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ABSTRACT
We establish magnetic improvements upon the classical Hardy inequality
for two specific choices of singular magnetic fields. First, we consider the
Aharonov-Bohm field in all dimensions and establish a sharp Hardy-type
inequality that takes into account both the dimensional as well as the
magnetic flux contributions. Second, in the three-dimensional Euclidean
space, we derive a non-trivial magnetic Hardy inequality for a magnetic
field that vanishes at infinity and diverges along a plane.
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1. Introduction

The subcriticality of the Laplacian in Rd for d ! 3 can be quantified by means of the
classical Hardy inequality

"D ! d " 2
2

! "2
1
r2

(1)

valid in the sense of quadratic forms in L2ðRdÞ, where "D is the standard self-adjoint
realisation of the Laplacian in L2ðRdÞ and r is the distance to the origin of Rd: On the
other hand, the Laplacian is critical in R and R2 in the sense that the spectrum of the
shifted operator "Dþ V starts below zero whenever the operator of multiplication V is
bounded, non-positive and non-trivial. In quantum mechanics, interpreting "D as the
Hamiltonian of a free electron, the Hardy inequality (1) can be interpreted as the uncer-
tainty principle with important consequences for the stability of atoms and molecules.
Inequality (1) goes back to 1920 [1] and it is well known that it is optimal in the

sense that the dimensional constant is the best possible and no other non-negative term
could be added on the right-hand side of (1). A much more recent observation is that
adding any magnetic field leads to an improved Hardy inequality, including dimension
d¼ 2. A variant of this statement is the magnetic Hardy inequality

ð"irþ AÞ2 " d " 2
2

! "2
1
r2

! cd,B
1þ r2 log 2ðrÞ

, (2)
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valid in the sense of quadratic forms in L2ðRdÞ for d ! 2: Here A : Rd ! Rd is a
smooth vector potential and cd,B is a non-negative constant that depends only on the
dimension d and the magnetic field B ¼ dA; the constant cd,B is positive if, and only if,
the field B is not identically equal to zero. This inequality was first proved by Laptev
and Weidl in 1999 [2] for d¼ 2 under an extra flux condition, in which case the lower
bound holds with a better weight (without the logarithm) on the right-hand side of (2).
A general version of (2) is due to Cazacu and Krej!ci!r"ık [3], but we also refer to [4, 5, 7;
6, Sec. 6] and [8] for previous related works.
Inequality (2) has important physical consequences. In the absence of magnetic field,

the operator appearing on the left-hand side is critical for every d ! 2: Adding the mag-
netic field, however, it becomes subcritical, in the sense that additive (e.g. electric) per-
turbations smaller comparing to the right-hand side of (2) will not produce negative
(discrete) spectrum. Hence, magnetic field stabilises quantum transport in the sense of
preventing the creation of bound states due to attractive electric potentials. In the time-
dependent setting, this phenomenon has been recently quantified in [9–11]. Similar
repulsive effects of the magnetic field exist in the context of the heat flow, see [3, 12,
13]. For applications, it is thus important to understand the structure of the magnetic
improvement on the right-hand side of (2). In this paper we quantify it in two models.
Our first result deals with the Aharonov-Bohm potential

Aaðx, y, z1, :::, zd"2Þ :¼ a
"y

x2 þ y2
,

x
x2 þ y2

, 0, :::, 0
! "

, a 2 R, (3)

where ðx, y, z1, :::, zd"2Þ 2 Rd with d ! 2: We abbreviate z :¼ ðz1, :::, zd"2Þ 2 Rd"2 and
denote by qðx, y, zÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
the distance of a point ðx, y, zÞ 2 Rd to the subspace

fx ¼ y ¼ 0g ' Rd of dimension d"2. Let us also recall that rðx, y, zÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ jzj2

q

denotes the distance of ðx, y, zÞ 2 Rd to the origin of Rd: Because of the singularity of Aa

at the origin, it is important to specify the self-adjoint realisation of the associated magnetic
Laplacian; we customarily understand ð"irþ AaÞ2 as the Friedrichs extension of this
operator initially defined on C1

