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Abstract

Large landslide-tsunamis are caused by mass movements such as landslides or
rock falls impacting into a water body. Research of these phenomena is essen-
tially based on the two idealised water body geometries (i) wave flume (2D,
laterally confined wave propagation) and (ii) wave basin (3D, unconfined wave
propagation). The wave height in 2D and 3D differs by over one order of mag-
nitude in the far field. Further, the wave characteristics in intermediate ge-
ometries are currently not well understood. This article focuses on numerical
landslide-tsunami propagation in the far field to quantify the effect of the wa-
ter body geometry. The hydrodynamic numerical model SWASH, based on the
non-hydrostatic non-linear shallow water equations, was used to simulate ap-
proximate linear, Stokes, cnoidal and solitary waves in 6 different idealised water
body geometries. This includes 2D, 3D as well as intermediate geometries con-
sisting of “channels” with diverging side walls. The wavefront length was found
to be an excellent parameter to correlate the wave decay along the slide axis in
all these geometries in agreement with Green’s law and with diffraction theory
in 3D. Semi-theoretical equations to predict the wave magnitude of the idealised
waves at any desired point of the water bodies are also presented. Further, sim-
ulations of experimental landslide-tsunami time series were performed in 2D to
quantify the effect of frequency dispersion. This process may be negligible for
solitary- and cnoidal-like waves for initial landslide-tsunami hazard assessment
but becomes more important for Stokes-like waves in deeper water. The findings
herein significantly improve the reliability of initial landslide-tsunami hazard as-
sessment in water body geometries between 2D and 3D, as demonstrated with
the 2014 landslide-tsunami event in Lake Askja.
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1. Introduction1

1.1. Overview2

Tsunamis generated by landslides are serious hazards in reservoirs (Fuchs3

et al., 2011; Panizzo et al., 2005), lakes (Fuchs and Boes, 2010; Gylfadóttir4

et al., 2017), fjords (Harbitz et al., 2014) and the sea (Watt et al., 2012; Watts5

et al., 2005). In this work the term “landslide” applies to mass movements6

such as unstable soil, rock falls, calving icebergs and snow avalanches and the7

term “tsunami” specifies (low frequency) waves in water bodies such as lakes,8

reservoirs, fjords and the sea hereafter (Liu et al., 2005).9

One of the most destructive recorded landslide-tsunami was caused by an10

approximately 270 × 106 m3 large landslide impacting into the Vajont reservoir11

in Italy in 1963. The generated wave overtopped the dam crest and flooded12

the valley resulting in approximately 2000 casualties (Panizzo et al., 2005).13

Landslide-tsunamis generated by submarine mass failures include the Papua14

New Guinea tsunami in 1998 where a wave of 10 m height resulted in over15

2100 human losses (Synolakis et al., 2002). The 2014 landslide-tsunami in Lake16

Askja in Iceland is a more recent example. An approximately 20 × 106 m3
17

large landslide generated a 50 m large tsunami inundating the shoreline up to18

80 m (Gylfadóttir et al., 2017). On a global scale, potential landslide-tsunamis19

need to be assessed quite frequently considering regions such as China with20

over 87000 reservoirs (Liu et al., 2013), Norway with 1190 fjords (Wikipedia,21

2018) and many new hydropower projects worldwide. Such past and potential22

future events highlight the need for reliable landslide-tsunami hazard assessment23

methods.24

1.2. The effect of the water body geometry25

Landslide-tsunamis are most reliably investigated in case specific water bod-26

ies given that the geometry and bathymetry may significantly affect the wave27

characteristics (Bellotti et al., 2012; Heller et al., 2012; Winckler and Liu, 2015).28

For generic studies, however, it is common practice to use idealised geometries.29

These are flume geometries (2D) and rarer basin geometries (3D) with a uni-30

form water depth. Related geometries reflecting these idealisations can indeed31

be found in nature; Fig. 1a shows an example of a 2D geometry if the iceberg32

detaches over the entire width. The wave propagates in the direction of the33

main axis of the water body with the coordinate x from the landslide impact34

and with the water body side angles at θ = 0◦. Fig. 1b shows the Chahalis35

lake representing a 3D geometry were the waves propagate with semi-circular36

fronts defined with the radial distance r and a propagation angle γ from the37

slide impact with θ = 90◦.38

The decay of the leading wave with distance from the landslide impact zone39

has been studied extensively in both 2D and 3D revealing a very different40

behaviour. For 2D geometries Kranzer and Keller (1959) found theoretically,41

that H(x)/h ∝ (x/h)−1/3, with H being the wave height and h the water42

depth, and laboratory experiments showed ranges between H(x)/h ∝ (x/h)−1/543

andH(x)/h ∝ (x/h)−0.3 (Heller and Hager, 2010; Heller and Spinneken, 2013;44
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Wiegel et al., 1970). Studies conducted in 3D found values between H(r)/h ∝45

(r/h)−2/3 and H(r)/h ∝ (r/h)−1(Huber and Hager, 1997; Panizzo et al., 2005;46

Slingerland and Voight, 1979). According to these relationships, a wave with47

H/h = 0.100 in 2D reduces toH = 0.034 at x/h = 35, usingH(x)/h ∝ (x/h)−0.348

and in 3D to 0.003 at r/h = 35 by using H(r)/h ∝ (r/h)−1. This over an order49

of magnitude difference has been confirmed experimentally by Heller and Spin-50

neken (2015). The same authors also confirmed that the landslide-tsunami wave51

type changes in function of the geometry; not all of the wave types observed in52

2D (commonly linked to the theoretical wave types Stokes, cnoidal, solitary and53

bores (Heller and Hager, 2011)) are observed in 3D.54

The decay in 2D is due to two different phenomena if bottom friction is ex-55

cluded; frequency dispersion (Brühl and Becker, 2018) and wave breaking which56

is sometimes present during tsunami generation and/or propagation. In geome-57

tries more diverging than 2D also the contribution of the lateral energy spread58

is present.59

x
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γ
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© Google

Figure 1: Landslide-tsunami settings represented by idealised geometries: (a) Heleim Glacier
representing a 2D geometry (contains modified Copernicus Sentinel data, 2016, pro-
cessed by Pierre Markuse) and (b) 2007 Chehalis lake case representing a 3D geom-
etry (adapted from Google maps).

60

61

Most studies involving the effect of the water body geometry were aimed at62

relating landslide-tsunami parameters in 3D to 2D. Submarine landslides were63

investigated by Jiang and LeBlond (1994) who found that the difference be-64

tween waves in 3D and 2D geometries is affected by the ratio b/ls, where b is65

the slide width and ls is the landslide length along its main axis, and Watts66

et al. (2005) who provide relations between tsunamis in 2D and 3D based on b67

and the maximum tsunami wavelength LM .68
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Using subaerial landslides, Heller et al. (2009) proposed an empirical method69

to link the wave characteristics in 3D to 2D based on the impulse product pa-70

rameter P (Heller and Hager, 2010). The wave heights H at x/h = r/h = 571

were thereby assumed to be identical in both geometries based on observations72

of Huber (1980) (follow-up research showed that this assumption is sometimes73

very rough, see Heller and Spinneken, 2015). Beyond this position different de-74

cays were defined for H based on Heller and Hager (2010) in 2D and Huber and75

Hager (1997) in 3D.76

Since these studies focus all on 2D and/or 3D only, the understanding of77

landslide-tsunamis in intermediate geometries is limited. The pioneer study in-78

vestigating an intermediate geometry was Chang et al. (1979) generating solitary79

waves in a flume with walls at an angle of θ = 1.1◦. These authors found that80

Green’s law can be applied for x/h < 40. However, Green’s law was found to81

have limited applicability for solitary and solitary-like waves for more extremely82

diverging flumes (Heller et al., 2012) if the width of the diverging channel is used83

in Green’s law.84

Heller et al. (2012) experimentally investigated for the first time landslide-85

tsunamis in different water body geometries with θ = 0 (2D), 15, 30, 45, 60, 7586

and 90◦ (3D). They found that the wave heights in the far field in intermediate87

geometries were closer to the ones observed in 3D than in 2D. They further88

highlighted the need to study the effect of the water body geometry in more89

detail with different slide characteristics, wave types and larger water depths to90

avoid scale effects (Heller, 2011; Heller et al., 2008).91

This was later addressed (Heller and Spinneken, 2015) with a new set of92

laboratory experiments in 2D and 3D with tsunamis measured up to a distance93

of x/h = r/h = 35. The authors presented a novel method to transform wave94

parameters (wave height, amplitude and period) from 2D to 3D for a range of95

block slide characteristics. Intermediate geometries with θ = 7.5, 15, 30 and 45◦96

were then purely numerically addressed with Smoothed Particle Hydrodynamics97

(SPH) (Heller et al., 2016). This provided new physical insight into the effect of98

the water body geometry for propagation distances r/h ≤ 7.5. Larger distances99

could not be investigated due to the large computational cost of SPH.100

Fig. 2 shows a scheme of the division between the wave generation and wave101

propagation zones of a landslide-tsunami. The wave generation zone (dashed102

area), with coordinate system x and (r, γ) from the slide impact, is where the103

momentum transfer between the landslide and water occurs (Mulligan and Take,104

2017; Zitti et al., 2016). This zone is excluded from this study ensuring that the105

tsunamis are reasonably stable in the simulations. Two new sets of coordinate106

systems x′ = x + dM and (r′ = r + dM , γ
′) with dM as the coupling distance107

(Section 3.2) are also chosen to define the wave propagation zone considered in108

the present study.109

Herein, the landslide widths in all geometries are defined as the finite wave110

source width in 2D in order to relate the findings from all geometries to 2D.111

In 2D it is possible to quantify the effect of free components travelling with112

their own celerity (this process is referred hereafter as frequency dispersion) on113

waves generated by a landslide rather than idealised waves. Comparison with114
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laboratory experiments (Heller and Hager, 2011) will help to reveal this effect115

for each wave type. However, in the intermediate and 3D geometries this is not116

possible as lateral energy spread (i.e. diffraction) is present. Therefore, due to117

the non-linearity of the problem, it is not possible to separate the contribution118

of the lateral energy spread from that of frequency dispersion.119

Because the wave source used is of finite width, diffraction theories (Carr120

and Stelzriede, 1952; Lamb, 1945; Morse and Rubenstein, 1938; Penney et al.,121

1952) could be used to validate the numerical simulations of this study. These122

theories are formulated to calculate the wave propagation of a linear wave be-123

hind a gap. This problem shows similarities with landslide-tsunamis with the124

slide, i.e. a wave source, of width corresponding to the gap width. Only the125

solution of Carr and Stelzriede (1952) is considered herein because the validity126

range of this theory is compatible with landslide-tsunamis (b′/L ≤ 0.5) and it127

depends on both r′ and γ′.128

When idealised waves were considered, wave trains, rather than wave pack-129

ets were simulated. This was done for two reasons: first this is more similar to130

actual tsunami propagation and, second, it avoids spurious numerical solutions131

due to propagation of isolated waves or packets in still water. Finally, this study132

excludes shore and other depth related effects such as reflection and depth trap-133

ping of the tsunami (Bellotti et al., 2012) and edge waves (Couston et al., 2015;134

Heller and Spinneken, 2015; Romano et al., 2013) which in combination with135

the impact on the coast may alter the tsunami characteristics.136

Landslide Wave 

Wave

propagation

generation

r, x r', x'

γ'γ

Coupling 

distance d
M

θ

θ

Figure 2: Scheme of the wave generation and propagation zones.

