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Abstract
Data linkage is increasingly being used to combine data 
from different sources with the aim of identifying and 
bringing together records from separate files, which cor-
respond to the same entities. Usually, data linkage is not a 
trivial procedure and linkage errors, false and missed links, 
are unavoidable. In these cases, standard statistical tech-
niques may produce misleading inference. In this paper, 
we propose a method for secondary linear regression anal-
ysis, where the linked data have to be prepared by someone 
else, and neither the match-key variables nor the unlinked 
records are available to the analyst. We develop also a di-
agnostic test for the assumption of non-informative linkage 
errors, which is required for all existing secondary analysis 
adjustment methods. Our approach provides important ad-
vantages: it relies on the realistic assumption that the prob-
abilities of correct linkage vary across the records but it 
does not assume that one is able to estimate the probability 
of correct linkage for each individual record. Moreover, 
it accommodates in a simple manner the general situation 
where the files are of different sizes and none of them is a 
subset of another. The proposed methodology of adjust-
ment and testing is studied by simulation and applied to 
real data.
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1  |   INTRODUCTION

Computerised record linkage is increasingly common for scientific investigation, policy analysis and com-
mercial development, where one aims to identify and bring together the records (with associated observa-
tions) in separate data files, which correspond to the same entities or individuals (Christen, 2012; Fellegi & 
Sunter, 1969; Harron et al., 2015; Herzog et al., 2007). Industrial-strength applications to large population 
size data sets have become relatively straightforward, for example, when population census data files are 
linked over time to create longitudinal population data sets (Zhang & Campbell, 2012), or population-wide 
administrative registers are linked to create pseudo population spine in the absence of a Central Population 
Register (Owen et al., 2015). In epidemiology and medical studies, record linkage is extensively used in 
many countries to enhance data on clinical performance and patient health outcomes (e.g. Harron et al., 
2016). Record linkage is a necessary step for estimating the size of hidden or hard-to-count populations, 
that is, illegal drug users, drinking drivers, illegal migrants, civil war victims, just to cite few examples of 
studies on human population (van der Heijden et al., 2014; Rosman, 2001; Seybolt et al., 2013); studies 
on wild animal populations provide plenty of application (Creel et al., 2003; Link et al., 2010; McClintock 
et al., 2014; Wright et al., 2009). In our illustrative application in Section 4, we consider linked income 
data from tax registers in two consecutive years, and linear regression of year-on-year incomes for a simple 
analysis of the development at local (municipality) level. Using administrative data here allows for disag-
gregated analysis that otherwise cannot be supported by survey sampling, because of the limited sample 
size and the fact that income may be considered ‘sensitive’, which causes non-response and/or under-re-
porting errors in surveys.

When there does not exist a unique identifier that allows for exact matching, record linkage is 
performed using soft identifiers, the so-called key variables, such as name, age, address, etc. Let each 
pairing of records of the same entity be a match. Let each pairing of records that results from record 
linkage be a link. Insofar as the key variables may be affected by measurement errors, linkage errors 
are unavoidable, so that the links may not be identical to the matches. There are two types of linkage 
error: either the linked records do not actually refer to the same entity, or if one fails to link the records 
that refer to the same entity. Figure 1 provides an illustration using fictive individuals and income 
data, where there are three correct links (solid), two errors of false linkage (dashed) and one of miss-
ing match (long-dashed). The plot shows the ordinary least squares fit (solid line) based on the four 
unknown matches (circle) and that (dashed) based on the five observed links (‘+’ for the two incorrect 
links). Clearly, treating the linked data set as if it were true generally causes bias of the resulting anal-
ysis. For a situation like the one in Figure 1, one needs to deal with at least three problems.

1.	 Different individuals (or entities) can have different probabilities for being incorrectly linked 
or missed (given a match exists), which we refer to as the problem of heterogeneous linkage 
errors.

2.	 There are unmatched individuals in both files that cannot possibly be correctly linked, which we 
refer to as the problem of incomplete match space. In Figure 1 these are Barkes, A. Cooper and 
Jones in file 1, and Brown and H. Cooper in file 2. Complete match space would have been the case 
here had none of these unmatched individuals existed, or if they had only existed in one of the two 
files, say, when file 1 is a sample taken from file 2.

3.	 Whether (Joseph Barnes, J. Barnes) are a match is a mutually exclusive event of whether (Joseph 
Barkes, J. Barnes) are a match, as long as there are no duplicated records in each file, which we 
refer to as the problem of linkage data structure. Due to the linkage data structure, it would, for 
example, be wrong to model (Joseph Barnes, J. Barnes)’s being a match as a Bernoulli event that 
is statistically independent of (Joseph Barkes, J. Barnes)’s being a match.
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1.1  |  Related works

The awareness of misleading inference from standard statistical techniques in the presence of linkage 
errors dates back to Neter et al. (1965). Linear regression is studied by Scheuren and Winkler (1993, 
1997) and Lahiri and Larsen (2005), where the data analyst and the linker are essentially the same. 
Chambers (2009) and Chambers and Diniz da Silva (2020) adopt the perspective of secondary ana-
lysts, who have no access to the key variables and the separate data files, nor the detailed knowledge 
or tools to replicate the actual linkage procedure (Zhang, 2019). Consequently, Chambers (2009) 
adopts a greatly simplifying assumption, referred to as the exchangeable linkage error (ELE) model, 
where there exists a constant false linkage probability and mismatching is completely random in the 
case of false linkage. While the ELE assumption is practically appealing, it cannot properly accommo-
date heterogeneous linkage errors. Moreover, as we shall explain in more details in Section 2, the ELE 
model is only applicable if one treats any incomplete match space as if it were complete. But the false 
linkage error of an unmatched individual (such as Brown in Figure 1) always has probability one, so 
it cannot be the same as that of a matched individual (such as Martinez) who can be linked correctly.

Nearly all the frequentist methods for the analysis of linked data are based on the linkage model 
of the probability that a record in one data set is linked to each of the records in the other. The ELE 
model is the simplest linkage model. Techniques such as regression analysis, estimation equation 
and analysis of contingency tables are studied by Scheuren and Winkler (1993, 1997), Lahiri and 
Larsen (2005), Chambers (2009), Chipperfield et al. (2011), Hof and Zwinderman (2012), Kim and 

F I G U R E  1   Fictive income data 2014–2015. Top: links between the records, including correct link (—–), false 
link (- -  -) and missing match (- -). Bottom: linear regression, solid line based on unknown matches (o), and dashed 
line based on observed links (+)

Dataset 1 Dataset 2

Name Age Address Income 2014
Bill  Adams 28 16 Main Street 30234
Joshua Barnes 16 Main Street 20846
Joseph Barkes 62 16 Main Street 60717
Javier Martinez 36 49 E Applecross Road 31553
Amelia Cooper 35 36 Highfield Road 24782
Bobbie Sabin 22 645 Reading Aev 72048
Gillian Jones 43 645 Reading Aev 63611

Name Age Address Income 2015
William Adams 28 16 Main Street 30462
J Barnes 62 16 Main St 23192

Jilliam Brown 24 123 Norcross Blvd 52305

Hayden Cooper 85 5 Windsor Road 17304
Haveir Marteenez 33 49 Aplecross Raod 31639
Roberta Sabin 123 Norcross Blvd 73081
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Chambers (2012a, b), Chipperfield and Chambers (2015), Han and Lahiri (2018) and Enamorado 
et al. (2019). Again, as we shall explain in Section 2, in reality the linkage model cannot cope with 
incomplete match space, even when the ELE assumption is relaxed to accommodate heterogeneous 
linkage errors. Yet incomplete match space is generally the case when data originate from different 
sources, such as when linking hospital patient records to welfare payment records. It is fundamentally 
different to the situation, where one set of individuals form a sample of the other set (i.e. population), 
where there are no individuals in the sample who cannot possibly be linked correctly.

Bayesian inference is based on the posterior distribution of the unknown set of matched entities. 
Different modelling approaches are used for the linkage key variables that are subjected to measurement 
errors, for example, Tancredi and Liseo (2011) and Stoerts et al. (2017) extend the hit-miss model of 
Copas and Hilton (1990), whereas Sadinle (2014, 2017) models the comparison vector of key variables 
following the Fellegi and Sunter (1969) tradition. See also Gutman et al. (2013) for a modelling approach, 
which includes both variables subjected to measurement errors and others that do not. However, it is 
common that the variables being modelled for linkage are inaccessible to the secondary analyst. Handing 
out multiple posterior sets of matched entities may be impractical, together with the associated variables 
needed for analysis, especially if the analysis requires a large number of posterior draws. Although there 
are improvements in the direction of scalability (Marchant et al., 2019), there still does not exist any re-
ported Bayesian linkage application to files of the size of a population census.

Goldstein et al. (2012) and Gutman et al. (2015) apply multiple imputation techniques to analysis 
of linkage data, which do not handle the problem of linkage data structure like the other Bayesian 
methods above. Restrictions due to linkage data structure are not built into these imputation methods.