0 ðRd n fq ¼ 0gÞ:

Theorem 1. Let Aa be given by (3). For every a 2 R, one has

ð"irþ AaÞ2 "
d " 2
2

! "2
1
r2

! distða,ZÞ2

q2
(4)

in the sense of quadratic forms in L2ðRdÞ with d ! 2:

This theorem in dimension d¼ 2 is due to Laptev and Weidl [2]. The novelty of
Theorem 1 consists in the present extension to the higher dimensions, d ! 3: The result
is optimal in the sense that the constants appearing in (4) are the best possible and no
other non-negative term could be added on the right-hand side of the inequality. In
other words, subtracting the right-hand side from the left-hand side, the obtained oper-
ator would be critical. At the same time, the equality sign in the inequality (4) is never
achieved, in the sense that the equality of the values of the quadratic forms correspond-
ing to the left- and right-hand sides of the inequality does not occur for any non-triv-
ial function.
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Notice also that the flux-type condition a 62 Z is necessary to have the subcriticality of
the operator on the left-hand side of (4). Indeed, ð"irþ AaÞ2 is unitarily equivalent to the
magnetic-free Laplacian whenever a 2 Z, so in this case the criticality of the operator on
the left-hand side of (4) follows from the optimality of the classical Hardy inequality (1).
Because of the special form of the vector potential (3), the operator ð"irþ AaÞ2

admits a natural decomposition with respect to the variables ðx, yÞ 2 R2 and z 2 Rd"2:
However, it is important to stress that (4) does not follow as a result of this separation
of variables. In fact, while the right-hand side of (4) is the two-dimensional contribution
coming from the angular component of the magnetic Laplacian in the (x, y)-plane, the
second (dimensional) term on the left-hand side of the inequality is a contribution com-
ing from both the radial component of the magnetic Laplacian in the (x, y)-plane as
well as the Laplacian in the z-space.
While the structure of the Aharonov-Bohm potential (3) might seem very special, it is in

fact a canonical example, for it is a magnetic analogue of the electric Dirac delta potential.
The feature of this vector potential is that its singularity is supported on a manifold of codi-
mension two. Our next interest lies in a vector potential with a singularity supported on a
plane. In this case, we restrict our attention to the three-dimensional toy model

Abðx, y, zÞ :¼ b
y
z2
, 0, 0

! "
, b 2 R, (5)

where ðx, y, zÞ 2 R3: The seemingly simple choice (5) for the vector potential is of
course very special, but on the other hand the model is intrinsically three-dimensional
in the sense that no reduction to lower dimensions via a separation of variables
is available.
We understand the magnetic Laplacian "Db :¼ ð"irþ AbÞ2 corresponding to (5) with

b 2 R n f0g as the Friedrichs extension of this operator initially defined on C1
0 ðR3 n fz ¼

0gÞ: Because of the strong singularity of Ab on the plane fz ¼ 0g, the unperturbed version
of "Db is not the Laplacian "D in R3 but rather the Dirichlet Laplacian in R3 n fz ¼ 0g
that we denote by "D0: More specifically, the singularity of the potential requires that the
functions from the operator domain of "Db vanish on fz ¼ 0g, representing thus certain
confinement of the electron to one of the two half-spaces fz > 0g or fz < 0g: The unper-
turbed operator "D0 satisfies the Hardy inequality

"D0 !
1
4
1
.2

, (6)

where .ðx, y, zÞ :¼ jzj, which is optimal (in the same way as (1) is optimal for "D).
Notice that the distance r to the origin in (1) is naturally replaced by the distance . to
the plane fz ¼ 0g in (6). Our next result shows that there is always a specific improve-
ment whenever b 6¼ 0:

Theorem 2. Let Ab be given by (5). For every b 2 R, one has

"Db "
1
4
1
.2

! jbj
.2

(7)

in the sense of quadratic forms in L2ðR3Þ:
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Contrary to Theorem 1, we do not know whether the inequality of Theorem 2 is
optimal if b 6¼ 0:
The rest of the paper naturally splits into two independent sections. In Section 2 we

quickly prove Theorem 1, while Theorem 2 is established in a longer Section 3.

