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ABSTRACT The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system
(G-TERN) was proposed in response to ESA’s Earth Explorer 9 revised call by a team of 33 multi-disciplinary
scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial charac-
teristics, processes and interactions between sea ice, and other Earth system components in order to advance the
understanding and prediction of climate change and its impacts on the environment and society. The objective is
articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic
sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean,
atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover
(ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback
mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing
or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To
contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and
the atmosphere with frequent and dense coverage over polar areas, becoming a ‘“dynamic mapper” of the
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ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment.
Over polar areas, the G-TERN will measure sea ice surface elevation (<10 cm precision), roughness, and
polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric
GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous
observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available
bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035,
covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the
mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally,

it estimates the expected performance.

INDEX TERMS Polar science, GNSS, reflectometry, GNSS-R, sea ice, altimetry, polarimetry, radio-occultation,

Low Earth Orbiter.

I. INTRODUCTION

A novel remote sensing technique based on signals of the
Global Navigation Satellite System (GNSS) reflected off the
Earth surface, the so called GNSS reflectometry (GNSS-R),
was suggested in the nineties for ocean altimetric [1] and
scatterometric [2] applications. As investigations progressed,
experimental campaigns, dedicated modelling activities and
the analysis of actual spaceborne data sets have expanded
the range of applications of the GNSS-R, which so far
have generated two special issues of the IEEE Journal of
Selected Topics in Applied Earth Observations and Remote
Sensing (J-STARS) [3], [4], an IEEE GRSS tutorial [5]
and dedicated book chapters [6]-[8]. The cryosphere and
polar areas are some of the new scientific targets of this
technique.

Komjathy et al. [9] pioneered the research on GNSS-R
for cryosphere information acquiring and analyzing data
collected from airborne instruments. Their experimental
results indicated the potential of reflected GNSS signals
to provide information on the presence and condition of
sea and fresh-water ice, as well as the freeze/thaw state of
frozen ground. The Arctic sea ice data set was analyzed
afterwards confirming its potential for ice scatterometric
applications in [10], [11]. Reflected signals captured from a
GNSS Radio Occultation satellite were preliminary inverted
to sea ice and Greenland ice sheet altimetry under very
slant geometries [12], while data obtained from a dedicated
GNSS-R spaceborne experiment demonstrated the feasibility
of acquiring signals reflected off sea ice from space at near
nadir geometries [13], [14], even when a relatively low gain
antenna was used. Dedicated coastal experiments based in
Greenland [15] firstly investigated polarimetric responses
of GNSS reflection off sea ice [16] and the trackability of
the electromagnetic carrier phase after sea ice reflections,
enabling precise phase-delay altimetry of the coastal ice [17].
Mid latitude snow properties were found to be characterized
from reflected signals unintentionally captured in ground-
based geodetic GNSS stations (e.g. [18]-[20]), while the
interaction of GNSS signals with the dry snow in polar ice
sheets was theoretically tackled in [21] and experimentally
investigated [22]. Penetration depths down to a few hundred
meters were reported in Antarctica ice sheet.
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More recently, new sets of GNSS-R data have enabled to
test some of these polar remote sensing concepts from space-
borne scenarios. One of the data sets has been acquired from
the Soil Moisture Active Passive (SMAP) mission, as the
transmitting chain of its L-band radar failed and the receiving
chain was tuned to collect GNSS reflected signals. The novel-
ties of SMAP GNSS-R over other GNSS-R missions are
the reception in two polarizations (two orthogornal linear
base) and the high gain of its 6 meter antenna. These data
have enabled GNSS-R to detect the land surface freeze/thaw
state [23] and distinguish between ocean water and sea
ice through the polarimetric response [24]. SMAP GNSS-R
data were opportunisitc, limited and are not available to
the community, and they mostly cover continental areas
(target of the SMAP mission). On the other hand, the UK
TechDemoSat-1 (TDS-1) polar satellite operated a GNSS-R
payload in a 2 out of 8 days cycle since July 2014 to
July 2017, the data were open but the antenna was in a
single polarization and of much moderate gain (13 dBi). The
extensive sets of TDS-1 data over the poles have resulted in
ice sheet altimetry studies [25], different algorithms to detect
sea ice [26], [27], to estimate sea ice concentration [28],
to perform sea ice altimetry using the group-delay of the
reflected echo [29] or by using its carrier phase delay [30].
The latter reports negative correlation between the ice thick-
ness and the altimetric solution, both presenting variations
of the same order of magnitude. These findings might be an
indication that the altimetric response comes from the ice-
water interface (draft), which if confirmed would suppose a
new and complementary way of extracting sea ice thickness.

The GNSS-R technique is proposed in a polar-science
oriented mission [31], in response to the ESA EE9 Revised
Call [32]. Unlike the GNSS-R spaceborne payloads deployed
so far, the GNSS Transpolar Earth Reflectometry exploriNg
system (G-TERN) proposes to implement a different acqui-
sition technique to access the full GNSS transmitted band-
width and a system of antennas tailored to altimetric
applications. This approach follows the steps of the ESA’s
PAssive Reflectometry and Interferometry System In-Orbit-
Demonstration (PARIS-IOD) [33] and the ESA’s GNSS
rEflectometry, Radio Occultation and Scatterometry on board
the ISS (GEROS-ISS) [34], both missions focused on
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GNSS-R altimetry and having succesfully passed their irre-
spective industrial feasibility studies (Phase-A). G-TERN
was proposed by a multidisciplinary international team
of 33 scientists and engineers experts in GNSS remote
sensing, polar sciences, oceanography, hydrology and space
technology, to attempt to contribute solving a relevant scien-
tific problem within the constraints of the ESA EE9 ‘Revised
Call’. The call, issued in December 2016, asked for missions
to address a relevant Earth scientific problem, while fitting in
a reduced budget and short implementation time, using inno-
vative techniques but based on proved concepts. Different
aspects of the mission concept and suggested implementa-
tion are detailed in the following sections, together with the
simulation exercises to assess the performance of the system.

II. SCIENTIFIC OBJECTIVES

Advancing the understanding of the cryosphere in a changing
climate has been identified as a ‘Grand Challenge’ by the
World Climate Research Programme (WCRP). Components
of the cryosphere play a central role in several processes
that remain an important source of uncertainty in projec-
tions of future climate change. Examples of such processes
are the prospect of an ice-free Arctic Ocean in contradis-
tinction to Antarctic sea ice increase; the role of ice-sheet
dynamics in amplification of Greenlands and Antarcticas
contribution to the global sea-level rise; the fate of mountain
glaciers providing fresh water to hundreds of millions of
people worldwide; and the strength of positive feedbacks
between the warming climate and natural emissions of green-
house gases from the thawing permafrost [35]. Furthermore,
a particular issue has emerged in past Intergovernmental
Panel on Climate Change (IPCC) Assessments [36] as topic
of considerable uncertainty: the ability of models to simu-
late recent declines and future changes in sea ice. Recent
studies have linked changes in snow and ice to circula-
tion changes, weather extremes, and the obvious impacts
on terrestrial and marine ecosystems, which create a great
sense of urgency [37]. For the reasons discussed below,
G-TERN primarily aims to contribute to understanding sea
ice processes, their evolution and interactions with the rest of
the climate systems.

The sea ice cover is a crucial component of the polar
and global systems, influencing and influenced by changes
across a wide range of temporal and spatial scales. A recent
attempt to quantify the overall impact of sea ice on the
current climate found that sea ice and anthropogenic green-
house gas emissions are of similar magnitude in terms of
their influence on the global heat budget [38]. Sea ice plays
a number of key roles in moderating global climate, not
only by influencing the planetary heat budget but also by
interacting with the oceanic and atmospheric circulation
systems as well as the terrestrial environment [39]-[50].
These complex feedback mechanisms link the atmosphere,
sea ice, ocean, seafloor, and land, and many of them are
not yet fully understood [46]. For example, winds and ocean
currents can alter the distribution of sea ice. These changes

13982

in the sea ice cover can then affect large-scale circulation
patterns in the atmosphere (e.g. [41], [43]) and the ocean
(e.g. [39]), which in turn may impact weather and the global
climate system. Moreover, the Southern and Arctic Oceans
are different dynamic systems. On one hand, surface waters in
the Southern Ocean have experienced less warming than has
been observed in other areas. On the other hand, the Arctic
sea ice has decreased rapidly, and recent reports indicate that
it could be largely free of sea ice in summer as early as the late
2030s, only two decades from now.! Climate models face a
challenging paradox when attempting to predict the evolution
of the polar systems: whereas the historical trend in Arctic
sea-ice extent is underestimated by the models, the simulated
downward trend in Antarctic sea-ice extent is at odds with the
small observed positive trend that has been further compli-
cated by unusual weather events shrinking Antarctic sea ice
in the last season. The polar sea ice paradox remains one of
the most challenging science issues to be resolved regarding
climate change science [51]-[54].

Arctic sea ice prediction has inherent limitations due to
the stochastic nature of the climate system. These limi-
tations are poorly understood, especially across the full
range of timescales and variables of scientific and soci-
etal interest. Advances in understanding these limitation
and in the seasonal-to-decadal predictive capabilities require
enhancements of our theoretical, observing, and modeling
capabilities [55]. The recent decline in the extent of Arctic
summer sea ice has resulted in a dramatic shift in its compo-
sition, first-year sea ice become dominant over multiyear sea
ice (e.g. [47], [55], [56]), which reduces its size, remains
younger and thinner [57], [58]. This rapid change to a new
state is likely to have important implications for sea ice
variability, predictability and even Arctic halogen photo-
chemistry [59]-[62]. In the face of this significant transition,
there is the need to identify and understand whether and
how key parameters are properly modeled. Currently, sea
ice models’ treatment of ice dynamics and thermodynamics
employs parameterizations that were often developed based
on observations taken in a primarily multiyear ice regime,
and they may not apply in the new state, in which the surface
albedo heat balance are profoundly altered. Moreover, it is
likely that if, as expected, the substantial ice retreat continues
and the remaining ice transforms to a largely seasonal char-
acter, the oceanic and atmospheric circulation and thermo-
dynamic structure will respond to the changes in the surface
state, affecting large-scale patterns. The regime shift may also
cause changes in physical and biochemical processes that
have not been adequately accounted for in current models.

Over Antarctica, it is not yet well established quan-
titatively the relative contributions from multiple mecha-
nisms to explain the observed variability and the slight
increase in overall Antarctic sea ice extent, as many local,

TAMAP Snow, Water, Ice and Permafrost. Summary for Policy-makers.
This document presents the policy-relevant findings of the AMAP 2017
assessments of snow, water, ice and permafrost in the Arctic (SWIPA), 2017.
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regional, and global processes influence sea ice growth and
melt. Different theories suggest different potential explana-
tions to this phenomena, including the role of feedbacks
between the ocean and sea ice; possible tropical Pacific and
Atlantic teleconnections; and effects of winds and ocean
currents controlled by topography and bathymetry [63].
Understanding the mechanisms and processes driving sea ice
variability and trends in the Southern Ocean is limited by the
lack of proper observations to quantify sea ice characteristics
and processes [63], [64]. Changes in the Antarctic, where
average sea ice extent is approximately 20% greater than in
the Arctic [64], could result in relatively significant changes
to planetary albedo. Furthermore, feedbacks between sea
ice production and ocean water temperature and salinity
may play a role in determining the stability of Antarcticas
massive sheets of glacial ice [65]-[67]. Understanding sea
ice variability and trends may thus be important for antic-
ipating the rate of ice sheet melt and sea level rise in the
coming decades. Process-based understanding is critical for
improving our knowledge of the mechanisms of Antarctic sea
ice variability, but they require high-resolution atmosphere
and ocean products, especially for resolving some of the
features such as eddies, polynyas/ice formation, and kata-
batic winds/cyclogenesis. These complexities demand major
advances to observe the Southern Ocean.

Furthermore, extreme events such as polar lows and
anomalous winds due to dipole anomalies [47] may combine
with preconditioning and ice-albedo feedback to result in
abrupt changes, e.g., a large decrease of sea ice in a short
time [57], [68]-[71], with decadal impacts. For example,
drastic loss of perennial sea ice owing to persistent wind
patterns in 2005 and 2007 [42] may influence the long-term
sea ice trends. Models can simulate extreme events of this
type (e.g. [72]) but the accuracy of how simulated extreme
events modify key parameters of the ice needs to be further
assessed.

The Arctic Marginal Ice Zone (MIZ) and the Antarctic
Frontal Ice Zone (FIZ) are the areas where sea ice is more
exposed to weather and ocean phenomena [63], together
with advection zones (AZ) in coastal areas. Moreover, near
costal areas, warm waters from river discharge can bring
significant heat to melt sea ice effectively. From Arctic
rivers, massive discharges carry an enormous heating power
of 1.0x1019 J/yr for each 1°C of the warm river waters
above freezing [49]. River discharges, which vary weekly,
rapidly warm up sea surface temperature by more than 10°C
at the scale of ~150 km away from the coast and 2°C as
far as ~450 km out in the ocean [49]. These phenomena not
only melt the sea ice, but also alter the air-sea interactions in
the boundary layer through variations in the air-sea temper-
ature difference that impacts the Monin-Obukhov length
and the friction velocity. The ice in these areas is therefore
highly dynamic, and proper understanding and quantification
of its rapid response to quick evolving episodes of winds,
waves, polar lows and discharge episodes would enhance our
knowledge of the interactive mechanisms leading to the ice
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variability (see Figure 1). This could be achieved with obser-
vations of these forcing phenomena, together and synchro-
nized with frequent quantification of ice production and
deformation processes, including divergence in polynyas near
the coast, evolution of the MIZ and FIZ formations, and ice
mass variations.