1.2  |  Outline of the paper

In this paper, we consider linkage-data linear regression, where one aims to estimate the regression 
coefficients only based on the linked data set. In particular, we adopt the secondary analyst perspec-
tive, where the linked data have to be prepared by someone else; neither the unlinked records nor the 
key variables in the separate files are available to the analyst. We develop a novel frequentist method 
of Pseudo Ordinary Least Squares (OLS), which deals with all the three problems exemplified above 
in Figure 1, that is, heterogeneous linkage errors, incomplete match space and linkage data structure. 
Like all the methods referenced in this Introduction, the key assumption to our approach is that the 
linkage errors are non-informative of the regression model parameters. The assumption will be de-
fined and discussed in Section 2. Moreover, for the first time we shall construct an accompanying 
diagnostic test for the non-informative linkage error assumption, which can provide helpful guidance 
in practice. Application to real income data and simulation studies suggest that the assumption can be 
met at least approximately in many situations, and the Pseudo-OLS estimator is more efficient than 
the existing methods in the cases of incomplete match space that are examined here.

The rest of the paper is organised as follows. In Section 2 we start by introducing the basic nota-
tions and the set-up of linkage-data linear regression. In Section 2.1, we recall the existing frequen-
tist methods and explain carefully why they do not fully meet the challenges of incomplete match 
space. Section 2.2 defines and discusses the non-informative linkage error assumption. Our proposed 
approach is then developed in Sections 2.3, 2.4 and 2.5, including the underlying assumptions and 
the consistency of the resulting regression coefficient estimator. Section 2.6 analyses the bias of the 
existing methods, which arises from treating the incomplete match space as if it were complete. In 
Section 3 we develop a diagnostic test for the non-informative linkage error assumption. An applica-
tion to linked income data from tax registers is given in Section 4, which demonstrates considerable 
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efficiency gains by our method against the existing ones. We carry out a simulation study in Section 
5, which helps us to better appreciate the application results and to explore some other aspects of the 
proposed methodology of adjustment and testing. We conclude with some brief remarks in Section 6.

2  |   METHODS

Let yi = x⊤
i
𝛽 + 𝜖i be a linear regression model, where xi is the p × 1 vector of covariates, and β is 

the parameter of interest. Let data set D1 contain the covariates xi for record i ∈ D1, and let data set 
D2 contain the dependent variable yj for j ∈ D2. We assume that duplicated records have been suc-
cessfully removed from both. Let N1 = |D1 | and N2 = |D2 | be the sizes of D1 and D2. Let DM be the 
set of matched entities between D1 and D2, that is, those ones that can possibly be correctly linked, to 
which the linear regression model applies. Let 

where M = { ( i, i) : i ∈ DM } contains the matches, and U contains all the mismatched pairs of records. 
Let NM = |M | be the size of M. In the ideal case, one would estimate β based on the pairs of records in 
M. However, M is unknown. Suppose a record linkage procedure yields the set of links, between records 
in D∗

1
 from D1 and D∗

2
 from D2, respectively, denoted by 

where N∗ = |D∗
1
| = |D∗

2
| = |M∗ | ≤ min (N1, N2 ) , and M∗ ≠ M whenever linkage errors are 

present. In linkage-data linear regression one aims to estimate β only based on the linked data set, which 
can take on any of the following expressions in this paper: 

Let D∗
1M

= D∗
1
∩ DM be the set of matched entities in D1 that are linked, and D∗

2M
= D∗

2
∩ DM those 

from D2. Let D∗
MM

 be the set of correctly linked entities, where { ( i, i ) : i ∈ D∗
MM

} = M∗ ∩ M. Let 
N∗

MM
= |D∗

MM
| be its size. We have D∗

MM
⊆ D∗

1M
⊆ D∗

1
 and D∗

MM
⊆ D∗

2M
⊆ D∗

2
.

For an illustration using Figure 1, let file 1 contain D1 = {1, 2, 3, 4, 5, 6, 7} and let file 2 con-
tain D2 = {1, 2, 8, 9, 4, 6} , both in the running order from top to bottom, where DM = {1, 2, 4, 6} 
are the matched individuals and {3,5,7,8,9} are the unmatched ones. We have D∗

1
= {1, 3, 4, 5, 6} 

and D∗
1M

= {1, 4, 6} , D∗
2

= {1, 2, 9, 4, 6} and D∗
2M

= {1, 2, 4, 6}. The set of links is 
M∗ = { (1, 1) , (3, 2) , (4, 4) , (5, 9) , (6, 6) }. The correctly linked individuals can only come from DM, 
which are D∗

MM
= {1, 4, 6}.

2.1  |  Two linkage-model estimators for complete match space

Consider the case of complete match space, where N ≡ N1 = N2 = NM. Suppose each record in D1 
is linked to one and only one record in D2, such that (N∗ , D∗

1
, D∗

2
) = (N, D1, D2 ). The linked y-value 

for i ∈ D∗
1
 is y∗

i
=

∑
j∈D ∗

2
aijyj, where aij = 1 if i ∈ D∗

1
 is linked to j ∈ D∗

2
 and aij = 0 otherwise. 

Notice that i and j refer to distinctive records themselves, regardless how they appear or are arranged 
in the two files. False linkage of i ∈ D∗

1
 is the case if aij = 1 for j ∈ D∗

2
 and j ≠ i. However, aij is 

Ω = D1 × D2 = M ∪ U,

M∗ = { ( i, j) : i ∈ D∗
1

, j ∈ D∗
2
} ,

(x, y)M ∗ = { (xi, yj ) : ( i, j ) ∈ M∗ } = { (xi, y∗
i

) : y∗
i
= yj, ( i, j ) ∈ M∗ } .
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unobserved, since the true matches are unknown. What is observed is whether or not i ∈ D∗
1
, that is, re-

cord i ∈ D1 is linked or not, denoted by �i = 1 or �i = 0. In the special setting here, we have �i = 1 
for all i ∈ D1. Denote the conditional expectation of aij given linkage,by 

Let PN×N = [pij ] be the matrix of pij’s. Let XN×p be the covariate matrix associated with D1, and yN×1 the 
dependent vector of D2, in the matched ordering such that the diagonal of P corresponds to M. Let y∗

N×1
 

be the vector of linked y-values, which is a linear transformation of y via [aij ].
Provided the linkage indicators [aij ] are independent of (x, y)M, we have 

Given complete match space, the regression model applies to all the units in D2, so that E(y|X) = Xβ. Thus, 
E(y∗ |X) = Z� for Z = PX. Lahiri and Larsen (2005) propose OLS fit: 

Chambers (2009) notices in addition an unbiased adjusted least squares fit: 

The matrix P does not contain sensitive information and, in theory, could be supplied by the data 
linker. In practice, however, there is currently a lack of consensus on how to estimate the matrix P. See 
discussions of alternative approaches in Lahiri and Larsen (2005), Han and Lahiri (2018), Chipperfield 
and Chambers (2015), and Tuoto (2016). Moreover, these methods require access to the key variables, 
which is only possible for the data linker. Chambers (2009) proposes the ELE model of P, where 

which ignores the problems of heterogeneous linkage errors. Even when the model (1) is relaxed to ac-
commodate heterogenous linkage errors with varying pij’s, the linkage-model approach still cannot cope 
with the problem of incomplete match space. In this paper, we propose linear regression methods which 
makes it unnecessary for the data linker to supply the matrix P.

Again, take the example in Figure 1 and consider Adams (i = 1) and Barkes (i = 3). The expecta-
tion of their linked y-value, respectively, are given as 

provided non-informative linkage errors. Since Adams is a matched individual that can be linked cor-
rectly, one can, for example, let p11 = �1 and p1j = (1 − �1 ) ∕4, for any other j ∈ D∗

2
, given that 

the secondary analyst only sees the five links that are provided. But this would mean to assume that the 
unlinked individual Brown (i = 8) in D2 � D∗

2
 has no chance of being linked with Adams, that is, treating 

the incomplete match space as if it were complete. Next, since Barkes is an unmatched individual, it would 
be totally wrong to act similarly, because there is no record at all in D2 for Barkes. One might consider 
setting p3j ≡ 1∕5 as an assumption of random false linkage. However, without knowing the true matched 

pij = E (aij |�i = 1) = Pr (aij = 1 |�i = 1) .

E(y∗ |X, y ) = Py.

�𝛽LL = (Z⊤Z ) −1Z⊤y∗ .

�𝛽A = (X⊤PX ) −1X⊤y∗

(1)pii = � and pij = (1 − � ) ∕ (N − 1) .

E (y∗
1
|X, y,�1 = 1) = p11y1 + p12y2 + p18y8 + p19y9 + p14y4 + p16y6,

E (y∗
3
|X, y,�3 = 1) = p31y1 + p32y2 + p38y8 + p39y9 + p34y4 + p36y6,
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or unmatched status of Adams and Barkes, one would not know if p1j’s or p3j’s should be assigned. This 
shows that the linkage-model approach cannot cope with incomplete match space.

Thus, in reality, one can only apply the ELE model (1), by assuming that the linked sets (D∗
1

, D∗
2

) 
form complete match space in any case. Clearly, this is not satisfactory conceptually: although one 
may assume y3 = x⊤

3
𝛽 + 𝜖3 for Barkes in D∗

1
, one would not find y3 among y∗ = (y1, y2, y9, y4, y6 )⊤. 

Similarly, although one may assume that there exists x9 for Cooper in D∗
2
, such that y9 = x⊤

9
𝛽 + 𝜖9, 

one would not find x9 in XD ∗
1
. However, as we will discuss later in Section 2.6, doing so may still yield 

useful bias reduction compared to the face-value OLS, given by 

For now we only notice some intuition why this may be the case. Provided the false linkage rate is low, 
(1 − � ) ∕N∗ ≈ (1 − � ) ∕N2 ≈ 0 for large N∗, and the misspecification of pij, where i ≠ j, may not mat-
ter much for the records DM. Moreover, the proportion of unmatched but linked entities is then also low, so 
that there are relatively few rows like that for Barkes here. In short, the effects due to the misspecification 
of the P-matrix may be limited given low false linkage rate, and the linkage-model estimators �̂LL and �̂A 
may still remove most of the bias of the face-value estimator �̂

∗
.