1.3. Numerical modelling137

Subaerial landslide-tsunamis are challenging for numerical modelling. To138

overcome the difficulty in simulating wave generation and far field propagation139

at the same time, these two processes are usually divided using two numer-140

ical methods that are subsequently coupled (Abadie et al., 2012; Tan et al.,141
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2018). Suitable options for the wave propagation are NHWAVE (Ma et al.,142

2012), FUNWAVE-TVD (Shi et al., 2012), XBeach (Roelvink et al., 2010) and143

SWASH (Zijlema et al., 2011).144

SWASH, which is based on the non-hydrostatic Non-Linear Shallow Wa-145

ter Equations (NLSWEs), was chosen in the present study. SWASH is able to146

simulate frequency dispersion accurately with a small number of layers (e.g. 2)147

by using a compact difference scheme, and can be run in parallel. SWASH has148

also been successfully coupled with SPH for wave propagation from off- to on-149

shore (Altomare et al., 2015) and to study hypothetical landslide-tsunamis at150

Es Vedrà, offshore Ibiza (Tan et al., 2018).151

1.4. Aims and structure152

The present study aims to:153

• Enhance the physical understanding and modelling of the effect of the wa-154

ter body geometry on tsunami propagation based on numerical modelling155

of approximate linear, Stokes, cnoidal and solitary waves in 2D, 3D and156

intermediate water body geometries,157

• Provide insight on the effect of frequency dispersion on landslide-tsunamis,158

• Provide new semi-theoretical equations accounting for the effect of the159

water body geometry to support landslide-tsunami hazard assessment.160

The remainder of this article is organised as follows. In Section 2 the theoreti-161

cal background of SWASH, the numerical setup, the boundary conditions and162

the calibration and validation are described. The wave propagation in idealised163

geometries for both idealised and real (dispersive) waves, the wave height de-164

cay and the lateral wave energy spread are presented in Section 3 along with165

semi-theoretical equations. In Section 4 the results are analysed and the 2014166

landslide-tsunami case in Lake Askja is used as computational example. Finally,167

Section 5 highlights the main conclusions and future work.168

2. Methodology169

2.1. SWASH170

SWASH v4.01 (Stelling and Duinmeijer, 2003; Stelling and Zijlema, 2003;171

Zijlema and Stelling, 2005; Zijlema et al., 2011) was used in the present study.172

Only the governing equations used to solve the equations in 2D and 3D geome-173

tries, where a regular grid is used, are presented hereafter for simplicity. For174

the remaining intermediate geometries the equations are solved for a curvilinear175

grid.176

SWASH solves the depth averaged non-hydrostatic NLSWEs with the con-177

tinuity and momentum equations written as178

∂η

∂t′
+
∂du

∂x′
+
∂dv

∂y′
= 0 (1)

6



∂u

∂t′
+u

∂u

∂x′
+v

∂u

∂y′
+g

∂η

∂x′
+

1

d

∫ η

−h

∂q

∂x′
dz′+cf

u
√
u2 + v2

d
=

1

d

(
∂dτx′x′

∂x′
+
∂dτx′y′

∂y′

)
(2)

∂v

∂t′
+u

∂v

∂x′
+v

∂v

∂y′
+g

∂η

∂y′
+

1

d

∫ η

−h

∂q

∂y′
dz′+cf

v
√
u2 + v2

d
=

1

d

(
∂dτy′x′

∂x′
+
∂dτy′y′

∂y′

)
(3)

where t′ is the time, x′, y′ and z′ are the coordinates located at the mean still wa-179

ter level (SWL), h(x′, y′) is the still water depth, η(x′, y′, t′) is the water surface180

elevation from the SWL and d = h+ η is the total water depth. u and v are the181

depth-averaged flow velocities in the two main directions. τx′x′ , τx′y′ , τy′x′ and182

τy′y′ are the horizontal turbulent stresses, cf is the bottom friction coefficient183

defined by Manning’s formula (Zijlema et al., 2011) and g is the gravity accel-184

eration. q(x′, y′, z′, t′) is the non-hydrostatic pressure term of the total pressure185

pt defined as (Zijlema and Stelling, 2005)186

pt = g(η − z′) + q = ph + q (4)

where ph is the hydrostatic pressure. Eqs. (1) to (3) were expanded in Stelling187

and Zijlema (2003) to the multi-layer case applied herein. The computation of188

the integral of the non-hydrostatic pressure gradient in Eqs. (2) and (3) is in-189

troduced in Zijlema et al. (2011), where the free surface boundary condition190

of the non-hydrostatic pressure is q |η= 0 and at the bottom it is defined by191

applying the Keller-Box method. Then, the vertical velocities at the free surface192

ws and at the bottom wb are introduced with the momentum equation along193

the vertical direction. Here, the vertical acceleration is defined at every time194

step from the non-hydrostatic pressure. Finally, combining the vertical momen-195

tum equations with the non-hydrostatic pressure equation at the bottom and196

using the kinematic bottom boundary condition wb = −u∂h/∂x′−v∂h/∂y′, the197

conservation of local mass results as198

∂u

∂x′
+
∂v

∂y′
+
ws − wb

d
= 0 (5)

Eq. (5) closes the system of equations and allows, together with the boundary199

conditions, to solve Eqs. (1) to (3).200

Time integration is carried out with the explicit method relying on the201

Courant-Friedrichs-Lewy (CFL) condition and the wave celerity that is avail-202

able in SWASH. Here only the condition for 2D simulations is illustrated as the203

most relevant one. The Courant number Cr is defined as204

Cr = ∆t′
(√

gd+
√
u2 + v2

)√
1

∆x′2
+

1

∆y′2
≤ 1 (6)

where ∆x′ and ∆y′ are the distances between two grid points in the x′ and y′205

directions. To calculate the time step, a minimum and maximum Cr threshold206
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can be applied in the simulation in order to accurately control the convergence207

of the solution.208

2.2. Numerical setup209

2
8
.3

 m 7.5° 15°

(a) (b) (c)

64 m

(e) (f)

2
8
.3

 m

(d)

45°
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x'

30°
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r'

γ'
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r'
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Figure 3: Investigated water body geometries in the far field modelled with SWASH: (a) 2D
(θ = 0◦), (b) θ = 7.5◦, (c) θ = 15◦, (d) θ = 30◦, (e) θ = 45◦ and (f) 3D (θ =
90◦, the horizontal dimension is reduced in scale in this sketch due to lateral space
constraint). The grey sections are the wave generation zones between the near and
far fields.

The numerical domains used here cover the range from 2D to 3D (Fig. 3),210

based on the geometries used in Heller et al. (2016). The 2D geometry (Fig. 3a)211

consists of a 28.3 m long and 0.6 m wide flume while the 3D geometry (Fig.212

3b) spans a domain of 28.3 m × 64.0 m. Intermediate geometries are defined213

using divergent side walls with angles of θ = 7.5, 15, 30 and 45◦ (Fig. 3b-e).214

Geometries with θ > 45◦ were excluded as previous research (Heller et al., 2012;215

Heller and Spinneken, 2015) showed no substantial differences of the maximum216

wave parameters in these geometries in relation to the 3D case. The basin width217

of these intermediate geometries is increasing with 0.6 + (2r′tanθ) m. Each218

intermediate geometry was modelled with a rounded downwave boundary with219

radius r′ = 28.3 m to allow for a more even distribution of the cells in this zone.220
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The bathymetry was flat for all investigated cases and numerical wave gauges221

were placed at the relative distances and angles shown in Table 1.222

Table 1: Locations of the numerical wave gauges.

Geometry Relative distance x′/h or r′/h (-) Wave propagation angle γ′ (◦)
2D 3.0, 5.0, 7.5, 10.0, 15.0, 22.5, 35.0 0.0◦

7.5◦ 3.0, 5.0, 7.5, 10.0, 15.0, 22.5, 35.0 0.0◦, ±7.5◦

15.0◦ 3.0, 5.0, 7.5, 10.0, 15.0, 22.5, 35.0 0.0◦, ±7.5◦, ±15.0◦

30.0◦ 3.0, 5.0, 7.5, 10.0, 15.0, 22.5, 35.0 0.0◦, ±7.5◦, ±15.0◦, ±22.5◦, ±30.0◦

45.0◦ 3.0, 5.0, 7.5, 10.0, 15.0, 22.5, 35.0
0.0◦, ±7.5◦, ±15.0◦, ±22.5◦, ±30.0◦, ±37.5◦