FIGURE 1. Sketch of different processes and interactions involving the
cryosphere. G-TERN aims to improve understanding of the sea ice related
processes and interactions at regional to climate scales, with focus on
highly dynamic variations (ice production, deformation, melt), their
driving forces and feedback mechanisms, including extreme events,
ocean and atmospheric circulation. Other processes of the cryosphere
related to sea ice snow cover and brine content, ice sheets and caps,
hydrology and snow, biochemistry, and permafrost are secondary
objectives of the G-TERN mission. Figure from G-TERN EE9 Proposal.

Understanding of sea ice changes critically depends on
local and regional thickness distribution. Apart from ther-
modynamic growth (modal growth) and melt, ice thickness
and changes of sea ice extent are governed by the drift
and deformation of the ice (dynamical growth). Changes of
Antarctic sea ice extent critically depend on northward ice
advection and the formation of sea ice in coastal polynyas. Ice
thickness variations result from changes in ice convergence,
which thickens ice by rafting and ridging. The latter process
is also manifested by large changes of surface roughness
and scattering properties. These pieces of information could
contribute to resolving the Arctic-Antarctic sea ice paradox,
improving the re-parametrization of the sea ice processes in
climate models and therefore enhancing the short and long
term predictability of sea ice trends and other valuable sea ice
related parameters. This knowledge would also have potential
to find proper proxies to extend the records of sea ice to before
the satellite era, a key element to fully understand the trends
currently observed [64]. Acquiring this knowledge requires
observational capabilities to capture the highly dynamics of
the sea ice, quantify their quick changes in ice production
and growth, degradation and melting processes, their mass
variations in rapid intervals, and the way they interact with the
surrounding ocean and weather. These observational capabil-
ities do neither exist currently nor in planned future missions.

For the reasons above, the primary objective of the
G-TERN mission is to quantify crucial characteristics,
processes and interactions between the cryosphere and other
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Earth system components in order to advance the under-
standing and prediction of climate change and its impacts
on the environment and society. The mission addresses
the World Climate Research Programme (WCRP) Scien-
tific Challenge on Melting Ice and Global Consequences,
including the rapid transition towards an ice-free Arctic
Ocean and its impact on the large-scale atmospheric circula-
tion, extreme weather and climate conditions. G-TERN also
aims to contribute resolving the challenging polar sea-ice
paradox. These objectives are articulated through three key
questions:

« MAIN OBIJECTIVE, QUESTION-1: In a rapidly
changing Arctic regime and under the resilient Antarctic
sea ice trend, how will highly dynamic forcings and
couplings between the various components of the ocean,
atmosphere and cryosphere modify or influence the
processes governing the characteristics of the sea ice
cover (ice production, growth, deformation and melt)?

« MAIN OBIJECTIVE, QUESTION-2: What are the
impacts of extreme events and feedback mechanisms on
sea ice evolution?

« MAIN OBIJECTIVE, QUESTION-3: what are the
effects of the cryosphere behaviours, either rapidly
changing or resiliently stable, on the global oceanic
and atmospheric circulation and mid-latitude extreme
events?

The secondary objectives of G-TERN address complemen-
tary cryospheric science questions as well as other climate
relevant applications. The first secondary objective aims to
demonstrate the suitability of the G-TERN mission tech-
nique, the reflectometry using navigation signals (GNSS-R),
to sense other cryosphere products. If successful, these
products would complement the investigations on the main
objective with potential to become a breakthrough in other
cryospheric questions.

« SECONDARY OBIJECTIVE-1, COMPLEMENTARY
CRYOSPHERE PRODUCTS: Which is the potential of
the G-TERN techniques to extract geo-physical infor-
mation about

— snow cover over sea ice, its thickness and density;

— sea ice permittivity, density and/or brine content;

— sea ice surface melt onset and melt pond fraction;

— distinction between modal (thermodynamic) and
dynamical (deformation) growth of the sea ice;

— ice sheets and large caps, their surface elevation
changes, mass balance, run offs, melting episodes,
surface and sub-surface snow properties;

— permafrost active layer changes, freeze and thaw
phase, surface deformations;

— seasonal snow in mid latitudes, its thickness and
snow properties; and

— glacier evolution?

Finally, the last secondary objective addresses selected
contributions of the land component into the global warming
scenario. In particular, G-TERN aims to contribute quanti-
fying the biomass and its variations as well as the extension
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of the flooded areas within wetlands (i.e. inundated wetland
extent), including densely vegetated ones (e.g. forested
swamps). Both variables play essential roles in the water
and energy cycle, linking hydrological, ecological and atmo-
spheric carbon sciences.

« SECONDARY OBJECTIVE-2, LAND COMPONENT:

— How the water coverage is changing in wetland
areas (particularly swamp forests) in view of the
rapid rate of wetland collapse?

— What is the role of wetlands in methane emission
processes, especially in view of new pathways for
methane emissions that can be potentially identified
with frequent observations including densely vege-
tated and forested regions?

— How regional conditions, especially soil moisture,
impact wetland inundation dynamics and affect
regional atmospheric patterns (e.g., by altering the
Bowen ratio) that in turn impact the transport and
distribution of methane emitted from wetlands?

A. OBSERVATIONAL REQUIREMENTS
The observational requirements of G-TERN are driven by
the primary objectives. To properly contribute answering
the primary scientific questions, G-TERN will measure
key parameters of the sea ice, the oceans and the atmo-
sphere with frequent and dense coverage over polar areas,
becoming a ‘dynamic mapper’ of the ice conditions, ice
production and loss in multiple time and space scales, and
surrounding environment. Frequent mapping is very impor-
tant for better observing and understanding multi-scale inter-
action processes. For example, the causes and effects of
deformation events on changes of the sea ice mass balance.
Global interactions and their impacts will also be explored
through generating global datasets of ocean and atmospheric
observations suitable for assimilation in numerical models.
Given that at polar areas the rapid and violent weather
systems have typical temporal scales of days to a week,
river discharge change significantly over weekly scales, and
given that these events are relevant target phenomena to
be observed (QUESTION-1 and -2), their temporal scales
constraint the time resolutions of G-TERN over polar areas to
a few day periods. Particularly important during the spring-
summer transition is the albedo switch from high to low
values that crucially impact the surface heat balance and
thus sea ice melt processes. Such albedo switch may occur
on a weekly temporal scale [73], and thus demanding sub-
weekly (~3 days) observations to account for the Nyquist
temporal sampling requirement. The albedo change is depen-
dent on different distribution of melt pond fraction over
the synoptic sea ice classes including first-year (seasonal)
and multi-year (perennial) sea ice in the Arctic [74], and
over different Antarctic sea ice classes [63] depending on
the sea ice roughness, including the FIZ with spatial scales
as little as 100 km [63]. Indeed, understanding the causes
and effects of deformation events on changes of the sea
ice mass balance requires rapid repeat observations over the
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TABLE 1. Observational requirements to address G-TERN’s primary scientific objectives (level-3 products’ requirements).

Requirements on geophysical variables for the PRIMARY OBJECTIVE (Q1-Q3).

Variable Scope  Spatial resolution Temporal resolution / coverage  Accuracy within spatio-temporal resolution
Sea ice altimetry P 30 km 3 days 10 cm
Sea ice roughness P 30 km 3 days 10% dynamic range (0.0015 mss)
Ocean surface altimetry P 30 km 3 days 10 cm
G 0.5° 10 days 10 cm
Ocean surface roughness P 10 km along-track 1 second / 3 days 0.002 mss or 10%
G 10 km along-track 1 second / 10 days 0.002 mss or 10%
Time life 5-10 years, launch 2025

same regions. Furthermore, these processes are the ones that
determine the ice behavior on longer time scales and in larger
regions. For properly mapping these small polar mesoscale
storms (of 100 to 500 km longitudinal scales) as well as their
effects into the sea ice, submesoscale horizontal resolutions
are required. Given the various spatial scales of sea ice and
ocean characteristics, a spatial resolution better than 50 km
can account for the Nyquist spatial sampling requirement to
address process at the 100-km scale. Moreover, on ~30 km
scale, sea ice can be considered a continuous fluid and sub-
scale processes will accumulate and integrate on the grid
scale to cause measurable changes that can be interpreted
with commonly used ice deformation rheologies. Therefore,
G-TERN in polar areas shall resolve sea ice properties, ice
surface elevation and the surrounding ocean surface at spatial
resolutions of the order of 30 km with full polar coverage
within 3 days. To distinguish between different seasonal
ice the sea ice surface elevation measurements should have
accuracies of the order of 10 cm within the spatio-temporal
requirements.

At middle latitudes and the tropics, G-TERN should
contribute to understand the effects of changes in the
cryosphere on the global ocean circulation and mid-latitude
extreme events (QUESTION-3). The extreme events must
be studied at mesoscale, as well as the global circulation
feedback mechanisms, which can involve intermediate scales.
For instance, mesoscale features such as eddies mediate the
transport of heat, salt and carbon by mixing densities and the
connection of the surface water to the deep ocean through
the thermocline (e.g. [75], [76]). Therefore, G-TERN shall
resolve mesoscale ocean features globally, with spatial reso-
lutions of 0.5 degree and full coverage within 10 days. These
mesoscale ocean features have signatures at the decimeters
level, reason for which the accuracy within the global spatio-
temporal resolution is requested at 10 cm in sea surface
elevation, too. For both surface ice and ocean roughness,
the accuracy of the measurement should be at 10% level
of its dynamic range. Hereafter we will express the surface
roughness parameter as the mean square of the surface slopes
(mss). The requirements of these geophysical variables are
summarized in Table 1, where scope ‘P’ means polar areas
and ‘G’ is for the rest of the globe (middle lattitudes and
tropics).

The G-TERN would be launched in 2025, with a nominal
lifetime of 5 years and expected extension to cover 10 years
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of observations. G-TERN operating for a period of five years
would provide a large data set obtained during potential
critical years of the evolution of the Arctic, 2025-2030, when
sea ice reduction is projected towards nearly sea ice-free
Summers, and it would also acquire sufficient information to
enhance our understanding of the Southern Ocean trends and
mechanisms. Models that best match historical trends project
anearly ice-free Arctic in the summer by the 2030s [77], [78],
with some studies pointing that this might happen before
2030 (during G-TERN nominal lifetime) [79]. Other analysis
predict the transition later on, from mid 2030s to before
2050 [80], [81]. Extending the mission timelife to ten years
would increase the chances to explore this transition and its
potential associated tipping point - a point beyond which the
system abruptly changes into a different climatic state. The
‘dynamic mapping’ (e.g., 3 days) capabilities of G-TERN
might become essential to properly quantify the changes and
comprehend any new chain of interactions or evolved feed-
back mechanisms that might occur under the new conditions.
Exploring the global responses to these changes would also
benefit from an extended lifetime of the mission, as feed-
backs between different spheres might include components
at longer time scales.

Ill. MISSION CONCEPT

The G-TERN mission is based on the combined applica-
tion of the GNSS Reflectometry (R) and Radio Occulta-
tion (RO) remote sensing approach, which has been recently
investigated successfully and in detail as heritage from the
ESA funded GEROS-ISS mission Phase A studies [34].
The GNSS-R component will apply grazing carrier phase-
delay altimetry [82] and group-delay/Doppler altimetry
(e.g. [33], [83]), as well as scatterometry and polarimetry
over ice, water and land surfaces using the interferometric
GNSS-R (iGNSS-R) approach. An overview of the different
measurement techniques is provided in Section IV with more
details about the iGNSS-R concept in Section IV-A. G-TERN
is proposed as a single-satellite mission in a near-polar sun-
synchronous, 6a.m/6p.m. orbit at 600 km altitude. The selec-
tion of a sun-synchronous orbit is not a strong scientific
requirement for the polar observations (other near polar orbits
would perform as well), but it is a suitable choice to mini-
mize the effects of the strongest ionospheric scintillations
phenomena over tropical areas, and will suite the high power
and heat dissipation demands (as shown in Section V). The
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launch is planned in 2025 and the nominal mission dura-
tion is five years. Table 2 summarizes the main mission
characteristics.

TABLE 2. Overview on the main G-TERN mission characteristics.

iGNSS-R + GNSS-RO
12 simultaneous beams
L-band, 2-frequencies
2-polarization

Sensor:

Orbit Orientation: Near-polar
Optimal Orbit: Sun-synchronous 6AM/6PM
Orbital height: 600 km

Time life: 2025-2030/2035

G-TERN is proposed as a box-shaped satellite with the
OHB LEO platform, of around 800 kg dry mass. The payload
is dominated by the beamforming capable antennas, which
allow 12 simultaneous reflectometry observations at virtually
any direction in two frequencies. The payload is separated
from the platform by an isostatic mechanical interface. The
spacecraft is compatible with a VEGA-C dual-launch and
the possibility to fit as a secondary passenger within the
VESPA adapter will be considered during the next phases,
as soon as a detailed specification of the adapter is available.
After presenting the measurement techniques (Section IV),
further details on the platform and payload can be found
in Section V, while the expected performance is analyzed
in Section VI.

