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NONLINEAR EARTH ORBIT CONTROL USING LOW-THRUST 
PROPULSION 

Mauro Pontani* and Marco Pustorino† 

This research is focused on the definition, analysis, and numerical testing of an 

effective nonlinear orbit control technique tailored to compensating orbit pertur-

bations, as well as possible errors at orbit injection of low- and medium-altitude 

Earth-orbit satellites. A general, systematic approach to real-time orbit control is 

presented, under the assumption that the satellite of interest is equipped with a 

steerable and throttleable low-thrust propulsion system. Two different opera-

tional orbits are considered: (a) very-low-altitude Earth orbit and (b) medium-

altitude Earth orbit. A feedback control law based on Lyapunov stability theory 

is proposed and tested. Some remarkable stability properties are established ana-

lytically. Then, the overall performance of the nonlinear control at hand is inves-

tigated for cases (a) and (b), over 5 years. The effect of satellite eclipsing on 

available electrical power is considered as well. For mission scenario (a), suita-

ble tolerances on the desired (nominal) conditions allow substantial savings in 

terms of propellant requirements. 

1. INTRODUCTION 

During their lifetime, orbiting satellites often perform corrective maneuvers, for the purpose of 

avoiding excessive performance degradation, related to perturbations inherent to the space envi-

ronment, namely (i) aerodynamic drag, (ii) solar radiation pressure, (iii) Earth gravitational har-

monics, and (iv) pull of Sun and Moon as third bodies. The definition and implementation of an 

effective orbit control strategy thus represents a crucial issue, in order to compensate these per-

turbation actions, as well as possible errors at orbit injection. 

Orbit control regards a variety of satellites, e.g. those that travel low-altitude or geostationary 

orbits. Well consolidated techniques exist for impulsive orbit control performed through chemical 

propulsion [1]. These methodologies are based on several fundamental results on optimal impul-

sive orbit transfers, derived since the 50s [2-11]. An example is represented by the station keeping 

maneuvers performed by geostationary satellites to compensate the effects of the orbital perturba-

tions, specifically the third body pull due to Sun and Moon and the sectorial harmonic 2,2J  of the 

geopotential.  
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In recent years, low-thrust electric propulsion [12] is gaining an increasing relevance and al-

ready found application in a variety of mission scenarios, e.g. the NASA Deep Space 1 and the 

ESA Smart-1 missions [13,14]. Pioneering studies on low-thrust trajectories are due to Edelbaum 

[15], who was apparently the first scientist to point out the advantages of using low-thrust propul-

sion in space missions. Most recently, extensive research on the same subject was performed by 

Petropoulos [16,17], Betts [18-20], Ross [21], and Kechichian [22-25], to name a few. Low-thrust 

trajectory optimization problems are solved through the use of direct, indirect, or heuristic ap-

proaches, sometimes combined in hybrid forms [26,27]. With this regard, Betts [28], Rao [29], 

and Conway [30] offer excellent overviews of the available methods in spacecraft trajectory op-

timization. In all the cases of practical interest, getting an optimal solution is a time-demanding 

task and is completed offline. However, in actual mission scenarios the real-time requirements of 

compensating the orbit perturbations or correcting the injection conditions often arise. Low-thrust 

propulsion can represent a valuable option to do this. For the purpose of investigating real-time 

low-thrust orbit maneuvering, in the scientific literature some authors [31,32] employed the varia-

tional equations (written in the Gauss form). Schaub and Alfriend [33] used a combination of 

Cartesian coordinates and orbit elements in the dynamical framework of formation flying. Neigh-

boring optimal control [34,35] represents an alternative option, with the remarkable feature of 

minimizing the additional propellant amount needed for correction of the nonnominal flight con-

ditions. However, a neighboring optimal guidance technique requires an optimal reference path, 

together with all the related state and costate variables, in order to be appliable and effective. In 

some dynamical frameworks, such as precise orbit maintenance in the presence of perturbations 

or unmodeled dynamics, identifying an optimal reference trajectory may be very challenging or 

even impractical.  