±45.0◦

3D 3.0, 5.0, 7.5, 10.0, 15.0, 22.5, 35.0
0.0◦, ±7.5◦, ±15.0◦, ±22.5◦, ±30.0◦, ±37.5◦

±45.0◦, ±52.5◦, ±60.0◦, ±67.5◦, ±75.0◦, ±82.5◦

The 2D and 3D geometries were defined with a regular Cartesian grid while223

the intermediate ones were defined with an orthogonal curvilinear grid created224

in the RGFGRID v5.0 of the Delft3D software suite. These grids were then225

exported and reformatted using MATLAB to create input files readable by226

SWASH. The coordinate system for the grid creation was defined with x′ = 0227

at the wave generation boundary with positive values in the main wave propa-228

gation direction. The origin in the y′-direction was defined at the centre of the229

wave source. The wave source in all domains was 0.6 m wide. For the results,230

polar coordinates (r′, γ′) with the origin at the centre of the wave source was231

used, with r′ as the radial distance and γ′ as the wave propagation angle with232

the results interpolated from the grid nodes.233

Furthermore, the calibration was performed using a water depth of 0.6 m in234

all geometries based on the experiments of Heller and Hager (2011). The nu-235

merical code was compiled with the Intel compiler 2017 and Intel-MPI libraries236

for the use with multiple processors using the Message Passing Interface (MPI)237

protocol. The model divides the computational domain in subdomains to solve238

the equations with multiple cores. A stripwise decomposition method along the239

y′−axis was chosen. Other methods (orthogonal recursive bisection and stripwise240

along the x′-direction) resulted in inconsistencies in the solutions. The Univer-241

sity of Nottingham High Performance Computing (HPC) cluster Minerva was242

used to perform the simulations. A simulation time of 60 s in the 3D geometry243

with a grid resolution of ∆x′ = ∆y′ = 2.5 cm took approximately 35 hours of244

real time using 40 Central Processing Unit (CPU) cores and 10 GB of random245

access memory.246

2.3. Boundary conditions247

All tests for the calibration and validation of the model were performed by248

providing time series of linear waves as boundary conditions, allowing for a di-249

rect comparison with diffraction theory. A wave height of H = 0.040 m, a water250

depth of h = 0.600 m and a wave period of T = 0.876 s were used resulting in251

a wavelength of L = 1.19 m according to linear theory (Table 2). These con-252

ditions result in approximate linear waves. The first waves were disregarded in253

the analysis to include only steady wave heights.254
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Previous studies (e.g. Heller and Hager, 2011; Panizzo et al., 2005) showed255

that different slide scenarios lead to different wave types and decay character-256

istics. For this reason, after calibration and validation, the non-linear Stokes257

(Fenton, 1985), cnoidal (Fenton, 1999) and solitary waves (Boussinesq, 1872)258

were also reproduced and analysed herein. All wave parameters are summarised259

in Table 2 with a as the amplitude and c as the celerity. Bores were excluded260

because it is unlikely that they are observed in geometries other than 2D (Heller261

and Spinneken, 2015). Note that in the following the definition H = a+ at ap-262

plies, which reduces for linear waves to H = 2a, with at as the wave trough.263

The conditions for each wave type presented in Figs. 4 (Stokes-like waves), 6264

(cnoidal-like waves) and 8 (solitary-like waves) of Heller and Hager (2011) were265

reproduced by using the measured wave parameters in the corresponding wave266

theory. A time series of the water surface was calculated for each wave type267

and used as input for SWASH over a finite wave generation boundary b′ = 0.6268

m. The wave velocity at the boundary was solved by SWASH as previous work269

showed the accuracy of this approach (Ruffini et al., 2019). A ramping up func-270

tion was added to smooth the initiation of the simulations to avoid numerical271

instabilities.272

Table 2: Wave theories used in this study with the wave parameters measured in Heller and
Hager (2011).

Wave theory h (m) H (m) T (s) L (m) a (m) c (m/s)
Linear 0.600 0.040 0.876 1.190 - -

5th order Stokes (Fenton, 1985) 0.600 0.100 1.000 1.530 - -

5th order cnoidal (Fenton, 1999) 0.300 0.155 1.740 2.830 0.110 1.630
1st order solitary (Boussinesq, 1872) 0.300 0.159 - 2.823 0.159 1.969

The wave generation boundary was defined through a segment at x′ = 0 m273

using a weakly reflective boundary condition (Blayo and Debreu, 2005). This274

formulation assumes a wave direction perpendicular to the boundary with an275

incident velocity ūi defined by276

ūi = ±
√
g

d
(2ηi − η) (7)

including the surface elevation signal of the incident wave ηi. In addition, all277

the lateral walls are represented by closed boundaries with zero flux velocity278

(Stelling and Zijlema, 2003). To avoid wave reflection from the downwave end279

of the domain, a sponge layer (Dingemans, 1997) with a length of at least 3280

times L was used in all geometries and additional lateral sponge layers were281

used in the 3D geometry (Fig. 4).282

Finally, for the bottom friction a formulation based on Manning’s roughness283

coefficient n was chosen to compute the bottom friction coefficient cf as284

cf =
n2g

d1/3
(8)
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In the present study, n = 0.009 s/m1/3 for glass was chosen for all geometries285

to mimic the 2D experimental conditions in Heller and Spinneken (2015).286

l

(b)

y'

x'

w

(a)

y'

x'

Figure 4: Three-dimensional schema of waves in (a) 2D and (b) 3D.

2.4. Calibration and validation287

The calibration was performed to optimise the computational grids. The288

grids followed the Deltares (2018) guidelines with respect to orthogonality,289

smoothness, aspect ratio and minimum number of grid per wavelength. The290

orthogonality defines the difference of the angles between crossing grid lines291

from 90◦ where zero corresponds to orthogonal. This value was less than 0.04292

everywhere in the computational domains. The smoothness parameter defines293

the variation in size of two adjacent cells and a value of ≤1.1 was used. Fur-294

thermore, the aspect ratio takes the difference in length between the opposing295

sides of a cell into account. Negligible differences in the rate of convergence of296

the solution were noted with maximum ratio in the order of 10 at the wave297

generation boundary as the values rapidly decrease with distance from the wave298

source. The number of grid points per wavelength was at least 45. This is a finer299

resolution than in van Vledder and Zijlema (2014) who used 25 grid points per300

wavelength resulting in good agreement with theory in SWASH for diffraction301

at a semi-infinite breakwater.302

The 3D geometry with approximate linear waves was used to investigate the303

convergence for ∆x′ = ∆y′ = 2.5, 5.0 and 10.0 cm and the symmetry (Appendix304

A) of the solution. Approximate linear waves were used as they resulted in the305

smallest number of grid points per L among the wave types considered in this306

study. Fig. 5 shows the water surface at r′/h = 3.0 and 35.0 for all chosen grid307

resolutions indicating convergence for 5.0 cm. The final resolution was set to308

2.5 cm to also satisfy the minimum value of grid points per L. SWASH matches309

higher order dispersion relations depending on the number of layers over the310

water depth. Higher values of kh, with k as the wave number, require a larger311

number of layers which shows indirectly the importance of wave dispersion for312

different kh values. 2 layers were chosen which results in a maximum error of 1%313

with kh ≤ 7.7 (SWASH, 2016). Linear and Stokes waves were simulated using314

an higher order upwind discretisation scheme for the vertical advection term315
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of the u-momentum equation, while the default 1st order upwind scheme was316

used for cnoidal and solitary waves. This was only necessary to reduce numerical317

dissipation, observed in the Stokes and linear wave propagation for the default318

scheme, particularly in 2D (SWASH, 2016).319

A further validation was performed with the diffraction theory of Morse and320

Rubenstein (1938), by solving the application derived for water waves by Carr321

and Stelzriede (1952). This theory was chosen as it includes the variability of322

the solution with γ′ and it applies to b′/L ≤ 0.5, which is compatible with most323

landslide-tsunamis. The results in 3D for the approximate linear waves are com-324

pared to this theory for validation, as the diffraction theory is based on linear325

waves. The comparison is shown in Section 3.1.2 and the computation of the326

diffraction theory is explained in Appendix B.327
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Figure 5: Wave profile convergence tests for approximate linear waves in the 3D geometry at
(a) r′/h = 3.0 and (b) r′/h = 35.0.

3. Results328

3.1. Idealised waves329

3.1.1. Water surface time series330

η for all idealised wave types was investigated in all geometries. Figs. 6, 7 and331

8 show the relative water surface elevation η/h over 5T at 4 different r′/h. The332

profiles shown in Fig. 6 are obtained for approximate linear waves in deep water333

with h/L = 0.50 and a weak non-linearity H/h = 0.067. Fig. 6 shows how the334

water body geometry affects the waves. By comparing the wave profiles in 2D335

to the ones in the 7.5◦ geometry at r′/h = 3.0 (Fig. 6a) only a relatively small336

difference is observed. This ratio progressively increases also with the angle θ337

resulting in the smallest waves in 3D. The ratio of the wave heights between 2D338

and all other geometries also progressively increases with relative distance (Fig.339

6b,c). At r′/h = 35 (Fig. 6d) the ratio between the waves in the 2D and 7.5◦340

geometries is a factor of 3.2 and between 2D and 3D even a factor of 7.8.341

342
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Figure 6: Relative water surface elevation η/h versus time normalised with the wave period
t′/T for linear wave input in all geometries at different relative distances r′/h.
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Figure 7: Relative water surface elevation η/h versus time normalised with the wave period
t′/T for 5th order Stokes waves in all geometries at different relative distances r′/h.
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Water surface time series for Stokes waves characterised by a ratio h/L =343

0.39 are shown in Fig. 7 at r′/h = 3.0, 7.5, 15.0 and 35.0. The Stokes wave344

heights in Fig. 7d show differences of a factor of 2.8 between the 2D and 7.5◦345

geometry and 8.4 between 2D and 3D. The simulated cnoidal waves are shown346

in Fig. 8 with h/L = 0.10, which propagate in shallower water than Stokes347

waves. At r′/h = 3.0 (Fig. 8a) in the geometry θ = 15◦ a secondary peak in348

the wave troughs starts to develop which becomes larger with increasing θ. This349

is associated with frequency dispersion resulting in an additional shorter wave350

as shown in Fig. 8b-d with a different celerity relative to the primary wave.351

At r′/h = 35 all the dominant waves, except the one in 2D, show a decrease352

in celerity with decreasing wave height. In Fig. 8d the ratio between the wave353

heights between the 2D and θ = 7.5◦ geometry is 2.5 and between 2D and 3D354

it is 6.5, which is smaller than for Stokes waves (Fig. 7).355

356
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Figure 8: Relative water surface elevation η/h versus time normalised with the wave period
t′/T for 5th order cnoidal waves in all geometries at different relative distances r′/h.