IV. GNSS MEASUREMENT TECHNIQUES

This section presents a qualitative overview of the measure-
ment techniques suggested for G-TERN. For detailed
descriptions and formulation the readers are pointed to the
available textbooks and tutorials [5]-[8]. The basic obser-
vation concept of the G-TERN mission is based on the
innovative use of L-band navigation signals for remote
sensing (GNSS remote sensing). Such ground and satel-
lite GNSS based Earth observation techniques are already
widely and operationally used since several years for atmo-
sphere sounding. Outstanding example for this application is
the routine assimilation of related data products to improve
regional and global weather forecasts, which was started
in 2006 (e.g. [84]). But the GNSS atmospheric data are
also exploited by a large international community of geode-
sists, atmospheric scientists and climate researchers for atmo-
spheric research including studies of the global change
(e.g. [85]-[88]).

In the recent years the international research in GNSS
remote sensing has focused on the GNSS reflectom-
etry (e.g. [89]-[91]), which complements the atmosphere
sounding techniques, and exploits navigation signals,
reflected off the Earth to derive geophysical parameters of
the water, ice and land surfaces (e.g. [1], [2], [5], [22], [27],
[33], [92]-[96]). The advantages of the GNSS-R technique
are (1) its synoptic and high-temporal resolution capabil-
ities, derived from the multiplicity of GNSS transmitters
which provide reflected signals simultaneously (Figure 2);
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(2) the passive nature of the receiver, as the transmitting
global navigation infrastructure is deployed and maintained
by third parties; (3) its truly ‘all weather’ operability even
in severe weather like cyclones, required for navigation
purposes and at multiple L-band electromagnetic frequen-
cies; and (4) represent a novel exploitation of signals of
opportunity, with all surface and different types of climatic
observations scalable by the number of ever-growing GNSS
satellites. Numerous successful ground and airborne exper-
iments demonstrated already the large and versatile poten-
tial of this innovative space geodetic technique for Earth
Observation (e.g. [15], [82], [97], [126]). Recently also the
first dedicated satellite based experiments are in preparation,
as ESAs GEROS-ISS [34], or have already successfully been
launched, as the UK TechDemoSat-1 (TDS-1) [91] and
NASA’s CyGNSS [99].

The GNSS-R missions in orbit (TDS-1 and CYGNSS)
operate under the acquisition technique used in most of the
GNSS navigation applications: the weak GNSS signals are
cross-correlated with a clean replica of the publicly avail-
able modulation codes. This approach, called hereafter ‘clean
replica’ or ‘conventional’ (¢cGNSS-R) is cheap and easy to
implement, it does not require large directive antennas but
can only be applied to the publicly available codes. These
codes (e.g. GPS Coarse Acquisition, C/A) are narrow band
and therefore with limited ranging performance. Ranging
performances are crucial in altimetric applications, and a
way to increase the received bandwidth is to use the whole
transmitted one, including the encrypted codes. These codes
present broader bandwidths, of the order of 10 times wider
than the publicly available modulations. As they are not
public it is not possible to synthesize clean replicas of them
and alternative approaches are needed. A possible approach
is called interferometric GNSS-R (iGNSS-R), for which the
reflected signals are cross-correlated against the direct ones.
Because the direct signals are noisier than the idealized clean
replicas, this approach increase the noise unless highly direc-
tive antennas point to each of the reflection points and to
each of the transmitting sources. Highly directive antenna
beams, each one pointing to a single satellite or specular point
also help discriminating the different received satellite signals
(traditionally discriminated and identified through the code
itself). The iGNSS-R approach with high directive antennas
has sufficiently large SNR to take advantage of the full
bandwidth and enhances the altimetric precision figures by
factors between 2 and 6 [96], [100]-[105], while its spatial
resolution is enhanced from 25 km in cGNSS-R to 10 km in
iGNSS-R (it depends on the geometry, observable, retrieval
technique and integration time). The iGNSS-R approach was
the one selected for mission proposals such as the PARIS
IoD [33], the GEROS-ISS [34], and the ‘Cookies’ [106],
but none of them orbited yet. GEROS-ISS primary science
objective focused on altimetry, and it successfully passed
two independent industrial Phase-A studies. G-TERN, like
GEROS-ISS, envisages iGNSS-R altimetry both using group-
delay observables (range information extracted from the
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FIGURE 2. Top: sketch of the GNSS Reflectometry multi-static observation concept: from a single receiver it is possible to collect signals
reflected from multiple GNSS transmitters simultaneously. Each transmitter-surface-receiver link results in an independent measurement
of surface characteristics around its specular point. As the receiver moves, so the specular points do, each tracing a ground track of
observations. G-TERN implements capabilities for 12 simultaneous reflections (Figure adapted from [7]). Bottom:examples of the specular
locations of the G-TERNs 12 simultaneous reflections, at 1Hz rate, accumulated during 1 day (left), 2 days (centre) and 3 days (right) over
the North pole. The distribution of reflection points does not follow a repeatable pattern, but it keeps the latitudinal statistics.

envelope of the cross-correlation function) and phase-delay
observables (carrier phase information when the scattering
is essentially coherent). Neither TDS-1 nor CYGNSS have
implemented these capabilities.

The primary observable of the GNSS-R is the ‘delay-
Doppler map’ (DDM) or its central Doppler slice, called
‘waveform’. In iGNSS-R the waveform is the cross-
correlation, in the delay domain, between reflected and direct
line-of-sight signals, after they have been aligned both in
delay and frequency based on a-priori information of the
transmitter, receiver locations and velocities, and the location
of the reflecting surface. If the surface scatters predomi-
nantly in diffuse regime, the waveform follows the bi-static
radar equation with a Woodward ambiguity function (WAF)
given by the autocorrelation of the combination of the GNSS
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transmitted codes and the sinc-exponential Doppler filtering
[93, eq. 27]. In some Earth surfaces, the scattering diffuses the
signal over wider areas, the ‘glistening zone’. This zone span
across areas beyond the narrow stripe filtered in by the sinc-
exponential. Therefore, the bi-static radar equation can also
be evaluated for Doppler frequencies other than the one of
the specular point. When the reflected energy is mapped into
a suit of delay lags and Doppler frequency cells, the resulting
observable is called ‘delay-Doppler map’ (see Figure 3).
The DDMs acquired from TDS-1 GNSS-R experiment show
clear distinctive features when the signals are scattered off
the rough ocean or off areas covered by sea ice. These
differences have been confirmed by several peer-reviewed
studies [26]-[30], which indicate that GNSS reflections off
sea ice mostly present features of coherent rather than diffuse
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FIGURE 3. The primary GNSS-R observable is the delay-Doppler map (DDM) and its central frequency slice, called waveform.

Figure adapted from [7].

scattering. When the coherent scattering predominates, as it
also happens over calm waters and even land, the waveform
follows the criteria and models in [107]-[111]: the DDM
essentially shrinks to the WAV shape. It is also important to
note that when the scattering is coherent, the carrier elec-
tromagnetic signal can be tracked. Then, the time series of
its phases mainly evolves with the geometry of the observa-
tion and carrier phase-delay altimetry is possible to achieve
(see Section IV-B).

The resolution of the GNSS-R products depends on many
factors, such as the observable being used (large portion of
the DDM, or the peak power, or the leading edge of the wave-
form, etc), the nature of the scattering (diffuse or specular),
the geometry of the bi-static observation (orbital height, inci-
dence and azimuth angles) and even the coherent integration
time. The baseline techniques to be applied in G-TERN will
generally rely on the leading edge and near-peak observables,
which correspond to the resolution of the specular WAF, its
projection onto the surface. For typical coherent integration
times of 1 milisecond, the central WAF is mostly limited
by the ellipse of points on the surface suffering delays with
respect to the specular point of the order of one chip of the
GNSS modulation. In iGNSS-R, this is approximately a chip
of 30 m range, which projects ellipses of sizes ~10 km. When
the scattering is coherent (over most of sea ice), the peak
of the signal comes from the 1 st Fresnel zone, projecting
ellipses of a few to several hundred meters (geometry depen-
dent). Indicative values as function of the elevation are given
in Table 3 for the near-nadir field of view. At grazing angles of
observation the scattering is specular, and the Fresnel zones
elongates between 0.5 km to 5 km.

A. iGNSS-R GROUP-DELAY ALTIMETRY

GNSS-R altimetry is the determination of the Earth’s surface
elevation using GNSS reflected signals [1]. Most of the
GNSS-R altimetric developments have been done over the
ocean [102], [112]-[116], but the bi-static altimetric measure-
ment principles used over the ocean are applicable and also
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TABLE 3. Approximate spatial resolutions of G-TERN baseline
observations in the near-nadir field of view (incidence angles < 45°), and
corresponding to one snap-shot measurement.

Approximate spatial resolutions of G-TERN baseline (snap-shot) observations

Incidence 0 deg Incidence 30 deg Incidence 45 deg
Diffuse scattering: 6 km 6-7 km 7-10 km
Specular scattering: | 340 m 370-430 m 410-580 m

valid for altimetry over any other surface that can reflect
enough power to enable precise observables. For GNSS-R,
these are typically ocean and also ice (e.g. [17]), although
certain land surfaces, inland water bodies, or estuaries can
also reflect GNSS signals strongly [109]-[111], [117]. The
vertical height of the reflecting surface can be given with
respect to a reference value (ellipsoid, mean topography,
digital elevation/surface model, etc). The position and veloc-
ities of both the transmitting and receiving systems must be
known accurately, as the vertical component of the surface
location is measured from the total range of the radio-link
between the transmitter, the surface and the receiver. The
central point around which the signal is reflected is defined as
the ‘specular point’, which follows the Snell’s laws of reflec-
tion. Potentially, a single receiver could measure the reflected
range corresponding to each transmitter in view, meaning
they all could be solved into the altimetric retrievals for each
of their specular points (synoptic capabilities in Figure 2).
The number of simultaneous GNSS transmitters in view,
from Low Earth Orbiter (LEO) altitudes was of the order
of 40 for GPS and GLONASS constellations as in 2012 [7].
This number can be easily doubled when Galileo and BeiDou
will be fully deployed by 2020. In practice, the number of
simultaneous measurements will be limited by the receiver
capabilities. G-TERN implements capabilities for twelve
simultaneous observations. The GNSS-R measured surface
elevation is an averaged value across the measurement area,
zone from which the GNSS-R observation is representative.
As presented in Table 3, iGNSS-R resolutions approximately
correspond to ~10 km if the scattering is diffuse.
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In group-delay altimetry the observable of interest is
the delay (or range) of the reflected signal. In interfero-
metric GNSS-R technique, planned for G-TERN, the delay
is understood as the time lapse between the arrival of
the reflected radio link and the arrival of the line-of-
sight radio link (non-reflected, also called ‘direct’ signal).
Among the GNSS community it is common to work with
ranges or distances rather than the time lapses needed for
the signal to travel them. The term ‘delay’ is then used
indistinctly for both concepts, and often expressed in units of
length (as range/distance). Given that these measured ranges
include systematic effects such as drifts in the clocks, atmo-
spheric delays, or instrumental biases, they should be called
pseudo-ranges. As explained before, the GNSS-R observ-
able is the DDM or its central slice, the waveform. The
determination of the arrival time of the reflected signal is
equivalent to finding the point along the waveform or DDM
that corresponds to the reflection off the specular point.
Signals reflected off a roughness-free surface (e.g., very calm
waters or smooth sea ice) present a non-distorted correlation
function, and the specular delay corresponds to the delay of
its peak. This is also the case in standard GNSS navigation
receivers for determining the arrival time of the line-of-sight
signals. In general, though, this does not apply in Earth reflec-
tometry. For rough surfaces such as the ocean or rigged ice,
the peak of the waveform is typically shifted from the spec-
ular delay because of the surface roughness, which induces
scattering off surface elements around and even away from
the specular point. Then, the arrival time of the shortest-
specular-delay corresponds to some point between the rising
of signal power and its peak, an unknown point along the
leading edge of the waveform. Several approaches have been
suggested to determine this point (e.g. [102], [103], [105],
[118]), among others, the peak of the first delay-derivative
of the waveform, a certain fraction of its power, or fitting a
theoretical model (e.g., match filter).

The group-delay altimetry has been tested from ground-
based and airborne campaigns, for both conventional
GNSS-R and interferometric GNSS-R. The experiments have
applied the same principles, regardless of the acquisition
approach (cGNSS-R vs iGNSS-R), being the main differ-
ence between them the bandwidth (thus range resolution) of
the signals involved in the processing. The improvement in
precision in iGNSS-R compared to cGNSS-R is in the range
2 to 6 [96], [100]-[102], [105]. Airborne iGNSS-R experi-
ments have reported precisions in the range of 0.25 to 0.6 m
in 10 seconds observations [119], largely limited by the noise
of the aircraft trajectory (see Figure 4), which agrees with
the precision predicted by the theoretical models evaluated at
these airborne scenarios [102], [105].

Group-delay spaceborne altimetry has also been reported
from TDS1 satellite, over ocean and sea ice surfaces. Because
TDS-1 does not implement the interferometric capabilities,
the results correspond to cGNSS-R. Over smooth sea ice in
Hudson Bay the reported precision is 0.96 m in 0.5 seconds
and 3.5 km sampling [29]. Over open ocean, [118] reports
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FIGURE 4. Precision obtained in an iGNSS-R airborne campaign flying at
~3000 meter altitude over the Baltic Sea under variable wind conditions
between 6 and 15 m/s, for GPS PRN1, PRN3 and Galileo PRN19 and
PRN11. The values obtained from Galileo satellites around 40° are due to
contamination from other satellites caused by the limitations of this
particular beamformer to get a proper separability in such particular
events (unpublished Figure from [119]).

group-delay cGNSS-R precisions of the order of 7 to
8 m in 1 second observations, in agreement with precision
predicted based on models tuned for the CYGNSS mission
(very similar to TDS-1) [120], which is not tailored to alti-
metric applications.