2.2  |  Non-informative linkage error assumption

The linkage model essentially requires one to specify, for any given record i in D1, the probability of 
aij = 1 for all the records j ∈ D2. To accommodate incomplete match space and heterogeneous link-
age errors, we specify the non-informative linkage error (NILE) assumption as follows: 

and, for i ∈ D1 (or D2), the probability of linkage is independent of (X,y), that is, 

Heterogeneous linkage error is the case if �i varies over DM and � i over D1 (or D2). The assumption (2) 
accommodates incomplete match space, assigning zero chance of correct link to any unmatched entities 
in D1 ∖ DM or D2 ∖ DM, without needing to specify pij for i ∈ D1, j ∈ D2 and j ≠ i. It is possible to in-
corporate in � i a sample inclusion probability, as when D1 is a sample from population D2.

We introduce also a slightly weaker NILE assumption as follows, which we use for the consistency 
results later on. Let zi be a well-defined function of xi and yi, such as xiyi for i ∈ DM or zi = xix

⊤
i
 for 

i ∈ D1, where Dz is the corresponding entity set of zi, which is of the size Nz. Let � =
∑

i∈Dz
� i∕Nz, 

z =
∑

i∈Dz
zi∕Nz, and S�z =

∑
i∈Dz

(� i − � ) (zi − z ) ∕Nz. Asymptotic NILE over Dz is the case, 
as Nz = |Dz | →∞, provided (2) and 

that is, � i and zi are empirically uncorrelated over the set Dz. Notice that (X,y) can be treated as constants 
in (4), to be incorporated in a design-based approach to sample survey data, where record linkage is 
needed. The assumption (4) is weaker than (3), since (3) implies (4), but not vice versa.

�𝛽
∗
= (X⊤

D ∗
1

XD ∗
1

) −1X⊤
D ∗

1

y∗ .

(2)
�i = Pr(aii = 1 |�i = 1, X, y ) =

{
Pr(aii = 1|�i = 1) for i ∈ DM

0 for i ∉ DM

(3)� i = Pr(�i = 1 |X, y) = Pr(�i = 1) .

(4)S�z → 0,
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Since regression analysis is conditional on X, other authors using the linkage-model approach as-
sume non-informative linkage error is the case if aij’s are independent of y conditional on X (Chambers, 
2009; Lahiri & Larsen, 2005). While the formulation is parsimonious, in reality it is not weaker than 
the definition here, as we discuss below. Let ci be the linkage key variables, and c ( 1 )

i
 the observed 

value of ci in D1 and c ( 2 )

i
 that in D2. In many applications, ci is not involved in the regression, such as 

when ci consists of Name, Date of Birth and Address. It seems reasonable to assume that the potential 
measurement errors affecting (c

( 1 )

i
, c

( 2 )

i
) are independent of (xi, yi ) given ci. Let C, C ( 1 ) , C ( 2 ) be the 

collections of ci, c
( 1 )

i
, c

( 2 )

i
, respectively, we would then have 

so that (�i,� i ) neither depend on y nor X, either conditional on (C, C ( 1 ) , C ( 2 ) ) or after integrating out 
(C, C ( 1 ) , C ( 2 ) ) with respect to whichever distribution they have.

It is still possible sometimes that a key variable, which necessarily is present in both data sets, 
may be related to the x-variables, but not the y-variable. For example, Age or Country of Birth may 
form part of xi, possibly after some regrouping. Let xic contain these common variables between ci 
and xi. Let xR

i
 be the remaining x-variables, and cR

i
 the remaining key variables. The NILE assumption 

is satisfied provided xic is used as blocking variables in record linkage, such that only records within 
the same block can possibly be linked to each other, because the blocking variables are considered to 
be free of measurement errors. This is typically the case with the variables Age and Country of Birth.

However, it is conceivable that the overlapping xic is not used as a blocking variable. It is currently an 
‘open question’ (Chambers & Kim, 2015) how to deal with informative linkage errors. The problem is com-
plicated not least when the observed values (x

( 1 )

ic
, x

( 2 )

ic
) may differ from the true xic and, depending on the 

method of record linkage, x ( 1 )

ic
 may or may not be equal to x ( 2 )

ic
 given �i = 1. Thus, the value of xic to be used 

in the linkage-data linear regression may be subject to measurement error, whether or not record i is correctly 
linked. In this paper, we shall assume that the potential linkage error due to such key variable covariates is 
negligible compared to the rest key variables cR

i
, so that the NILE assumption remains acceptable. The same 

is needed when non-informativeness is defined conditionally given X.

2.3  |  OLS based on Gold linkage

For the first estimator of β to be considered, we assume the linked set is such that missing match is 
possible but not false links, to be referred to as a Gold linkage procedure. Denote by D∗

G
= D∗

1
= D∗

2
 

the Gold linkage set, which involves a further selection from all the links that otherwise might have 
been considered acceptable. Linkage procedures that allow false links are referred to as sub-Gold 
linkage. The terms Gold and sub-Gold are only used as shorthands of the two record linkage set-
tings, and no emotive connotation is intended. We have �i = Pr(aii = 1 |�i = 1) = 1 by Gold 
linkage. Denote by �̃ the ideal OLS based on (x, y)M, and by �̂G the OLS based on (x, y)D ∗

G
, which 

are, respectively, 

Pr(aii = 1,�i = 1 |X, y, C, C ( 1 ) , C ( 2 ) ) = Pr(aii = 1,�i = 1 |C, C ( 1 ) , C ( 2 ) ) ,

(5)
𝛽̃=

� �
i∈DM

xix
⊤
i

�−1 � �
i∈DM

xiyi

�
,

�𝛽G=

⎛⎜⎜⎝
�

i∈D ∗
G

xix
⊤
i

⎞⎟⎟⎠

−1 ⎛⎜⎜⎝
�

i∈D ∗
G

xiy
∗
i

⎞⎟⎟⎠
=

⎛⎜⎜⎝
�

i∈D ∗
G

xix
⊤
i

⎞⎟⎟⎠

−1 ⎛⎜⎜⎝
�

i∈D ∗
G

xiyi

⎞⎟⎟⎠
.
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Proposition 1  Asymptotically, as NM = |M | →∞, we have �̂G − �̃
P
→ 0, provided

(g1) NILE assumption (2), with �i ≡ 1, and (4) over DM,
(g2) E(N∗

G
∕NM ) → 𝜓 > 0, where N∗

G
= |DG ∗ |.

Under the regression model, the variance of �̂G conditional on XD ∗
G
 is given by 

The convergence can be established directly under (g1) and (g2), where the x- and y-values are treated as 
constants. For any zi = z (xi, yi ) for i ∈ DM, we have 

Thus, �i being an unbiased estimator of � i, we have 
∑

D ∗
G

zi∕NM − � z
P
→ 0, provided (g1). Provided 

(g2), so that � → �, we have 
∑

D ∗
G

zi∕N∗
G
− � z

P
→ 0. The result �̂G − �̃

P
→ 0 follows from replacing 

zi with xix
⊤
i
 and xiyi in both the estimators.

We notice that the consistency of ̂�G given by (5) holds when record linkage follows sampling from 
D1 or D2 or both, provided sampling is non-informative of the x- and y-values in DM. Finally, in the 
case of V(yDM

) = �2INM ×NM
, V( �̂

∗

G
) reduces to (X⊤

D ∗
G

XD ∗
G

) −1𝜎2. The relative efficiency to the ideal �̃ 
converges to 1/ψ, as NM →∞ asymptotically.

2.4  |  Covariance of (xi, y∗

i
)

To estimate β based on sub-Gold linkage, we shall make use of the covariance between xi and its 
linked y-value. The result below holds for any analysis of interest, not just linear regression. For any 
i ∈ D1, we observe xi. At most one link is allowed for each record. For any linked record i ∈ D∗

1
, its 

linked y-value is given by y∗
i
=

∑
j∈D2

aijyj. Provided NILE (2), for any i ∈ DM, we have 

As long as xi and yj are uncorrelated for i ≠ j, we have Cov(xi, y∗
i
|�i = 1, aii = 1) = Cov(xi, yi ) given 

correct linkage, and Cov(xi, y∗
i
|�i = 1, aii = 0) = 0 given false link of any matched entity i ∈ DM, or 

linkage of an unmatched unit i ∈ D1 � DM. It follows that, for any i ∈ D1, 

where �i is given by Eq. (2). That is, false links on average move the observed covariance among the 
linked pairs of records towards zero. Moreover, to account for the effective matched sample size of the 

V( �𝛽
∗

G
) = (X⊤

D ∗
G

XD ∗
G

) −1 (X⊤
D ∗

G

V (yD ∗
G

)XD ∗
G

) (X⊤
D ∗

G

XD ∗
G

) −1.

E

⎛
⎜⎜⎝
�

i∈D ∗
G

zi �X, y

⎞
⎟⎟⎠
= E

� �
i∈DM

�izi �X, y

�
=

�
i∈DM

E (�i �X, y)zi =
�

i∈DM

� izi

Cov(xi, y∗
i
|�i = 1) = Cov(xi, aiiyi |�i = 1) +

∑
j≠ i

Cov(xi, aijyj |�i = 1)

= E (aii |�i = 1)Cov (xi, yi ) +
∑
j≠ i

E (aij |�i = 1)Cov(xi, yj ) .