The results for the solitary waves are shown in Fig. 9. The solitary wave357

profile is preserved at all relative distances in 2D. In all other geometries an358

increasing tail in both amplitude and length is formed at r′/h = 3.0. Further,359

the wave profile ratio between 2D and 3D at r′/h = 35.0 is a factor of 7.0360

matching the results of Heller and Spinneken (2015). The ratio between a and361

at is clearly changing with r′/h affecting the main wave characteristics. For the362

wave in 3D the ratios a/at decrease from 2.3 at r′/h = 3.0 to 1.1 at r′/h = 35.0363
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(Fig. 9d). For the other geometries at r′/h = 35.0 the ratios a/at are 3.8 for 7.5◦,364

2.6 for 15◦, 1.8 for 30◦ and 1.5 for 45◦. For comparison, at r′/h = 3.0 the ratios365

are a/at = 11.8, 8.2, 6.0 and 4.5 for θ = 7.5◦, 15◦, 30◦ and 45◦ respectively, with366

an almost constant difference of 3 times the values found at r′/h = 35.0. This367

shows that the waves approach the value a/at = 1, which is characteristic for368

linear waves, with both increasing θ and distance. This illustrates that the water369

body geometry not only affects the wave decay but also the wave non-linearity.370
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Figure 9: Relative water surface elevation for 1st order solitary waves in all geometries at
different relative distances r′/h.

3.1.2. Wave height decay371

The wave height H was calculated as the average over 5T (apart from the372

solitary wave). Values were calculated for all wave types and geometries at the373

locations shown in Table 1. Fig. 10 shows H/h for cnoidal waves over the relative374

distance for each geometry for γ′ = 0◦. This clearly confirms the increasing375

decay of H with θ as highlighted in Section 3.1.1. The wavefront length lw was376

identified as an excellent parameter to link the wave decay of the idealised waves377

across all water body geometries. The waves propagate with semi-circular fronts378

from the source. For a linear wave Ecglw = constant, E being the mean energy379

density per unit area and cg being the group velocity. Given that h is constant in380

all simulations the previous relationship reduces to Elw = constant. In addition,381

if the source width b′ is relatively small, it can also be approximated as a line.382
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The values of lw are then calculated for the numerical results as383

lw(r′, θ) = b′ + 2r′θrad (9)

with the radial distance r′ and the water body side angle θrad in radians. The384

resulting values based on Eq. (9) are shown in Table C.1 for each wave type.385

This parameter lw normalised with the water depth h (i.e. lw/h) is used to386

correlate H/h for all idealised wave types in Fig. 11.387
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Figure 10: Relative wave height H/h decay with relative radial distance r′/h for the 5th order
cnoidal waves in all geometries.

Fig. 11 shows H/h versus lw/h for all wave types with the wave heights in388

different geometries highlighted with different markers. The diffraction theory389

from Carr and Stelzriede (1952) using Eq. (B.2) is plotted as a dashed black390

line. Furthermore, Green’s law was included as391

H(r′, θ) = H(r′ = 0, θ = 0◦)

(
b′

lw(r′, θ)

)1/2(
h(r′ = 0)

h(r′)

)1/4

, (10)

where H(r′, θ) is the wave height in function of r′, lw(r′, θ) and h(r′) are the392

associated wavefront length and water depth, respectively. H(r′ = 0, θ = 0◦) is393

the wave height at the source in 2D and b′ is the source width. In the idealised394

geometries h(r′) is constant, such that the last term on the right-hand side395

of Eq. (10) reduces to 1. This equation can easily be applied by known wave396

characteristics at the source in 2D. The results for each wave type are then397

tested with the normalised Root Mean Square Error398

nRMSE =

√
1
N

∑N
i (ypred,i − ynum,i)2

(ynum,max − ynum,min)
(11)

where ypred,i is the i-th sample of the predicted parameter and ynum,i is the399

corresponding numerical value. N is the number of considered samples, ynum,max400
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and ynum,min are respectively the maximum and the minimum numerical values401

in the range considered (nRMSE = 0 represents perfect agreement). A similar402

equation to Eq. (10) can be obtained for the linear wave amplitude (Green,403

1838) by replacing H with the positive wave amplitude a in Eq. (10) resulting404

in405

a(r′, θ) = a(r′ = 0, θ = 0◦)

(
b′

lw(r′, θ)

)1/2(
h(r′ = 0)

h(r′)

)1/4

. (12)

406

Note that Eq. (12) will be applied to non-linear waves as a simplification407

hereafter. Fig. 11a shows that all H/h for approximate linear waves in all ge-408

ometries, apart from 3D, collapse on one curve corresponding to Green’s law.409

Diffraction theory (Appendix B) under-predicts the wave height decay in the410

intermediate geometries but perfectly agrees with the wave heights observed in411

3D, given that this theory is based on linear waves for very similar 3D conditions412

(Section 1.2).413
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Figure 11: Relative wave height H/h decay with lw/h for (a) approximate linear waves, (b)
5th order Stokes waves, (c) 5th order cnoidal waves and (d) 1st order solitary waves
in all investigated geometries compared to Green’s law (Eq. (10)) ((a) nRMSE =
0.06, (b) nRMSE = 0.06, (c) nRMSE = 0.05, (d) nRMSE = 0.08) and diffraction
theory (Eq. (B.2)).
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For Stokes waves shown in Fig. 11b, the diffraction theory under-predicts414

the wave height decay in all geometries, which is not surprising given that the415

considered theory is based on linear wave theory. Fig. 11c shows a similar decay416

curve for cnoidal waves. In this case the data move further away from diffraction417

theory. For example, at lw/h = 20 the ratio between the numerical values and418

the values calculated by diffraction theory (Carr and Stelzriede, 1952) is 0.56419

(Fig. 11c). This difference appears to be very sensitive to the ratio b′/L used to420

calculate Eq. (B.2); larger ratios (Fig. 11a, b) result in a closer agreement with421

the simulated results than smaller ratios (Figs. 11c).422

Fig. 11d shows the wave decay for solitary waves. The data scatter relative to423

Green’s law in the range 6 < lw/h < 40 is larger than for the other wave types.424

For lw/h < 6 and lw/h > 40 there is still a close match between the data and Eq.425

(10). The largest difference from Green’s law is found for the 3D geometry with426

up to 40% difference in wave height. Fig. C.1 shows the corresponding results427

for the wave amplitudes, as for the wave heights shown in Fig. 11, compared428

with Eq. (12) (Appendix C).429

3.1.3. Lateral wave energy spread430

In this section the lateral wave energy spread for each wave type is inves-431

tigated. The wave height is investigated with a resolution of ∆γ′ = 7.5◦ at432

different r′/h.433
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Figure 12: Relative wave heights H/h for Stokes waves as a function of the propagation angle
γ′ and the relative radial distance r′/h for (a) 2D (θ = 0◦), (b) θ = 7.5◦, (c)
θ = 15◦, (d) θ = 30◦, (e) θ = 45◦ and (f) 3D (θ = 90◦).
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Fig. 12 shows the spatial distribution of the wave heights for the 5th order434

Stokes waves (the other wave types are shown in Appendix D) with different435

r′/h values represented by different grey shades. The lateral wave decay becomes436

important with increasing θ. Fig. 12f shows that the maximum wave heights at437

γ′ = 0◦ are 20− 34% larger than at γ′ = ±82.5◦.438

Green’s law is used to correlate the lateral decay of H with the propagation439

angle γ′ in all investigated geometries. Fig. 13 shows H normalised by using Eq.440

(10), on the y-axis, over the wave propagation angle γ′ for all simulated wave441

types. Green’s law is represented by a blue circle.442
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Figure 13: Lateral wave decay for (a) approximate linear waves, (b) 5th order Stokes waves,
(c) 5th order cnoidal waves and (d) 1st order solitary waves for all investigated
geometries, compared to Eq. (13).

The decay term cos2 (γ′/3) is inspired by Heller and Spinneken (2015) and443

Huber and Hager (1997) where cos2{1+exp[−0.2(r/h)]} (2γ/3) and cos2 (2γ/3), re-444

spectively, have been found for experimental data based on the 3D geometry.445

The value 2/3 is reduced to 1/3 herein to better represent the data. This smaller446

lateral wave decay is associated with the lack of slide momentum in the far field,447

where the present results apply, in contrast to Heller and Spinneken (2015) and448

Huber and Hager (1997) involving also the near field with a larger lateral de-449

cay. To reproduce the lateral decay trend in the far field, the empirical term450
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cos2 (γ′/3) is added to the theoretical Eqs. (10) and (12) resulting in451

H(r′, γ′, θ)

h
/

(
b′

lw(r′, θ)

)1/2

= β
H(r′ = 0, γ′ = 0◦, θ = 0◦)

h
cos2

(
γ′

3

)
(13)

a(r′, γ′, θ)

h
/

(
b′

lw(r′, θ)

)1/2

= β
a(r′ = 0, γ′ = 0◦, θ = 0◦)

h
cos2

(
γ′

3

)
(14)

where H(r′, γ′, θ) and a(r′, γ′, θ) are the wave height and amplitude at the po-452

sition r′ and γ′, lw(r′, θ) the corresponding wavefront length (Table C.1) and453

H(r′ = 0, γ′ = 0◦, θ = 0◦) and a(r′ = 0, γ′ = 0◦, θ = 0◦) are the 2D wave height454

and amplitude, respectively. The water depth h = constant is maintained in Eqs.455

(13) and (14) to keep the equations in dimensionless form. An empirical pre-456

factor can be applied to H(r′ = 0, γ′ = 0◦, θ = 0◦) and a(r′ = 0, γ′ = 0◦, θ = 0◦)457

to determine the upper envelope (βE) and the best overall fit (β) of the numerical458

data. β is based on the smallest nRMSE, which together with the corresponding459

±% scatter are summarised in Table 3 for both H and a.460

Table 3: Pre-factors for wave height H (Eq. (13)) and wave amplitude a (Eq. (14)) for each
investigated wave type. The upper envelope is determined with βE and the best
overall fit to the data in Fig. 13 with β.