B. iGNSS-R PHASE-DELAY ALTIMETRY

Most GNSS reflections off the Earth surface correspond to
diffuse scattering, where the phase of the carrier is too noisy
to be tracked and it loses its range information. Nevertheless,
at slant to grazing angles of observation (below 30° elevation)
the roughness effectively becomes smoother and coherent
reflections occur. Signatures of Earth surface reflection based
on GPS carrier phase observations at grazing observation
geometry have been reported for satellite based receivers
within the GPS/MET proof-of-concept mission for GPS radio
occultation [121] and aboard the German CHAMP satel-
lite [122]. These observations were achieved with low-gain
antennas and state-of-the-art GPS radio occultation receivers
without any specific optimization for GNSS reflectometry.
A case study done with carrier phase data from CHAMP
also presented altimetric retrievals over the Greenland ice
sheet and sea ice [12]. The derived surface heights had 0.7 m
precision in 0.2 second averaging. Coherent phase delay
GNSS-R altimetry is applied within a radio occultation like
geometry and is therefore highly synergistic with GNSS-RO
measurements, which in parallel provide atmospheric/
ionospheric information for the offset reduction/elimination
of the coherent GNSS-R measurements itself.

Phase altimetric simulations have been performed for
ocean application to prepare for measurements from Low
Earth Orbiting Satellites within the GEROS-ISS related
scientific study GARCA [34], [123]. The simulation results
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show that phase altimetric retrievals are sensitive to anoma-
lies of the ocean topography and that an altimetric preci-
sion of 10 cm in 1 second observation is possible in this
respect [124]. At angles of elevation below 10°, critical
uncertainties were found to be induced by residuals of
the tropospheric delay, degrading the precision to about
30 cm. In general, a limit for phase altimetry is set by the
diffuse character of L-band reflections off the rough surface
that impede the retrieval of coherent phase observations.
However, the diffuse reflection limit depends on the surface
roughness and the signal incidence/elevation angle. Coastal
experiments demonstrated carrier phase delay altimetry for
wind speeds up to 10m/s [125] and significant wave heights<
0.6 m [108]. Airborne experiments revealed the sensitivity of
carrier phase retrievals to geoid undulation [126] sea surface
topography [82] over rough open waters in the Mediter-
ranean Sea. Figure 5 shows phase altimetric retrievals from
an airship experiment. The 20 cm geoid undulation along
the 15 km reflection track is resolved with 3-4 cm preci-
sion. The phase-altimetric precision relies on a model-based
retracking of the signal, using geometric and atmospheric
corrections. A general difficulty arises from the apriori unre-
solved phase ambiguity. A reference height is provided by
the nearby tide gauge stations to fix the ambiguity at the
crossover point. In spaceborne scenarios, crossover points
with reflected GNSS signals from other transmitters and other
altimetric sensors would allow to mitigate the uncertainty
of the phase ambiguity. The previous coastal and airborne
experiments over sea surfaces have shown that carrier phase
altimetry works for reasonable range of elevation angles at the
reflection point (5°-30°). At higher elevation angles coherent
observations off the wind-driven sea are much less frequent
due to diffuse reflection. At lower elevations the tropospheric
residual usually impedes precise altimetric retrievals.

The presence of sea ice at the water surface significantly
shifts the diffuse reflection limit and improves the phase
coherence of L-band observations [17], [128] and phase
delay altimetry was conducted with a few cm precision from
a 700 m cliff in Greenland [17]. In fact, smooth carrier
phase observations have even been obtained at much higher
elevation angles (~50° incidence) over smooth sea ice from
the TDS-1 mission [30], with preliminary analysis showing
precisions of 4.7 centimetres in 20 millisecond observations.
In addition to the tracks analyzed in [30], other phase delay
data obtained from TDS-1 over sea ice seems to confirm the
possibility of tracking the carrier phase when reflected off
sea ice surfaces (see Figure 6). Also continental ice sheets
yield rather distinct than diffuse reflections [22] that can be
suitable for phase altimetry. The ability of phase altimetry to
use data at low elevation angles increases the swath signifi-
cantly compared to near-nadir configurations. An extension
of the elevation range from grazing and slant observations
also towards higher angles is expected for sea ice and ice
sheet altimetry. The reason is the reduced roughness of some
types of sea ice and ice sheet surfaces, that yields reduced
diffuse scatter and coherent phase observations.
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FIGURE 5. Panel (a): Example reflection track (blue) over Lake Constance
obtained from a GNSS-R payload aboard a zeppelin. A crossover
reference SO is indicated which allows to solve the phase ambiguity. The
reference is based on lake level estimates from the gauge stations

(red circle) nearby. Panels (b) and (c) show the phase altimetric solution
(gray) for right- and left-handed polarization retrievals, respectively. Due
to crossover referencing the total height level H can be estimated. For
comparison, the geoid undulation G along the track is plotted as blue
line, taken from GCG05 model [127].

An important question, which requires further investiga-
tions, is the L-band signal penetration into the snow cover on
sea ice, sea ice itself and ice sheets. In [11] the penetration
into sea ice was estimated between 30 and 70 cm, while over
dry snow over ice sheets [22] reported reflections from sub-
surface layers down to 200-300 meter at Concordia Station,
Antarctica. In general, L-band signals are more transparent to
snow than other instruments at higher frequency bands, thus
representing an advantage to minimize the contamination of
the retrievals induced by the snow cover (issues in Cryosat-2
and ICEsat/ICEsat-2).

C. iGNSS-R SCATTEROMETRY

During the initial stages of the GNSS reflectometry, the target
of the incoherent reflection measurements was the wind speed
and wind direction (e.g. [129], [130]), when precisions of
the order of 2 m/s in wind speed and 20 degrees in wind
direction were reported. However, it was soon understood that
the wavelengths of L-band signals were sensitive to a combi-
nation of other ocean surface parameters, such as wind, swell
and wave age, reason for which the term ‘L-band roughness’
was introduced. The mean square slopes, mss—dispersion of
the surface slopes—was thus the preferred parameter in some
other studies (e.g. [131]-[133]). The ‘L-band roughness’ has
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FIGURE 6. In addition to the TDS-1 phase-delay altimetry over sea ice shown in [30], other sets of data provide further evidences of the
trackability of the phase in sea ice GNSS reflections. Top-left: Three GNSS reflected tracks over sea ice, acquired in raw data mode by
TDS-1 on March 24th, 2015. The red segments correspond to the portions where phase-delay altimetry is applied. Top-right and bottom
panels: Carrier phase altimetry obtained with the data sets, and compared to the mean sea surface (DTU13 model). TDS-1 raw data made

available by SSTL and processed by W. Li (ICE-CSIC/IEEC).

interest as complementary information required in sea surface
salinity measurements performed with L-band radiometry
(ESA’s SMOS, NASA’s Aquarius), as well as potential source
of air-sea interaction and dragging, when combined with
independent wind estimates.

The previous statements were first supported by a
wide diversity of air-borne and stratospheric experiments
performed at different altitudes, receiver speeds, instrumental
equipments, and analysis techniques (e.g. [129]-[140]).
At least eight different techniques were used in the listed
references, of different degree of complexity and elabora-
tion, different final product (scalar roughness, directional
roughness, non-Gaussian features). Recently, intensive work
has been done to extract wind and roughness information
from GNSS-R spaceborne missions, such as TDS-1 and
CYGNSS, mostly constraining the source of information
around the peak of the DDM [90], [141], [142] or inspecting
the geophysical informational content in DDM cells further
away from the specular [143], [144]. In all these inversion
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schemes the starting point is the bi-static radar equation
from which the radar cross section or the probability density
function of the slopes is inferred. Over the oceans, given the
G-TERN specifications one expects similar scatterometric
performance as for the CyGNSS mission, with finer spatial
resolution (provided by the iGNSS-R technique).
Characterization of sea-ice has been also reported from
experimental GNSS scatterometric work [11], [16]. Over
ice, mss derived from the decay rate of the GNSS reflected
waveforms was also reported as a valuable indicator of the ice
surface roughness, as it is linearly related to the standard devi-
ation of the surface elevation [11]. These airborne campaigns
showed good agreement with the surface elevation dispersion
obtained from GPS reflections and those measured with a
lidar aboard the same aircraft. Similarly, an efficient permit-
tivity of the ice, obtained from the received GNSS-R power,
correlated with the ice age. A combination of both power
and decay characterize the ice age or type. From the TDS-1
spaceborne platform, high accuracy in sea ice detection has
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been obtained using DDM observables [26] through inves-
tigating the degree of coherence of the waveform extracted
from DDM [27] or using neuronal networks [28]. More-
over, the signatures around the peak of the DDM have also
been used in these neuronal networks to estimate the sea ice
concentration [28], with an overall discrepancy with respect
to independent concentration estimates at 1% level.

D. iGNSS-R POLARIMETRY

Polarimetry is a powerful tool for radar remote sensing of our
planet. It consists in observing the polarization properties of
the electromagnetic wave scattered by the target for any polar-
ization of the impinging wave illuminating the target. The
strength of the technique stems from the capability to identify
the main scattering mechanisms involved in the interaction of
the signal with the target, each mechanism being character-
ized by its own polarization signature. A number of measure-
ments has to be performed, which consists in observing in
two orthogonal polarizations the scattered signals obtained
when illuminating the target with as many polarizations of
the impinging waves. Depending on the polarization base we
consider, e.g., horizontal (H) and vertical (V); or right handed
circular (R or RHCP) and left handed circular (L or LHCP),
we have to measure HH, VV, HV and VH or RR, LL,
RL, LR. Note that we have to measure not only the signal
strength (i.e., its power) but also the phase difference between
incidence and scattered polarization components. We can
translate measurements in the circular polarization base into
measurements in the linear polarization base [145]. Some
of these measurements can be redundant (e.g., VH and HV
in backscattering) or can bring poor information content,
so that we can reduce the number of observations keeping
the relevant information for target characterization.

The GNSS transmitters radiate a wave whose polariza-
tion is nominally RHCP. To carry out a fully polarimetric
measurement one should measure the co-polar (R)ight but
also the cross-polar (L)eft component due to transmitting
antenna polarization imperfections, and then receive at the
same time the Right and Left polarized scattered signals
in amplitude and phase. Monostatic radars are already
exploiting polarimetry from satellites, but G-TERN will
provide for the first time polarimetric spaceborne measure-
ments of the signal reflected around the specular direction,
with high potential in the cryosphere domain, but also capable
to fulfil many secondary objectives of the mission. A critical
aspect (especially at RHCP, as it can be several dBs below
LHCP) is the sensitivity required to cover the full dynamic
range of the signal associated to different surface conditions.
This requires a suitable gain of the system and in particular
of the nadir-looking antenna. Additional critical aspects can
be the effects of surface topography and land cover hetero-
geneity, especially if they change within the area of the first
Fresnel zone. Those are challenges of GNSS-R over land that
G-TERN could help to tackle and solve.

For cryosphere applications, the polarimetric response
of the scattering is well recognized by the scientific
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community as an essential aspect of the remote sensing of
sea ice (e.g. [146]). At L-band, the Fresnel reflection coef-
ficients of the circular polarization base show sensitivity to
water-ice transition and, in lower degree, also to ice prop-
erties through its permittivity changes (e.g. brine content).
At relatively low angles of elevation (large incidence) such
as the geometries planned for the phase-delay altimetry, these
changes affect both the ratio between the power of the two
polarized scattered signals (e.g. LHCP/RHCP) as well as
their phase shift (here called POlarimetric Phase Interferom-
etry, POPI, [15], [16]). Figure 7-left shows the polarimetric
ratio and POPI of sea water and sea ice as obtained from
their Fresnel coefficients (from formulations in [147]). The
figure clearly shows two separate regions, for sea water
and for ice. Actual measurements are also affected by the
textures of the roughness, the purity of the transmitted signals
and the receiver instrumental response. These ideas were
tested during an ESA field campaign conducted between
November 2008 and May 2009 from a 700 m cliff over-
looking Disko Bay, Greenland (ESA’s GPS-SIDS campaign).
Despite the polarimetric ports were not calibrated, signa-
tures consistent with the sea ice concentration were found
(Figure 7-right). The ideas on polarimetric response of
water/ice surfaces were also tested in a shipborne experiment,
conducted 2016 in Fram Strait, which provided reflectometry
data during drift and fast ice periods [148] in two orthogonal
polarizations for reflections at slant elevation angles (5°-30°)
(Figure 8). The power loss observed in LHCP data during the
transition from calm open-water to the regime of high sea
ice concentration agrees with model predictions. Recently,
the receiver chain of SMAPs radar, working at two linear
polarizations, has been used to search for GNSS reflected
signals. For the first time it has been possible to obtain from
a spaceborne platform the polarimetric signatures of GNSS
reflected signals. Over polar regions, the polarimetric ratio,
here defined in linear base and at smaller angle of incidence
(40°) has shown sensitivity to sea ice [24].

The combination of different geometries (from nadir to 45°
incidence and 5° to 30° elevation) accumulated in a few days
within a relatively small area, together with the polarimetric
capabilities of G-TERN may have potential to discern leads
and polynyas and melt onset; or to help characterizing the
snow cover above the sea ice and the phase of permafrosts
active layer [23]. These potential products are some of the
demonstration activities envisaged as secondary objective of
the mission.