2. The Aharonov-Bohm field

In this section we exclusively consider the vector potential Aa from (3) with any d ! 2:

2.1. Preliminaries

For every a 2 R, we introduce the magnetic Laplacian ð"irþ AaÞ2 as the self-adjoint
non-negative operator in L2ðRdÞ associated with the quadratic form

Qa w½ ) :¼ kðrþ iAaÞwk2, DðQaÞ :¼ C1
0 ðRd n fq ¼ 0gÞ

jjj*jjj
,

where k * k denotes the usual norm of L2ðRdÞ and

jjjwjjj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðrþ iAaÞwk2 þ kwk2

q
: (8)

By the diamagnetic inequality, we have that if w 2 DðQaÞ then jwj 2 W1, 2
0 ðRd n fq ¼

0gÞ ¼ W1, 2ðRdÞ, where the equality follows from the fact that the subset fq ¼ 0g ' Rd

is a polar set (cf. [14, Sec. VIII.6]). Using the special structure (5) of the potential Ab,
we have

Qa w½ ) ¼
ð

Rd
"i@x "

a y
x2 þ y2

! "
w

%%%%%

%%%%%

2

þ "i@y þ
a x

x2 þ y2

! "
w

%%%%%

%%%%%

2

þ jrzwj2
0

@

1

Adx dy dz,

where z ¼ ðz1, :::, zd"2Þ is a ðd " 2Þ-dimensional coordinate. In the sense of distribu-
tions,

ð"irþ AaÞ2 ¼ "i@x "
a y

x2 þ y2

! "2
þ "i@y þ

a x
x2 þ y2

! "2
" Dz,

where "Dz is the usual (distributional) Laplacian in the z variables.
If a¼ 0, then DðQ0Þ ¼ W1, 2ðRdÞ and the operator associated with Q0 is just the standard

self-adjoint realisation of the Laplacian "D in L2ðRdÞ: More generally, if a 2 Z then
ð"irþ AaÞ2 is unitarily equivalent to the (magnetic-free) Laplacian "D: This can be seen as
follows. Passing to the polar coordinates in the (x, y)-plane, i.e. writing ðx, yÞ ¼
ðq cosu, q sinuÞ with q 2 ð0,1Þ and u 2 ð0, 2p), we have the obvious unitary equivalences

ð"irþ AaÞ2 ffi "q"1 @q q @q þ
ð"i@u þ aÞ2

q2
" Dz

ffi !
m2Z

"q"1 @q q @q þ
!2m
q2

! "
" Dz:

(9)

Here !m :¼ mþ a are the eigenvalues of the one-dimensional operator "i@u þ a in
L2ð½0, 2pÞÞ, subject to periodic boundary conditions. The corresponding set of
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eigenfunctions read feimugm2Z: If a is an integer, then the direct sum is indistinguish-
able from the usual partial-wave decomposition of the Laplacian "D:
Finally, let us notice that the spectrum of ð"irþ AaÞ2 equals the semiaxis ½0,1Þ for

every real a.