H a
Wave theory βE β (nRMSE) ± scatter βE β (nRMSE) ± scatter

Approximate linear 1.36 - - 1.36 - -

5th order Stokes 1.25 1.10 (0.17) +13%, −14% 1.18 1.01 (0.14) +17%, −14%

5th order cnoidal 1.27 1.03 (0.16) +23%, −12% 1.09 0.85 (0.21) +26%, −39%
1st order solitary 1.61 1.20 (0.21) +36%, −21% 1.14 0.84 (0.23) +36%, −38%

The black curve in Fig. 13 represents Eq. (13) with β = 1, the red line461

with βE and the dashed line with β. For the approximate linear waves, only462

the line with βE is presented as the main purpose to include this wave type463

herein is to link the numerical results to theory rather than to predict landslide-464

tsunamis, given that they are generally not linear. Stokes waves result in the465

smallest βE = 1.25 for H requiring only 25% increase from the semi-theoretical466

expression to reach the upper envelope. The best fit is achieved with β = 1.10467

with a data scatter of +13% and −14%. For cnoidal waves (Fig. 13c) βE = 1.27468

and β = 1.03 with a data scatter of +23% and −12%. Finally, the solitary waves469

(Fig. 13d) result in the largest difference between the black and the red curves470

with βE = 1.61 and β = 1.20 with a data scatter of +36% and −21%. For the471

solitary wave the black curve corresponds simultaneously to a lower envelope472

of the values. This is already indicated in Fig. 11d where all points lay above473

Green’s law. The corresponding values for the wave amplitude a for each wave474

type are also shown in Table 3. In this case the best fit is always achieved for475

β < 1, except for Stokes waves, while βE > 1. Fig. C.2 shows the corresponding476

data.477
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Fig. 13b-d allow for a semi-theoretical prediction of idealised tsunami heights478

for all investigated wave types, geometries and locations. These predictions take479

the effect of the water body geometry into account as well as bottom friction.480

However, they are based on idealised wave types, which propagate as wave trains481

of constant H, unlike real tsunamis. This creates differences in wave propagation482

which are investigated in Section 3.2 based on experimental wave profiles.483

3.2. Laboratory waves484

Simulations of waves measured in the laboratory experiments of Heller and485

Hager (2011) were carried out to quantify to which extent frequency dispersion486

affects wave decay in 2D. The 2D geometry was chosen as it excludes the lateral487

energy spread and the wave decay may fully be attributed to frequency disper-488

sion, if bottom friction is neglected. Experimental measurements (Heller and489

Hager, 2011) are compared with SWASH simulations based on both idealised490

time series essentially excluding frequency dispersion (Section 1.2) and real time491

series based on the same study.492

3.2.1. Coupling criterion493

To perform this comparison between idealised and laboratory waves, a crite-494

rion for the coupling location corresponding to the boundary between the wave495

generation and propagation zones (Fig. 2) is required. The impact radius ri from496

Evers et al. (2019) and the location of the maximum wave amplitude xM from497

Heller and Hager (2010) are considered. These criteria are given as:498

ri(γ = 0◦) = 2.5[PB cos(6/7α)]1/4h (15)

xM = (11/2)P1/2h. (16)

P = FS1/2M1/4[cos(6/7α)]1/2 is the impulse product parameter (Heller and499

Hager, 2010), B = b/h the relative slide width and α the slide impact angle. P500

includes the slide Froude number F= Vs/(gh)1/2 with the slide centroid velocity501

Vs at impact, the relative slide thickness S = s/h with the slide thickness s at502

impact and the relative slide mass M = ms/(ρwbh
2) with the slide mass ms and503

the water density ρw. The coupling locations based on Eqs. (15) and (16) move504

further downstream for more violent slide impacts and wave generation. Both ri505

and xM depend solely on the landslide parameters, which are anyway required506

for landslide-tsunami hazard assessment. The slide parameters and the potential507

coupling locations, computed with Eqs. (15) and (16) for each investigated wave508

type, are summarised in Table 4.509

To work on the safe side, the coupling location is selected at the wave gauge510

located downwave of both ri/h and xM/h. The first wave gauge position of Heller511

and Hager (2011) that satisfies dM/h = x/h ≥ max(ri/h;xM/h) is also included512

in Table 4. This position was chosen as coupling location and wave generation513

for both simulations based on the laboratory time series and idealised waves.514
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Table 4: Slide parameters and coupling locations based on Eqs. (15) and (16) for each wave
type.

Wave type B S M F α P Eq. (15) Eq. (16) coupling location

Stokes-like 0.50 0.23 0.11 1.36 45◦ 0.33 1.50 3.16 x/h = 4.55

Cnoidal-like 0.50 0.40 0.45 2.27 45◦ 1.03 1.99 5.58 x/h = 8.10

Solitary-like 0.50 0.81 0.90 3.77 90◦ 1.55 1.61 6.85 x/h = 8.57

3.2.2. Effects of frequency dispersion515

Figure 14 shows the wave profiles at 3 different positions for a Stokes-like516

landslide-tsunami. The decay of the idealised waves is negligible whereas both517

the laboratory and the real time series show a similar decay. This shows that518

the primary wave decay for Stokes-like waves in 2D is mainly caused by fre-519

quency dispersion as indicated by the increase of the tail waves in Fig. 14a to520

c. Frequency dispersion is negligible for idealised waves where the wave profiles521

remain stable. To quantify frequency dispersion the ratios al/ac and Hl/Hc are522

calculated, with al and Hl as the wave amplitude and height at the last wave523

gauge position (Figs. 14c, 15c, 16c) in Heller and Hager (2011) and ac and Hc as524

the wave amplitude and height at the coupling location. These ratios are given525

in Table 5.526
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Figure 14: Comparison of 2D laboratory measurements of Stokes-like waves, real time series
and 5th order idealised Stokes wave SWASH simulations: relative water surface
elevation η/h at different relative distances x/h.

Similar values of al/ac = 0.66 and 0.73 are found for the laboratory mea-527

surements and real time series simulations, respectively, confirming the capabil-528

ity of SWASH to simulate frequency dispersion reasonably well for Stokes-like529
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waves. However, for the idealised Stokes waves a value of al/ac = 0.96 and even530

Hl/ac = 0.99 is found confirming the small wave decay due to bottom friction.531

The cnoidal-like and solitary-like waves are shown in Figs. 15 and 16. Cnoidal-532

like waves decay much slower than Stokes-like waves (Fig. 14) when considering533

that the investigated maximum relative distance for cnoidal-like waves is twice534

as large. Very similar al/ac laboratory measurement and numerical ratios for535

the cnoidal-like wave profiles are found namely 0.79-0.86 (Table 5).536
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Figure 15: Comparison of 2D laboratory measurements of cnoidal-like waves, real time series
and 5th order idealised cnoidal SWASH wave simulations: relative water surface
elevation η/h at different relative distances x/h.

However, when considering Hl/Hc it becomes clear that cnoidal-like waves537

are also affected by frequency dispersion. In fact, there is a difference of 12%538

between the simulations with the experimental time series (Hl/Hc = 0.78) and539

idealised waves (Hl/Hc = 0.90). The results for solitary-like waves (Fig. 16)540

show an even closer match between laboratory measurements, real time series541

and idealised waves than cnoidal-like waves. Equal al/ac = Hl/Hc = 0.90 for542

real and idealised wave simulations are observed and only a 8% difference to the543

laboratory measurements is found.544
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Figure 16: Comparison of 2D laboratory measurements of solitary-like waves, real time series
and 1st order idealised solitary SWASH wave simulations: relative water surface
elevation η/h at different relative distances x/h.

Table 5: Wave decay ratios between wave amplitude al and height Hl at the last wave gauge
position in Heller and Hager (2011) and the wave amplitude al and height Hc at the
coupling location for each wave type (* measurements affected by reflection).

Wave type
Gauge at

coupling location
Location of
last gauge

Heller and Hager (2011)
SWASH

real time series
SWASH

idealised waves
al/ac ([(al/ac)−1 ]×100)

Stokes(-like) x/h = 4.55 x/h = 12.88 0.66 (−34%) 0.73 (−27%) 0.96 (−4%)
Cnoidal(-like) x/h = 8.10 x/h = 24.77 0.79 (−21%) 0.86 (−24%) 0.83 (−17%)
Solitary(-like) x/h = 8.57 x/h = 29.57 0.83 (−17%) 0.90 (−10%) 0.90 (−10%)

Hl/Hc ([(Hl/Hc)−1 ]×100)
Stokes(-like) x/h = 4.55 x/h = 12.88 0.51 (−49%)* 0.80 (−20%) 0.99 (−1%)

Cnoidal(-like) x/h = 8.10 x/h = 24.77 0.69 (−31%)* 0.78 (−22%) 0.90 (−10%)
Solitary(-like) x/h = 8.57 x/h = 29.57 0.83 (−17%) 0.90 (−10%) 0.90 (−10%)

These results show that the contribution of frequency dispersion on wave545

decay changes with the wave type. The mismatch of Hl/Hc for the laboratory546

Stokes-like and cnoidal-like tsunamis is due to wave reflection (Fig. 14c, Fig.547

15c) affecting the primary wave trough (Table 5). This confirms that the effect548

of frequency dispersion on wave decay in 2D decreases with increasing non-549

linearity of the wave type. This further shows that the findings based on the550

idealised waves (Section 3.1) apply well to landslide-tsunamis in proximity of the551

shallow-water wave regime (solitary-like waves), but may overestimate landslide-552

tsunamis closer to the deep-water regime (Stokes-like waves) where frequency553

dispersion accounts for up to 34%− 4% = 30% of the wave decay.554
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4. Discussion555

In this section the new findings are discussed in relation to already avail-556

able knowledge. The idealised waves essentially address the effect of the lateral557

energy spread and neglect frequency dispersion. Laboratory measurements are558

compared to the idealised waves propagating in the far field to quantify whether559

the effect of the lateral energy spread or frequency dispersion is more dominant.560