E. GNSS RADIO OCCULTATION

An additional, but secondary, objective for G-TERN is
GNSS based radio occultation (RO) for precise sounding
of the neutral atmosphere and the ionosphere. Global and
precise atmosphere sounding using GNSS radio occulta-
tion has matured in recent years from experimental proof-
of-concept missions to well-established and operational
applications (e.g. [149]). Outstanding examples for this
progress are the results from CHAMP (e.g. [149], [150]),
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FIGURE 7. Left: Polarimetric phase interferometry (POPI) of sea ice and sea water obtained from their Fresnel reflection coefficients.
Left-bottom: The same magnitude as a function of polarimetric ratio, at 15° elevation angle, using the same examples of sea water and sea
ice. The vertical gray dashed lines mark the polarimetric ratio for absolute permittivities going from 10 to 70 (left to right) in steps

of 10 units. Right: ESA experimental campaign of reflectometry at 700 m cliff over Disko Bay, Greenland 2009, GPS-SIDS contract number
GPS-SIDS, R21793/08/NL/ST. Top-right: the sea ice concentration values (visually inspected from site). Top-bottom: GNSS-R polarimetric
ratio measured at 10 deg elevation angle, with uncalibrated ports. Figures from [16] reproduced with authorization of the authors.

FIGURE 8. Sea ice characterization from a shipborne GNSS-R experiment.
Sea ice concentration routinely observed from the ship (upper panel).
Close drift ice period B occur in central Fram Strait. Fast ice C and open
drift ice D was spoted near the Greenland, western Fram Strait. Rough sea
periods A without sea ice were encountered near Spitsbergen, eastern
Fram Strait. Modelled power loss due to increased ice concentration
(centre panel). Power estimates from the shipborne reflectometry data
(lower panel).

GRACE (e.g. [151]) and FORMOSAT-3/COSMIC satellites
(e.g. [152], [153]), and their operational assimilation into
the weather forecast systems since 2006 [84], [154]-[159].
The RO measurements brought significant improvements in

VOLUME 6, 2018

forecast quality [153], [160] and in atmospheric reanal-
yses [161], [162] because they complement the information
provided by satellite radiances, as a result of superior vertical
resolution, and the ability to assimilate them without bias
correction. Furthermore, computations based on ensemble
data assimilation techniques suggest there is a strong case for
increasing the RO data numbers for NWP applications [163].

Continuous RO observations starting with CHAMP
data in 2002 enabled the establishment of a meanwhile
15-year climate record with highest quality in the UTLS
(Upper Troposphere and Lower Stratosphere) [86], which
is of high benefit for monitoring climate variability and
detecting changes in the Earth’s atmospheric temperature and
further relevant parameters [85], [164], [165]. RO measure-
ments are also now considered a key observation type
for climate reanalyses [161]. More generally, we expect
the climate applications to increase in the coming years
as the time-series lengthen. RO data are also valuable
for investigating atmospheric dynamics, e.g., the planetary
boundary layer [166], the tropopause region [167]-[169],
wind fields [170], atmospheric tides and waves [171]-[173]
and further phenomena [174].

In addition to RO-based remote sensing of the neutral
atmosphere, also the ionospheric profiles of free elec-
tron number density are being consolidated as one unique
source of information in terms of global coverage and
accuracy. This has been motivated since the pioneering
RO-mission, GPS/MET [175]-[180], to other follow-on
missions like CHAMP, SAC-C and COSMIC/FORMOSAT-3
(e.g. [181], [182]), among others. Now, in parallel with the
better understanding and improvement of the RO technique
(see, e.g. [183]), the ionospheric electron density profiles
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are widely used for space weather related but also clima-
tological studies related to the variability of the Earth’s
ionosphere [153], [184]-[186]. Complementary results veri-
fied the potential, according to classical Chapman theory,
to monitor climatologically parameters of the thermosphere
such as the scale height by measuring the equivalent slab
thickness. Recent computations based on measurements of
the total electron content (TEC) and the peak electron density,
have indicated a cooling of the thermosphere above northern
Germany during the recent solar cycle [187]. It has been
recently proven to be a much better description of the topside
electron density profile in terms of a linearly varying scale
height (Vary-Chap model), in agreement with the first prin-
ciples prediction (based on an increasing electron tempera-
ture with height in such a region [188]). GNSS RO enables
measurements all over the globe, in particular also at low
latitudes where highly dynamic electron density variations
and plasma turbulences occur but the data base is far from
being sufficient and will profit from the G-TERN data. The
impact of a better modelling of the ionospheric contribu-
tion to the bending angle is receiving as well an increasing
interest [189].

GNSS RO data are currently already operationally avail-
able from several missions, e.g., Metop-A/B, GRACE,
TerraSAR-X, TanDEM-X, and the dying FORMOSAT-
3/COSMIC mission. Several new operational missions with
GNSS RO started recently or will be realized in near
future, e.g., COSMIC-2, EUMETSAT Polar System - Second
generation (EPS-SG), FengYun-3 (FY3), Spire. Therefore,
the need to get RO data from G-TERN seems less compelling
and is regarded as mission goal with lower priority,
as compared to GNSS based ice and ocean remote sensing.
Nevertheless, the case for increasing the number of RO
measurements is clear [163].

Moreover, there are several highly innovative aspects
supporting GNSS-RO measurements within the G-TERN
mission. These are:

o Exploring new capabilities: Galileo, GLONASS and
BeiDou signals for RO. In addition to the new signal
structured in the new GNSS constellations, G-TERN
would also use the modernized GPS system. Therefore,
G-TERN will provide a unique data set for scientific
investigations to improve POD and RO data analysis and
related product quality.

o Provision of high quality RO data in the lower tropo-
sphere due to high-gain antenna, which is not possible
from current missions.

o Strong complementarity to the grazing angle GNSS
reflectometry approach, the coherent reflectometry
observations for altimetric measurements of ice and
ocean surface topography, which are part of the primary
mission goals [12], [122]. This also represents provi-
sion of important additional atmospheric (dry and
wet tropospheric) and ionospheric delay information
partially collocated with the coherent G-TERN GNSS-R
measurements and of relevance for the analysis and
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correction of the grazing reflectometry measurements
for ice and ocean surface height measurements obtained
aboard the G-TERN satellite.

o Omnidirectional downlooking RHCP for reflectometry
allows the reception of side-looking RO events, which
last significantly longer than the standard occultation
data events and are not available from current and future
operational RO missions. They cover larger horizon-
tally atmospheric regions and contain more atmospheric
information as the currently used RO data products. The
value of these data to improve global weather forecasts
would be investigated in cooperation with the leading
NWP centers. Experiments for a GNSS RO based moni-
toring system using 12 beams in parallel could be
conducted from G-TERN (see Figure 9 for example
of 24 hours coverage). This would allow assessing the
potential of new scientific applications in polar but also
non-polar regions, e.g., 3D atmospheric reconstructions
to investigate meso-scale atmospheric phenomena, as,
e.g. atmospheric waves.

FIGURE 9. Example of geographical distribution of G-TERN RO profiles
accumulated in 24 hours if all the twelve beams were devoted to capture
GNSS occulting signals, enabling side-looking events. From this single
receiving system it would be possible to acquire ~3000 RO profiles per

day.

F. GNSS PRECISE ORBIT DETERMINATION

The success of G-TERN critically depends on the ability
to accurately geolocate the phase centre position of the
G-TERN antennas in a well-defined Earth-fixed terrestrial
reference frame. For this purpose, Precise Orbit Determina-
tion (POD) using GNSS carrier phase tracking data, collected
by a dedicated zenith-looking antenna, is a prerequisite and
thus a key task of the G-TERN experiment. Most stringent
POD accuracy requirements are needed for many satellite
missions, typically demanding (1-D) position RMS errors of
few centimeters, e.g., for gravity missions such as GRACE
and GOCE (e.g. [190], [191]), altimetry missions such as
Jason-2 (e.g. [192]), and SAR missions such as TanDEM-X
and Sentinel-1 (e.g. [193]). Especially the radial component
is crucial for altimetry missions to derive high quality data
products. Most dynamic solutions based on a sophisticated
force modeling of the underlying orbital dynamics are thus
preferable for this type of orbit determination (e.g. [194]).
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Off-line dynamic and reduced-dynamic POD based on dual-
frequency GPS data has evolved to a mature and well estab-
lished technique, offering cm-accuracies. As a prerequisite
the attitude motion of the onboard GNSS receiver antennas
in inertial space needs to be precisely known, e.g. from star
tracker measurements, and GNSS sensor locations need to
be well specified by proper calibrations on ground such that
only small systematic errors remain in the data, e.g. antenna
phase center variations, that may be calibrated in orbit [195].
Compared to dynamic and reduced-dynamic orbit determi-
nation only marginally worse accuracies are today achieved
in the kinematic mode if the number of simultaneously and
continuously tracked GPS satellites is sufficiently large.

V. IMPLEMENTATION

A. INSTRUMENT

The instrument concept is based in previous studies led by
Airbus DS Space System Espaiia, (former EADS CASA
Espacio), namely: the ESA PARIS In Orbit Demonstration
(PARIS-IOD) Critical Technology-1; the ESA PARIS-IOD
GNSS-R Feasibility Study; and the ESA GEROS-ISS indus-
trial feasibility (mission’s phase-A) study.

This section provides a brief overview of the main charac-
teritics of the payload. The instrument will work in two RF
frequency bands simultaneously L1 (1570.809 MHz) and L5
(1189.35 MHz) that are converted to intermediate frequency
by means of a local oscillator. The bandwidths are set to
47.322 MHz and 63.9 MHz at L1 and L5 respectively. Many
parameters will change from one operational observation to
the next, mainly driven by the selected application (altimetry,
scatterometry, grazing altimetry, radio occultation) and acqui-
sition geometry. Even during the observation, adaptation of
parameters is required, i.e. delay coefficients, beams, etc.

All these particulars prompt to plan a flexible commanding
technique that is able to cope with a multitude of user
demands and needs. In principle, the commanding concept
provides the capability to program an operational run of the
instrument in form of a series of user defined antenna modes
and applications states during a swapping period. Each appli-
cation state can be split into different sub-states reflecting
beam pointing changes during the state. Each antenna mode,
application state pair reflects the complete parameter setting
for a dedicated instrument operation and selectable time dura-
tion.

These features are planned to be implemented in
the G-TERN instrument through the following elements,
sketched in a blocks diagram in Figure 10:

« Instrument RF Front-End including:

— 1 Double side (Up and Down) antenna Array
— 31 Calibration and Low Noise Amplifiers Modules
(CAL/LNA)
— 4 Beam Forming Network Units (BFN)
o Instrument Back-end including:
— 4 Signal Processor Unit (SPU)
— 1 Instrument Control Unit (ICU)
— 1 Precision and Orbit Determination Receiver (POD)
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— 1 Power Supply Unit (SPU)

For instrument time synchronization it is convenient to use
the GPS/POD time as a highly accurate atomic time scale.
This time scale is available in both the ground segment and
the satellite, on ground by conversion of UTC time to GPS
time and onboard due to the use of POD receiver. The onboard
POD receiver outputs a PPS (pulse per second) time tick
signal which will be used onboard as a 1 Hz synchronization
signal. This synchronization signal coincides with the GPS
epoch with a very high precision and fixes the exact moment
of GPS time validity. Hence, any onboard event can be dated
accurately in terms of GPS time by means of time measure-
ments with respect to the PPS signal and by assigning the
absolute GPS time to the relevant PPS epoch.

A set of instrument modes is introduced to ease the opera-
tion of the instrument from ground on one hand and to clearly
structure the control of the instrument according to the system
hierarchy on the other hand. The instrument is set into the
desired mode by processing the commands from ground. The
instrument control expands or converts the commands into an
appropriate sequence of instrument internal commands that
will be sent to other units and modules. The on-ground tele-
command generation should follow a simple approach. First,
the user must select the GNSS to be tracked. Depending
on the desired application the instrument must point the
antenna towards the direct signal and/or the reflected one.
Second, the user establishes a sequence of observation states
(applications) within a swapping period and some parameters
that configure the selected application such as integration
times. Based on the parameter information the instrument
control composes and sends the required commands to the
CAL/LNA, BFN and SPU units. Imaging of desired ground
scenarios is planned and prepared in advance on ground.
During this planning phase the desired orbit position and
the related OBT time are predicted for each observation and
are included in the corresponding time-tagged Configuration
commands.

The instrument electrical concept is the result of a trade-
off between instrument complexity and the survival of all
mission applications. The Instrument Control Unit is the
central element in charge of instrument operation. The front-
end and back-end elements respond to ICU commands.
The operational synchronization of all elements is under
this unit responsibility. The SPU is based on the signal
processing cores developed for PARIS-IOD and GEROS-ISS
missions, the ‘PARIS COrrelator’ (PACO) unit [204]. The
SPU control is basically the PACOs control. Each PACO
has one Spacewire interface that shall be used by the ICU
to control all PACO internal parameters and configurations.
The same Spacewire interface is used for housekeeping and
scientific telemetry.

The two G-TERN antennas are arrays of 31 patch
elements (up-looking side) and 30 path elements (down-
looking side) in a hexagonal array lattice with a separa-
tion of 178 mm between patches as shown in Figure 12.
The down-looking side of the antenna contains Left Hand
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FIGURE 10. G-TERN instrument block diagram.