2.2. The improved hardy inequality

Let w 2 C1
0 ðRd n fq ¼ 0gÞ, a core of Qa (recall that a subspace of DðQaÞ is a core of

Qa if, and only if, it is dense in the topology (8) generated by the form, cf. [15, Thm.
VI.1.21]). Employing the polar coordinates in the (x, y)-plane as in (9) and writing
/ðq,u, zÞ ¼: wðq cosu, q sinu, zÞ, we have

Qa w½ ) ¼
ð

Rd"2

ð2p

0

ð1

0
j@q/j2 þ

j@u/þ ia/j2

q2
þ jrz/j2

 !

q dq du dz

!
ð

Rd"2

ð2p

0

ð1

0
j@q/j2 þ

distða,ZÞ2

q2
j/j2 þ jrz/j2

 !

q dq du dz,

(10)

where we omit to specify the arguments of / and abuse a bit the notation for q. This
inequality explains the quantity on the right-hand side of (4). To obtain the dimensional
term on the left-hand side of (4), we write

/ðq,u, zÞ ¼ f ðq,u, zÞ ðq2 þ jzj2Þ"ðd"2Þ=4 ,

which is in fact the definition of the new test function f. Notice that f ð0,u, zÞ ¼ 0 for
all u 2 ½0, 2pÞ and z 2 Rd"2: A straightforward computation employing an integration
by parts yields
ð

Rd"2

ð1

0
j@q/j2 þ jrz/j2

& '
q dq dz ¼ d " 2

2

! "2ð

Rd"2

ð1

0

j/j2

q2 þ jzj2
q dq dz

þ
ð

Rd"2

ð1

0
j@qf j2 þ jrzf j2

& '
ðq2 þ jzj2Þ"ðd"2Þ=2 q dq dz

! d " 2
2

! "2ð

Rd"2

ð1

0

j/j2

q2 þ jzj2
q dq dz:

(11)

Estimates (10) and (11) yield (4), after coming back to the Cartesian coordinates and
noticing that q2 þ jzj2 ¼ r2: This concludes the proof of Theorem 1.
The present proof also explains why the inequality (4) is optimal. Indeed, the inequal-

ity (10) is sharp in the sense that it is achieved by any function of the form /ðq,u, zÞ ¼
gðq, zÞeimu, where m 2 Z is chosen in such a way that it minimises the distance
distða,ZÞ (so that eimu is an eigenfunction corresponding to the lowest eigenvalue
distða,ZÞ2 of the operator ð"i@u þ aÞ2). The other inequality (11) is not achieved by a
non-trivial /, but it is also sharp in the following sense. For any function f depending
only on r, we have
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ð

Rd"2

ð1

0
j@qf j2 þ jrzf j2

& '
ðq2 þ jzj2Þ"ðd"2Þ=2 q dq dz ¼

ð

Sd"2
þ

ð1

0
j@rf j2 q dr dr

, jSd"2
þ j

ð1

0
j@rf j2 r dr,

where Sd"2
þ :¼ Sd"2 \ fq > 0g and Sd"2 is the unit sphere in the ðq, zÞ-half-space. It is

well known that there exists a sequence of functions ffng1n¼1 ' C1
0 ðð0,1ÞÞ such that

fnðrÞ (!
n!1

1 pointwise and
ð1

0
j@rfnðrÞj2 r dr (!

n!1
0,

for the integral corresponds to the radial part of the two-dimensional Laplacian.

3. The confining field

The organisation of this section dealing with the vector potential (5) is as follows. In
Section 3.1 we rigorously introduce the corresponding magnetic Laplacian "Db as a
special case in a large class of magnetic Schr€odinger operators in L2ðRdÞ and state their
basic spectral properties. In Section 3.2, we establish an improved Hardy inequality for
the general operators (cf. Theorem 3). The complete proof of Theorem 2 follows as a
corollary of this more universal result. Finally, in Section 3.3, we present a more quanti-
tative version of the proof of Theorem 3.