Cov(xi, y∗
i
|�i = 1) = �iCov (xi, yi ) ,
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empirical covariance between xi and y∗
i
 over the linked set D∗

1
, one only needs to know the total number of 

correct matches in D∗
1
, but not necessarily the individual �i’s. The idea is developed below.

2.5  |  Pseudo-OLS based on sub-Gold linkage

Given any sub-Gold linkage procedure, let the Pseudo-OLS fit of β be given by 

 

where x =
∑

i∈D ∗
1

xi∕N∗ , and y∗
=

∑
i∈D ∗

1
y∗

i
∕N∗ , and Sxy ∗ =

∑
i∈D ∗

1
(xi − x) (y∗

i
− y

∗
) ∕N∗ , 

and �̂ is an estimate of the proportion of correct matches among the actual links. Notice that �̂ can be ob-
tained for the realised D∗

1
, for example, by auditing a sample of the links in it. The expression (6) reveals 

that the Pseudo-OLS is based on a linkage error adjustment of the observed covariance between xi and y∗
i
 

in the linked data set, whilst the expression (7) shows it as a linear adjustment of the naïve face-value OLS 
�𝛽
∗
= (X⊤

D ∗
1

XD ∗
1

) −1X⊤
D ∗

1

y∗.

Example 1  For simple linear regression yi = � + �xi + �i, the Pseudo-OLS is given by 

where �̂P is a multiplicative adjustment of the face-value OLS of the slope away from 0, for 
�𝜆 < 1. This is intuitive because, given a false link is made for i ∈ D∗

1
, the face-value covariance 

(xi − x) (y∗
i
− y

∗
) = (xi − x) (yj − y

∗
) has approximately expectation zero, as long as xi and yj 

are uncorrelated for j ≠ i. So the face-value estimate of the slope is biased towards 0. To adjust for the 
bias, notice that the effective sample size underlying the linked sample covariance Sxy ∗ is just the number 
of true matches among the links, which is estimated by �̂N∗. This is the basic idea underlying the Pseudo-
OLS (6).

2.5.1  |  Consistency conditions for Pseudo-OLS

Given sub-Gold linkage, we have E(N∗
MM

�D∗
1M

) =
∑

i∈D ∗
1M
�i =

∑
i∈D ∗

1
�i = E (N∗

MM
�D∗

1
), be-

cause �i = 0 for the unmatched entities in D∗
1
� D∗

1M
. We have �̂P − �̃

P
→ 0, if the difference be-

tween each term in (6) and its counterpart in �̃ converges to zero in probability. In addition to the 
NILE assumption and the consistency of �̂, regularity conditions (p0.1)–(p0.3) are needed regarding 
the values of (x,y) associated with the unknown entities underlying D1 and D2. Condition (p0.1) states 
that x and y associated with different entities are uncorrelated with each other, such as common for lin-
ear regression given perfectly matched data set. Conditions (p0.2) and (p0.3) mean that the unmatched 

(6)�𝛽P =
(

1

N∗ X⊤
D ∗

1

XD ∗
1

)−1 (
x y

∗
+ �𝜆

−1
Sxy∗

)

(7)= �𝜆
−1

�𝛽
∗
−
(
�𝜆
−1

− 1

)(
1

N∗ X⊤
D ∗

1

XD ∗
1

)−1

x y
∗

,

�
�̂P

�̂P

�
=

⎡⎢⎢⎣
1 x

x
1

N∗

�
i∈D ∗

1
x2

i

⎤⎥⎥⎦

−1 �
y
∗

x y
∗
+ �̂

−1
Sxy ∗

�

⇒ �̂P= �̂
−1 Sxy ∗

S2
x

= �̂
−1

∑
i∈D ∗

1
(xi − x) (y∗

i
− y

∗
)

∑
i∈D ∗

1
(xi − x)2

and �̂P = y
∗
− x �̂P,
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entities do not have pathological x or y-values, such as outliers of arbitrary magnitude. All the condi-
tions are given below in Proposition 2, the proof of which is given in Appendix A.

Proposition 2  Asymptotically, as NM = |M | →∞, we have �̂P − �̃
P
→ 0, provided

(p0.1) Cov(xi, yj ) = 0 for j  ≠  i, i ∈ D1 and j ∈ D2,
(p0.2) 

∑
i∈DM

xi∕NM −
∑

i∈D1
xi∕N1 → 0,

(p0.3) 
∑

j∈DM
yj∕NM −

∑
j∈D2

yj∕N2 → 0,
(p1) NILE assumption (2) and (4), where (4) holds over D1 as well as D2,
(p2) E(N∗ ) →∞, and E(N∗

MM
∕N∗ ) → 𝜆 > 0, and �̂

P
→ �.

2.5.2  |  Variance estimation

It is impractical to allow heterogeneous variance of �i, because we do not know the x-values in the case 
of a false link. We shall, therefore, assume V(yi ) = �2 for all i ∈ D2. Provided NILE, it is natural to 
condition on the realised N∗. Given false link of i ∈ D∗

1
, we have y∗

i
= yj, for some j ∈ D2 and j ≠ i, 

where the record j may or may not belong to DM. In the case of j ∉ DM, we shall assume that there 
nevertheless exists a vector xj under the regression model, even though j ∉ D1. Thus, we shall condi-
tion on (XD1

, XD2 �DM
, N∗ ) throughout the following. We have 

Now, given the linkage matrix A = [aij ], where at most one link is allowed for a record, y∗
i

= yj is con-
ditionally independent of y∗

k
= yl for i ≠ k, since j ≠ l regardless if (i,j) and (k,l) are true matches or not. 

Thus, we have 

since Cov( y
∗

, y∗
i
− y

∗ |A ) = 0, hence Cov( y
∗

, �̂
−1

Sxy ∗ |A) = 0 and Cov( y
∗

, �̂
−1

Sxy ∗ ) = 0. By 
working out V( x y

∗
) and V( �̂

−1
Sxy ∗ )—see Appendix B for details, we obtain 

where 

Clearly, linkage errors cause a loss of efficiency, since the first term on the right-hand side of (8) 
would have been the variance had all the links been true matches and adjustment not needed. The extra 
variance depends on Δ, which has two contributing terms: one due to the smaller effective sample size 
N∗

MM
 compared to the face-value sample size N∗, the other due to the estimation uncertainty of the 

adjustment factor ̂�. Compared to ̂�G by Gold linkage, the first term of (8) is smaller than V( �̂G ), since 
D∗

G
⊂ D∗

1
. However, the extra uncertainty in (8) due to Δ may still possibly cause loss of efficiency of 

sub-Gold linkage compared to Gold linkage. The matter is explored empirically in Section 5.

V( �𝛽P ) = (
1

N∗ X⊤
D ∗

1

XD ∗
1

) −1V( x y
∗
+ �𝜆

−1
Sxy ∗ ) (

1

N∗ X⊤
D ∗

1

XD ∗
1

) −1.

V( x y
∗
+ �̂

−1
Sxy ∗ ) = V ( x y

∗
) + V ( �̂

−1
Sxy ∗ ) ,

(8)V( �𝛽P ) ≈ (X⊤
D ∗

1

XD ∗
1

) −1𝜎2 + (
1

N∗ X⊤
D ∗

1

XD ∗
1

) −1Δ (
1

N∗ X⊤
D ∗

1

XD ∗
1

) −1,

Sxx =
1

N∗

∑
i∈D ∗

1

(xi − x) (xi − x )⊤ and Δ = (
1

𝜆2
− 1)

𝜎2

N∗ Sxx + V ( �𝜆 )Sxx𝛽𝛽
⊤S⊤

xx
.
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For plug-in variance estimation, we need an estimate of �2, in addition to �̂P and �̂. Applying the 
standard formula of OLS variance estimator to the linkage data, we obtain 

as NM →∞, where ji ∈ D2 is linked to i ∈ D1, and (xi − xji
) = 0 with probability �i. The face-value 

estimator of �2 has, therefore, an upwards bias asymptotically, which is bounded by the overall false link-
age rate 1 − λ, and can be adjusted accordingly.

2.6  |  Asymptotic bias when using the ELE model

The ELE model treats incomplete match space as if it were complete. To examine the resulting bias, 
consider �𝛽A = (X⊤

D ∗
1

P(𝜆 )XD ∗
1

) −1X⊤
D ∗

1

y∗, where 

An estimate of the overall true match rate among the links is used as ̂�. By a Lemma due to Miller (1981): 
(G + H ) −1 = G−1 + (1 + g) −1G−1HG−1, where g = tr (HG−1 ), we can write 

Let x⊤ (
1

N
X⊤

D ∗
1

XD ∗
1

)
−1 x

P
→ 𝜅x, as N∗

→∞, we have 

Let ( 1

N ∗ X⊤
D ∗

1

XD ∗
1

) −1 x x
⊤
→ 𝜁 , as N∗

→∞. Provided consistent Pseudo-OLS, we have 

which is the asymptotic bias of �̂A. In cases �x ≈ 1 and λ ≈ 1, the asymptotic bias is of the magnitude 
(1 − � )�E ( �̂

∗
− � ), which is bounded by the false linkage rate 1 − λ. Then, direct application of the 

ELE-model estimator can nevertheless remove almost all the bias of the face-value OLS.