Circular Polarized (LHCP) and Right Hand Circular Polar-
ized (RHCP) polarizations and the up-looking antenna
RHCP only. The central element in the up-looking array
is used for the POD receiver and the central element of
the down-looking is used by a retro-reflector allowing laser
ranging, so actually the array has 30 active elements. The
concept for the G-TERN elementary radiator is similar
to the PARIS-IOD elementary radiator, developed in the
frame of ESA contracts PARIS-IOD Critical Breadboarding
-1 (No0.102784) and GNSS-R-Feasibility Study (Phase A)
(AO/1-6576/2010/F/WE). The radiating elements of the
antenna array are stacked circular patches using as substrate
an air-like foam. In this configuration, an active circular
patch is excited by two coaxial probes that are combined
with a 90° hybrid coupler with one stage to provide the
required bandwidth. Each input of the hybrid provides an
orthogonal circular polarization (RHCP and LHCP). There-
fore, it is possible to have access to both circular polarizations
at each radiator by terminating the 90° hybrid by a connector.
An array model has been developed in order to simulate the
antenna performance for the different coverages. This model
takes into account the coupling between elements in the
array using the Finite Array Generalized Scattering Matrix
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Method with spherical modes coupling. Thus, the radiation
pattern of each element in the array is different due to the
couplings between the adjacent elements. As an example of
this effect (and the importance of considering the coupling
and not just an array factor computation), Figure 11 shows the
embedded radiation pattern of the central element at L.1 band
(1575 MHz) in directivity.

Variable antenna beam pointing can be achieved by respec-
tive control of received signal phases of each RF path within
the beam-former Network. To cope with this task a number
of basic one-dimensional phase settings for elevation and
azimuth pointing, respectively, will be stored in separate
onboard look-up tables. A particular antenna beam config-
uration will then be generated by means of simple onboard
synthesis that combines two one-dimensional settings in
elevation and azimuth to the desired phase setting of the oper-
ational beam. This procedure supposes an ideal behavior of
phase shifters. Compensation of unwanted parasitic effects,
which would degrade the beam steering, is another task of
the instrument control by means of compensating the effect
via the control of one attenuator per RF path. The pointing
angles used to select azimuth and elevation indexes shall
be calculated on board using the relative positions between
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FIGURE 11. Embedded elementary radiator radiation pattern (central element; f = 1575 MHz).

FIGURE 12. G-TERN antenna array.

G-TERN, GNSS transmitter and reflection point plus the
application type. The relative angles are derived from present
G-TERN position and GNSS predicted position. G-TERN
position is propagated from Precise Orbit Determination data
and GNSS position is propagated from TLE parameters. The
beamforming network is based on 4 BFN modules, each pair
devoted to one RF path at one frequency. Each BEN module
delivers 12 different beam outputs, to enable the synthesis
of 12 different beams simultaneously. The architecture is
based on a succession of four stages: RF dividers, beam
former, using variable attenuators and phase shifters, RF
combiners and RF to IF down-converters. The BFN section is
a 48 beams conforming network (from a 30 elements array)
together with down-converting from RF to IF. Furthermore
it includes DC/DC converter from primary supply bus and
LO signal generation from Master Clock. The 48 beams
correspond to 12 beams for each frequency (CL1 and CL5)
and for each antenna (up- and down-looking).

The beams at intermediate frequency are connected to
the processing unit SPU. This module is based on ADC
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chips and ASIC correlators controlled by Spacewire links,
which are able to perform different processing techniques
for GNSS reflectometry, scatterometry and radio occultation.
Each correlator can compensate the physical delay and the
Doppler frequency differences between the signals to process
(i.e. for altimetry application the up and down signals).
The coherent and non-coherent integration times are also
configurable via the Spacewire interface. Also each correlator
allows the use of clean replica codes to be processed together
with the down-looking signal for radio occultation purposes.

The main components of the board are sketched
in Figure 13. The SPU boards are clocked by the G-TERN
master clock of 153.6MHz (TBC). The clock distribution
ensures that the skew between all ADC and the PACO are so
that correct sampling of the data is guaranteed. The foreseen
ADC features a 1:2 de-multiplexed data signal, meaning that
the data rate is half of the sampling clock of 153.6 MHz,
hence 76.8 MS/s. The analogue part of the board is placed
on the left side of the board, whereas the digital interfaces
are connected to the backplane. In addition to the digital
interfaces, the power supply is also routed via the backplane.
Local Point of Load (PoL) converters are foreseen, to ensure
stable supply for all components of the SPU board. The
PACOs are placed as close as possible to the backplane,
in order to maximize the heat transfer to the frame.

The concept for the PACO processor includes the cross-
correlation of up-looking and down-looking beams’ signals,
its swapping, Doppler and delay compensations, and voltage
offset compensations, among other features. The swapping
can be configured via the interface control unit (ICU).
The cross correlator is a 400 tap lag correlator, running at
76.8MHz, hence a tap spacing of 13ns. The output of the
cross correlator is then fed into a Doppler Shift circuit (called
Doppler bin), which is replicated for 5 different Doppler
frequencies (controllable via the ICU). The circuit allows to
further increase the number of Doppler frequencies up to a
factor of 3 (with reduced time resolution). PACO generates
the DDM as power and/or complex waveforms.

The Instrument Control Unit (ICU) shall be in charge of
the control of the overall instrument, data handling, data
storage and of interfacing towards the platform. It is the
operational centre of the whole instrument. So it is in charge
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FIGURE 13. Signal-Processor Unit board concept.

of the instrument preparation for an event observation and
the synchronized execution of the observation. It manages
the beams pointing, the CAL/LNAs switching and the oper-
ational management of the SPU, providing it with data as
Doppler settings, coherent and incoherent integration param-
eters, desired output waveform, etc. It also generates and
distributes the master clock to the whole instrument. It is
basically composed of a microprocessor system, where the
software runs, a big memory module, an instrument house-
keeping signals acquisitions module and hardware interfaces
towards the rest of the instrument modules and the satellite
platform.

The ICU is based on a unit composed of two completely
redundant parts assembled in a common mechanical housing
hosting three different types of board per section plus two
boards common to both sections: Interface Module (IM),
in charge of the instruments data processing and commu-
nication with the platform and instruments down-stream
units (BFNs, SPU, POD, and CAL/LNAs); Specific Inter-
face Module (SIM), in charge of generation and acquisi-
tion of discrete standard interfaces (as thermistors, voltages,
currents) needed for monitoring, reporting and control of the
complete instrument; Converter Module (CM), in charge of
providing Power Conversion functions; Clock Distribution
Module (CDM), amplifying, splitting and combination of
master clock signal to be distributed towards the G-TERN
Instrument units; Backplane (MB), connecting all modules
and performing the signals cross-strapping where needed.

A POD receiver subsystem is included in the instru-
ment which: (1) provides the on-board time reference to all
the instrument, including the PPS signal; (2) provides the
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position of the instrument to the ICU; (3) obtains ephemerides
data to estimate the reflection observation; and (4) delivers
observables that are considered as Level 0 data products and
it is used in the geo-location of the power-delay waveforms
in the level 1B product.

Finally, Table 4 shows the main performances and budgets
of instrument units and for the overall instrument. The total
estimated power consumption is 461.6 W (553.92 W with
20% margin), and the total weight 266.63 kg (319.96 kg with
20% margin).

B. PLATFORM

In order to accommodate the payload and support its oper-
ations in orbit,the OHB LEO platform has been preliminary
selected for the G-TERN mission. The platform fits within
the constraints coming from the above described payload
characteristics and is compliant with the G-TERN mission
requirements. Designed mainly for LEO Earth observation
missions, it is based on EnMAP heritage, combined with
experiences from Galileo and SAR-Lupe and SARah. The
G-TERN platform is tailored to fly in Sun-Synchronous
Orbits (SSO) between 600 and 800 km altitude and different
Local Time of the Ascending Nodes (LTANs) can be attained
with minimum modification of the spacecraft accommo-
dation. Different orbits require adaptation of the platform
with the magnitude of fall-outs depending on the deviation
from the nominal: however the platform is again flexible
to cope with these changes with, possibly, few adaptations.
The platform offers a design lifetime of 10 years and it is
intended for the payload ranges detailed in Table 5. A major
highlight is the capability to be launched with a dual-launch
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TABLE 4. Main budgets and performances of the G-TERN instrument.

Antenna Array Structure 1 Unit
Mass per unit (kg) 18.5
Dimension per unit (L,W,H mm) 900x1135x334

Radiator

31 Units (Up) + 30 Units (Down)

Outputs

Up: U_RHCP; Down: D_LHCP and D_RHCP

Mass per unit (kg) 0.24
Dimension per unit (L,W,H mm) 178x90x22
CAL/LNA 31 Units

Inputs
Ouputs

U_RHCP, D_LHCP, D_RHCP

A-CL1: U_RHCP or D_LHCP or D_RHCP;
A-CL5: U_RHCP or D_LHCP or D_RHCP;
B-CL1: U_RHCP or D_LHCP or D_RHCP;
B-CL5: U_RHCP or D_LHCP or D_RHCP

Mass per unit (kg) 1.9
Dimension per unit (L,W,H mm) 135x94x167
Power per unit (W) 2.65
BFN 4 Units
Inputs BFN_A-CLI: 30xA_CL1; BFEN_A-CL5: 30xA_CLS;
BFN_B-CL1: 30xB_CL1; BEN_B-CL5: 30xB_CL5
Total:120
Outputs BFN_A-CL1: 12 A-beams at CL1; BEN_A-CLS5: 12 A-beams at CL5;

BFN_B-CL1: 12 B-beams at CL1; BFN_B-CL5: 12 B-beams at CL5
Total: 48 beams

Mass per unit (kg) 33.7

Dimension per unit (L,W,H mm) 380x480x270

Power per unit (W) 19.8

SPU 4 Units

Inputs SP1: 6xA_beams_CL1 and 6xB_beams_CL1
SP2: 6xA_beams_CL1 and 6xB_beams_CL1
SP3: 6xA_beams_CL5 and 6xB_beams_CL5
SP4: 6xA_beams_CL5 and 6xB_beams_CL5
Total: 48

Outputs 12 correlations A*B at CL1 12 correlations A*B at CL5
Total: 24

Mass per unit (Kg) 12

Dimension per unit (L,W,H mm) 200x300x250

Power per unit (W) 81

POD 1 Unit

Inputs CL1 and CL2

Ouputs ICU interface

Mass per unit (Kg) 72

Dimension per unit (L,W,H mm) 205x226x184

Power per unit (W) 24

ICU 1 Unit

Nr units 1

Inputs 24 correlations A*B

Ouputs 3072 Kbps of instrument data rate

Mass per unit (kg) 10

Dimension per unit (L,W,H mm) 200x300x230

Power per unit (W) 20

PSU 1 Unit

Inputs 22V-37V unregulated

Outputs 31x CAL/LNA: DC/DC (N&R) V1 DC/DC (N&R) V2

Mass per unit (Kg)
Dimension per unit (L,W,H mm)
Power per unit (W)

DC/DC (N&R) V3 4XSPU (N&R): 22-37V 4X BFN (N&R): 22-37V
1xICU (N&R): 22-37V

10

350x230x230

25

TABLE 5. Main characteristics of the G-TERN platform.

Payload mass | Average payload | Spacecraft dry | Mission lifetime | Payload data | Min platform | Max payload di- | Most constrain-
(kg) power (W) mass (kg) (years) downlink rate | dimensions (m3) | mensions (m?3) ing launcher
(Mbit/s)
< 350 < 600 < 800 < 10 < 150 1.5 x 1.1 x 1.1 | 20 x 1.2 x 2.0 | Inside Vespa,
(L x W X H) (Lx W X H) Upper Vega (on
Vespa)

on Vega by using the VESPA adapter: depending on the
payload volume, the spacecraft might even fit into the lower
position inside VESPA. The platform is conceived to have a

‘plug and play’ payload, or in other words, to be decoupled
from the payload module: the payload module is separated
from the platform module and the two are only connected
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via power, data and mechanical interfaces. The platform uses
for the most parts off-the-shelf space-qualified components
with Technological Readiness Level (TRL) >8, while the
subsystems, which require minor modifications for the
specific mission needs, still reach a TRL >5/6. The agile
3-axis stabilized platform is able to meet the most strin-
gent pointing requirements. Furthermore, it offers several
optional features to adapt to different mission-specific and
payload-specific constraints, for example in terms of power
generation and storage, payload data handling and trans-
mission. The platform can comply with both uncontrolled
and controlled re-entries. Due to its cost-effectiveness and
modular decoupled design, providing separation between
payload and platform modules and resulting in programmatic
savings, the platform is the perfect candidate for the G-TERN
mission in the frame of Earth Explorer 9 programme.

The platform is designed to fit either in the lower or upper
position - depending on the payload - of the ‘extended’
VESPA (4+500mm) of VEGA, for dual launch. In Figure 14,
the spacecraft is depicted, fitting within the useable enve-
lope of Vega upper position. The Launch Vehicle Adapter
is a band clamp with a diameter of 937mm. Given the
limited information available on Vega-C and the smaller
size of current Vega fairing, the conservative approach of
fitting the spacecraft inside the current launcher configuration
was assumed. In the next phase of the study, following the
consolidation of mission, payload and system requirements
as well as updated information of the VESPA adaption to
Vega-C, a more detailed assessment could be performed on
whether and under which conditions/configurations it would
be possible to fit the spacecraft inside VESPA, in lower
position.

FIGURE 14. G-TERN satellite inside VEGA Launcher.

Figure 15 provides an overview of the G-TERN spacecraft
in stowed and deployed configurations, with dimensions. It is
possible to clearly identify the separation between platform
module and payload modules and their isostatic mechanical
interface. Figure 16 shows the internal units accommodation
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of G-TERN. In Figure 17, the difference between two orbital
configurations is shown: on the left, the platform is adapted
to LTAN close to Noon-Midnight orbits (typical orbits for
optical payloads) while on the right the solution is adapted
to a Dawn-Dusk orbit. As it is possible to see, the orbit
choice is flexible and minimum adaptation of configuration
and internal accommodation is required (the radiator is for
both configurations on the hidden side in these figures).

