denotes
an eigenvalue of L, if and only if the graph is connected.
An eigenvector associated to λ1pLq is 1N . Consider the
process

xk`1 “Axk ` fk, (1)

y
piq
k “Cixk ` g

piq
k , i “ 1, . . . , N, (2)

where xk P Rn, y
piq
k P Rqi , qi ě 0, and fk and g

piq
k , i “

1, . . . , N , are zero-mean white noises, mutually indepen-
dent with covariance respectivelyQ P Ppnq,Ri P P`pqiq
i “ 1, . . . , N . The matrix R “ diagipRiq is nonsingular.
x0 is a random variable with mean sx0 :“ Etx0u and co-
variance Σx0 . C “ colipCiq is the aggregate matrix of
the output maps. Throughout the paper we assume that
the couple pC,Aq is observable and the couple pA,Q

1
2 q

is controllable. We denote yk “ colipy
piq
k q, each y

piq
k rep-

resents the data available at node i, i “ 1, . . . , N , in the
network. We consider the problem of designing an opti-
mal distributed state estimator for the system (1) with
the topology G of the network. The estimator consists
of N local estimators, one for each node, that exchange
local information with the neighbors.

2.1 Centralized Kalman filter (CKF)

The equations of the centralized Kalman filter (CKF)
for (1) are

px0|´1 “sx0, P0|´1 “ Σx0
,

pxk`1|k “Apxk|k, Pk`1|k “ APk|kA
J `Q,

Pk`1|k`1 “Pk`1|kpI ` C
JR´1CPk`1|kq

´1

Kk`1 “Pk`1|k`1C
JR´1,

pxk`1|k`1 “pxk`1|k `Kk`1pyk`1 ´ Cpxk`1|kq.

(3)

The matrix Pk`1|k`1 represents the covariance of the es-

timation error Etpxk`1´pxk`1|k`1qpxk`1´pxk`1|k`1q
Ju

and Pk`1|k the covariance of the one-step prediction er-
ror. The CKF is optimal in the sense that it computes the
conditional expectation Etxk`1 | y1, . . . ,yk`1u, i.e. the
projection of the state xk`1 onto the σ-algebra gener-
ated by the output sequence y1, . . . ,yk`1. We have that
the covariance Pk`1 P P`pnq is bounded for all k ě 0
and Pk`1|k`1 Ñ P8 as t Ñ `8 with P8 P P`pnq the

unique solution of

P8 “ ACP8A
J
C ` pI ´K8CqQpI ´K8Cq

J

` P8C
JR´1CP8 (4)

with

AC :“ pI ´K8CqA, K8 “ P8C
JR´1. (5)

The covariance equation in (3) can be also written using
the matrix inversion lemma and Pk`1|k as

Pk`1|k`1 “ pI ´Kk`1CqPk`1|k

“ Pk`1|k ´ pCR
´1C `P´1

k`1|kq
´1ˆ

ˆ CR´1CPk`1|k “ pCR
´1C `P´1

k`1|kq
´1.

From (3), we also obtain the asymptotically optimal
CKF

pxk`1|k`1 “pxk`1|k `K8pyk`1 ´ Cpxk`1|kq, (6)

where K8 is defined in (5).

3 Asymptotically optimal distributed Kalman
filter (DKF)

In this section we prove that dynamic averaging alone al-
lows to approximate arbitrarily well the optimal central-
ized estimate for a sufficiently large number of consensus
step. The result is interesting because the derived algo-
rithm is very simple as it does not require to exchange
covariance matrices among nodes.

3.1 DKF algorithm

Our distributed Kalman filter (DKF) consists of one fil-
ter for each sensor node of the network. The equations
for the DKF at the i-th sensor node are:

px
piq
k`1|k “ Apx

piq
k|k (7)

#

z
piq
k`1,0 “ px

piq
k`1|k `Kipy

piq
k`1 ´ Cipx

piq
k`1|kq,

z
piq
k`1,h`1 “ z

piq
k`1,h `

1
δ

ř

jPN piqpz
pjq
k`1,h ´ z

piq
k`1,hq

(8)

px
piq
k`1|k`1 “ z

piq
k`1,γ , (9)

where h “ 0, . . . , γ ´ 1, and Ki :“ NP8Ci
JRi

´1 and
P8 is the solution of (4), δ ą λN pLq and γ P N is a
parameter to be chosen as we shall point out later. The
filter consists of a one-step prediction (7), a dynamic
averaging step (8), in which the neighbor estimates are
mixed up at each node dynamically through γ iterations
and the estimate update (9). Define

Ai :“ pI ´KiCiqA, i “ 1, . . . , N, (10)
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and

ADpγq :“ JγdiagipAiq, J :“

ˆ

IN ´
L
δ

˙

b In. (11)

The parameter γ is chosen accordingly with the next
proposition.

Proposition 1 There exists γ0 P N such that, for all
integers γ ą γ0, ADpγq is Schur stable.

Proof. There clearly exists a orthonormal transformation

T “

˜

V

W

¸

, with V “ 1?
N

1JN and W P RpN´1qˆN , such

that

TLTJ “

˜

0 0

0 Λ

¸

,

where Λ “ diagpλ2pLq, . . . , λN pLqq, and

LV J “0, (12)

LWJ “WJΛ. (13)

Moreover,

pV b InqdiagipAiqpV
J b Inq “AC , (14)

and by (12) and (13) it easy to prove by induction the
following relations:

ˆ

IN ´
L
δ

˙γ

V J “V J, (15)

ˆ

IN ´
L
δ

˙γ

WJ “WJ

ˆ

IN´1 ´
Λ

δ

˙γ

. (16)

Consider now the matrix

S :“ IN´1 ´
Λ

δ
.

By direct computations using (14) and (16), we obtain

pT b InqADpγqpT
J b Inq “

˜

AC H12

H21pγq H22pγq

¸

, (17)

where

H12 “pV b InqdiagipAiqpW
J b Inqq,

H21pγq “pS
γW b InqdiagipAiqpV

J b Inq,

H22pγq “pS
γW b InqdiagipAiqpW

J b Inqq.

Notice that by (16) and since δ ą λN pLq, Sγ Ñ 0 as
γ Ñ `8, so that

H21pγq Ñ 0 and H22pγq Ñ 0 as γ Ñ `8. (18)

Thus, sinceAC is Schur stable by construction, it follows
that there exists γ0 P N such that for all integer γ ą γ0
ADpγq is Schur stable. l

Remark 1 The choice δ ą λN pLq in (8) is such that S
is Schur stable. However, other less conservative choices
of δ are feasible with this property: for example, a good
choice for δ is the maximum number of neighbors for any
node, i.e. maxiPVt#N piqu.

