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Opinion
Targeted protein degradation (TPD) allows an acute and 

reversible knockdown of protein of interest (POI) so that the direct 
effects of protein depletion can be studied and distinguished from 
secondary effects or adaptive responses [1]. Therefore, protein 
degradation techniques apply in studying the function of gene 
products in a short time frame, and rapid effectiveness can be 
exploited to downregulate POI in a stage-specific manner or when 
time is a relevant factor, including cell division. 

In the last decade, several strategies have been developed 
to obtain an accurate and efficient protein degradation, such as 
deGradFP, Auxin-inducible Degradation (AID) and degradation 
TAG (dTAG) which aim to achieve proteolysis of POI exploiting the 
powerful of degradation signal peptide sequences (tags) to hijack 
POI to E3 ubiquitin ligases for ubiquitylation and consequentially 
proteasomal degradation by recruitment of the ubiquitin-
proteasome system [2]. 

deGradFP exploits the proteasome-based pathway to achieve 
direct depletion of GFP-tagged proteins, while AID needs of Auxin 
and transgenic OsTIR1 adapter to trigger POI depletion.

Instead, the dTAG system developed by Nabet et al. [3] 
induces a rapid and selective degradation of POI exploiting the 
heterobifunctional activity of degrader (dTAG-13). This molecule 
binds both FKBP12F36V-fused POI and Cereblon (CRBN), the 
recognition unit of CRL4-CRBN E3 ubiquitin ligase complex leading 
to exclusive POI degradation by the proteasome.

Most of these tools are versatile and have been adapted to work 
in different model organisms spanning yeast (S. cerevisiae) to hu 

 
mans (H. sapiens). Indeed, deGradFP strategy has been firstly 
developed in non-vertebrates (Drosophila) by Caussinus et al. [4], 
and later tailored in humans [5], while the AID system evolved in 
the exact opposite way arising from humans and later adapted in 
Drosophila by Trost et al. [6]. 

On the other hand, dTAG system have been well established in 
vitro and in vivo in different species, but to date, no attempt has 
been made to extend it to Drosophila, as a matter of fact, Yesbolatova 
et al. [7] claim that CRBN is not evolutionarily conserved in non-
vertebrates, therefore dTAG is likely not functional in these 
organisms.

In contrast, here we would like to focus the attention on the 
conservation of all components of the mammalian CRL4 complex 
in Drosophila, including the Cullin 4 homolog and the DDB1 
homolog PIC [8]. In particular, it must be emphasized that there 
is a 44% of aminoacidic identity in thalidomide binding domain 
(TBD) between human CRBN and Drosophila OHGT (Figure 1A) 
[9]. This data strongly supports the idea that the function of the 
ubiquitin ligase complex is evolutionary conserved in Drosophila 
melanogaster, making the hypothetical applicability of dTAG 
in Drosophila (droTAG), a powerful strategy that is worth to be 
developed (Figure 1B).

In conclusion, drawing up droTAG could be indispensable 
for all the worldwide fly researchers, including us, who have the 
possibility to highlight phenotypes that otherwise they cannot see 
by using conventional RNA interference approaches [10-14]. 

A.	 Schemes of human Cereblon (CRBN) and its Drosophila 
orthologue, Ohgata (OHGT). The evolutionary conserved 
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thalidomide binding domains (TBD) are indicated as filled 
boxes (blue). Percentage of identity at the amino acid level is 
noted. 

B.	 Cartoon showing a putative mechanism of droTAG 
system in Drosophila melanogaster. Heterobifunctional dTAG-

13 molecules bring together OHGT and FKBP12F36V-fused POI, 
hijacking it towards endogenous proteasome machinery for 
rapid degradation. CRL4–OHGT E3 ubiquitin ligase include 
cullin scaffold (CUL4A), adaptor protein (PIC), substrate 
receptor (OHGT), N8 ubiquitin-like protein (NEDD8) and the 
RING protein (Roc1a) recruiting an E2 ligase.

Figure 1: droTAG system.
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