This study is focused on the definition, analysis, and numerical testing of an orbit control 

strategy tailored to compensating orbit perturbations and errors at orbit injection in low- and me-

dium-altitude Earth orbits, for satellites equipped with a steerable and throttleable low-thrust ion 

propulsion system (with an upper bound on the thrust magnitude). Nonsingular equinoctial ele-

ments are used for modeling the spacecraft orbit dynamics. The objective consists in obtaining 

stable flight conditions as close as possible to the desired operational orbit. Lyapunov stability 

theory and the LaSalle’s invariance principle [36-39] are employed with the intent of investigat-

ing the convergence properties of a feedback law tailored to low-thrust orbit control. The effect of 

satellite eclipsing on availability of the onboard electric power is being addressed as well. The 

nonlinear control technique at hand requires no reference path to be applied, unlike what occurs 

for neighboring optimal guidance algorithms. Two mission scenarios of practical relevance, cor-

responding to two distinct operational orbits, are considered: (a) circular, very low Earth orbit and 

(b) near-circular, medium-altitude Earth orbit. The main objectives of the present research are the 

following: (i) propose an effective real-time feedback law that includes control saturation, related 

to the maximum available thrust magnitude, (ii) extend the range of application of nonlinear orbit 

control through the use of nonsingular equinoctial elements and a rather general formulation for 

the constraints that define the target orbit, (iii) provide the stability analysis in the presence of 

perturbing accelerations inherent to the space environment, and (iv) test the orbit control law in 

the two mentioned mission scenarios, in order to ascertain its effectiveness and efficiency in 

terms of propellant consumption.  
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2. SPACECRAFT DYNAMICS  

This work employs nonlinear orbit control using low-thrust propulsion, for the purpose of 

driving and maintaining the spacecraft in the proximity of some desired operational conditions, 

which can be described in terms of osculating orbit elements. The space vehicle is modeled as a 

point mass, and its orbital motion around the Earth is subject to some perturbations, described in 

the next section. Steerable, throttleable low-thrust propulsion actuates the correction maneuvers.  

The spacecraft dynamics can be described in terms of either spherical coordinates or osculat-

ing orbit elements, i.e. semimajor axis a, eccentricity e, inclination i, right ascension of the as-

cending node (RAAN)  , argument of periapse  , and true anomaly f [40]. However, the Gauss 

equations [40], which govern the time evolution of the orbit elements, become singular in the 

presence of a circular or equatorial orbit (and also when an elliptic orbit transitions to a hyperbo-

la). For these reasons, the nonsingular equinoctial orbit elements [7] l, m, n, s, and q are chosen, 

in conjunction with the semilatus rectum (parameter) p, used in place of a. The five elements l, m, 

n, s, and q are defined as [7,41,42] 

 ( ) ( )cos      sin      tan cos      tan sin      
2 2

i i
l e m e n s q f  = + = + =  =  =+ +  (1) 

These elements are nonsingular for all Keplerian trajectories, with the only exception of equatori-

al retrograde orbits ( i = ). If : 1 cos sinl q m q = + + , the instantaneous radius is r p = . Let-

ting 
6x q  and    1 2 3 4 5:

T T
x x x x x p l m n s= z , the governing equations for the 

nonsingular equinoctial elements can be written as 

 ( )6
x= G ,z z a   (2) 
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where E  represents the Earth gravitational parameter, whereas  
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 

G ,z   (4) 

Vector a represents the ( )3 1 -vector of the non-Keplerian acceleration that affects the spacecraft 

motion. Its components, denoted with ( ), ,r ha a a , are the projections of a into the local vertical 

local horizontal (LVLH) rotating frame aligned with ( )ˆˆˆ, ,r h , where unit vector r̂  is directed 
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toward the instantaneous position vector r (taken from the Earth center), whereas ĥ  is aligned 

with the spacecraft angular momentum. Vector a includes both the thrust acceleration and the 

perturbing acceleration inherent to the space environment. It is convenient to distinguish these 

two contributions, therefore 
T P

= +a a a , where subscripts T and P refer respectively to thrust and 

perturbations.  

Let 
maxT  and 

0m  represent the maximum available thrust magnitude and the initial mass. If 
7x  

denotes the mass ratio and T the thrust magnitude, for 
7x  the following equation can be obtained: 

 ( ) ( )
7

0 0 0

:         with        0    :    and   :
max max maxT

T T T T

Tum T
x u u u u

m c m m

 
= = −   = = 

 
  (5) 

where c represents the (constant) effective exhaust velocity of the propulsion system. The magni-

tude of the instantaneous thrust acceleration is 
0 7T T Ta u m m u x= =  and is constrained to the 

interval ( )
0

max

T Ta a  , where ( ) ( )
7

max max

T Ta u x= . Moreover, the thrust acceleration can be ex-

pressed as 7T T
x=a u , where 

T
u  has magnitude constrained to the interval 

( )
0,

max

Tu 
 

. 

In conclusion, the spacecraft dynamics is described in terms of the state vector 

 6 7 1 2 3 4 5 6 7:
T TT x x x x x x x x x = = x z , whereas the control vector is 

T
u , directly 

related to the thrust acceleration. Equations (2), (3), and (5) represent the governing equations. 