3.2 Properties of the DKF

In order to study the asymptotic properties of the
DKF we introduce at each node the local estimation
error e

piq
k|k :“ xk ´ px

piq
k|k, the total estimation error

ek|k :“ colipe
piq
k|kq, the total measurement noise error vec-

tor gk :“ colipg
piq
k q P R

řN
i“1 qi , hk :“ Jγcoliph

piq
k q P RnN

where
h
piq
k :“ ´Kig

piq
k`1 ` pI ´KiCiqfk

with covariance Ψ :“ EthkhJk u, and the estimation error
covariance matrix Xk|k :“ Etek|keJk|ku. Clearly, Xk|k

depends on γ, but we omit this dependence for notational
simplicity. After some lengthy manipulations we obtain
the following error equations

ek`1|k`1 “ADpγqek|k ` hk (19)

with

Ψ “ Jγ
!

diagipI ´KiCiqpUN bQqdiagippI ´KiCiq
Jq

` diagipKiqR diagipK
J
i q

)

Jγ , (20)

where UN is a matrix with all entries 1. Using uncorrela-
tion between ek|k and hk, the error covariance equation
turns out to be

Xk`1|k`1 “ADpγqXk|kA
J
Dpγq `Ψ.

Proposition 2 For all γ ą γ0 the estimation error co-
variance matrix Xk|k is uniformly bounded in time k and

lim
kÑ`8

Xk|k “ X8pγq (21)

where X8pγq is the unique solution of

X8pγq “ ADpγqX8pγqA
J
Dpγq `Ψ. (22)
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Proof. The result follows by standard arguments from
the fact that ADpγq is Schur stable for γ ą γ0 and Ψ
defined in (20) is constant. The covariance matrix Xk|k

obeys for all k ě 0 to

Xk`1|k`1 “ ADpγqXk|kA
J
Dpγq `Ψ,

and its asymptotic value X8 is the solution of (22). l

Our purpose is to show the key result that X8pγq Ñ
UN bP8 when γ Ñ8 (recall that P8 is the asymptotic
error covariance of the CKF). Let XC

8 :“ UN b P8 be
the the asymptotic error covariance ofN identical CKFs
implemented at each node and using the whole output
yt. Recalling that pLbP8qXC

8 “ pLbP8qpUNbP8q “
0 and using (5), we obtain that XC

8 satisfies

XC
8 “diagipACqX

C
8diagipA

J
Cq

` diagipI ´K8CqpUN bQqdiagippI ´K8Cq
Jq

` diagipK8qpUN bRqdiagipK
J
8q. (23)

By introducing the covariance mismatch Epγq :“
X8pγq ´XC

8 we obtain after some manipulations

Epγq “ ADpγqEpγqA
J
Dpγq ` Σpγq, (24)

where

Σpγq :“ ADpγqX
C
8A

J
Dpγq ´ diagipACqX

C
8diagipA

J
Cq

`Jγ
!

diagipI ´KiCiqpUN bQqdiagippI ´KiCiq
Jq

`diagipKiqR diagipK
J
i q

)

Jγ

´diagipI ´K8CqpUN bQqdiagippI ´K8Cq
Jq

´diagipK8qpUN bRqdiagipK
J
8q.

Our main result can thus be stated as follows.

Proposition 3 As γ Ñ `8, the covariance matrix of
the estimation error of the DKF (7)–(9) tends to the
covariance matrix of the estimation error of the CKF (6)
when k Ñ `8. In other words, we have

lim
γÑ`8

lim
kÑ`8

Xk|k “ XC
8 :“ UN b P8.

Proof. On account of Proposition 2, it is sufficient to
prove that

lim
γÑ`8

Epγq “ 0. (25)

Let T “

˜

V

W

¸

, with V “ 1?
N

1JN and W P RpN´1qˆN ,

be the same orthonormal transformation we considered

in the proof of proposition 1. After some lengthy com-
putations and using (15), (16) and (17) , we obtain that

pT b InqΣpγqpT
J b Inq “

˜

0 D12pγq

D21pγq D22pγq

¸

(26)

where T is as in the proof of Proposition 1 and the ma-
tricesD12pγq,D21pγq, andD22pγq can be computed sim-
ilarly as before and are such that

D12pγq, D21pγq, D22pγq Ñ 0 as γ Ñ `8. (27)

From (17), (24) and (26)

rEpγq :“ pT b InqEpγqpT
J b Inq

“

˜

AC H12

H21pγq H22pγq

¸

rEpγq

˜

AJC HJ21pγq

HJ12 H
J
22pγq

¸

`

˜

0 D12pγq

D21pγq D22pγq

¸

, (28)

where H12, H21pγq and H22pγq are as in the proof of
Proposition 1. On account of (18) and (27) the unique

solution rEpγq of (28) tends as γ Ñ `8 to the unique

solution rE8 of the equation

rE8 “

˜

AC H12

0 0

¸

rE8

˜

AJC 0

HJ12 0

¸

and since AC is Schur stable it follows that rE8 “ 0,
which implies (25). l

3.3 A distributed computation of P8 and CJR´1C

In order to implement the DKF, each node i needs to
compute (or to know) the value of the matrix P8, that
depends on all the nodes of the graph. This may seem to
prevent a truly distributed computation, thus the aim of
this section is to show how the DKF can be implemented
in a completely distributed manner.

In the first place it is worth remarking that computing
P8 by solving (4) is trivial, since P8 is the solution of
a matrix equation in Rnˆn that does not depend on the
size of the graph. Thus, also nodes with limited computa-
tional power can easily solve (4) provided that the value
of G “ CJR´1C is available. When measurement noises
are independent G is expressed as in

řN
j“1 C

J
i R

´1
i Ci,

that is, the sum of the matrices CJi R
´1
i Ci all over the

graph.

A distributed computation of G can thus be achieved
by resorting to distributed algorithms to compute ag-
gregate functions over graphs (?). In Fig. 1 we report an

5



Algorithm Broadcast Push-Sum
1: In all nodes set s0,i “ CJi R

´1
i Ci and w0,i “ 0,

except for w0,1 “ 1.
2: At time 0 each nodes sends ps0,i, w0,iq to itself.
3: At time t each node executes:

1. Let tsr, wru be the pairs sent to i in round t´1.
2. Let st,i “

ř

r sr, wt,i “
ř

r wr.
3. Send to all neighbors and to i (yourself):

˜

1
ˇ

ˇN piq
ˇ

ˇ` 1
st,i,

1
ˇ

ˇN piq
ˇ

ˇ` 1
wt,i

¸

4. st,i{wti is the estimate ofG at step t (if wt,i “ 0
the estimate is not specified or 0).