Further, Eqs. (13) and (14) are applied to the 2014 Lake Askja landslide-tsunami561

to illustrate the application of the new semi-theoretical equations.562

4.1. Relevance of the water body geometry for idealised waves563

The ratio b′/L and the wave non-linearity H/h were found to be very im-564

portant for the effect of the water body geometry as they significantly affect the565

wave decay inside a water body and determine how closely the diffraction the-566

ory of Carr and Stelzriede (1952) matches the numerical data. This can clearly567

be seen by comparing the results in Figs. 11b and Fig. 11c where the Stokes568

waves result in a closer match to diffraction theory than cnoidal waves. The569

two parameters b′/L and H/h, however, do not seem to affect the match with570

Green’s law (Eq. (10)) that follows all numerical data closely except for solitary571

waves in Fig. 11d where the 3D geometry shows a noticeable difference, in the572

range 6 < lw/h < 40.573

The water body geometry has also an effect on the observed wave type.574

In fact, the solitary wave transforms in a Stokes wave in 3D as indicated by575

a/at = 1.07 in Fig. 9d. This agrees with Heller and Spinneken (2015) where576

the more energetic solitary and bore-like waves were only observed in 2D and577

only Stokes-like and cnoidal-like waves were observed in 3D by identical slide578

scenarios.579

580

The effect of the water body geometry for idealised waves was correlated581

with lw used in the Green’s law (Eqs. (10) and (12)). This allows for a much582

broader application of the findings of Chang et al. (1979) for solitary waves where583

the width of the diverging channel rather than lw was used. Further, the semi-584

theoretical Eqs. (13) and (14) were derived to predict the lateral wave decay.585

Using these equations, with a different pre-factor βE for the upper envelope and586

β for the best fit of the data for each wave type, allows for the calculation of587

the maximum wave heights and amplitudes in all investigated geometries, for588

all propagation angles and distances for idealised waves (excluding frequency589

dispersion). Given that for all herein investigated scenarios the idealised waves590

produced larger waves than the real waves (including frequency dispersion) in591

2D (Table 5), the semi-theoretical equations in Section 3.1.3 tend to over-predict592

real landslide-tsunamis and tend to work on the safe side.593

4.2. Relevance of lateral energy spread and frequency dispersion594

Table 6 shows the ratios al/ac andHl/Hc of the idealised waves. This helps to595

separate the contributions of the lateral energy spread and frequency dispersion596

on wave decay as the idealised waves essentially consider the former effect only.597
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Table 6 also includes the values of Table 5 of the idealised waves in 2D for598

comparison. All values in Table 6 are lower than the values calculated in Table599

5 indicating that the lateral energy spread is more important than frequency600

dispersion, already for θ = 7.5◦. The differences between the values in Table 5601

and 6 further increase with θ. For example, Table 5, shows al/ac = 0.66, 0.79602

and 0.83 for Stokes-like, cnoidal-like and solitary-like tsunamis in 2D and the603

corresponding values for θ = 7.5◦ in Table 6 are 0.46, 0.43 and 0.45. This also604

shows that the solitary wave is the most affected wave type by the effect of605

the lateral energy spread with al/ac = 0.14 for 3D (Table 6) against 0.83 for606

laboratory measurements in 2D (Table 5).

Table 6: Idealised wave decay ratios between wave amplitude al and height Hl at the last
experimental wave gauge position used in Section 3.2 (Heller and Hager, 2011) and the
wave amplitude ac and height Hc at the numerical wave source (coupling location).

Wave type
Location of
last gauge

(x′/h or r′/h)
2D (θ = 0◦) θ = 7.5◦ θ = 15◦ θ = 30◦ θ = 45◦ 3D (θ = 90◦)

al/ac ([(al/ac)−1 ]×100)
Stokes 8.33 0.96 (−4%) 0.46 (−54%) 0.39 (−61%) 0.27 (−73%) 0.23 (−77%) 0.18 (−82%)

Cnoidal 16.70 0.83 (−17%) 0.43 (−57%) 0.31 (−69%) 0.25 (−75%) 0.23 (−77%) 0.16 (−84%)
Solitary 21.00 0.90 (−10%) 0.45 (−55%) 0.33 (−66%) 0.24 (−76%) 0.20 (−80%) 0.14 (−86%)

Hl/Hc ([(Hl/Hc)−1 ]×100)
Stokes 8.33 0.99 (−1%) 0.50 (−50%) 0.36 (−64%) 0.29 (−71%) 0.25 (−75%) 0.16 (−84%)

Cnoidal 16.70 0.90 (−10%) 0.59 (−51%) 0.37 (−63%) 0.29 (−71%) 0.26 (−74%) 0.17 (−83%)
Solitary 21.00 0.90 (−10%) 0.50 (−50%) 0.38 (−62%) 0.27 (−73%) 0.21 (−79%) 0.15 (−85%)

607

4.3. Computation example608

A procedure to predict landslide-tsunamis using Eqs. (13) and (14) is pre-609

sented here. The present study only addresses wave propagation, while already610

available relationships for the 2D case (Heller and Hager, 2010) allow to com-611

pute the maximum wave height and its position in the wave generation zone.612

Note that the slide width b′ at the coupling location is approximated with the613

slide width b from the impact zone plus an arc section on either side of the614

slide (Fig. 17). This approximation is necessary as a straight line at the cou-615

pling location (as in Fig. 3) would converge to infinity with increasing θ. This616

approximation also satisfies the energy flux conservation between lw(r′ = 0, θ)617

and lw(r′, θ), which coincides with the assumptions made for Green’s law (Dean618

and Dalrymple, 1991).619

The application procedure of Eq. (13) can be summarised with the following620

steps:621

1. Define the landslide width b, thickness s, mass ms, impact velocity Vs,622

slope angle α, density ρs, water density ρw and water depth h623

2. Evaluate the wave type in 2D using the wave type product T of Heller624

and Hager (2011)625

3. Calculate the maximum wave height HM for 2D and its position from the626

slide impact r = dM627
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4. Define θ1 and θ2 (Fig. 17) at the slide sides to approximate the current628

geometry to an idealised one up to r′ = 0 and calculate the wave front629

length lw(r′ = 0, θ)630

5. Compute H(r′ = 0, γ′ = 0◦, θ) by applying energy conservation631

H(r′ = 0, γ′ = 0◦, θ) = HM (r′ = 0, γ′ = 0◦, θ = 0◦)[b/lw(r′ = 0, θ)]1/2

(17)

6. Define θ3 and θ4 (Fig. 17) at the slide sides to approximate the geometry up632

to a desired distance r′ > 0, thereby taking any restrictions or expansions633

of the water body into account, and calculate lw(r′, θ)634

7. Use Eq. (13) to calculate H(r′, γ′, θ) at the desired location.635

These steps are illustrated with the 2014 landslide-tsunami event in Lake Askja636

in Iceland.637

The wave heights are computed at two different positions and compared638

with the numerical results of Gylfadóttir et al. (2017). The slide parameters639

are defined first (step 1). The slope angle is calculated by using the 500 m640

distance between the base of the rotational failure and the mean water level641

and the elevation difference between the same two points (92 m) resulting in642

α = atan(92/500) = 10.4◦. The effective friction coefficient is defined as µ =643

∆H/∆L where ∆H = 230 m is the height difference of the slide centroid’s initial644

and final positions and ∆L = 2450 m is the horizontal distance between the same645

two points. This results in µ = 0.09. This small friction coefficient indicates a646

hypermobile slide as observed in nature for large slide volumes exceeding 106 m3
647

(Pudasaini and Miller, 2013), which is in line with the slide volume of 10× 106648

m3 (considering a 30% porosity) in the Lake Askja case. The corresponding649

impact velocity is Vs =
√

2g(sinα− µ cosα)∆x = 30.1 m/s (Körner, 1976) with650

∆x = 500 m as the distance from the initial position of the slide centroid to651

the SWL. This velocity is only 2.6% smaller than 30.9 m/s used by Gylfadóttir652

et al. (2017) as best fit for their simulations. The remaining slide parameters653

are summarised in Table 7 with the slide mass ms computed based on the slide654

volume and a slide density of ρs = 2000 kg/m3.655

Table 7: Dimensional landslide parameters for the 2014 Lake Askja landslide-tsunami

b (m) s (m) α (◦) Vs (m/s) ms (kg) ρs (kg/m3) ρw (kg/m3) h (m)

550.0 35.5 10.4 30.1 2×1010 2000 1000 138.0

The wave type product T = S1/3M cos [(6/7)α] = 0.261/31.91 cos [(6/7)10.4◦] =656

1.21 (Table 8) is calculated to evaluate the wave type (step 2). The wave type657

product T for granular landslides is in the range of 4/5F−7/5 ≤ T ≤ 11F−5/2658

(1.06 ≤ 1.21 ≤ 18.06) for which cnoidal and solitary-like waves are expected659

in 2D (Heller and Hager, 2011). The former wave type was chosen because T660

is closer to the lower boundary of the range where less energetic waves are ex-661

pected hence β = 1.03 and βE = 1.27 are selected.662

The maximum wave height HM is computed with HM = 5/9P4/5h =663
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Table 8: Non-dimensional landslide parameters for the Lake Askja landslide-tsunami

S M F T P dM (m) HM (m) aM (m)

0.26 1.91 0.82 1.21 0.49 531 43.3 34.7

5/9 · 0.494/5138 = 43.3 m (Table 8) (Heller and Hager, 2010) for 2D with P =664

FS1/2M1/4{cos[(6/7)α]}1/2 = 0.82 · 0.261/21.911/4{cos[(6/7)10.4◦]}1/2 = 0.49665

introduced in Section 3.2 (step 3). Because the geometry of the Lake Askja is666

not symmetrical, different θ result on the two slide sides. The wavefront length667

at r = dM is thus calculated using θ1 = 32.4◦, θ2 = 44.1◦ (Fig. 17) and the668

slide width b = 550 m resulting in lw(r′ = dM , θ) = b+ θrad,1dM + θrad,2dM =669

550 + 32.4(π/180)531 + 44.1(π/180)531 = 1259 m (step 4). Note that r′ in Eq.670

(9) is replaced here with r because the geometry already starts to diverge at671

r = 0 rather than at r′ = 0. Since HM applies to 2D, the observed wave height at672

the coupling location may be smaller due to lateral energy spread. This is taken673

into account by spreading the wave energy over the wavefront length resulting674

in H(r′ = 0, γ′ = 0◦, θ) = HM (r′ = 0, γ′ = 0◦, θ = 0◦)[b/lw(r′ = 0, θ)]1/2 =675

43.3(550/1259)1/2 = 28.6 m (step 5).676
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Figure 17: Computation examples for (a) wave gauge 9 and (b) wave gauge 3 of Gylfadóttir
et al. (2017). The red line highlights the SWL = 1058 m above sea level. The
contours represent a spacing of ∆z = 30 m in global coordinates with dashed
lines and solid lines representing the terrain elevation below and above the SWL,
respectively.