FIGURE 15. G-TERN satellite in stowed (left) and deployed configurations
(middle).

FIGURE 16. Internal accommodation of G-TERN payload systems and
components.

FIGURE 17. G-TERN solar array configuration for different orbits.

The propulsion system is sized to allow station keeping
for 10 years in conditions of maximum solar activity. The
residual propellant is used to perform perigee lowering for
uncontrolled re-entry in less than 25 years. It is remarked that
if the orbit altitude is selected close to 600 km, the spacecraft
would naturally decay in less than 25 years. If a controlled

VOLUME 6, 2018



E. Cardellach et al.: G-TERN: Mission Concept

IEEE Access

re-entry is required, adaptation of the propulsion system is
needed: in the following phase of the development, a consol-
idation of mission requirements and spacecraft design will
allow for detailed re-entry analyses and assessment of casu-
alty risk, to demonstrate compliance with current regulations.

The telemetry and telecommand transmission is performed
via S-band while the science data are downlinked via X-band,
together with telemetry data for contingency. The payload
data handling and transmission subsystem has the following
characteristics:

o An Isoflux antenna allows transmission to the ground

station

o The high data downlink rate and memory size allow

considerable memory margins, even when considering

100% duty cycle with 12 beams and 2 frequencies,

i.e. 3.1 Mbit per second of science data.
A downsizing of the payload data handling and transmis-
sion subsystem could be performed, if considered necessary,
to reduce the design margins in a more mature phase. The
data downlink budget was analysed assuming the Kiruna
13 meters dish with 5° minimum elevation angle. As the
electrical power generation and distribution system (EPS) is
concerned, a solar array driving mechanism coupled with
a mounting cant angle, when applicable, allows to achieve
high performances by sun tracking. The spacecraft has a 28V
unregulated bus with direct energy transfer distribution. The
electrical power system is sized for 10 years for a 600 km
dawn-dusk orbit (LTAN 06:00), where maximum eclipse
reaches 20 minutes duration in winter. The sever square meter
solar array is able to provide 1315 W at the power control
and distribution unit. Batteries provide 57 Ah at 33.6 V. The
power budget in analysed under different modes of opera-
tion: 91% of the duty cycle it would operate under nominal
operation mode, while the ground station pass mode (payload
operational and simultaneous downlink) would happens up
to 9% of the duty cycle. This results in an average power
budget of 943.8 W, which consistently accounts for the design
margins.

The mass budget has been estimated considering a range of
margins (from 5% to 30% depending on the subsystem) and
including the propellant mass. The total spacecraft wet mass
then results in 870 kg, which fits within the constraints of the
launcher and the EE9 Call.

VI. EXPECTED PERFORMANCE

The fulfillment of the required critical performances (Table 1)
is evaluated by means of end-to-end simulation exercises. The
exercises are limited to the altimetric performances, as they
represent the most demanding application in G-TERN. The
approach comprises the following blocks:

1) Generation of synthetic 1-second level-1 data according
to the G-TERN orbital and instrumental characteriza-
tion, as well as a limited set of sea ice conditions and
geometries. These data sets must include the different
noise components, in the form of a Monte Carlo like
approach.
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2) To apply the inversion algorithms to retrieve the
group-delay altimetric products (1 Hz level-2 data)
from the synthetic level-1 observables generated in
block 1 above.

3) To determine the uncertainty of the retrieved 1Hz
level-2 group-delay altimetric products over sea ice,
by means of comparison with the well-known ground
truth (simulation settings) and the dispersion obtained
from the Monte Carlo set of samples. Blocks 1 to 3 are
presented in Section VI-A. Given that GEROS-ISS
mission went through industrial and scientific feasi-
bility studies (Phase-A) and these sort of exercises were
done and compiled for Ocean applications in [123],
we limit these simulations to sea ice scattering condi-
tions, and will use the outcome of [123] for sea surface
altimetric performances.

4) To simulate phase-delay synthetic data and its retrieved
altitudes to estimate the 1-second equivalent phase-
delay accuracy (Section VI-B).

5) To simulate the location of the specular points that a
G-TERN system would collect in 3 days, at 1 second
sampling over polar areas (here defined as |lat| > 60°).
Define a grid of cells sized 30 km x 30 km across the
polar zone, and group the 1-second observations by the
cell where their specular points belong.

6) With the 1-second uncertainties obtained in
blocks 3 and 4 above and the number of I1-second
observations within each cell obtained in block 5,
compute the overall uncertainty over each cell.

7) Analyze the statistics of the obtained uncertainties
at each cell within the 3 days simulationperiod.
Blocks 5 to 7 are presented in Section VI-C.

A. GENERATION OF THZ-LIKE LEVEL-1 WAVEFORMS

AND DERIVED LEVEL-2 GROUP-DELAY

ALTIMETRIC ACCURACIES

This section compiles blocks 1 to 3 of the end-to-end simu-
lation description above. The simulations correspond to the
G-TERN orbit and instrument (see Sections III and V respec-
tively) in four different geometries and two rather extreme
examples of sea ice, the best and worst reflectors. The best
case reflector corresponds to smooth ice (low roughness)
and more reflecting, i.e. saltier ice such as first-year (FY).
For simplicity we will call it FY (despite FY can also be
rougher). The worst reflector corresponds to ice with rough
surfaces and less reflecting properties, i.e. fresher ice with
less salt, such as in multi-year ice (MY), hereafter identi-
fied as MY (despite MY ice can present smooth surfaces).
The smooth sea ice corresponds to the conditions found in
Hudson Bay in TDS-1 TD18, 15th January 2015 [29], [30],
providing highly specular reflections. The scattering regime
for the MY extreme case considered here has been analyzed
through TDS-1 TDS51 track, 11 February 2015, from 16:55 to
16:58 UTC, for rough ice conditions. The summary of
relevant parameters is given in Table 6, including orbital,
instrumental, geometries and characterization of the sea
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FIGURE 18. Examples of 10 synthetic level-1 waveforms generated for four scenarios (colored lines), in dB SNR. In black the

noise-free or ‘average’ waveform. Top-left: best case (smooth first year sea ice with 4 times larger coherent scattering than diffuse
scattering) observed at 10° incidence (80° elevation). Top-right: same for 45° incidence ange. Bottom-left: worst case (rough multi-year ice
with diffuse only scattering) observed at 10° incidence (80° elevation). Bottom-right: same at 45° incidence. Note that the simulations
included 1,000 of such noisy synthetic level-1 products, only 10 randomly selected are shown here for clarity purposes.

ice (surface roughness and permittivity) and the scattering
regime (ratio between coherent and incoherent scattering,
analyzed on actual TDS-1 data following the methodology
in [104]).

For each geometry and ice type, 1000 realizations
of 1 second incoherent integration each have been generated
with the ‘wavpy’ open source simulation tool [196], [197].
The coherent integration time is set to 1 ms. Within the wavpy
simulator, the noise terms include thermal noise and speckle,
with their corresponding distinctive delay-correlation and
time correlation. The delay-correlation of the noise is relevant
to the altimetric precision because the retrieval algorithm
takes the derivative of the leading edge and this involves
differentiating the waveform along its delay axis. Noise corre-
lated along the delay axis tends to reduce the noise of this alti-
metric retrieval. As for the time-correlation of the noise, it has
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a relevant role in the final determination of the dispersion of
the 1-second waveforms. For example, if the model deter-
mines that the correlation time of the measurement is longer
than 1 ms, then the 1000 ms integrated within one second
are not fully independent and the dispersion is not reduced as
1/4/1000 but for the corresponding number of independent
samples in one second (e.g. [96], [105]).

Figure 18 shows 10 noisy waveforms (level-1 product)
out of the 1000 realizations corresponding to four of the
simulated scenarios: best reflector and worst reflector for
10° and 45° incidences, the highest and lowest incidence
angles simulated in the exercise. The signals reflected off
rough multi-year ice, under purely diffuse regime and lower
permittivity (extreme case with volumetric brine content
set to zero and L-band mss=0.017), present much larger
noise levels than the mostly coherent scattering off the
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TABLE 6. Settings of the simulation to generate the level-1 observables for 1Hz group-delay altimetry over sea ice.

Near-nadir group-delay simulation of level-1 synthetic data for sea ice G-TERN reflectometry

Orbit height:
Antenna gain:
Sampling rate:
Receiver bandwidth:
Noise figure:
Incidence angles:

600 km

20 dB

76 Msampes/second
10 MHz at baseband (G-TERN has configurable filters, this number should be optimized in further phases of the mission)
3.5dB

10°, 20°, 30°, 45°

Sea ice characterization

Best case: coherent on FY

(extremes):
Roughness [11]: 0,=0.1 m
Leop=3.3m
mss=2 2 /L2, =0.002
Permittivity [148]: V=70

Scattering regime:

€=3.750 + j 0.390

Coherence analysis in [105] ap-

plied to TDS-1 data [30]
results in Pcoh/Pdiff =

Worst case: diffuse on MY

Roughness [11]: 0,=0.3 m

Leop=33m

mss=2 02 /L2 _, =0.017
Permittivity [148]: Vp=0

€=3.120 + j0.040

Coherence analysis in [105] ap-
plied to TDS-1 rough MY data

4 results in diffuse scattering

Scattering regime:

TABLE 7. Mean error and dispersion of the error resulting from the simulations described in this section, corresponding to 1 Hz level-2 sea ice altimetric
products. Reflection off smooth salty sea ice (best reflector) and rough fresh ice (worst reflector) have been simulated at four geometries each, and
1000 times for each case following a Montecarlo-like approach.

Group-delay sea ice altimetric error from 1000 level-1 sea ice reflected waveforms, thermal and speckle noise terms:

Case: Mean error (bias-like):  Standard deviation o :  Multi-Doppler processing, standard deviation o :
Best reflector 10° incidence: < 0.1 cm 2.5 cm 1.9 cm

Best reflector 20° incidence: < 0.1 cm 2.6 cm 2.0 cm

Best reflector 30° incidence: < 0.1 cm 2.7 cm 2.0 cm

Best reflector 45° incidence: 0.1 cm 34 cm 2.6 cm

Worst reflector 10° incidence: | -1.7 cm 39.7 cm 29.8 cm

Worst reflector 10° incidence: | -1.9 cm 39.1 cm 29.3 cm

Worst reflector 10° incidence: | -1.9 cm 42.6 cm 32.0 cm

Worst reflector 10° incidence: | -3.1 cm 58.9 cm 44.2 cm

smooth Hudson Bay first-year ice. Note that the scattering
off smooth first-year ice has been set to a regime with
4 times higher coherent power than diffuse power, as deduced
from TDS-1 data in [30] applying the method described
in [104]. An altimetric retrieval algorithm based on the
leading-edge derivative (LED) approach [94], [114], has then
been applied to each of these level-1 noisy waveforms. The
inversion algorithm provides an altimetric solution (level-2
product) for each of the level-1 waveforms. Given that the
exact ‘true’ altimetric information is known (set by the
simulation), we can then extract the error obtained in each
case. The statistics of these errors provide indication of the
overall expected bias and root mean square (RMS) dispersion
(1-o precision). Table 7 summarizes the results, which show
precisions of the order of 3 cm in 1 second observation
over the best reflector (smooth FY ice). On the other hand,
group-delay altimetry measured with G-TERN over extreme
rough and low permittivity sea ice presents worse precisions
by one order of magnitude, especially at the edge of the
near-nadir field of view (45° incidence). Closer to the nadir
(10° incidence) the precision is 39.7 cm. Recent studies
have proved both theoretically and with actual spaceborne
GNSS-R TDS-1 data, that the precision can be improved
by a factor of 20-30% using multi-Doppler altimetric
algorithms [101], [198]. An intermediate reduction factor
of 25% in the dispersion has been here assumed in the last
column of Table 7.

The accuracies obtained in this exercise must be comple-
mented with the uncertainties given by other systematic
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effects, such as orbital errors, tropospheric errors and iono-
spheric errors. The orbital errors (precise orbit determination,
POD) and tropospheric errors are obtained with the simulator
developed for the GEROS-ISS mission, and for simplicity
they will be here fixed to 5 cm POD and 1 cm for tropo-
spheric residual errors [123]. Note that these values were
computed for GEROS-ISS, and for this reason they represent
a conservative envelope of the actual expected values: the
POD error values at the ISS are larger than POD values in
small satellites (larger uncertainty in ISS positioning is due
to large structures with changing mass distribution, uncertain
centre of mass, changes in attitude due to maneuvers, etc).
As for the troposphere, the 1 cm standard deviation of the
residual errors found in GEROS-ISS studies were based on
actual ECMWEF field values and their uncertainties across
tropical areas, where the atmosphere is moister than in polar
areas.

The ionospheric effects have been simulated through the
SCIONAYV model, developed under an ESA contract [199].
This tool was initially developed to investigate the influ-
ence of ionospheric perturbations on the performance
of navigation receivers. This simulator has been later
used to study the impact of ionospheric perturbations
in GNSS-R scatterometry [200] and altimetry measure-
ments [201] with the GEROS-ISS mission as example. The
solar activity predicted for period when G-TERN would
orbit, the 25th solar cycle (2017 to 2029), is expected
to be mild (110 sunspots of of maximum [202]). Never-
theless, the simulation has used two extreme values of
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TABLE 8. Total group-delay altimetry uncertainties in the near-nadir field
of view (incidence<45°), including thermal and speckle noise, orbital,
tropospheric and ionospheric errors. The noise figures for level-2 sea ice
altimetric products have been obtained from a polynomial fit as a
function of the incidence angle () of the data in Table 7 for two extreme
sea ice conditions (best and worst ice reflectors), and multi-Doppler
processing is assumed. For sea surface altimetry, the noise terms have
been extracted from the GEROS-ISS studies [123]. POD effects are all set
to 5 cm level. Tropospheric effects all set to 1 cm level. lonospheric effect
at polar areas are negligible while 15 cm residual disperion is assumed in
the ionospheric-free GNSS combination at non-polar regions. All units

in cm.