Fig. 1. A modified version of the Push-Sum algorithm of (?)
for the distributed computation of G.

algorithm derived from the Protocol Push-Sum of (?) to
compute G in a distributed way. The main difference is
that (?) is a gossip algorithm with peer-to-peer commu-
nication, whereas the algorithm in Fig. 1 is a diffusion
protocol with the node that broadcasts messages to all
its neighbors. The speed of convergence of the local esti-
mate to the true value of G can be analyzed in the light
of the results of (?). This estimation phase can be ex-
ecuted before the filtering phase for static graphs, or it
can be kept running during the execution of the filter in
order to adjust the value of G in presence of a dynami-
cal graph where nodes appear or disconnect. Finally, the
value of N can be computed by the same distributed al-
gorithm when it is not known at the nodes.

3.4 Lower bounds for γ

In this section we obtain a lower bound for γ, the number
of iterations in the DKF (7)–(9) to ensure the stability
of the overall error dynamics. A lower bound for γ can
be obtained by guaranteeing the error system

ek`1|k`1 “ADpγqek|k (29)

is asymptotically stable. To this aim, we will reason on
the dual global error system

ek`1|k`1 “A
J
Dpγqek|k.

If

pT b Inqek|k “: rek|k “

¨

˝

re
ppq
k|k

re
ptq
k|k

˛

‚,

where T is as in Proposition 1, we obtain

¨

˝

re
ppq
k`1|k`1

re
ptq
k`1|k`1

˛

‚“

˜

AJC HJ21pγq

HJ12 H
J
22pγq

¸

¨

˝

re
ppq
k`1|k

re
ptq
k`1|k

˛

‚.

It is easy to see that

˜

AJC HJ21pγq

HJ12 H
J
22pγq

¸

“

˜

In 0

0 pS b Inq
γ

¸

pT b Inq sA
J
Dˆ

ˆ pTJ b Inq

˜

In 0

0 pS b Inq
γ

¸

, (30)

where

sAD “pIN bAq ´NdiagipP8C
J
i R

´1
i CiAq.

On account of (4), pick λ P p0, 1q such that

ACP8A
J
C ď λP8. (31)

By using the weighted norms

}N}M :“ sup
zPRm

c

zJNJMNz

zJMz
, (32)

N P Rmˆm , M P P`pmq, we can write

}pT b Inq sA
J
D ˆ pT

J b Inq}INbP8

“ }pIN b P
1{2
8 qpT b Inq sA

J
DpT

J b InpIN b P
´1{2
8 q}

“ }pT b InqpIN b P
1{2
8 q sAJDpIN b P

´1{2
8 qpTJ b In}

“ } sAJD}INbP . (33)

Moreover, notice that

}S b In} “ 1´
λ2pLq
δ

“: θ,

}S b In}IN´1bP8 “ }S b In},

}pS b Inq
γ}IN´1bP ď }S b In}

γ “ θγ .

By using (30) and (33) we have

}re
ptq
k`1|k`1}P8 ď }A

J
Cre
ppq
k|k}P8 ` }H

J
21pγqre

ptq
k|k}P8

ď
?
λ}re

ppq
k|k}P8 `

›

›

›

˜

In 0

0 0

¸

pT b InqA
J
DpγqpT

J b Inqˆ

ˆ

˜

0 0

0 IpN´1qn

¸˜

0

pS b Inq
γ

¸

re
ptq
k|k

›

›

›

INbP8

ď
?
λ}re

ppq
k|k}P8 `

›

›

›

˜

In 0

0 0

¸

pT b InqA
J
DpγqpT

J b Inqˆ

ˆ

˜

0 0

0 IpN´1qn

¸

›

›

›

INbP8

›

›

›

˜

0

pS b Inq
γ

¸

re
ptq
k|k

›

›

›

INbP8

ď
?
λ}re

ppq
k|k}P ` θ

γ} sAJD}INbP8}re
ptq
k|k}IN´1bP8

6



Similarly,

}re
ppq
k`1|k`1}IN´1bP8 ď }H

J
12re

ppq
k|k}IN´1bP8

` }HJ22pγqre
ptq
k|k}IN´1bP8 ď θγ} sAJD}INbP8}re

ppq
k|k}P8

` θ2γ} sAJD}INbP8}re
ptq
k|k}IN´1bP8 .

Finally, we conclude

›

›

›

}re
ppq
k`1|k`1}P8

}re
ptq
k`1|k`1}IN´1bP8

›

›

›
ď ρpARpγqq

›

›

›

}re
ppq
k|k}P8

}re
ptq
k|k}IN´1bP8

›

›

›

where ρ denotes the spectral radius and

ARpγq :“

˜ ?
λ θγ} sAJD}INbP8

θγ} sAJD}INbP8 θ2γ} sAJD}INbP8

¸

. (34)

For the stability of (29) it is sufficient that the spectral
radius of ARpγq is ă 1. Thus, we conclude with the fol-
lowing result for a lower bound γ0 for γ.

Proposition 4 An integer γ0 ą 0 such that ADpγq is
Schur stable for all γ ě γ0 is given by any γ0 such that
the spectral radius of ARpγq is ă 1 for all γ ě γ0.

We remark that the computation of γ0 through the sta-
bility ofARpγq can be performed by each node of the net-
work in a complete distributed way. Indeed, this task re-
quires the knowledge of an upper bound for } sAJD}INbP8 :
see (34). Since

} sAJD}INbP8 ď N r}AJ}P8

`

b

λmaxpAP8AJqλmaxpP8q
N
ÿ

i“1

}CJi R
´1
i Ci}s

(λmax denotes the largest eigenvalue) and since a dis-

tributed computation of P8 and
řN
i“1 }C

J
i R

´1
i Ci} is

possible (see Section 3.3), then it is also possible the the
distributed computation of the lower bound of γ0.

