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In this work, we theoretically study the transduction of
orbital angular momentum (OAM) l for infrared pump
lasers into the THz domain. In the case of optical rectifi-
cation, the transduction of OAM occurs only through a
spin–orbit interaction, with the selection rule on the OAM
l = 0 valid for any kind of polarization of the pump, which
means that there is no transfer of OAM along the propaga-
tion axis. In difference frequency generation, the selection
rule for the difference 1l between the OAM of the pump
fields with linear or circular polarization is l =1l , whereas
l ranges from 1l − 2 to 1l + 2 in cases of both radial and
azimuthal polarization. Moreover, for THz generation in the
latter case, the high diffraction obtained with tightly focused
pumps yields l tending to 1l ± 2, while l tends to zero in the
opposite case of large pump beams. ©2021 Optical Society of
America

https://doi.org/10.1364/OL.416814

Orbital angular momentum (OAM) laser pulses [1,2] have
generated much interest in the scientific community due to
the wide range of interdisciplinary applications in which they
can be used, such as spectroscopy [3,4], telecommunication
[5], and particle acceleration [6,7]. Within the same fields of
application, THz pulses are increasingly becoming of scientific
interest [8–12]. In this Letter, we derive the selection rules for
the transduction of OAM during optical rectification (OR)
and difference frequency generation (DFG) processes [13,14]
from infrared to THz. Moreover, this work can be considered an
extension of pulse shaping theories [15–17].

We highlight that the OAM transfer is affected by spin–orbit
and orbit–orbit interactions between the pump and the polari-
zation field, and we determine the effects of diffraction on the
final expectation value of the OAM of the THz field.

The solution to the Maxwell equations for the magnetic
field corresponding to nonlinear source terms, related to
second-order polarization currents, is
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where εuqi is the Levi–Civita tensor. The convolution product
is denoted by ?. The Einstein summation convention is used
for indices (q , i) and ( j , k), the radiator volume is VR , n(ω)
is the linear refraction index evaluated at frequency ω, c is the
speed of light in vacuum, and σ (2) is the second-order electric
conductivity. The convolution between two external pump
fields E1,2 appearing in Eq. (1) is calculated assuming a general
form for Gaussian pulses [18]:
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We use τx for the rms pulse length, αx for the linear absorption
coefficient, and vg x for the group velocity of the x field, where
x = 1, 2 according to which pump field is considered. The
angular frequency and wavenumber of the nonlinear polariza-
tion wave are � and K , respectively. To start, we develop our
calculations focusing on the OR case, which is of great impor-
tance in the generation of THz radiation [19] from an infrared
pump pulse [15,18,20] interacting with a nonlinear crystal, for
example, in the geometry shown in Fig. 1. For the OR process,
the following conditions hold: (�, K )= (0, 0), E1 = E ∗0 ,
E2 = E0, τ1 = τ2 = τ , α1 = α2 = α, and vg 1 = vg 2 = vg .
Considering the far-field radiation emitted from the volume Vc
of the radiator crystal as OR radiation, the associated electric
field is (via EE = k̂ ×µ0c EHNL)
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Fig. 1. Setup for optical generation of THz radiation and axes ori-
entation considered in this Letter.

where ER = R{cos φ sin θ, sin φ sin θ, cos θ} is the obser-
vation vector in spherical coordinates (Fig. 1). Notice also
that Ek = ERn(ω)ω/c R , χ (2)i j k is the second-order electric sus-
ceptibility tensor, and µ0 is the magnetic permeability in
vacuum.

We consider a round crystal of radius a and thickness L ; then
Eq. (4) can be processed in cylindrical coordinates as
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where %= (x 2
+ y 2)1/2, and ϕ = arctan(y/x ). At this point,

we analyze in detail the transverse and longitudinal integrals of
Eq. (5). Concerning the transverse integral, we define
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which is the Fraunhofer diffraction integral. We also define
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which expresses a resonance related to the phase matching
between the pump fields and the nonlinear polarization wave,
where κ = k cos θ + iα −ω/vg . An efficient radiation genera-
tion is obtained for those frequencies such that κ ∼ 0, which is
the phase matching condition for the OR process. This occurs
(neglecting absorption) whenever the phase velocity of the OR
wave vφ =ω/k cos θ equals the group velocity vg of the pump.
The OR radiation will possess OAM if the expectation value of
the operator L̂ z(ϕ)=−i~∂φ evaluated upon the field expressed
by Eq. (4) is non-zero, i.e., 〈 EE |L̂ z| EE 〉 6= 0. Indeed, the electric
field can be interpreted as the wavefunction of the photon.
Furthermore, for convenience, any component of the pump
field can be expressed as a component of the corresponding
Jones vector ê , i.e., E j