Example 2  Consider yi = � + �xi + �i. Let 
∑

i∈D ∗
1

x∗
i
∕N∗

P
→ �x and 

∑
i∈D ∗

1
(x∗

i
)2∕N∗

P
→ �x. 

We have

S∗
ee
=

1

N∗ − p

∑
i∈D ∗

1

(y∗
i
− �𝛽

⊤

P
xi )

2 =
1

N∗ − p

∑
i∈D ∗

1

[ (yji
− �𝛽

⊤

P
xji

) − �𝛽
⊤

P
(xi − xji

) ]2,

E (S∗
ee

)
P
→ 𝜎2 + 2(1 − 𝜆 )𝛽⊤E(Sxx )𝛽,

P (𝜆 ) = 𝜆IN ∗ ×N ∗ + 𝜆N ∗ (11⊤ − I )N ∗ ×N ∗ , 𝜆N ∗ =
1 − 𝜆

N∗ − 1
,

X⊤
D ∗

1

P(𝜆 )XD ∗
1
= G + H, G = 𝜆X⊤

D ∗
1

XD ∗
1

, H = 𝜆N ∗ N∗ (N∗ x x
⊤
−

1

N∗ X⊤
D ∗

1

XD ∗
1

) .

�𝛽A (𝜆) =
1

𝜆
�𝛽
∗
−

𝜆N ∗ N

𝜆2 (1 + g)
(X⊤

D ∗
1

XD ∗
1

) −1 (N∗ x x
⊤
−

1

N∗ X⊤
D ∗

1

XD ∗
1

) �𝛽
∗

.

g= tr (
𝜆N ∗ N∗

𝜆
(N∗ x x

⊤
−

1

N∗ X⊤
D ∗

1

XD ∗
1

) (X⊤
D ∗

1

XD ∗
1

) −1 )

=
𝜆N ∗ N∗

𝜆
( x

⊤
(

1

N∗ X⊤
D ∗

1

XD ∗
1

) −1 x −
p

N∗ )
P
→

1 − 𝜆

𝜆
𝜅x.

�̂A − �̂P

P
→

1 − �

�
�� −

1 − �

�(�x + (1 − �x )�)
� (� + E( �̂

∗
− � ) ) ,
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It follows that the asymptotic bias of �̂A based on the ELE model is given by 

In other words, the slope estimator is unbiased asymptotically, as N∗
→∞; the bias of the intercept esti-

mator is negligible as well, for example, it is about 2% of the bias of the face-value OLS if the overall false 
linkage rate is 2%, despite heterogeneous linkage errors. This is, thus, a favourable setting, under which 
the estimator can be robust against departures from ELE model assumptions.

3  |   A DIAGNOSTIC TEST FOR NILE

In one form or another, assumptions of non-informative linkage errors are required in all the existing 
least squares methods. For �̂G and �̂P developed above, it is natural to ask if one can test whether the 
NILE assumption is acceptable in a given application. Provided both the estimators are consistent, we 
have �̂G − �̂P

P
→ 0, as N∗

G
→∞, which suggests the following diagnostic test statistic 

for H0: NILE (g1) and (p1) vs. H1: not both (g1) and (p1). Provided asymptotic normal distribution of 
�̂G − �̂P, as NM = |M | →∞, t follows the �2

p
-distribution. The test (9) bears some resemblance to that of 

Hausman (1978). However, neither �̂G nor �̂P is consistent under H1, and neither of them is fully efficient 
under H0. Thus, the power of the test can be limited compared to that of Hausman (1978), and we need to 
derive the variance V( �̂G − �̂P ) directly.

Let D∗
G

 and D∗
P
 be the set of linked entities from D1 under Gold and sub-Gold linkage, respectively. 

The variance V( �̂P ) is given by (8) on replacing D∗
1
 with D∗

P
, whereas V( �𝛽G ) = (X⊤

D ∗
G

XD ∗
G

) −1𝜎2. As 
shown in Appendix C, the covariance Cov( �̂G, �̂P ) can be given by 

where HG = (
1

N ∗
G

∑
i∈D ∗

G
xix

⊤
i

) −1 and xG =
1

N ∗
G

∑
i∈D ∗

G
xi, and HP = (

1

N ∗
P

∑
i∈D ∗

P
xix

⊤
i

) −1 and 
xP =

1

N ∗
P

∑
i∈D ∗

P
xi. Notice that, in case λ ≈ 1, the covariance is dominated by the first term, and 

the difference between the first terms of (10) and (8) is positive definite since 1/λ > 1. Moreover, 
�N∗

P
 is the asymptotic expectation of the number of true matches by sub-Gold linkage, which 

can easily be larger than N∗
G

 unless all the additional links are false. One may, therefore, expect 

�x =
[

1 �x

][ 1 �x

�x �x

]−1 [
1

�x

]
=

�x − �2
x

�x − �2
x

= 1.

E( �̂A − � ) = −
1 − �

�
�E ( �̂

∗
− � ) = −

1 − �

�

[
[ 1 �x ]E ( �̂

∗
− � )

0

]
,

� =

[
1 �x

�x �x

]−1 [
1 �x

�x �
2
x

]
=

[
1 �x

0 0

]
.

(9)t = ( �𝛽G − �𝛽P )⊤V ( �𝛽G − �𝛽P ) −1 ( �𝛽G − �𝛽P ) ∼ 𝜒2
p

Cov( �𝛽G, �𝛽P ) ≈
𝜎2

𝜆N∗
P

HG ( xG x
⊤

G
+ S2

G
)HP + (1 −

1

𝜆
)
𝜎2

N∗
P

HG xG x
⊤

P
HP

=
𝜎2

𝜆N∗
P

HP − (
1

𝜆
− 1)

𝜎2

N∗
P

HG xG x
⊤

P
HP,
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positive definite V( �̂G ) − Cov( �̂G, �̂P ), since HP − HG

P
→ 0 provided the consistency conditions 

for �̂G and �̂P.

4  |   AN APPLICATION TO INCOME DATA

The data of this application refer to administrative tax registers of income declarations in 2014 and 
2015. The linkage procedure aims to connect incomes in the two years related to the same individuals. 
The linkage key variables are generally of good quality, though in some cases they can be missing or 
affected by errors. The linkage is carried out at the Italian National Institute of Statistics, and the false 
linkage rate is assessed to be between 1.18% and 3.76%. No information about the linkage errors at the 
individual level are available to us. We consider a simple linear regression model, where the income 
in 2014 is treated as x and that in 2015 as y. The analysis here is concerned with the data from a small 
locality, where there are 791 individuals in the tax register in 2014 and 771 in 2015. The linked set 
contains 711 individuals. A scatter plot of the associated (x, y)M ∗ is given in Figure 2. The applica-
tion illustrates an advantage of using administrative data, which allows one to carry out analysis at a 
detailed level that cannot be supported by sample surveys otherwise.

For this linkage data set, we calculate the face-value OLS �̂
∗
, the estimators �̂LL and �̂A under the 

ELEmodel, as well as the Pseudo-OLS �̂P that allows for heterogeneous linkage errors and incomplete 
match space. Without information about the false linkage probabilities of the individual links, we can-
not further select a Gold linkage set D∗

G
, or implement the diagnostic test (9). The Gold linkage OLS 

�̂G and the diagnostic test (9) will be investigated in a simulation study in Section 5.
Table 1 shows the estimated regression coefficients and their associated confidence inter-

vals. The face-value OLS suggests that the regression model can explain most of the variation 
in the dependent variable (R2 = 0.958). In particular, the relative standard error of the slope 

F I G U R E  2   Scatter plot of linked income data in the application
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estimator is only 0.007, which is of the same magnitude as the aforementioned false linkage 
rates. It follows that the bias due to the false links is not a negligible source of error, compared 
to the variance of the slope estimator, so that appropriate adjustment of the linkage errors is 
important in this case.

Fixing the overall false linkage rate 1 − λ either at 1.18% or 3.76%, the other estimates and their 
associated confidence intervals are given in Table 1. It can be seen that �̂A deviates least from the 
face-value OLS, for both values of λ; whereas �̂LL and �̂P are close to each other. However, the Pseudo 
OLS �̂P is apparently much more efficient compared to the ELE-model estimators. For example, at 
1 − λ = 1.18%, the width of the confidence interval is 0.067 for the slope estimator by �̂LL, whereas 
it is 0.021 by �̂P, according to which the variance ratio between the two is only about 10%. The effi-
ciency gain is somewhat greater at 1−λ = 3.76%.

A reason that the Pseudo-OLS can be more efficient than the ELE-model estimators is that the 
linkage error adjustment affects only the linked sample covariance Sxy ∗, but not the marginal sample 
quantities such as the means of x and y or the matrix X⊤

D ∗
1

XD ∗
1
. Of course, there is the possibility that the 

comparison here may be affected by the quality of variance estimation, so that the relative efficiency 
is not accurately assessed. We shall examine this point in the simulation study in Section 5.