4 Directed graphs

In this section we outline a generalization of DKF to
weighted directed graphs. Consider graphs denoted by
G “ pN , E ,Aq, where A P RNˆN denotes the adjacency
matrix. The pi, jq-th entry Ai,j is the weight associated
with the edge pi, jq. We have Ai,j ‰ 0 if and only if
pi, jq P E . Otherwise Ai,j “ 0. The graph is said to
be directed if it has the property that pi, jq P E does
not imply pj, iq P E for all i, j P N . We will assume
that the graph is simple, i.e. Ai,i “ 0 for all i P N . A
directed path from node i1 to node il is a sequence of
edges pik, ik`1q, k “ 1, 2, . . . , l´1. A directed graph G is

strongly connected if between any pair of distinct nodes
i and j in G, there exists a directed path from i to j,
i, j P N .

For weighted directed graphs, the Laplacian L P RNˆN
is defined as L :“M´A where the i-th diagonal entry

of the diagonal matrix M is given by mi “
řN
j“1 Ai,j .

By construction L has a zero eigenvalue with an associ-
ated right eigenvector 1N (i.e. such that L1N “ 0) and if
the graph is strongly connected all the other eigenvalues
lie in the open right-half complex plane. A symmetriz-
able graph with Laplacian L is one for which there is a
diagonal matrix M such that ML “ LD, where LD is
the Laplacian of an undirected graph. The Laplacian L
can be decomposed in two components: L “ L0 ` L1

where L0 is the Laplacian of a symmetrizable graph
and L1 is the Laplacian of a graph for which we have
only one-way direct links between nodes. If the graph
is symmetrizable the matrix M for which ML “ LD,
the Laplacian of an undirected graph, is computed as
M “ diagtm´1

1 , . . . ,m´1
N uwherem “ pm1, . . . ,mN q is a

left eigenvector of L associated to the eigenvalue λ “ 0.

With this in mind, in order to extend our distributed
filter DKF to directed symmetrizable graphs, it is suf-
fcient to modify the equations of the local filter at the
i-th sensor node as follows:

px
piq
k`1|k “ Apx

piq
k|k (35)

#

z
piq
k`1,0 “ px

piq
k`1|k `Kipy

piq
k`1 ´ Cipx

piq
k`1|kq,

z
piq
k`1,h`1 “ z

piq
k`1,h ´

mi

δ

řN
j“1rLsi,jz

pjq
k`1,h

(36)

px
piq
k`1|k`1 “ z

piq
k`1,γ (37)

and the stability and optimality analysis can be per-
formed exactly as in the case of the DKF for undirected
graphs. For not symmetrizable graphs, more complex
structures for the local filter at the sensor nodes must
be conceived (we defer this discussion elsewhere).

5 A distributed Luenberger observer

In the absence of noise, the convergence rate of the DKF
can be arbitrarily increased by arbitrarily assigning the
eigenvalues of the filter. In this case we have a distributed
Luenberger observer which is of interest in its own. The
equations of the observer at the i-th sensor node are:

px
piq
k`1|k “Apx

piq
k|k (38)

z
piq
k`1,h`1 “z

piq
k`1,h `

1

δ

ÿ

jPN piq

pz
pjq
k`1,h ´ z

piq
k`1,hq (39)

z
piq
k`1,0 “px

piq
k`1|k `Kipy

piq
k`1 ´ Cipx

piq
k`1|kq (40)

px
piq
k`1|k`1 “z

piq
k`1,γ , (41)
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where h “ 0, . . . , γ ´ 1, Ki :“ NLiCi
JRi

´1 and δ ą
λN pLq and Li P Rnˆqi and γ P N are parameters to be
chosen.

DefineAi as in (10) withKi replaced byLi, andADpγq as
in (11). The parameters Li P Rnˆqi and γ P N are chosen
as pointed out in the following proposition: in particular,
the eigenvalues ofADpγq can be selected arbitrarily close
to the origin.

Proposition 5 There exist L “ colipLiq, Li P Rnˆqi ,
i “ 1, . . . , N , and γ0 P N such that ADpγq is Schur stable
for all integer γ ą γ0. Moreover, it holds

lim
γÑ8

σpADpγqq “ σpACq Y Z,

with Z “ t0, . . . , 0u a set of pn´ 1qN zero.

In other words, Proposition 5 states that n eigenvalues
of ADpγq tend, as γ Ñ `8, to the n eigenvalues of
AC :“ A´LC and the remaining pN ´ 1qn eigenvalues
tend to zero. The proof is omitted and follows the one of
Proposition 1. In the absence of noise, the global error
equation is

ek`1|k`1 “ADpγqek|k, (42)

and by Proposition 5 it follows that the convergence rate
of the distributed Luenberger observer can be arbitrarily
selected by a suitable choice of L “ colipLiq, Li P Rnˆqi ,
i “ 1, . . . , N , and γ P N.

6 Distributed Kalman filters with local Pi

The filter DKF is guaranteed to be stable only for γ ě γ0.
Also, the term N in the gains Ki has a downgrading ef-
fect on the performances of DKF for small values of γ. It
is possible to partially compensate this downgrading ef-
fect while retaining convergence to the optimal estimate
for large γ. This modified distributed Kalman filter con-
sists of two consensus steps, one for the local estimate
and another for the local error covariance:

px
piq
k`1|k “ Apx

piq
k|k,

P
piq
k`1|k “ AP

piq
k|kA

J `Q,

z
piq
k`1,0 “pP

piq
k`1|kq

´1
px
piq
k`1|k `NC

J
i R

´1
i y

piq
k`1,

Z
piq
k`1,0 “pP

piq
k`1|kq

´1 `NCJi R
´1
i Ci,

z
piq
k`1,h`1 “z

piq
k`1,h `

1

δ

ÿ

jPN piq

pz
pjq
k`1,h ´ z

piq
k`1,hq,

Z
piq
k`1,h`1 “Z

piq
k`1,h `

1

δ

ÿ

jPN piq

pZ
piq
k`1,h ´ Z

piq
k`1,hq,

P
piq
k`1|k`1 “pZ

piq
k`1,γq

´1,

px
piq
k`1|k`1 “pZ

piq
k`1,γq

´1z
piq
k`1,γ ,

(43)

where h “ 0, . . . , γ ´ 1, with P
piq
0|0 “ Ψx0

. Notice that

the product pZ
piq
k`1,γq

´1z
piq
k`1,γ , through which we get the

updated estimate px
piq
k`1|k`1, is aimed to compensate for

the downgrading effect of the term N in the filter gain
(previously denoted by Ki) on the performance: indeed,
as it can be seen from (43), the parameter N directly

influences both Z
piq
k`1,0 and z

piq
k`1,0 (and therefore Z

piq
k`1,γ

and z
piq
k`1,γ).