3.1. Preliminaries

Let d ! 3: Given any function b : Rd"2 ! R such that b is locally bounded in Rd"2 n
f0g, let us consider the vector potential

Abðx, y, zÞ :¼ bðzÞ y, 0, 0, :::, 0ð Þ, (12)

where x, y 2 R and z ¼ ðz1, :::, zd"2Þ 2 Rd"2 as in (3). We introduce the corresponding
magnetic Laplacian "Db as the self-adjoint non-negative operator in L2ðRdÞ associated
with the quadratic form

Qb w½ ) :¼ kðrþ iAbÞwk2 , DðQbÞ :¼ C1
0 ðRd n fz ¼ 0gÞ

jjj*jjj
,

where k * k denotes the usual norm of L2ðRdÞ and

jjjwjjj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðrþ iAbÞwk2 þ kwk2

q
:

By the diamagnetic inequality, we have that if w 2 DðQaÞ then jwj 2 W1, 2
0 ðRd n fz ¼

0gÞ: Using the special structure (12) of the potential Ab, we have

Qb w½ ) ¼
ð

Rd
"i@x þ bðzÞ y
) *

w
%% %%2 þ j@ywj2 þ jrzwj2

& '
dx dy dz

and, in the sense of distributions,

"Db ¼ "i@x þ bðzÞ y
) *2 " @2

y " Dz ¼ "D" 2i bðzÞ y @x þ bðzÞ2 y2, (13)
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where "D is the usual (distributional) Laplacian in the (x, y, z) variables. Obviously,
"Db reduces to "Db for the special choice

d ¼ 3 and bðzÞ :¼ b
z2
: (14)

Notice that "D0 (i.e. b¼ 0) is just the Dirichlet Laplacian in Rd n fz ¼ 0g for which
the form domain equality DðQ0Þ ¼ W1, 2

0 ðRd n fz ¼ 0gÞ holds. One has DðQ0Þ ¼
W1, 2ðRdÞ if d ! 4, because then fz ¼ 0g is a polar set in Rd: Hence, unless d¼ 3, "D0

is just the standard self-adjoint realisation of the Laplacian in L2ðRdÞ: In any dimension,
the spectrum of "D0 is well known, rð"D0Þ ¼ ½0,1Þ: Moreover, "D0 is subcritical in
the sense that the Hardy inequality

"D0 !
d " 2
2

! "2
1
r2

holds as a consequence of the classical Hardy (1) and the inclusion DðQ0Þ ' W1, 2ðRdÞ:
If d 6¼ 4, we also have another Hardy inequality

"D0 !
d " 4
2

! "2
1
.2

, (15)

where we use the same notation .ðx, y, zÞ ¼ jzj2 as below (6). Equivalently, 8w 2
W1, 2

0 ðRd n fz ¼ 0gÞ,
ð

Rd
jrwðx, y, zÞj2 dx dy dz ! d " 4

2

! "2ð

Rd

jwðx, y, zÞj2

jzj2
dx dy dz:

For d ! 4 this inequality follows from (1) when applied to the Laplacian in z-coordinates
only (it becomes trivial if d¼ 4), while the three-dimensional situation employs the classical
one-dimensional Hardy inequality

8u 2 W1, 2
0 ðR n f0gÞ,

ð

R
ju0ðsÞj2 ds ! 1

4

ð

R

juðsÞj2

s2
ds: (16)

Obviously, (15) reduces to (6) if d¼ 3.
It is not difficult to establish a sufficient condition about b to guarantee that the spec-

trum of "Db coincides with the spectrum of the unperturbed operator "D0 (as well as
of the usual Laplacian without the extra Dirichlet condition).

Proposition 1. Let b 2 L1locðR
d"2 n f0gÞ with d ! 3. If bðzÞjzj ! 0 as jzj ! 1, then

rð"DbÞ ¼ 0,1Þ:½

Proof. The inclusion rð"DbÞ ' ½0,1Þ follows trivially because of the non-negativity
of "Db: The opposite inclusion rð"DbÞ - ½0,1Þ can be established by the Weyl cri-
terion, by choosing the singular sequence localised at the infinity of the conical
domain fjzj > y > 1g, where the terms in (13) containing b can be made arbitrarily
small. We omit the details and refer the reader to a fairly general case treated in
[16]. w
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Obviously, the sufficient condition is satisfied for the special case (14).