The variance formula (8) allows one to incorporate the estimation uncertainty in �̂, which is 
not available to the existing ELE-model estimators in closed-form expression. Since we are not 
provided an estimate of V( �̂), we proceed in a practical manner as follows. Treating the reported 
range of false linkage rate as if it were a 95% normality-based confidence interval for 1 − λ, we 
obtain the centre point 1 − �̂ = 2.47% as an estimate of 1 − λ, and we use the quarter length 
0.645% as an estimate of SE ( �̂ ). Applying �̂P with this �̂ and its associated estimate of V( �̂), we 
obtain the regression coefficient estimates -86.099 and 1.008 for the intercept and slope, respec-
tively, with associated confidence interval [−258.478, 86.279] for the intercept and [0.991, 1.024] 
for the slope. As can be expected, the point estimates are between the corresponding ones reported 
in Table 1. The width of the confidence interval for the slope is now 0.033, compared to 0.031 
when 1−λ is fixed at 3.76% and 0.021 when 1−λ is fixed at 1.18%. Thus, it would be misleading if 
the inference does not take into account the uncertainty due to the estimation of λ. This is another 
advantage of the Pseudo-OLS method.

T A B L E  1   Estimates of year-on-year income intercept and slope, with associated confidence intervals

Estimator Intercept Confidence interval Slope Confidence interval

False linkage rate fixed at 1.18%

�̂
∗ 90.644 [−114.217, 295.505] 0.983 [0.968, 0.998]

�̂
LL

7.191 [−242.640, 257.023] 0.994 [0.961, 1.028]

�̂
A

52.242 [−139.454, 243.938] 0.983 [0.964, 1.002]

�̂
P

7.310 [−129.794, 144.414] 0.994 [0.984, 1.005]

False linkage rate fixed at 3.76%

�̂
∗ 90.644 [−114.217, 295.505] 0.983 [0.968, 0.998]

�̂
LL

−182.411 [−598.275, 233.451] 1.021 [0.960, 1.082]

�̂
A

−125.782 [−407.104, 155.541] 1.007 [0.976, 1.037]

�̂
P

−182.012 [−330.779, −33.246] 1.021 [1.001, 1.032]
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5  |   A SIMULATION STUDY

We have four main objectives for this simulation study. First, we would like to be reassured that the 
apparent efficiency gains of the proposed Pseudo-OLS is not misleading. Second, a related question 
is the quality of associated variance estimation. Third, since one does not know to what extent the as-
sumption of exchangeable linkage errors is violated in the application, confirmation can be obtained 
by simulation that the Pseudo-OLS estimator does hold in the presence of heterogeneous linkage 
errors. Four, we would like to investigate the performance of the diagnostic test for the NILE assump-
tion. To the end of these objectives, we devise three scenarios below in Section 5.1.

5.1  |  Set-up

5.1.1  |  Scenario I: Real-life linkage and regression data

This scenario addresses all the four objectives.
The ESSnet-DI is a Eurostat project on data integration from 2009 to 2011. We use the data dis-

seminated by Essnet DI – McLeod, Heasman and Forbes (2011), which are freely available online. 
The data set comprises over 26,000 individuals. It contains synthetic linkage key variables (names, 
dates of birth, addresses) for each individual. The key variables are distorted by missing values and 
typos in several different ways, which imitate real-life errors in these variables that can cause potential 
linkage errors. One can observe the true linkage errors by comparing the links with the true matches 
that are known.

For real-life regression data, we attach anonymised income data to each individual in the ESSnet-DI 
population, which are drawn randomly and with replacement from the linked tax data, but without 
being limited to the locality (in Section 4) with only 711 linked records. A scatter plot of the synthetic 
population income data is given in Figure 3. It can be seen that a simple linear regression model re-
mains plausible for the simulated population values. However, there are now clearly outliers to the 
regression model, drawn from outside the data in the application (Figure 2). We do not remove the 
outliers, since it would be interesting to explore how they might affect the results.

To simulate repeated linkage and regression analysis, each time we draw first a sample of 1000 
individuals from this fixed synthetic population. We then break up the sample into two separate sets 
D1 and D2, where D1 is selected from the 1000 individuals by Bernoulli sampling with probability 
�1 = 0.93, and D2 by separate Bernoulli sampling with probability �2 = 0.92. This creates an in-
complete match space, where the expected number of matched individuals between D1 and D2 is 
1000�1�2 ≈ 856.

Using a chosen set of key variables, probabilistic linkage by the approach of Fellegi and Sunter 
(1969) is implemented using the software Relais (2015). Over 100 simulations, the average match rate 
N∗

MM
∕NM is 83.3% and the false linkage rate 1 − N∗

MM
∕N∗ is 2.016%, that is, the sub-Gold linkage 

setting. For Gold linkage, we use a different set of key variables with fewer errors. Over 100 simula-
tions, the average match rate is reduced to about 50%, while the false linkage is reduced to 0.046%. 
The linkage errors are heterogeneous across the different individuals.

We apply �̂G by (5) to each Gold linkage set. For each sub-Gold linkage set, we obtain �̂P by (6), 
as well as the ELE-model estimators �̂LL and �̂A. For these adjustments we use the true overall false 
linkage rate λ in each linked set. We do not simulate additional estimation of λ, as it is not in the focus 
of this paper and it would affect all the adjustment methods equally. Finally, we apply the diagnostic 
test (9) based on �̂G and �̂P.
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5.1.2  |  Scenario II: Real-life linkage data, artificial regression data

We expect Scenario-I can help us to better understand the application results in Section 4. Insofar as 
the fixed synthetic population of income data may have certain peculiar features that complicate the 
interpretation, we generate additional artificial regression data, reusing the simple linear regression 
setting of Chambers (2009), where 

Since the linear regression model holds, while the linkage errors remain uncontrolled and realistic, in 
Scenario-II we are able to isolate the effects of linkage errors on the estimators. The simulation of repeated 
linkage and regression analysis is the same as under Scenario-I, except that for each sample of 1000 in-
dividuals, we now simulate (xi, yi ), for i = 1, ..., 1000, independently according to the specific regression 
model above. Regression analysis is then based on these (x,y)-values instead of the real-life income data.

5.1.3  |  Scenario III: Artificial linkage and regression data

To confirm that �̂G and �̂P can deal with heterogeneous linkage errors under the NILE assumption, we 
simulate artificial linkage data by reusing the setting of Chambers (2009). For each sample of 1000 
individuals, we first simulate artificial (x,y)-values as in Scenario-II. Next, the 1000 individuals are 
randomly divided into three blocks. The first block contains 75% of the individuals, where �i ≡ 1, so 
that these can be linked perfectly. The second block contains 15% individuals, where �i ≡ 0.95, so 
that the linkage results would be fairly good for them. The third block contains the remaining 10% 
individuals, where �i ≡ 0.75, and the linkage results would be rather poor for them. Moreover, we do 
not simulate subsampling of D1 and D2, so that we have complete match space by construction. The 

yi = 1 + 5xi + �i, xi ∼ Uniform(0, 1) and �i ∼ N (0, 1) .

F I G U R E  3   Scatter plot of synthetic income data in the ESSnet-DI population
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linked set can now be simulated directly, without actually implementing any linkage procedure. Had 
we broken up the sample into D1 and D2, dividing the 1000 records in three blocks, and linked every 
record in D1 to one in D2 from the same block, the linkage errors would have been on expectation the 
same as we have just specified.

This yields an overall false linkage rate that equals to 0.9675, which is quite close to that in 
Scenario-I (and II). Given each simulated linkage set, we calculate �̂P using a single adjustment factor 
λ = 0.9675, and the ELE-model estimators given block-diagonal P-matrix with known λ-values. We 
can see how well �̂P handles heterogenous linkage errors by comparing it to the benchmark ELE-
model estimators. Finally, we simply calculate �̂G based on the first-block of links.

5.2  |  Results of regression coefficient estimators

Figure 4 shows the Percentage Relative Errors (PREs) of the different regression coefficient esti-
mates. For each linked set, the ‘error’ of an estimate is calculated as its difference to the correspond-
ing true OLS estimate �̃, based on the matched individuals DM as when linkage is unnecessary. Over 

F I G U R E  4   Boxplot of PREs of intercept and slope estimates: Scenario-I (top), II (middle), III (bottom); 
estimator �̂LL (LL), �̂A (A), �̂P (P) and �̂G (G); coverage of 95% confidence interval (over top margin)
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the top margin of each box-plot, we report the actual coverage rates of the nominal 95% confidence 
intervals using the associated variance estimators. Table 2 provides the empirical standard error (SE) 
of each estimator over the 100 simulations, and the corresponding average of the 100 SE estimates.

Consider the results under Scenario-I, which are immediately relevant to those in Section 4. First, 
as expected, the presence of false links weakens the observed correlation between xi and y∗

i
. Hence, 

the face-value estimate of the slope is negatively biased when the true slope is positive, and the inter-
cept estimate is biased in the opposite direction. It can be seen in Figure 4 that all the adjusted esti-
mators are less biased than the face-value OLS, where �̂LL and �̂P have the most similar expectations, 
which is compatible with the application results in Table 1, where these two estimators are closest to 
each other. Moreover, it illustrates that in case of heterogeneous but low false linkage probabilities, the 
ELE-model estimators can nevertheless remove most of the bias, as discussed in Section 2.6.

Next, according to the SEs in Table 2, the Pseudo-OLS is the most efficient of all the linkage-data 
estimators, including the face-value OLS. The relative efficiency to the ELE-model estimators is com-
parable to that estimated in Table 1. This suggests that the gains are genuine in the application. Since 
�̂P is calculated using λ instead of its estimate here, the efficiency gains against �̂G are somewhat over-
stated. Nevertheless, generally one may expect �̂P to be more efficient than �̂G, as long as the effective 
sample size N∗

MM
 is much larger based on sub-Gold linkage (e.g. with about 2% false linkage rate here) 

than based on Gold linkage (e.g. with about 50% missing match rate here).
Meanwhile, the means of the SE estimators (Table 2) over the 100 simulations show that all the 

variances are over-estimated considerably, including the true OLS, and the coverage of the 95% con-
fidence intervals are very erratic. This is mainly caused by the regression model outliers in this case, 
as noticed earlier for Figure 3. Thus, these results serve well as a reminder that, in linkage-data re-
gression, one must not forget about the problems that can also cause troubles in the absence of linkage 
errors. Notice that variance over-estimation is not a problem for the application results in Table 1, 
where critical outliers are absent from the linked data set (Figure 2).