We consider the steady state version of the latter modi-
fied distributed Kalman filter, we call SMDKF:

px
piq
k`1|k “ Apx

piq
k|k,

z
piq
k`1,0 “ pP

piq
p,8q

´1
px
piq
k`1|k `Kiy

piq
k`1,

z
piq
k`1,h`1 “ z

piq
k`1,h `

1

δ

ÿ

jPN piq

pz
pjq
k`1,h ´ z

piq
k`1,hq,

px
piq
k`1|k`1 “ P

piq
8 z

piq
k`1,γ . (44)

with Ki “ NCJi R
´1
i , P

piq
p,8 “ AP

piq
8 A

J `Q, where P
piq
8

is meant as the limit of P
piq
k|k as k Ñ `8.

6.1 Stability analysis: properties of the solutions P
piq
k|k

By considering the dynamics of P
piq
k|k of the filter (43),

we obtain the global equation

colipM
piq
k|kq :“ J´γcolipP

piq
k|kq “ coli

´

pP
piq
k`1|kq

´1 `NGi

¯

,

where Gi :“ CJi R
´1
i Ci. With Σk :“ colipΣ

piq
k q, where

Σ
piq
k :“ pP

piq
k|kq

´1, the above equation can be rewritten as

Σk`1 :“ JγcolippApΣ
piq
k q

´1AJ `Qq´1 `NGiq. (45)

The solutions Σ
piq
k , i “ 1, . . . , N , of (45) are continu-

ous functions of the parameter γ but we will omit this
dependence in what follows for simplicity. Moreover,

the solutions Σ
piq
k , i “ 1, . . . , N , of (45) are symmet-

ric and positive definite for all k ě 0 (this fact easily
follows by induction on k). Taking into account that
Jγ “ pIN ´

L
δ q
γ b In is symmetric and have all either

positive (at least one) or zero entries by construction
(the choice δ ą λN pLq).

An important result is the monotonicity of the solutions

Σ
piq
k , i “ 1, . . . , N , of (45).

Proposition 6 If there exists k˚ ě 0 such that

Σ
piq
k˚
ď
ě Σ

piq
k˚`1 for all i “ 1, . . . , N,
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then

Σ
piq
k
ď
ě Σ

piq
k`1 ,@k ě k˚, for all i “ 1, . . . , N.

Proof. We prove only the “ď” part, since the “ě” part
follows exactly in the same way. Define

SpΣkq :“ JγcolippS
piqpΣ

piq
k qq

´1 `NGiq,

SpiqpΣ
piq
k q :“ AΣ

piq
k AJ `Q.

Notice that Σk satisfies for all k ě 0

Σk`1 “ SpΣkq. (46)

Since

SpΣk `∆q ´ SpΣkq “

ż 1

0

BS

Bλ
pΣk ` λ∆qdλ,

where ∆ :“ colip∆
piqq, ∆piq any positive semidefinite

matrix, and

BS

Bλ
pΣk ` λ∆q

“ Jγcoli

´

pSpiqpΣ
piq
k qq

´1ApΣ
piq
k `∆piqq´1∆piqˆ

ˆ pΣ
piq
k `∆piqq´1AJpSpiqpΣ

piq
k qq

´1
¯

,

each matrix

pSpiqpΣ
piq
k qq

´1ApΣ
piq
k `∆piqq´1∆piqˆ

ˆ pΣ
piq
k `∆piqq´1AJpSpiqpΣ

piq
k qq

´1

is positive semidefinite. Moreover, the rows of Jγ have
all either positive (at least one) or zero entries by con-
struction and each matrix is positive semidefinite. It fol-
lows that BS

Bλ pΣk `λ∆q is the a linear combination with
nonnegative coefficients of positive semidefinite matri-
ces, which proves that it is positive semidefinite and
SpΣk`∆q ě SpΣkq. By (46) this implies that Σk˚`2 :“
SpΣk˚`1q ě Σk˚`1 :“ SpΣk˚q if Σk˚`1 ě Σk˚ for
some k˚ ě 0. By repeating this argument, we prove the
claim of the proposition. l

Remark 2 Since X ě Y for any symmetric and invert-
ible matrices X,Y implies that X´1 ď Y ´1, Proposition
6 also implies the same monotonicity property on the ma-

trices P
piq
k|k :“ pΣ

piq
k q

´1: if there exists k˚ ě 0 such that

P
piq
k˚|k˚

ď
ě P

piq
k˚`1|k˚`1 for all i “ 1, . . . , N,

then

P
piq
k|k
ď
ě P

piq
k`1|k`1 ,@k ě k˚, for all i “ 1, . . . , N.

A consequence is that, for instance, an initial condition

P
piq
0|0 “ 0, i “ 1, . . . , N , triggers a nondecreasing se-

quence tP
piq
k|ku, k ě 0.

The second important result of this section is the bound-

edness of the sequence pP
piq
k|kq

´1.

Proposition 7 Let P
piq
k|k, i “ 1, . . . , N , be a positive def-

inite solution of (48). The sequence tΣ
piq
k u “ tpP

piq
k|kq

´1u,

i “ 1, . . . , N , is bounded for all k ě 1.

Proof. Rewrite (45) with Sk :“ colipS
piq
k q :“ colip

1
NΣ

piq
k qq:

Sk`1 “ Jγcoli

¨

˝

1

N

˜

A

ˆ

1

N
S
piq
k

˙´1

AJ `Q

¸´1

`Gi

˛

‚.

Since the entries of Jγ are all nonnegative and less or

equal than 1 and Gi and pAp 1
N S

piq
k q

´1AJ ` Qq´1, i “
1, . . . , N , are all positive semidefinite matrices, we get

Sk`1 ď coli

¨

˝

1

N

N
ÿ

i“1

˜

A

ˆ

1

N
S
piq
k

˙´1

AJ `Q

¸´1

`G

˛

‚.

By backward substitutions, since N ě 1 and S0 “
1
NΨ´1

x0
and since X ě Y for any symmetric and invert-

ible matrices X,Y implies that X´1 ď Y ´1, we obtain

Sk`1 ď Sk`1, k ě 1,

Sk`1 “ pASkA
J `Qq´1 `G, k ě 1,

(47)

where the sequence tSku satisfies the same equation as
that of pPk|kq

´1 (Pk|k being the error covariance of the
CKF) which is clearly bounded for all k ě 0. As a con-
sequence, from the inequality of (47) we get the bound-

edness of tSku “
!