The wave heights are calculated at wave gauges 9 (r = 1970 m, γ = 0◦)677

and 3 (r = 3440 m, γ = 23.7◦) (Gylfadóttir et al., 2017). At gauge 9 the678

wavefront length, again with r′ replaced by r, is lw = 550 + 19.2(π/180)1970 +679

44.1(π/180)1970 = 2726 m by using θ3 = 19.2◦ and θ4 = 44.1◦ (Fig. 17a, step680

6). θ3 is chosen under the consideration of the water body restriction caused681

by the small island on the left hand side of the slide, which affects the lateral682
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wave energy spread. Finally, applying Eq. (13) for γ = 0◦ with the pre-factors683

β = 1.03 and βE = 1.27 (for cnoidal waves, Table 3) results in H = 20.0 m and684

H = 24.7 m respectively (step 7). These values are close (−10.0% and +11.2%685

difference, respectively) to the wave height H = 22.2 m found by Gylfadóttir686

et al. (2017).687

At gauge 3 the wavefront length is lw = 3614 m with θ3 = 30.5◦ and θ4 =688

20.5◦ (Fig. 17b). Eq. (13) is applied with γ = 23.7◦ and the pre-factors β =689

1.03 and βE = 1.27 (Table 3) resulting in H = 17.1 m and H = 21.0 m,690

respectively, which in turn underestimate the wave height of H = 26.0 m found691

by Gylfadóttir et al. (2017) by 34.2% and 19.2%, respectively. However, such an692

underestimation is expected as gauge 3 is located close to the lake shore where693

shoaling, which is not considered in Eq. (13), becomes important. Shoaling could694

also be found in combination with other depth and geometry related effects such695

as reflection and depth trapping of the tsunami (Bellotti et al., 2012), which in696

combination with the impact on the coast may alter the tsunami characteristics.697

The same procedure is applied to calculate the landslide-tsunami amplitude698

using Eq. (14). Step 1 and step 2 remain the same as for the wave height. In 3 the699

maximum wave amplitude aM = 4/9P4/5h = 34.7 m (Heller and Hager, 2010)700

instead of HM . Step 4 remains unchanged and step 5 is updated by calculating701

the wave amplitude resulting in a(r′ = 0, γ′ = 0, θ) = aM (r′ = 0, γ′ = 0◦, θ =702

0◦)[b/lw(r′ = 0, θ)]1/2 = 22.9 m. Step 6 remains unchanged and in step 7 Eq.703

(14) is used, with β = 0.85 and βE = 1.09 (Table 3). The results for the wave704

amplitude, together with the ones for the wave heights, are summarised in Table705

9. The values are close to a = 13.4 m for gauge 9 and a = 14.2 m for gauge 3706

found by Gylfadóttir et al. (2017).707

Table 9: Calculated wave parameters based on Eqs. (13) and (14) compared to the numerically
derived parameters by Gylfadóttir et al. (2017). In brackets the values (ypred/ynum−
1) × 100 are shown (* values affected by shoaling).

Predicted H (m)
H (m)

(Gylfadóttir et al., 2017)
Predicted a (m)

a (m)

(Gylfadóttir et al., 2017)

Pre-factor β βE - β βE -

gauge 9 20.0 (−10.0%) 24.7 (+11.2%) 22.2 13.2 (−1.5%) 17.0 (+26.8%) 13.4

gauge 3 17.1 (−34.2%) 21.0 (−19.2%) 26.0* 11.3 (−20.4%) 14.5 (+2.1%) 14.2*

5. Conclusions708

This study aimed to enhance the physical understanding of the effect of the709

water body geometry on wave propagation with particular focus on landslide-710

tsunamis. This aim was motivated by the very limited understanding of this711

effect for intermediate geometries between the 2D and 3D geometries. This ef-712

fect is associated with two components: lateral energy spread caused by the713

increasing lateral space with the water body side angle θ and frequency disper-714

sion. Idealised water body geometries with increasing θ = 0 (2D), 7.5, 15, 30, 45715

and 90◦(3D) of the flume lateral walls were used to simulate idealised and real716
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landslide-tsunamis. SWASH, a non-hydrostatic NLSWE model, was used to sim-717

ulate propagation in the far field, where the wave is reasonable stable. Approx-718

imate linear, Stokes, cnoidal and solitary waves were investigated up to a maxi-719

mum distance of 35 times the water depth from the wave generation zone. These720

idealised waves in combination with a constant water depth allowed the waves721

in 2D to be stable and essentially excluded frequency dispersion.722

The results in the 3D geometry were validated with diffraction theory given723

that the wave generated by a landslide shows similarities to a wave diffracted724

from a wave source of finite width. The wavefront length lw (Eq. (9)) was found725

to be an excellent parameter to link the wave heights of the idealised waves726

in all investigated geometries along the slide axis resulting in a close match727

with Green’s law (Eq. (10)). The wave heights outside the slide axes were also728

correlated with Green’s law, modified with empirical pre-terms. These derived729

semi-theoretical equations can be used to predict the idealised wave heights and730

amplitudes in real water bodies based on 2D wave parameters estimated with731

the method of Heller and Hager (2010).732

It was further investigated how well the results derived for idealised waves733

represent real tsunamis including frequency dispersion. Simulations in the 2D734

geometry where therefore conducted by using the laboratory landslide-tsunami735

time series of Heller and Hager (2011). Lateral energy spread is not present in 2D736

such that the wave decay may essentially be attributed to frequency dispersion.737

The 2D experiments of Heller and Hager (2011) were compared with SWASH738

simulations based on experimental time series and idealised waves. An increas-739

ing effect of frequency dispersion on wave decay with decreasing wave non-740

linearity was observed. This shows that the semi-theoretical equations based on741

the idealised waves are more appropriate for landslide-tsunamis in proximity of742

the shallow-water wave regime (solitary-like waves), than for landslide-tsunamis743

closer to the deep-water regime (Stokes-like waves) (Section 3.2).744

The wave decay was also found to increase with θ, especially for solitary745

waves. In fact, comparing wave heights and amplitudes, the effect of the lateral746

energy spread is larger in intermediate geometries and 3D than the effect of747

frequency dispersion in 2D. Finally, a calculation procedure to apply the new748

semi-theoretical equations to real cases is provided showing a good agreement749

of the wave heights (up to −10.0%) and amplitudes (up to −1.5%) for the 2014750

Lake Askja tsunami.751

Given that the findings in this study mainly support initial landslide-tsunami752

hazard assessment, the effect of frequency dispersion may be neglected for753

tsunamis in proximity of the shallow-water wave regime (solitary- and cnoidal-754

like waves). However, in proximity of the deep-water wave regime (Stokes-like755

waves), frequency dispersion accounts for up to 30% of the wave decay and can756

not be neglected. The new equations can then still be applied, but will likely757

result in an over-prediction of the real waves. This may be acceptable for initial758

landslide-tsunami hazard assessment given that the predicted wave parameters759

are on the safe side if depth and shore effects are excluded.760

Future work will potentially also model the wave generation process and cou-761

ple the wave propagation model SWASH with a wave generation model. This762
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would allow to simulate the entire landslide-tsunami process numerically. It is763

also planned to investigate the effect of a changing bathymetry on tsunamis.764
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Notation771

A [-] = Mathieu function joining factor
a [L] = wave amplitude
aM [L] = maximum wave amplitude
ac [L] = wave amplitude at the coupling location
al [L] = wave amplitude at the last wave gauge
at [L] = wave trough amplitude
B [-] = relative slide width
b [L] = slide width at the slide impact location
b′ [L] = source width at the coupling location
Ce [-] = even radial Mathieu function of the first kind
Cr [-] = Courant number
c [L/T] = wave celerity
ce [-] = even angular Mathieu function
cf [-] = bottom friction coefficient
cg [L/T] = wave group celerity
d [L] = total water depth
dM [L] = coupling distance
E [M/T2] = mean energy density per unit area
F [-] = slide Froude number
Fey [-] = even radial Mathieu function of the second kind
g [L/T2] = gravitational acceleration
ge [-] = Mathieu function joining factor
H [L] = wave height
HM [L] = maximum wave height
Hc [L] = wave height at the coupling location
Hd [L] = diffracted wave height
Hi [L] = incident wave height
Hl [L] = wave height at the last wave gauge
h [L] = water depth
I [-] = wave intensity
i [-] = counter for i-th data sample
Je [-] = Mathieu even radial function of the second kind

31



K ′ [-] = diffraction coefficient
k [L−1] = wave number
L [L] = wavelength
LM [L] = maximum wavelength
ls [L] = landslide length
lw [L] = wavefront length
M [-] = relative slide mass
m [-] = integer number
ms [M] = slide mass
N [-] = Mathieu function normalising factor
N [-] = number of samples
Ne [-] = Mathieu even radial function of the first kind
n [T/L1/3] = Manning’s coefficient
n [-] = integer number
P [-] = impulse product parameter
ph [M/LT2] = hydrostatic pressure
pt [M/LT2] = total pressure
q [M/LT2] = non-hydrostatic pressure term
qd [-] = Mathieu function fixed variable
r [L] = radial distance from the slide impact
r′ [L] = radial distance from the coupling location
ri [L] = impact radius
S [-] = relative slide thickness
Se [-] = Mathieu even angular function
s [L] = slide thickness
smat [-] = Mathieu function fixed variable
T [-] = wave type product
T [T] = wave period
t [T] = time from when the slide impacts
t′ [T] = time from when the wave reaches the coupling location
u [L/T] = velocity in x′ direction
u [L/T] = depth averaged velocity in x′ direction
ui [L/T] = incident velocity
Vs [L/T] = slide velocity
v [L/T] = velocity in y′ direction
v [L/T] = depth averaged velocity in y′ direction
wb [L/T] = velocity at the bottom in z′ direction
ws [L/T] = velocity at the surface in z′ direction
x [L] = x-coordinate from the slide impact
x′ [L] = x′-coordinate from the coupling location
xM [L] = location of maximum wave amplitude
y′ [L] = y′-coordinate
ynum [-] = numerical value
ynum,max [-] = maximum numerical value
ynum,min [-] = minimum numerical value
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ypred [-] = predicted value
z′ [L] = z′-coordinate