When it comes to Scenario-II, we can see in Figure 4 that all the adjusted estimators are nearly 
unbiased, as can be expected given the results under Scenario-I. The Pseudo-OLS remains the most 

T A B L E  2   Results for variance estimation over 100 simulations

Scenario True Naïve �̂
LL

�̂
A

�̂
P

�̂
G

Intercept

I Standard error 386.1 457.1 1222.7 575.8 388.9 545.1

SE estimator 2431.7 2604.5 2645.2 1256.1 2645.2 3233.6

II Standard error 0.069 0.077 0.079 0.079 0.075 0.098

SE estimator 0.078 0.086 0.086 0.087 0.086 0.098

III Standard error 0.043 0.042 0.043 0.044 0.043 0.051

SE estimator 0.045 0.048 0.048 0.047 0.046 0.052

Slope

I Standard error 0.012 0.015 0.052 0.022 0.013 0.018

SE estimator 0.113 0.118 0.120 0.057 0.120 0.149

II Standard error 0.119 0.134 0.138 0.138 0.131 0.171

SE estimator 0.131 0.149 0.150 0.151 0.150 0.160

III Standard error 0.075 0.074 0.075 0.074 0.077 0.081

SE estimator 0.078 0.083 0.084 0.083 0.080 0.089
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efficient linkage-data method. The results of variance estimation appear acceptable for all the estima-
tors, now that outlier-contaminated income data are replaced by true regression data. While there still 
exists some slight over-estimation of the variance, it is not related to the adjustment methods, because 
the amount of over-estimation for them is comparable to that for the true OLS. The coverage of the 
confidence interval derived from the face-value OLS is improved compared to that in Scenario-I, be-
cause its bias is relatively small here. Nevertheless, bias adjustment is preferable.

The ELE model assumptions of ̂�LL and ̂�A are fully satisfied in Scenario-III. Likewise for ̂�G under 
the NILE assumption. Despite �̂P uses only an overall false linkage rate, Figure 4 shows clearly that it 
is as effective as the benchmark estimators at reducing the bias due to the linkage errors. This confirms 
that the Pseudo-OLS can accommodate heterogeneous linkage errors in a simple manner, provided the 
NILE assumption is satisfied. The Pseudo-OLS is no longer the most efficient method here, which is 
not surprising given that the assumptions of the other estimators are exactly satisfied. The principal 
advantages of the Pseudo-OLS lies in real-life situations, where the match space is incomplete and the 
secondary analyst has no detailed knowledge of the record linkage procedure, such as the three blocks 
of linkage errors in this case. The results of variance estimation are acceptable for all the estimators. 
Due to increased bias relative to its variance, the face-value OLS again leads to low coverage here. The 
coverages rates derived from ( �̂LL, �̂A, �̂P, �̂G ) deviate from the nominal 95% level by one or two 
percentage points in Figure 4. It is reassuring to notice that this is simply due to the Monte Carlo error 
of the 100 simulations, because all the coverage rates converge to 95% as we increase the number of 
simulations to 1000, now that the assumptions of the benchmark estimators are satisfied here.

5.3  |  Results of diagnostic test

The results of the diagnostic test for the NILE assumption are given in Figure 5. Under each scenario, 
the histogram of the test statistic values over 100 simulations are compared to the �2 density function 
with 2 degrees of freedom, which is the distribution under the null hypothesis. At the 5% significance 
level, the rejection rate over the 100 simulations is 0.63 under Scenario-I, 0.06 under Scenario-II and 
0.02 under Scenario-III.

Take first Scenario-III, where the set-up satisfies both the NILE assumptions and the regression 
model, the histogram of the test statistic values agrees reasonably well with its theoretical null distri-
bution. Provided the relevant NILE assumptions, the higher missing-match rate of Gold linkage and 
the heterogenous linkage errors of sub-Gold linkage on expectation do not lead to unbalanced selec-
tion of the linked entities under either. Over the 100 simulations, the rejection rate of the diagnostic 
test at the 5%-level is 0.02, which appears to agree with the actual performance of �̂P and �̂G.

Next, the set-up of Scenario-II satisfies the regression model assumptions, but it does not neces-
sarily fulfil the NILE assumption a priori, since the errors of the key variables had been generated in 
ways which imitate real-life idiosyncrasies that are beyond our control. However, over the 100 simu-
lations, the empirical SE of �̂G − �̂P are 0.069 and 0.130 for the difference of intercept and slope, re-
spectively, whereas the average of the corresponding SE estimates are 0.066 and 0.116. The histogram 
of the test statistic values agrees fairly well with its theoretical null distribution. The rejection rate of 
the 5%-level test is 0.06, which again seems reasonable in light of the actual performance of �̂P and 
�̂G in Figure 4. These are evidences suggesting that the relevant NILE assumptions can be met at least 
approximately in many practical situations.

Meanwhile, the test performance deteriorates under Scenario-I with real-life data for regression. 
For instance, the histogram of the test statistic values does not agree at all with the theoretical null 
distribution. The rejection rate of the 5%-level test is 0.63, which is unnecessarily high in light of the 
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bias reduction that can be achieved by �̂P and �̂G here. The imbalance of regression outliers between 
the two linkage sets causes severe under-estimation of V( �̂G − �̂P ). For example, the empirical SE 
is 2452.5 for the difference in intercept estimates and 0.113 for the slope difference, but the average 
of the corresponding SE estimates is only 446.7 and 0.015, respectively. The severely under-estimated 
denominator of the test statistic (9) leads then to the high rejection rate over the simulations.

For confirmation we carried out additional simulations, where we simulated the 3-block ELE 
linkage errors, while retaining the real-life income data for regression. The results are shown in Figure 
5, designated as Scenario-II∗, which are similar to those under Scenario-II and III. The empirical SE 
is 1380.8 for the intercept difference and 0.061 for the slope, while the average of SE estimates is 
1721.1 and 0.072, respectively, despite the presence of regression outliers. The rejection rate of the 
5%-level test is now 0.04, which would be more helpful in practice. The cause of these results lies 

F I G U R E  5   Diagnostic test for NILE assumption under Scenario-I to III: �2

2
 density function (solid) with 95

th 
percentile (vertical dashed), histogram of observed test values over 100 simulations. Additional Scenario-II∗ with 
rejection ratio 0.04 over 100 simulations
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in the different set-ups of Scenario-I and II∗. Although regression outliers are present in both cases, 
the linkage errors are randomly ‘assigned’ to the sample units under Scenario-II∗, such that they may 
affect ‘evenly’ �̂P and �̂G over repeated simulations. Under Scenario-I, however, the linkage key vari-
ables are fixed for each individual, such that, for example, regression outliers affect only ̂�P but not ̂�G, 
provided the outliers in the population happen to be associated only with sub-Gold linkage individuals 
but none of the Gold linkage individuals. Such peculiarities in the fixed population of regression and 
key variables can affect the simulation results unexpectedly.

Finally, taking altogether the test results from the simulation study here, it would seem reasonable 
that one should not interpret the p-value of the diagnostic test too stringently in practice, for example, 
despite the p-value is only 0.05 or even slightly lower in a given situation, the estimators assuming 
non-informative linkage errors are still likely be very helpful.

6  |   CONCLUDING REMARKS

Heterogenous linkage errors and incomplete match space are likely to prevail in most applications of 
record linkage. We propose a practical approach to linkage-data regression for secondary analysis, 
which can accommodate both in a simple manner, provided suitable NILE assumptions of the link-
age errors. Application and simulation suggest that the relevant assumptions can be met at least ap-
proximately in many situations. In the simulation studies where the match space is incomplete, the 
proposed Pseudo-OLS method is more efficient than the existing adjustment methods that operate 
under the approximate assumption of complete match space. Moreover, we construct for the first time 
an accompanying diagnostic test for the NILE assumptions, which can provide helpful guidance in 
practice. Regarding future development, we believe additional research is needed for robust variance 
estimation, which can better cope with heterogeneous regression errors and potential outliers. As 
another current research topic we are developing an extension of our approach to categorical linkage-
data analysis.
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APPENDIX A

PROOF OF PROPOSITION 2
Provided (p1), that is, (4) over D1, we have 

∑
i∈D ∗

1
xix

⊤
i
∕N∗ −

∑
i∈D1

xix
⊤
i
∕N1

P
→ 0, by the same 

argument as in Section 2.3, where zi = xix
⊤
i
 for i ∈ D1. Provided (p0.2) in addition, we have ∑

i∈D ∗
1

xix
⊤
i
∕N∗ −

∑
i∈DM

xix
⊤
i
∕NM

P
→ 0. Likewise, 

∑
i∈D ∗

1
xi∕N∗ −

∑
i∈DM

xi∕NM

P
→ 0, and ∑

i∈D ∗
1

y∗
i
∕N∗ −

∑
i∈DM

yi∕NM

P
→ 0 by (p1), that is, (4) over D2, and (p0.3). Notice that the condi-

tions (p0.2) and (p0.3) are needed to ensure that false links of the unmatched records do not cause 
asymptotic bias to the ‘marginal’ statistics, that is, 

∑
i∈D ∗

1
xix

⊤
i
∕N∗ and 

∑
i∈D ∗

1
xi∕N∗ based on D1 

and 
∑

i∈D ∗
1

y∗
i
∕N∗ based on D2. Finally, provided (p1), that is, (2) over D∗

1
, and (p0.1), we have, as 

discussed in Section 2.4, 

Let zi = Cov (xi, yi ) for i ∈ DM, which is an unknown constant associated with i ∈ DM. Now 
that the inclusion probability of i ∈ D∗

MM
 from DM is �i� i, (p1) entails asymptotic NILE for 

�iaii over DM, such that 
∑

i∈D ∗
MM

zi∕N∗
MM

−
∑

i∈DM
zi∕NM

P
→ 0. Notice that each term of Sxy ∗ 

from D∗
MM

 is an asymptotically unbiased estimate of the corresponding Cov(xi, yi ), and each 
term outside of D∗

MM
 has asymptotic expectation zero, so that �−1Sxy ∗ − Sxy (M )

P
→ 0 given (p2), 

where Sxy (M) is the empirical covariance of (xi, yi ) over DM. The consistency of �̂ implies then  
�̂P − �̃

P
→ 0.