1
N pP

piq
k q

´1
)

or what is the same of
!

pP
piq
k q

´1
)

. l

Combining the monotonicity of the sequence
!

pP
piq
k|kq

´1
)

,

i “ 1, . . . , N , with its boundedness from above and
below (k “ 0), we can conclude that

lim
kÑ`8

´

P
piq
k|k

¯´1

“

´

P
piq
8

¯´1

, i “ 1, . . . , N,

for some solution
!

pP
piq
8 q

´1
)

, i “ 1, . . . , N , (depending

on the initial condition
!

pP
piq
0|0q

´1
)

, i “ 1, . . . , N) of the
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equation

coli

ˆ

´

P
piq
8

¯´1
˙

“ Jγcoli

´

pAP
piq
8 A

J `Qq´1 `NGi

¯

.

(48)

or, equivalently, that the solutions Σ
piq
k , i “ 1, . . . , N , of

(45) have a well-defined steady state (positive definite)
value.

6.2 Stability analysis: properties of the stationary solu-

tions P
piq
8

In this section we want to study the stabilizing properties

of the asymptotic solutions Σ
piq
k , i “ 1, . . . , N , of (45).

To this aim, let us consider the steady state equation
(45)

Σ8 :“ JγcolippApΣ
piq
8 q

´1AJ `Qq´1 `NGiq (49)

or equivalently (48), since colipP
piq
8 q

´1q “ colipΣ
piq
8 q.

The solutions P
piq
8 , i “ 1, . . . , N , to (49) are continu-

ous functions of the parameter γ but we will omit this
dependence in what follows for simplicity. The positive
definite solutions of (48) tend as γ Ñ `8 to the steady
state error covariance P8 of the centralized CKF.

Proposition 8 Let P
piq
8 , i “ 1, . . . , N , be a positive def-

inite solution of (48). We have

lim
γÑ`8

P
piq
8 “ P8, @i “ 1, . . . , N.

Proof. From the error covariance of the centralized CKF
and using Jγ1N “ 1N for all γ ě 1,

colipX8q “ JγcolippAX´1
8 AJ `Qq´1 `Gq, (50)

with X8 :“ P´1
8 . On the other hand, (48) gives

colipX
piq
8 q “ JγcolippApX

piq
8 q

´1AJ `Qq´1 `NGiq,
(51)

with X
piq
8 :“ pP

piq
8 q

´1. Subtracting (51) from (50) with

∆
piq
8 :“ X8 ´X

piq
8 , we get

colip∆
piq
8 q :“ JγcolippAX´1

8 AJ `Qq´1

´ pApX8 ´∆
piq
8 q

´1AJ `Qq´1 `G´NGiq.

On the other hand, define as usual T :“

˜

V

W

¸

then

pT b InqJ
γcolipG´NGiq “

˜

0

Mpγq

¸

,

where

Mpγq :“ ´NppSγWT q b InqcolipGiq Ñ 0 as γ Ñ `8

and

pT b InqJ
γcolippAX´1

8 AJ `Qq´1

´ pApX8 ´∆
piq
8 q

´1AJ `Qq´1q “

˜

N1pγq

N2pγq

¸

,

where

N1pγq “
1
?
N

”

NpAX´1
8 AJ `Qq´1

´

N
ÿ

j“1

pApX8 ´∆
piq
8 q

´1AJ `Qq´1q

ı

N2pγq “ ´ppS
γWT q b Inqˆ

ˆ colipApX8 ´∆
piq
8 q

´1AJ `Qq´1q.

By setting r∆8 :“ colipr∆
pi
8q :“ pT b Inq∆8, we get

r∆8 “

˜

N1pγq

Mpγq `N2pγq

¸

.

Notice that, since ∆
piq
8 (and therefore r∆

piq
8 ) is a bounded

function of γ for each i “ 1, . . . , N , also N2pγq Ñ 0 as

γ Ñ `8. Therefore, as γ Ñ `8, the solution r∆
piq
8 , i “

1, . . . , N , tends to the unique solution S
piq
8 , i “ 1, . . . , N ,

of

S
p1q
8 “

?
N
”

pAX´1
8 AJ `Qq´1

´ pApX8 ´
1
?
N
S
p1q
8 q´1AJ `Qq´1q

ı

S
pjq
8 “ 0, j “ 2, . . . , N. (52)

Indeed, the solution S
piq
8 , i “ 1, . . . , N , of (52) is unique

and equal to 0: indeed, the first equation of (52) can be
rewritten as

S “ pAS
´1
AJ `Qq´1 `G

with S :“ X8´
1?
N
S
p1q
8 and since´pAX´1

8 AJ`Qq´1`

X8 “ G. By our standing assumptions on A, C and Q
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the above equation has a unique positive definite solu-
tion 1 . This ends the proof of the proposition. l

The goal of the next proposition is to prove, under some

mild assumptions, that the solutions P
piq
8 , i “ 1, . . . , N ,

of (48) are unique, positive definite and stabilizing. Let

coli

´

M
piq
8

¯

:“ J´γcoli

´

pP
piq
8 q

´1
¯

.

Proposition 9 Let P
piq
8 , i “ 1, . . . , N , be a positive def-

inite solution of (48). If γ ě 1 is such that

Jγdiagi

´

M
piq
8

¯

Jγ ď diagi

´

pP
piq
8 q

´1
¯

. (53)

the matrix

AD :“ diagi

´

P
piq
8

¯

JγdiagipM
piq
8 ´NGiqpIN bAq

(54)

is Shur stable.

Proof. Let P
piq
8 , i “ 1, . . . , N , be positive semidefinite

solutions of (48) and assume that Q “ FFJ with full
row rank F . From (48) after some manipulations we get
for each i “ 1, . . . , N

M
piq
8 ´NGi “ pM

piq
8 ´NGiqAP8A

JpM
piq
8 ´NGiq

J

` pM
piq
8 ´NGiqQpM

piq
8 ´NGiq

J.

By collecting the above equations altogether and multi-

plying on the left by diagipP
piq
8 qJ

γ and on the right by

JγdiagipP
piq
8 q, we have

ADdiagipP
piq
8 qA

J
D `HpIN bQqH

J

“ diagipP
piq
8 qJ

γdiagipM
piq
8 ´NGiqJ

γdiagipP
piq
8 q,

with

H :“ diagipP
piq
8 qJ

γdiagipM
piq
8 ´NGiq,

and finally

ADdiagipP
piq
8 qA

J
D `HpIN bQqH

J

`NdiagipP
piq
8 qJ

γdiagipGiqJ
γdiagipP

piq
8 q

“ diagipP
piq
8 qJ

γdiagipM
piq
8 qJ

γdiagipP
piq
8 q.