Greek symbols772

α [◦] = slide impact angle
αi [◦] = incident wave angle
β [−] = pre-factor in Eqs. (13) and (14) and pre-factor for the best fit
βE [−] = pre-factor in Eqs. (13) and (14) for the upper envelope
γ [◦] = wave propagation angle from the slide impact
γ′ [◦] = wave propagation angle from the coupling location
γ′part [◦] = phase angle of the partial wave
∆H [L] = terrain elevation difference
∆L [L] = horizontal distance between two points
∆t′ [T] = time difference
∆x [L] = distance travelled by the slide above SWL
∆x′ [L] = x′-direction grid size and horizontal distance
∆y′ [L] = y′-direction grid size
∆z [L] = contours spacing in z-direction
∆γ′ [◦] = wave propagation angle difference
δφ [rad] = angular resolution for Mathieu function
η [L] = water surface elevation
ηi [L] = incident water surface elevation
θ [◦] = water body side angle
θrad [rad] = water body side angle in radians
µ [-] = effective friction coefficient
ξ [-] = elliptic-cylinder coordinates of confocal ellipses
π [-] = mathematical constant
ρs [M/L3] = slide density
ρw [M/L3] = water density
τ [ML3/T2] = turbulent stress
φ [-] = elliptic-cylinder coordinates of confocal hyperbolas

Abbreviations773

2D = Wave flume geometry
3D = Wave basin geometry
CFL = Courant-Friedrichs-Lewy
CPU = Central Processing Unit
HPC = High Performance Computing
MPI = Message Passing Interface
NLSWE = Non-Linear Shallow Water Equation
nRMSE = normalised Root Mean Square Error
SPH = Smoothed Particle Hydrodynamics
SWASH = Simulating WAves till SHore
SWL = Still Water Level
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A. Symmetry of the numerical solution774

Fig. A.1 shows the symmetry of the numerical solution studied with H at775

r′/h = 3.0, 5.0, 10.0, 15.0, 22.5 and 35.0 for the 3D geometry. The H values are776

calculated using the water surface time series at propagation angles γ′ = 0◦ and777

γ′ = ±45◦ (Fig. 3f).778
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r'/h

0.00

0.01

0.02
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0.04

H
/h

0 5

γ' = +45°
γ' = −45°

γ' = 0°

Figure A.1: Symmetry of the numerical solution in the 3D geometry. Relative wave height
H/h over the relative radial distance r′/h at γ′ = 0◦ and γ′ = ±45◦.

B. Diffraction theory779

The diffraction theory by Carr and Stelzriede (1952) was applied rather than780

graphical solutions (diffraction diagrams) available in the technical literature781

for fixed ratios b′/L between the source gap width b′ and the wavelength L782

(e.g. Johnson, 1952; USACE, 1984). This theory was introduced by Morse and783

Rubenstein (1938) for diffraction of sound and electromagnetic waves at a gap784

into a infinite plane. This approach has an exact solution for small gaps and785

defines the energy distribution in function of the wave propagation angle γ′.786

The solution is based on elliptic-cylinder coordinates defined as787

x′ = b′/2 cos ξ cosφ

y′ = b′/2 sin ξ sinφ
(B.1)

where ξ are confocal ellipses and φ are confocal hyperbolas (Fig. 2 in Carr and
Stelzriede, 1952).

For φ = 0 the hyperbolas degenerate in a straight line with a gap of width
b′. The three-dimensional wave equation in elliptic-cylinder coordinates is then
solved using the Mathieu function (Abramowitz and Stegun, 1964) as a method
for variables separation. The solution in function of the energy intensity ratio I
(Carr and Stelzriede, 1952; Morse and Rubenstein, 1938) is

I =
H2
d

H2
i

=
∑
m,n

b′

L

4π
√
smat

1

NmNn
sin γ′part,m sin γ′part,nSem(smat, αi)·

·Sen(smat, αi)Sem(smat, φ)Sen(smat, φ) cos(γ′part,n − γ′part,m)

(B.2)
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Ir′,φ =
L

r′
I (B.3)

where Se is the even angular Mathieu function, smat = (πb′/L)2, αi is the direc-788

tion of the wave entering the gap (Fig. B.1), φ is the angle from the centreline789

of the gap and r′ the radial distance from the source. Hd is the diffracted wave790

height, Hi the incident wave height and the subscripts m and n are the integer791

number of the sum terms. Finally, γ′part represents the phase angle of the partial792

wave and is defined as ctnγ′part = (Nen(smat, 0)/Jen(smat, 0)) where Ne is the793

even radial modified Mathieu function of the first kind and Je is the even radial794

modified Mathieu function of the second kind. Note that in Carr and Stelzriede795

(1952) the normalising factor 1/(NmNm) is missing in their representation of796

Eq. (B.2).797

To solve the Mathieu function the “Mathieu functions toolbox v4.0.6” (Cois-798

son et al., 2016) for Scilab has been used allowing for a high resolution of799

δφ = 0.01 rad in the final solution solving the even angular Mathieu function800

cen(φ, qd), the even radial Mathieu function of the first kind Cen(φ, qd) and the801

even radial Mathieu function of the second kind Feyn(φ, qd) where qd = smat/4.802

Tabulated values from the National Bureau of Standards (1951) were then used803

to transform the three precedent solutions with the variables needed to solve804

the corrected theory of Carr and Stelzriede (1952) resulting in Sen(smat, φ) =805

cen(φ, qd)/An, Jen(smat, φ) = Cen(φ, qd)/Ange,n andNen(smat, φ) = Feyn(φ, qd)/Ange,n806

where An and ge,n are the joining factors.807

Fig. B.1 shows the comparison between the calculated solution based on Eq.808

(B.2) and the diffraction diagram of Pos and Kilner (1987) after Johnson (1952).809

The x′− and y′−axes are normalised with L considering the origin of the ref-810

erence system at the centre of the breakwater gap. The different contours with811

each associated value define the wave diffraction coefficient K ′ = Hd/Hi =
√
I.812

Other b′/L ratios where investigated with Eq. (B.2) obtaining results with a sim-813

ilar match to the corresponding diffraction diagram (Johnson, 1952) as shown814

in Fig. B.1. This successfully validated results of the diffraction theory were815

applied in Fig. 11.816
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Figure B.1: Comparison of theoretically calculated diffraction solution based on Eq. (B.2) (red
line) and graphical solution (diffraction diagrams) of Pos and Kilner (1987) (black
dashed line) for b′/L = 1 and αi = 90◦.
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C. Amplitude decay817

Table C.1 shows the values of the wavefront length lw for each wave type.818

Fig. C.1 shows the wave amplitude decay for each geometry and investigated819

wave type compared to Green’s law (Eq. (12)) based on the wave amplitude a.820

Finally, Fig. C.2 shows the wave amplitudes for each geometry and wave type821

compared with Eq. (14).822

Table C.1: Wavefront lengths lw for (a) approximate linear and Stokes waves and (b) cnoidal
and solitary waves based on Eq. (9).

(a) Approximate linear and Stokes waves with h = 0.60 m

r′/h 2D (θ = 0◦) θ = 7.5◦ θ = 15◦ θ = 30◦ θ = 45◦ 3D (θ = 90◦)

3.0 0.600 1.071 1.543 2.485 3.427 6.255

5.0 0.600 1.385 2.171 3.742 5.312 10.025

7.5 0.600 1.778 2.956 5.312 7.669 14.737

10.0 0.600 2.171 3.742 6.883 10.025 19.450

15.0 0.600 2.956 5.312 10.025 14.737 28.874

22.5 0.600 4.134 7.669 14.737 21.806 43.012

35.0 0.600 6.098 11.596 22.591 35.587 66.573

(b) Cnoidal and solitary waves with h = 0.30 m

r′/h 2D (θ = 0◦) θ = 7.5◦ θ = 15◦ θ = 30◦ θ = 45◦ 3D (θ = 90◦)

3.0 0.600 0.836 1.071 1.543 2.014 3.427

5.0 0.600 0.993 1.385 2.171 2.956 5.312

7.5 0.600 1.189 1.778 2.956 4.134 7.669

10.0 0.600 1.385 2.171 3.742 5.312 10.025

15.0 0.600 1.778 2.956 5.312 7.669 14.737

22.5 0.600 2.367 4.134 7.669 11.203 21.806

35.0 0.600 3.349 6.098 11.596 17.093 33.587
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Figure C.1: Wave amplitude decay in all investigated geometries for (a) approximate linear
waves, (b) 5th order Stokes waves, (c) 5th order cnoidal waves and (d) 1st order
solitary waves compared to Eq. (12).
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Figure C.2: Lateral wave amplitude decay for (a) approximate linear waves, (b) 5th order
Stokes waves, (c) 5th order cnoidal waves and (d) 1st order solitary waves for all
investigated geometries, compared to Eq. (14).
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D. Lateral spread for approximate linear, cnoidal and solitary waves823

The lateral wave decay for the approximate linear, cnoidal and solitary waves824

is presented here with Fig. D.1 showing the wave heights for the approximate825

linear waves, Fig. D.2 for cnoidal waves and Fig. D.3 for solitary waves. The826

cnoidal waves shown in Fig. D.2, especially for θ > 15◦ (Fig. D.2c-f), show a827

convex shape with slightly higher wave heights near the side walls. Although828

this differs from the trend shown in Fig. 12, similar convex trends were observed829

in the experiments of Heller et al. (2012). The same convex shape is found for830

the solitary wave (Fig. D.3d,e) for θ = 30◦ and θ = 45◦.831
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Figure D.1: Relative wave heights H/h for approximate linear waves in intermediated waters
as a function of the propagation angle γ′ and the relative radial distance r′/h for
(a) 2D (θ = 0◦), (b) θ = 7.5◦, (c) θ = 15◦, (d) θ = 30◦, (e) θ = 45◦ and (f) 3D
(θ = 90◦).
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Figure D.2: Relative wave heights H/h for 5th order cnoidal waves as a function of the prop-
agation angle γ′ and the relative radial distance r′/h for (a) 2D (θ = 0◦), (b)
θ = 7.5◦, (c) θ = 15◦, (d) θ = 30◦, (e) θ = 45◦ and (f) 3D (θ = 90◦).
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Figure D.3: Relative wave heights H/h for 1st order solitary waves as a function of the prop-
agation angle γ′ and the relative radial distance r′/h for (a) 2D (θ = 0◦), (b)
θ = 7.5◦, (c) θ = 15◦, (d) θ = 30◦, (e) θ = 45◦ and (f) 3D (θ = 90◦).
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