3.2. The improved hardy inequality

By the diamagnetic inequality, (15) remains valid for "Db instead of "D0: Now we
show that there is always an improvement whenever b 6¼ 0:

Theorem 3. Let b 2 L1locðR
d"2 n f0gÞ with d ! 3. Then 8w 2 DðQbÞ,

Qb w½ ) " d " 4
2

! "2ð

Rd

jwðx, y, zÞj2

jzj2
dx dy dz !

ð

Rd
jbðzÞj jwðx, y, zÞj2 dx dy dz: (17)

Proof. Since the result will be re-proved in the following subsection, here we provide
just a sketch proof.
Writing

"Db ¼ "i@x þ bðzÞ y
) *2 " @2

y|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
"D0

b

"Dz, (18)

we notice that "D0
b is the magnetic Laplacian in L2ðR2Þ corresponding to the two-

dimensional vector potential

A0
bðx, yÞ :¼ bðzÞ ðy, 0Þ,

which depends parametrically on z. The corresponding two-dimensional magnetic field
is constant

B0
bðx, yÞ :¼ rotA0

bðx, yÞ ¼ "bðzÞ: (19)

The operator "D0
b is the celebrated Landau Hamiltonian.

The spectral problem for "D0
b is explicitly solvable. The easiest way how to see it is

to perform a partial Fourier transform with respect to the x-variable, which yields a uni-
tary equivalence

"D0
b ffi nþ bðzÞ y

) *2 " @2
y , (20)

where n 2 R is the dual variable to x. Noticing that the right-hand side of (20) is the
Hamiltonian of a shifted harmonic oscillator (the shift can be handled as yet another
unitary transform), we get the familiar formula (the natural numbers N contain zero in
our convention)

rð"D0
bÞ ¼ 2 jbðzÞj Nþ 1

2

! "
if bðzÞ 6¼ 0:

Each point in the spectrum is an eigenvalue of infinite multiplicity (Landau levels). (If
b(z) ¼ 0, then rð"D0

bÞ ¼ ½0,1Þ:) In particular,

inf rðD0
bÞ ¼ jbðzÞj

(which is trivially valid also for b(z) ¼ 0).
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Using the last result in (18), we get

"Db ! "Dz þ jbðzÞj ! d " 4
2

! "2
1

jzj2
þ jbðzÞj, (21)

which is the desired result (17). The second estimate in (21) follows from the classical Hardy
inequality (1) if d ! 4 (the result is trivial if d¼ 4) or (16) if d¼ 1, by noticing in the latter
case that the form core consists of functions that vanish on the plane fz ¼ 0g: w

Theorem 2 follows as a corollary of Theorem 3 in the special case (14).

Remark 1. In some situations, Theorem 3 can be alternatively proved also by a standard
commutator trick (see, e.g., [5, Sec. 2.4]). Let us denote by Pj :¼ "i@j þ ðAbÞj with j 2
f1, 2, 3, :::, dg ffi fx, y, z1, :::, zd"2g the jth component of the magnetic gradient. Let us
assume for a moment that b is boundedly differentiable outside the plane fz ¼ 0g:
Then one has the identity

8C1
0 ðRd n fz ¼ 0gÞ, kPjwk2 þ kPkwk2 ¼ kðPj6iPkÞwk26hw, ðBbÞjkwi, (22)

for any pair j, k 2 f1, 2, 3, :::, dg, where ðBbÞjk :¼ @jðAbÞk " @kðAbÞj are the coefficients

of the magnetic tensor Bb :¼ dAb and h*, *i denotes the inner product of L2ðRdÞ: In our
case (5), we have

Bb ¼

0 "bðzÞ "@1bðzÞ y ::: "@d"2bðzÞ y

bðzÞ 0 0 ::: 0

@1bðzÞ y 0 0 ::: 0

..

. ..
. ..