Assume that AD is not Shur stable. There exist λ R S1
(S1 the open unit circle in the complex plane) and x P

1 By the matrix inversion lemma we can rewrite the under-
lying algebraic Riccati equation in the standard form (?).

RnNzt0u such that

ADx “ λx.

Set V pxq “ x˚Πx with

Π :“ diagipP
piq
8 qJ

γdiagipM
piq
8 qJ

γdiagipP
piq
8 q.

Clearly, Π is symmetric and positive definite, being a
product of nonsingular matrices. We have

V pxq “ |λ|2x˚diagipP
piq
8 qx` }pIN b F

JqHJx}2

`N}diagippR
piqq´1{2CiqJ

γdiagipP
piq
8 qx}

2q,

so that, using (53),

}pIN b F
JqHJx}2

`N}diagippR
piqq´1{2CiqJ

γdiagipP
piq
8 qx}

2q

ď p1´ |λ|2qdiagipP
piq
8 q ď 0.

It follows that

pIN b F
JqHJx “ 0,

diagipCiqJ
γdiagipP

piq
8 qx “ 0.

The above equations in particular imply that

`

λInN ´ pIN bA
JqHJ

˘

x “ 0.

By the Hautus criterion, the equation above contradicts
the fact that the pair

`

pIN b F
JqHJ, pIN bA

JqHJ
˘

is observable (or equivalently
`

pIN b F
Jq, pIN bA

Jq
˘

which follows from FT being full column rank and H
being invertible). This ends the proof of the Proposition.
l

We conclude this section with a comment on the condi-
tion (53): by multiplying on the left by T b In and on
the right by TJbIn after some manipulations and using

the properties of J and T :“
`

V JWJ
˘J

(see (13)–(16)),
we obtain that inequality (53) is equivalent to

pSγW b InqdiagippAP
piq
8 A

J `Qq´1 `NGiqˆ

ˆ pWJSγ b Inq ď pW b InqdiagipP
piq
8 q

´1qpWJ b Inq.

Clearly, since Sγ Ñ 0 as γ Ñ `8 and pP
piq
8 q

´1q are

bounded functions of γ with pP
piq
8 q

´1 Ñ P´1
8 ą 0 as

γ Ñ `8, the last inequality (and therefore (53)) will be
satisfied for some sufficiently large γ.

11



6.3 Stability properties of the SMDKF filter

In order to study the asymptotic properties of the
SMDKF filter (44), we introduce at each node the local

estimation error e
piq
k|k :“ xk ´ px

piq
k|k, the total estimation

error ek|k :“ colipe
piq
k|kq, the total measurement noise

error vector

hk :“ ´diagipP
piq
8 qJ

γdiagipKiqgk`1

`
`

I ´ diagipP
piq
8 qJ

γcolipKiCiq
˘

p1N b fkq

and the estimation error covariance matrix Xk|k :“

Etek|keJk|ku. Similarly to the computations for (19), we

obtain

ek`1|k`1 “ADpγqek|k ` hk

with

ADpγq :“ diagipP
piq
8 qJ

γdiagipM
piq
8 ´NGiqpIN bAq

(the matrix ADpγq was introduced in (54)). Using un-
correlation among ek|k, gk`1 and fk,

Ψ :“ EthkhJk u :“ diagipP
piq
8 qJ

γdiagipKiqRˆ

ˆ diagipKiqJ
γdiagipP

piq
8 q

`

´

I ´ diagipP
piq
8 qJ

γcolipKiCiq
¯

pUN bQqˆ

ˆ

´

I ´ diagipP
piq
8 qJ

γcolipKiCiq
¯T

where UN is a matrix with all entries 1 and

Xk`1|k`1 “ ADpγqXk|kA
J
Dpγq `Ψ.

By introducing the covariance mismatch Ekpγq :“
Xk|kpγq ´ XC

8 and recalling (23) we obtain after some
manipulations

Ekpγq “ ADpγqEkpγqA
J
Dpγq ` Φpγq,

where

Φpγq :“ Ψ´ diagipACqX
C
8diagipA

J
Cq

´ diagipI ´K8CqpUN bQqdiagippI ´K8Cq
Jq

´ diagipK8qpUN bRqdiagipK
J
8q.

By Proposition 7 the matrix ADpγq is Schur stable. The
main result of this section can be stated as follows and
proved as the corresponding result of Proposition 3, tak-
ing into account Proposition 7.

Proposition 10 The error covariance of each filter (44)
tends as γ Ñ `8 and k Ñ `8 to the steady state error

covariance of the centralized CKF, namely

lim
γÑ`8

lim
kÑ`8

Xk|k “ XC
8 :“ UN b P8.

1
2

3

6

5

4

7

8

10

9

1 2 3 304 5

Fig. 2. Graphs used in the first (top) and in the second
(bottom) simulation scenario. Sensor nodes are shaded.

7 Simulation results

The aim of this section is to validate the theoretical
conclusions of the paper and to show that the existing
proposals share basically the same drawbacks. We con-
sider the problem of tracking a planar system with a dis-
cretization interval τ , by means of sensors each of which
may estimate only one component of the position, that is

A “

˜

I2 τI2

0 I2

¸

, C1 “

´

1 0 0 0
¯

C2 “

´

0 1 0 0
¯

Q “σ2

˜

1
3τ

3I2
1
2τ

2I2
1
2τ

2I2 I2

¸

, Ri “ σ2
g .

We consider two scenarios:

(1) The first one (Fig. 2, top) consists of a connected
graph with N “ 10 nodes and 17 randomly chosen
arcs. Nodes 5 and 10 have measurement matrices
C1 and C2 respectively, the remaining nodes have
communication capabilities only.

(2) In the second scenario (Fig. 2, bottom) there are
N “ 30 nodes connected in a chain. Node 5, 10, 15,
20 and 30 are sensors with measurement matrix C1,
whereas node 25 has measurement matrix C2. The
remaining 24 nodes have communication capabili-
ties only.