0 = e j E0. The photon-spin operators
along three directions of space, σ̂x , σ̂y , σ̂z, where z is the propa-
gation direction and x -y is the corresponding transverse plane,
are represented by the following matrices:
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The eigenstate for a positive photon spin along z is given by
Es 1= 2−1/2(1, i)T , while the eigenstate for the negative spin
is Es−1= 2−1/2(1,−i)T , where T stands for transpose. Indeed,
Es †
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In terms of spin eigenstates of the photon, the Jones vectors [21]
for different transverse polarization states can be expressed as
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where the first component of the Jones vector is along x and
the second along y . The angle ϕ0 is constant and defines the
polarization direction in the x -y plane for a linear polarization
state. The expectation value of σ̂z over the polarization states
listed above is calculated as 〈ê l |σ̂z|ê l 〉 = 0, 〈ê c |σ̂z|ê c 〉 =±~,
and 〈ê r |σ̂z|ê r 〉 = 0. It is possible to notice that only the circular
polarization state carries photon spin along the propagation axis.
The radial polarization state possesses spin components along
the y direction, i.e., 〈ê r |σ̂y |ê r 〉 = 2~ cos φ sin φ, and along the
x direction, i.e., 〈ê r |σ̂x |ê r 〉 = ~(cos2 φ − sin2 φ) (note that
(〈ê r |σ̂x |ê r 〉

2
+ 〈ê r |σ̂y |ê r 〉

2)1/2 = ~, i.e., the modulus of the
photon spin is preserved, as it must be, since it is an intrinsic
property of the particle). For completeness, we mention that the
photon spin for a linear polarization state forms an angle with
the x axisφs = arctan(2 cos ϕ0 sin ϕ0/ cos2 ϕ0 − sin2 ϕ0).

Let us now assume a collimated Laguerre–Gauss (LG) pump
in cylindrical coordinates with beam sizew0, carrying an OAM
L z = l0~ (l0 is known as topological charge) [22,23]:
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where p ≥ 0 is the radial index [24]. The angular frequency and
the wavenumber of the pump wave are ω0 and k0, respectively.
The energy and OAM exchange between the pump field and the
nonlinear crystal during OR occurs in such a way that

L̂ z EE ∝
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0
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(12)
therefore, the OAM of the OR radiation field is determined by a
spin–orbit interaction [25,26], since L̂ z couples to the photon-
spin eigenstates.

To find the selection rules for the exchange of OAM during
OR processes, the following integral identity turns out to be
helpful:∫ 2π

0
dϕe ik% sin θ cos(φ−ϕ)e−il0ϕ = 2π i l0 J l0(k% sin θ)e−il0φ,

(13)
where Jn(x ) is the nth-order Bessel function of the first kind.
Concerning linear and circular polarization of the pump,
Eq. (13) allows us to demonstrate that OAM is not transferred
along the z direction, i.e., if we denote OAM of the OR field as
l , then the selection rule for linear and circular polarizations is
l = 0. For radial and azimuthal polarizations, depending on the
considered nonlinear crystal, the nonlinear susceptibility tensor
can give rise to nonlinear polarization terms in Eq. (12) of three
kinds: e j (ϕ)e k(ϕ)= cos2 ϕ, sin2 ϕ,± cos ϕ sin ϕ. The solution
to Eq. (13) for any of these possible terms is∫ 2π

0
dϕe ik% sin θ cos(φ−ϕ) cos2 ϕ

=
π

2

[
2J0(k% sin θ)− J−2(k% sin θ)e 2iφ

− J2(k% sin θ)e−2iφ
]
,

(14)∫ 2π

0
dϕe ik% sin θ sin(φ−ϕ) sin2 ϕ

=
π

2

[
2J0(k% sin θ)+ J−2(k% sin θ)e 2iφ

+ J2(k% sin θ)e−2iφ
]
,

(15)

±

∫ 2π

0
dϕe ik% sin θ sin(φ−ϕ) cos ϕ sin ϕ

=±
iπ
2

[
J−2(k% sin θ)e 2iφ

− J2(k% sin θ)e−2iφ] . (16)

The final state of the OR field is in general a superposition of L̂ z
eigenstates carrying OAM l = 0,−2, 2, with an expectation
value ~−1

〈 EE |L̂ z| EE 〉 = 0. In fact, the OR field is a superpo-
sition of the L̂ z eigenstate l = 0 with a sub-superposition of
eigenstates l =−2 and l =+2 with equal amplitudes. This
can be verified by directly applying L̂ z EE as in Eq. (12) and
using Eqs. (14)–(16). With the same theoretical description,
we now demonstrate that via the DFG process, it is possible
to transfer OAM along the z direction. Let us choose two LG
modes of the kind as Eq. (11) with amplitudes E1 and E2,
respectively, corresponding to OAM l1 and l2. Then the inte-
grand of Eq. (6) is modified by the term E ∗ j