. . .
. ..

.

@d"2bðzÞ y 0 0 ::: 0

0

BBBBBBB@

1

CCCCCCCA

:

Using the formula (22) with the special choice ðj, kÞ :¼ ð1, 2Þ, which does not require
any differentiability of b, one therefore obtains, for every w 2 C1

0 ðRd n fz ¼ 0gÞ,

Qb w½ ) ¼ kP1wk2 þ kP2wk2 þ
Xd"2

l¼2

kPlwk2 !
ð

Rd
7bðzÞ jwðx, y, zÞj2 dx dy dz þ krzwk2

!
ð

Rd
7bðzÞ þ d " 4

2

! "2
1

jzj2

" #

wðx, y, zÞj2 dx dy dz,
%%

where the last inequality is due to the classical Hardy inequality (1) or (16). Since the
obtained result holds with either the plus or minus sign, we arrive at (17) for every w 2
C1
0 ðRd n fz ¼ 0gÞ, provided that b does not change sign (this is certainly true for the

special choice (14)). By density, the result extends to all w 2 DðQbÞ:

3.3. Quantification of the improved hardy inequality

Our final goal is to present a more quantitative proof of Theorem 3. To do so, we have
to employ the terms we neglected in the crude estimates (21).
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Let w 2 C1
0 ðRd n fz ¼ 0gÞ, a core of Qb: The function is implicitly assumed to

depend on the space variables ðx, y, zÞ 2 Rd and for brevity we omit to specify the argu-
ments in the integrals below.
First of all, let us perform the partial Fourier transform with respect to the x-variable

as in (20):

Qb w½ ) ¼
ð

Rd
nþ bðzÞ y
) *

ŵ
%%%

%%%
2
þ j@yŵj2 þ jrzŵj2

! "
dn dy dz: (23)

Notice that the transformed function ŵ ¼ ŵðn, y, zÞ still vanishes in a neighbourhood
of fz ¼ 0g:
In the second step, we make the change of test function

ŵðn, y, zÞ ¼ jzj"ðd"4Þ=2 /ðn, y, zÞ (24)

to single out the second term on the left-hand side of (17). Putting (24) into (23) and
integrating by parts with respect to z, we arrive at

Qb w½ ) " d " 4
2

! "2
w
jzj

%%%%

%%%%

%%%%

%%%%
2

¼
ð

Rd
nþ bðzÞ y
) *

/
%% %%2 þ j@y/j2 þ jrz/j2

& '
jzj"ðd"4Þ dn dy dz:

(25)

In the third step, we introduce the function

gðn, y, zÞ :¼ exp " 1
2

jbðzÞj ðy " y0Þ2
! "

with y0 :¼ " n
bðzÞ

if bðzÞ 6¼ 0,

exp ð"nyÞ if bðzÞ ¼ 0:

8
><

>:

If bðzÞ 6¼ 0 (respectively, b(z) ¼ 0), g is an eigenfunction (respectively, generalised
eigenfunction) of the operator on the right-hand side of (20) corresponding to the low-
est eigenvalue jbðzÞj (respectively, to 0, the lowest point in the continuous spectrum); in
this two-dimensional context, the variable z is understood as a parameter and n gives
rise to the degeneracies. In the third step, we make the change of test function

/ðn, y, zÞ ¼ gðn, y, zÞ uðn, y, zÞ (26)

to single out the second term on the right-hand side of (17). Putting (26) into (25) and
integrating by parts with respect to y, we arrive at

Qb w½ ) " d " 4
2

! "2
w
jzj

%%%%

%%%%

%%%%

%%%%
2

" jbðzÞj1=2w
%%%

%%%
%%%

%%%
2

¼
ð

Rd
j@yuj2 g2ðn, y, zÞ þ jrz/j2

& '
jzj"ðd"4Þ dn dy dz:

(27)

Since the right-hand side of (27) is non-negative, we have just re-proved (17).
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