With τ “ 0.25, σ “ 0.05, σg “ 0.1 we performed
Ns “ 100 simulations of k̄ “ 250 points for several values
of γ. We compare the performance of the following algo-
rithms: the centralized KF, the CIKF of ? and ? in the

12



marginally stable, N “ 10 marginally stable, N “ 30 unstable, N “ 30

γ 1 2 20 1 10 103 1 10 103

CKF
trpP q 2.76 ¨ 10´2 2.14 ¨ 10´2 2.92 ¨ 10´2

mse 2.80 ¨ 10´2 2.17 ¨ 10´2 2.92 ¨ 10´2

DKF
mse 7.6 ¨ 10´2 4.0 ¨ 10´2 2.8 ¨ 10´2

8 8 2.2 ¨ 10´2
8 8 2.9 ¨ 10´2

st.dev. 1.8 ¨ 10´2 8.5 ¨ 10´2 4.1 ¨ 10´6
8 8 3.0 ¨ 10´7

8 8 7.5 ¨ 10´7

SMDKF
mse 3.6 ¨ 10´2 3.0 ¨ 10´2 2.8 ¨ 10´2 2.2 7.0 ¨ 10´2 2.2 ¨ 10´2 246 1.7 ¨ 10´1 2.9 ¨ 10´2

st.dev. 5.3 ¨ 10´3 1.6 ¨ 10´3 1.4 ¨ 10´6 3.7 4.6 ¨ 10´2 2.0 ¨ 10´7 636 1.8 ¨ 10´1 6.0 ¨ 10´7

CIKF
mse 4.5 ¨ 10´2 4.0 ¨ 10´2 3.8 ¨ 10´2 9.2 1.7 ¨ 10´1 4.7 ¨ 10´2 6.5 ¨ 104 6.1 ¨ 10´1 5.9 ¨ 10´2

st.dev. 1.0 ¨ 10´2 3.6 ¨ 10´3 2.0 ¨ 10´6 15 1.6 ¨ 10´1 1.6 ¨ 10´4 1.9 ¨ 105 9.0 ¨ 10´1 2.4 ¨ 10´4

ICF
mse 3.6 ¨ 10´2 3.0 ¨ 10´2 2.8 ¨ 10´2 2.2 7.0 ¨ 10´2 2.2 ¨ 10´2 708 1.7 ¨ 10´1 2.9 ¨ 10´2

st.dev. 5.2 ¨ 10´3 2.3 ¨ 10´3 1.4 ¨ 10´6 3.6 4.6 ¨ 10´2 2.0 ¨ 10´7 1.9 ¨ 103 1.8 ¨ 10´1 6.0 ¨ 10´7

HCMCI-1
mse 3.7 ¨ 10´2 3.1 ¨ 10´2 2.9 ¨ 10´2 7.7 9.7 ¨ 10´2 2.8 ¨ 10´2 3.8 ¨ 104 3.0 ¨ 10´1 3.7 ¨ 10´2

st.dev. 2.6 ¨ 10´3 2.6 ¨ 10´3 5.3 ¨ 10´7 13 9.2 ¨ 10´2 6.8 ¨ 10´5 1.1 ¨ 105 4.3 ¨ 10´1 9.8 ¨ 10´5

HCMCI-2
mse 3.5 ¨ 10´2 3.0 ¨ 10´2 2.8 ¨ 10´2 5.6 6.5 ¨ 10´2 2.2 ¨ 10´2 1.4 ¨ 104 1.6 ¨ 10´1 2.9 ¨ 10´2

st.dev. 6.6 ¨ 10´3 2.6 ¨ 10´3 1.8 ¨ 10´6 9.7 5.1 ¨ 10´2 2.4 ¨ 10´6 4.1 ¨ 104 2.0 ¨ 10´1 2.9 ¨ 10´6

Table 1
Mean square error and its standard deviation across nodes (consensus) as a function of γ, the number of consensus steps.
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Fig. 3. Comparison of MSE at varying γ for a same marginally stable system, under a connected graph topology with N “ 10
(left, linear scale on the vertical axis) and a loosely connected graph topology N “ 30 (center, logarithmic scale on the vertical
axis) and an unstable system with N “ 30 (right, logarithmic scale on the vertical axis).

version of ?, the ICF of ?, the HCMCI-1 and HCMCI-2
of ?, the proposed DKF of Section 3 and finally the pro-
posed SMDKF of Section 6. The MSE is computed as
the norm of the estimation error averaged over all the
nodes and times k P r 15 k̄, . . . , k̄s (to avoid transient ef-
fects). The results for the two scenarios are reported in
Table 1 and Fig. 3. In the first scenario (Fig. 3, left) the
MSE of all the filters is bounded even for γ “ 1. This
is in accordance with the fact that the lower bound γ0
for the number of consensus steps that ensure stability
of the mean square error, computed as in Section 3.4, is
γ0 “ 1. When γ increases all the filters but the CIKF,
and at a minor extent the HCMCI-1, converge to the
MSE of the centralized KF, and a value γ “ 4 is suffi-
cient to obtain a good approximation. The MSE of the
ICF is not reported since it is identical to the value for
the SMDKF. In the second scenario (Fig. 3, center) the

variance of the estimation error is much larger at low val-
ues of γ, due to looser graph connectivity. In this case,
γ0 “ 31 and the stability of DKF for γ ą γ0 is confirmed
by the plot of Fig. 3 (center). Again, ICF and SMDKF
have nearly identical values.

In the last three columns of Table 1 and Fig. 3 (right)
we plot the variance of the error for the unstable system
obtained by replacing A with A ` 1

10I4 on a time hori-

zon of k̄ “ 150 points. The loosely connected chain with
N “ 30 is used. All the filters but CIKF, and to minor
extent the HCMICI-1, converge to the MSE of the cen-
tralized KF for large γ, but this time a value of at least
γ “ 20 is needed to attain acceptable performance. In
this case, the results in Section 3.4 yield γ0 “ 71 and
the stability of DKF for γ ą γ0 is confirmed by the
plot. Since ICF and SMDKF have again the same per-
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formance we can conclude that SMDKF (a consensus on
estimates filter) is equivalent ICF (a consensus on mea-
surement filter). We notice that at γ ď 20 the perfor-
mance of all the filters is not acceptable. Even if the error
variance of DKF, SMDKF and ICF tends to infinity as
time grows, whereas that of CIKF, HCMCI-1/2 asymp-
totically reaches a finite value, in practice none of the
filters works at small γ, thus in practice the difference
may not be significant.

8 Conclusions

The results presented in this paper show that stability
and performance of consensus-based distributed filters
critically depends on the number of consensus steps as
well as on the density of sensor nodes. It is therefore im-
portant to be able to compute the asymptotic variance
of the estimation error as a function of the system struc-
ture, the network topology and the number of consen-
sus steps. The results presented in this work may then
be important for the analysis and design of distributed
filters in more challenging situations such as system un-
certainties, non-linear behavior, unreliable communica-
tions, etc.
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