1 (%, ϕ)E
k
2(%, ϕ),

and the selection rules for linear and circular polarizations

become l = l2 − l1 =1l , in virtue of Eq. (13). For the DFG
case, Eqs. (14)–(16) are generalized to∫ 2π
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Thus, in the DFG process, for radial and azimuthal polariza-
tions, the final state of the radiation field will be a superposition
of L̂ z eigenstates carrying OAM 1l , 1l − 2, 1l + 2, with
amplitudes depending on the radiation spectrum through the
Fraunhofer diffraction integral and with an expectation value
~−1
〈 EE |L̂ z| EE 〉 ranging from1l − 2 to1l + 2. The presence of

±2 in the expectation value of L̂ z is related to a spin–orbit inter-
action that couples the spins of the two pump photons involved
in the DFG to the OAM of the radiation field. The presence of
1l instead is justified as an orbit–orbit interaction, differently
with respect to the OR case. It is interesting to note the general
property that when the condition w0� 1/k is met, i.e., very
large pump beams, then J1l−2(k% sin θ)∼ J1l+2(k% sin θ),
and the expectation value of L̂ z tends to zero. On the contrary, in
the highly diffracting case, i.e.,w0� 1/k, the expectation value
of L̂ z tends to1l − 2 for1l � 1, and to1l + 2 for1l �−1.
In fact, within the integration domain, these asymptotic behav-
iors for 1l � 1 and 1l �−1 are, respectively, related to the
fact that J1l−2(k% sin θ)� J1l (k% sin θ)� J1l+2(k% sin θ),
and J1l+2(k% sin θ)� J1l (k% sin θ)� J1l−2(k% sin θ).

Let us now consider the general case of the DFG process
triggered by two radially polarized LG modes propagating in a
diethylaminosulfur trifluoride crystal (a = 5 mm, L = 1 mm).
The modes have the following characteristics: p = 1,
w0 = 1 mm, τ = 1 ps, ω01 = 982 THz, ω02 = 995 THz,
l1 = 0, and l2 = 1. The crystal properties areχ (2)111 = 210 pm/V,
χ
(2)
122 = 32 pm/V, χ

(2)
212 = χ

(2)
221 = 25 pm/V, when pumped

at 1907 nm [27]. In this configuration, the DFG field is a
superposition of L̂ z eigenstates carrying OAM 1,−1, 3. The
expectation values for the horizontal and vertical components
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Fig. 2. Intensity profiles (arbitrary units). First row: on the left,
first pump; on the right, second pump. Second row: interference of
the horizontal (left) and vertical (right) components of the DFG field
with a plane wave, observed at 10 cm from the crystal and at frequency
1ω0 =ω02 −ω01.

of the DFG field are, respectively, 〈E x |L̂ z|E x 〉 ' 0.79 ~ and
〈E y |L̂ z|E y 〉 '−0.66 ~.

In Fig. 2, we show a comparison among the intensity trans-
verse profiles relative to the vortex beams under consideration.
The DFG fields are calculated by Eq. (5) (expressed for the DFG
case) combined with Eqs. (17)–(19), while also considering the
Fresnel coefficient for the transmission at the crystal–vacuum
interface. The images of interference are computed by adding
the Gaussian field E g = E0 exp[−(x 2

+ y 2)/2w2
0 − iψ0] and

then considering the modulus square |E g + E i |
2, with the field

amplitude E0 adjusted to 3/1000 of the DFG field amplitude
and ψ0 = π/7 arbitrarily chosen for yielding a realistic inter-
ference pattern on the virtual screen. An important remark is
that Eq. (5) considers parallel pump beams, resulting in a non-
dependence of the expected value of the OAM upon the crystal
length.

The authors of Refs. [28,29] demonstrate that in their DFG
experimental conditions, the transduction of OAM occurs
under the conservation of OAM. Concerning this Letter, we
have found that it is related to the conservation of the total angu-
lar momentum; therefore, our result is a generalization in this
sense, because it does not apply only to the case of linear polari-
zation of the pump. The selection rules we have established are
in agreement with Refs. [28,29] for the DFG case and also in
agreement with Refs. [30,31] for the OR case, where it has been
experimentally demonstrated that, unless further modifications
to the optical system are performed, the expectation value for
the OAM of the OR field is zero.

In conclusion, we have developed an analytical theory to
describe the transduction of OAM in DFG and OR processes
with particular regard to THz generation. For OR, the trans-
duction of OAM occurs only through a spin–orbit interaction
with l = 0 for any kind of polarization states of the pump beams
(no transfer of OAM along the propagation axis). For DFG,
the selection rule for the difference 1l between the OAM of
the pump fields with linear or circular polarization is l =1l ,
whereas l ranges from1l − 2 to1l + 2 in the case of radial and
azimuthal polarizations. Moreover, for THz generation in the

latter cases, the high diffraction obtained with tightly focused
pumps yields l tending to1l ± 2, while l tends to zero for large
pump beams.
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