∑
i∈D ∗

1

Cov(xi, y∗
i
|�i = 1) =

∑
i∈D ∗

MM

Cov (xi, yi ) +
∑

i∈D ∗
1M

�D ∗
MM

0 +
∑

i∈D ∗
1
�D ∗

1M

0

=
∑

i∈DM

(�iaii )Cov(xi, yi ) .

https://doi.org/10.1111/rssa.12630
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APPENDIX B

APPROXIMATE VARIANCE V ( x y
∗
+ �̂

−1
Sxy ∗ )

We have V( x y
∗ |A) = x x

⊤
𝜎2∕N∗ and E( x y

∗ |A) = x x
∗⊤
𝛽, where x∗

=
∑

j∈D ∗
2

xj∕N∗ ≠ x =
∑

i∈D ∗
1

xi∕N∗.  
Conditional on all the x’s, we obtain 

Next, let �1 = V(
∑

i∈D ∗
1

(xi − x) (y∗
i
− y

∗
) ), where 

since 
∑

k∈D ∗
1

(xk − x) = 0, such that V( �̂
−1

Sxy ∗ |A) = Sxx�
2∕ ( �̂

2
N∗ ). Moreover, 

where Sxx ∗ =
∑

i∈D ∗
1

(xi − x) (xji
− x

∗
)⊤∕N∗, and xji

 is the x-vector for yj that is linked to the re-
cord i in D1, which is uncorrelated to xi unless ji = i. Therefore, asymptotically as |M|→∞, we have 
Sxx ∗ ≈ SxxN∗

MM
∕N∗ ≈ �Sxx. We obtain 

Putting together V( x y
∗

) and V( �̂
−1

Sxy ∗ ) from above, we have 

APPENDIX C

COVARIANCE OF �̂G AND �̂P

The estimator �̂G given by (5) can be rewritten as 

V ( x y
∗

) = E [V( x y
∗ |A) ] + V [E( x y

∗ |A) ] = x x
⊤
𝜎2∕N∗ .

𝜈1=
∑

i∈D ∗
1

(xi − x ) (xi − x)⊤V (y∗
i
− y

∗
) +

∑
i∈D ∗

1

∑
k≠ i

(xi − x) (xk − x)⊤Cov (y∗
i
− y

∗
, y∗

k
− y

∗
)

=
∑

i∈D ∗
1

(xi − x ) (xi − x)⊤ (1 −
1

n
)𝜎2 −

∑
i∈D ∗

1

∑
k≠ i

(xi − x) (xk − x )⊤
1

n
𝜎2

=
∑

i∈D ∗
1

(xi − x ) (xi − x)⊤𝜎2 −
𝜎2

n

∑
i∈D ∗

1

(xi − x)
∑

k∈D ∗
1

(xk − x)⊤

= N∗Sxx𝜎
2, for Sxx =

1

N∗

∑
i∈D ∗

1

(xi − x ) (xi − x)⊤,

E( �̂
−1

Sxy ∗ |A) = �̂
−1 1

N∗

∑
i∈D ∗

1

(xi − x)E (y∗
i
− y

∗ |A) = �̂
−1

Sxx ∗ � ≈ �̂
−1
�Sxx�,

V( �𝜆
−1

Sxy ∗ ) = E (
𝜎2

�𝜆
2
N∗

Sxx ) + V ( �𝜆
−1
𝜓Sxx𝛽 ) ≈

𝜎2

𝜆2N∗
Sxx + V ( �𝜆 )Sxx𝛽𝛽

⊤S⊤
xx

.

V( x y
∗
+ �𝜆

−1
Sxy ∗ ) ≈ ( x x

⊤
+ Sxx )

𝜎2

N∗ + Δ = (
1

N∗ X⊤
D ∗

1

XD ∗
1

)
𝜎2

N∗ + Δ,

Δ= (
1

𝜆2
− 1)

𝜎2

N∗ Sxx + V ( �𝜆 )Sxx𝛽𝛽
⊤S⊤

xx
,

V ( �𝛽P ) = (X⊤
D ∗

1

XD ∗
1

) −1𝜎2 + (
1

N∗ X⊤
D ∗

1

XD ∗
1

) −1Δ (
1

N∗ X⊤
D ∗

1

XD ∗
1

) −1.

�𝛽G= HG ( xG yG +
1

N∗
G

𝜏G ) xG =
1

N∗
G

∑
i∈D ∗

G

xi yG =
1

N∗
G

∑
i∈D ∗

G

yi

HG= (
1

N∗
G

∑
i∈D ∗

G

xix
⊤
i

) −1 𝜏G =
∑

i∈D ∗
G

(xi − xG ) (yi − yG ) =
∑

i∈D ∗
G

(xi − xG )yi
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By definition we have D∗
G
⊂ D∗

P
 and N∗

G
< N∗

P
. Let D∗

A
= D∗

P
�D∗

G
 consist of the remaining entities. Let 

w = N∗
G
∕N∗

P
, and 1 − w = N∗

A
∕N∗

P
. We have 

Notice that �G ≠ � ′
G
 because �G involves xG whereas � ′

G
 involves xP. Now, to obtain the covariance, we 

only need to take the cross terms one by one. We have 

because Cov( yG, y
∗

A
) = 0 and HP = H⊤

P
. Similarly, Cov( yG, �A ) = 0, such that 

Finally, let S2
G
=

∑
i∈D ∗

G
(xi − xG ) (xi − xG )⊤∕N∗

G
, such that 

Summarising the four terms above, and noting HG = xG x
⊤

G
+ S2

G
, we obtain 

�𝛽P= HP ( xP yP +
1

�𝜆N∗
P

𝜏P ) xP =
1

N∗
P

∑
i∈D ∗

P

xi HP = (
1

N∗
P

∑
i∈D ∗

P

xix
⊤
i

) −1

yP=
1

N∗
P

∑
i∈D ∗

P

y∗
i
= w yG + (1 − w ) y

∗

A
y
∗

A
=

1

N∗
A

∑
i∈D ∗

A

y∗
i

𝜏P=
∑

i∈D ∗
P

(xi − xP ) (y∗
i
− y

∗

P
) =

∑
i∈D ∗

P

(xi − xP )y∗
i
= 𝜏 �

G
+ 𝜏A

𝜏 �
G
=

∑
i∈D ∗

G

(xi − xP )yi 𝜏A =
∑

i∈D ∗
A

(xi − xP )y∗
i

Cov(HG xG yG, HP xP yP ) = wHG xGV ( yG ) x
⊤

P
H⊤

P
=

𝜎2

N∗
P

HG xG x
⊤

P
HP

Cov(HG xG yG,
1

�𝜆N∗
P

HP𝜏P ) = E (
1

�𝜆N∗
P

)Cov(HG xG yG, HP𝜏
�
G

)

≈
𝜎2

𝜆N∗
P

HG xG ( xG − xP )⊤H⊤
P
=

𝜎2

𝜆N∗
P

HG xG x
⊤

G
HP −

𝜎2

𝜆N∗
P

HG xG x
⊤

P
HP

Cov(HP xP yP,
1

N∗
G

HG𝜏G ) =
w𝜎2

N∗
G

HP xP ( xG − xG )⊤H⊤
G
= 0

Cov (𝜏G, 𝜏 �
G

) = 𝜎2
∑

i∈D ∗
G

(xi − xG ) (xi − xP )⊤ = 𝜎2N∗
G

S2
G

Cov (
1

N∗
G

HG𝜏G,
1

�𝜆N∗
P

HP𝜏P ) = E (
1

�𝜆N∗
P

N∗
G

)HGCov(𝜏G, 𝜏 �
G

)H⊤
P
≈

𝜎2

𝜆N∗
P

HGS2
G

HP

Cov( �𝛽G, �𝛽P ) ≈
𝜎2

𝜆N∗
P

HG ( xG x
⊤

G
+ S2

G
)HP + (1 −

1

𝜆
)
𝜎2

N∗
P

HG xG x
⊤

P
HP

=
𝜎2

𝜆N∗
P

HP − (
1

𝜆
− 1)

𝜎2

N∗
P

HG xG x
⊤

P
HP