Final 1-second equivalent level-2 group-delay uncertainty
(noise and systematic effects)

Total precision (cm)

a+b*0+c* 62 +d*63,

a=54,

b=0.017,

¢=-0.0008,

d=1.3e-05

(mean ~5.5 cm)

a+b*0+c*02+d*03,

a=32.5,

b=-0.2861,

¢=0.0035,

d=1.94e-04

(30 to 45 cm)

Rough waters, polar zones 30.4

Rough water, non-polar zones | 34

(30.4 to 44.9 cm)

Best reflector sea ice

Worst reflector sea ice

solar activity for illustration purposes. Solar flux data
from http://www.sws.bom.gov.au/Solar/1/6 has been used,
assuming a minimun solar flux SF = 68.2 SFU (corre-
sponding to January 2009) and a maximum SF = 223 SFU
(April 2000). Based on these numbers, the Global Iono-
spheric Scintillation Model (GISM) has been used to compute
the corresponding scintillation indexes S4 and oy at L1,
L2 and L5 GNSS frequency bands. Over polar regions,
‘diffractive scintillation’ has not been found. This type
of scintillation cannot be corrected using the ionospheric-
free combination of GNSS signals. Therefore, only ‘refrac-
tive scintillation’ would be produced, which can be fully
corrected with the ionospheric-free combination. Neverthe-
less, to be on the conservative side, we have generated the
residual delay errors after ionospheric-free combination for
the worst possible case, that is 0° longitude and 20° latitude at
20:00 UTC, which corresponds to the maximum perturbation.
We will therefore consider that the G-TERN polar observa-
tions are not affected by the scintillation, but the non-polar
ones would be affected, especially around the Tropics. The
selection of a Sun-synchronous orbit 6AM-6PM would mini-
mize this effect, avoiding the maximum activity. To provide
a single number for the non-Polar ares, we simply take the
average of the Tropical 8PM effect between a minimum solar
activity («1 mm bias, 0.62 cm dispersion) and a maximum
solar activity (23 cm bias, 33 cm dispersion). The resulting
value, ~15 cm dispersion is rather conservative for the rest of
the Globe, especially in a 6AM-6PM Sun-synchronous orbit.

To provide sets of overall errors induced by these combined
effects, the uncertainties in last column of Table 7 are first
expressed through a polynomial fit as function of the inci-
dence angle, and then added quadratically to the remaining
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FIGURE 19. Actual spaceborne GNSS-R reflected signals captured aboard
TDS-1 across sea ice in the Southern Ocean, surrounding Antarctica. The
SNR of the signals reflected off the sea ice are higher or equal to the SNR
of signals reflected off the ocean. Unpublished figure from [203],
reproduced here with authorization of the authors.

FIGURE 20. Simulation of phase delay observables and their altimetric
retrievals in grazing angle geometry (varying around 10° elevation in this
case). The surface height is perturbed with a 30 cm step-like feature, and
the signal is received at 18 dB SNR. The phase obtained can be tracked,
and it presents noise levels between 0.4 to 0.5 rad (top). Bottom: after
unwrapping the phase and applying the altimetric inversion, the altimetric
profile is recovered at around ~4-5 cm precision (better precisions
achieved at slightly higher elevation angles and/or higher SNR).

sources of error (POD, troposphere and ionosphere). The
resulting 1 Hz level-2 precisions, with all terms accounted
for, are summarized in Table 8.

B. PHASE DELAY LEVEL-2 ALTIMETRIC ACCURACY

As already described in Sections IV-B, the phase delay
observables are either very precise or they are not possible to
track. The possibility of tracking the phase and the noise level
of the phase itself are both driven by the SNR of the signal.
On the other hand, as is shown in Figure 19, actual spaceborne
data obtained with TDS-1 generally present higher levels of
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FIGURE 21. Top row: number of 1-second observations obtained at each cell of 30 km x 30 km resolution during 3 days in Scenario 1,
north pole and south pole (right-left). Central row: same for Scenario-2. Bottom row: number of 1-second observations obtained at each
cell of 0.5° x0.5° resolution cells during 10 days in Scenario-3.

SNR over sea ice than over ocean waters. The worst case SNR presented here correspond to SNR values compatible with
over sea ice corresponds the old sea ice, with SNR values this worst-case scenario. Any other sea ice phase delay alti-
similar to those of ocean waters. The simulation exercise metric retrieval will present lower levels of noise, thus better
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FIGURE 22. Top row: particular realization of the geographical distribution of level-3 altimetric accuracy at each cell

of 30 km x 30 km resolution during 3 days in Scenario 1, north pole and south pole (right-left). Central row: same for
Scenario-2. In both cases best ice reflector has been assigned to first year ice and worst case reflector to multi-year ice.
The FY and MY contours have been approximated from Nimbus-7 SMMR and DMSP SSM/I-SSMIS ice concentrations
provided by NSIDC, considring MY the extension during an arbitrary date of the local summer and FY the extension of
another arbitrary date in local winter (dates: 01/08/2015 and 01/01/2015). GNSS-R does not follow a repeatable pattern,
therefore the actual distribution of observations will change daily, but keeping the latitudinal statistics. Bottom row:
geographical distribution of the accuracy of scenario-3 over 0.5°x0.5° cells in 10 days accumulated data, for

—70° < lat < 70°. The group delay level-2 altimetric product has been assumed at 34 cm accuracy in 1 Hz [123].

precision. For example, the aforementioned ~3-cm RMS Simulations have been run following the approach in [123]
precision at S0Hz rate reported for phase-delay altimetry and [124]. SNR values set at 18 dB have been used to simu-
from TDS-1 data in [30]. late the coherent scattering along a surface which presents
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a step-like height increase of 30 cm. These simulations
include the tropospheric, ionospheric and POD systematic
effects [123]. After applying the phase delay retrieval algo-
rithms, it is first possible to connect and nearly stop the phases
(Figure 20-top). These residual phases are later resolved as
height anomalies, recovering the original 30 cm step in the
altimetric profile (Figure 20-bottom). The precision of these
phase delay measurements are between 0.4 and 0.5 rad, which
maps into uncertainties between 1 and 8 cm in 1 second
(changing with the geometry, between 60° and 85° inci-
dence). Similar performances are found with shorter surface
height steps (20 cm). The performance improves also when
higher SNR are assumed. Hereafter we will continue the
simulations assuming an equivalent 1 Hz error of ~5 c¢cm in
the phase delay altimetric retrievals.

C. FULFILLMENT OF THE MISSION REQUIREMENTS

The distributions of 1-second observations obtained for the
G-TERN system in a particular set of 3 subsequent days
(polar areas) and 10 days (globally) have been simulated. The
simulations correspond to three scenarios:

o Scenario-1: Availability of up to 12 simultaneous beams
pointing within the grazing angle field of view (5° to
30° elevation) over extended polar areas (|lat| > 60°).
This means that grazing angle GNSS-R phase-delay
altimetry could be done in up to 12 different specular
points simultaneously.

o Scenario-2: Availabiity of a combination of up to
6 grazing angle and up to 6 near-nadir (incidences
smaller than 45°) simultaneous reflections over the
extended polar areas (|lat| > 60°).

 Scenario-3: Availability of up to 12 simultaneous beams
pointing to reflections within the near-nadir field of view
(incidences smaller than 45°) over the non-polar areas
(here defined as |lat| < 70°).

The distributions of 1-Hz measurement points for each
of these scenarios correspond to those shown in Figure 21.
We remind here that GNSS-R does not follow a repeatable
pattern, therefore the actual distribution of observations will
change daily, but keeping the latitudinal statistics. At this step
of the simulations we have considered that all the 1-second
observations are incorrelated. This assumption is too strong,
as some of the errors do present spatial or temporal correla-
tions. Nevertheless, this approach permits a quick implemen-
tation accounting for all systematic effects without need of
simulating natural runs fed by actual tropospheric and iono-
spheric fields nor POD errors. Therefore, these results might
have slightly overestimated the accuracy (underestimate the
sigmas), to be partially compensated by certain values of the
errors taken on the conservative side.

Using all the 12 G-TERN beams to point at grazing
angles of observation, and assuming that the final accu-
racy of the 1-Hz phase delay observations is at the level
of 5 cm (Section VI-B), scenario-1 results in accuracies
over 30 km x 30 km cells in 3 days accumulation that
fulfills the mission requirements in 99.1% of the cells.
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FIGURE 23. Histograms of level-3 altimetric performances over the cells
in Figure 22. Top to bottom for scenarios-1 to -3.

In fact, the average precision across the |lat| > 60° regions
is 1.6 cm.

For scenario-2, where measurements at near-nadir using
group-delay altimetry are combined with phase delay
measurements at grazing angles, the simulation has used the
following accuracies: measurements done with phase delay
observables (Section VI-B): 5 cm at 1 Hz; measurements
done with group-delay observables over first year sea ice are
considered to correspond to best reflector sea ice reflections,
therefore (Table 8-top): 5.5 cm at 1 Hz; measurements done
with group-delay observables over multi-year sea ice are
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considered to correspond to worst reflector sea ice reflectoins,
therefore (Table 8-2nd row): 32.5 — 0.290 + 3.5E — 362 +
1.9E — 463 cm at 1 Hz, ranging from ~30 cm at nadir to
~44 cm at 45° incidence; measurements done with group-
delay observables over ocean waters (Table 8-3rd row) and
ice sheets: 30.4 cm. The overall results of combining these
1-second accuracies in 30 km x 30 km cells during 3 days of
accumulated data shows that scenario-2 fulfills the altimetric
requirements of the mission in a large extent, with 95.5% of
the cells performing better than the mission requirements, and
an average accuracy of 2.7 cm over regions with |lat| > 60°.

Finally, the scenario-3, over global waters (here defined
as —70° < latr < 70°) and 0.5°x0.5° cells accummu-
lated in 10 days, results in similar numbers: 97.1% of the
cells present accuracies below 10 cm (requirement) while the
average accuracy over the cells is 5.3 cm. Figure 22 shows
the geographic distributions of the resulting level-3 altimetric
accuracies for each scenario, while Figure 23 displays their
histogram. The optimal combination of grazing angle phase
delay measurements (finer precision) and near nadir group
delay measurements (better roughness estimates) would be
investigated in future stages of the mission.

VII. CONCLUSIONS

This study summarizes the main aspects of the GNSS Trans-
polar Earth Reflectometry exploriNg system (G-TERN),
a mission proposal submitted in 2017 in response to the ESA
Earth Explorer 9 (Revised Call). The mission is foreseen to
implement the interferometric GNSS reflectometry technique
to address key scientific questions on the inter-relationship
between the cryosphere and other main components of the
climate system, in view of the global warming. The main
focus of G-TERN is set on the sea ice, its dynamic varia-
tions and how they both module and are modulated by its
surrounding environment, the global atmospheric and ocean
circulations as well as extreme weather systems.

The G-TERN satellite should provide altimetric, scat-
terometric and polarimetric GNSS-Reflectometry based
geophysical data products, characterizing the sea ice, oceans,
ice sheets and land surface, covering the poles in grids
of 30 km x 30 km cells in just 3 days, and the rest
of the globe in 10 days over grids of 0.5° x 0.5° cells.
The foreseen observation techniques of G-TERN and their
preliminary implementation have been introduced. The tech-
nical concept is substantially different from other recent
GNSS-R missions and includes several novelties and inno-
vation aspects. We highlight in this context: (1) interfer-
ometric GNSS reflectometry from space, which provides
finer horizontal resolution and higher altimetric accu-
racy; (2) parallel provision of altimetric, scatterometric
and polarimetric GNSS-R data products; (3) twelve simul-
taneous GNSS-R high-gain beams electronically synthe-
sized and steered to enable observations with unprecedented
coverage; (4) combination of slant phase-delay observa-
tions and near-nadir group-delay measurements for ice/ocean
altimetry with high accuracy; and (5) symbiotic use of GNSS
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reflectometry and radio-occultation for combined monitoring
of the Earth surface and atmosphere/ionosphere.

The G-TERN spacecraft is based on a modern-
ized platform of space-proven components. The main
payload, the combined GNSS-R/RO instrument, has strong
heritage from two ESA mission studies: the PARIS-IOD
and GEROS-ISS concepts. The proposed orbit is near-
polar at 600 km altitude, optimally Sun-synchronous
at 6AM/6PM.

A set of specific mission simulations was conducted during
the proposal preparation to provide first estimates of the
altimetric performance of G-TERN over sea ice and oceans.
The required geophysical observational needs are essentially
met according to the results of these calculations. Accuracies
were obtained, better or equal to 10 cm in more than 95% of
the sea ice cells in the polar grid in three days integration,
and in more than 97% of the global ocean cells in ten days
integration. The G-TERN measurements are also expected
to prove a set of secondary mission goals, which include
the provision of currently not available innovative cryosphere
and wetland related data products. These observations would
represent a breakthrough in their irrespective science fields.
The G-TERN, with its versatile mission scope and unique
payload may act as a forerunner for a potential next gener-
ation of ‘low cost’ Earth Observation Systems.
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