3. ORBIT PERTURBATIONS 

 While orbiting the Earth, the space vehicle is affected mainly by its gravitational field, and its 

orbital motion can be investigated appropriately by employing a perturbed two-body-problem 

model. As a first perturbing action, the Earth gravitational potential differs to some extent from 

that generated by a spherical mass distribution. As a result, some significant harmonics of the 

Earth gravitational potential are to be included in the dynamical model, in order to yield more 

realistic results from simulations. Other than Earth asphericity, the third-body perturbation due to 

the gravitational attraction of the Moon and the Sun represents an additional contribution. Moreo-

ver, for spacecraft that orbit the Earth at (relatively) low altitudes, the drag perturbing accelera-

tion plays a role as well. Lastly, also the perturbing effects due to solar radiation pressure are 

nonnegligible. This section describes and models all these perturbations. 

 As a preliminary step, the Earth-centered inertial (ECI) frame is introduced. It is associated 

with the right-hand sequence of unit vectors ( )1 2 3
ˆ ˆ ˆ, ,c c c , where ( )1 2

ˆ ˆ,c c  identifies the equatorial 

plane, 
1̂c  is the vernal axis, and 

3ĉ  is aligned with the Earth rotation axis. Another useful frame 

(rotating together with the spacecraft) is associated with ( )ˆ ˆˆ, ,r E N , where Ê  and N̂  are aligned 

with the local East and North directions, respectively. Angles   (absolute longitude),   (lati-

tude), and   (heading) relate the ECI-frame to the ( )ˆ ˆˆ, ,r E N -frame and to the ( )ˆˆˆ, ,r h -frame, 

 ( ) ( ) ( ) ( ) 1 1 2 3 1 2 3
ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆR R R R

T T T
r h r E N c c c       = = −

  
  (6) 
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where ( )j R  denotes the matrix associated with the elementary counterclockwise rotation by 

angle   about axis j.  Moreover, an additional relation between the ECI-frame and the ( )ˆˆˆ, ,r h -

frame can be written in terms of orbit elements [40], 

 ( ) ( ) ( ) 3 1 3 1 2 3
ˆˆˆ ˆ ˆ ˆ= R R R

T T
r h f i c c c   + 
 

  (7) 

3.1. Earth gravitational harmonics 

In the last decades, several accurate models have been developed for the Earth gravitational 

field, e.g. EIGEN05S, GGM03S, and EGM96, to name a few. This research employs the 

EGM2008 model [43], which supplies the coefficients of zonal, tesseral, and sectorial harmonics 

of the Earth gravitational field up to order 2160. These coefficients ( ,l mJ  and 
lm ) appear in the 

classical equation of planetary gravitational potentials (per mass unit), written in terms of Legen-

dre polynomials 
lmP , 

 ( ) ( ) ( )0 ,

2 2 1

sin sin cos

l ll
E E E E E

l l l m lm g lm

l l m

R R
U J P J P m

r r r r r

  
   

 

= = =

     = − + −        
    (8) 

where ER  is the Earth equatorial radius, whereas g  is the spacecraft geographical longitude 

(taken from the Greenwich reference meridian). If 
G  denotes the Greenwich sidereal time (taken 

counterclockwise from 
1̂c ), then the satellite geographical longitude is g G  = − . Both the lati-

tude   and the absolute longitude   can be expressed as functions of the orbit elements by com-

paring Eqs. (6) and (7). The latter variables in turn can be written in terms of equinoctial elements 

using Eq. (1). 

In the ( )ˆ ˆˆ, ,r E N -frame, the gravitational acceleration is given by 

 
ˆ ˆ

ˆ   where   
cos g

E N
U r

r r r  

  
=  = + +

  
g   (9) 

The previous expression, together with Eq. (8), leads to obtaining the three components 

( ), ,r E Ng g g  in the local horizontal ( )ˆ ˆˆ, ,r E N -frame. Because rg  includes the main gravitational 

term, the related disturbing acceleration components are ( ) 2H

r ra g r= + , ( )H

E Ea g= , and 

( )H

N Na g= . Using Eqs. (6)-(7), the components 
( ) ( ) ( )( ), ,
H H H

r ha a a  of 
( )H

a  along ( )ˆˆˆ, ,r h  can be 

obtained in a straightforward way. In this study, all the harmonics associated with 
6

, 10l mJ −  are 

considered, i.e. 2J , 3J , 4J , 2,2J , and 3,1J . 

3.2. Third body perturbation 

The Moon and Sun gravitational influence on the space vehicle while this orbits the Earth can 

be modeled as a third body perturbation. In general, the perturbing acceleration due to a third 

body can be expressed as 
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 ( )

( ) ( )

2 2
3 3 3 3 3

3 3 33 2 3 2 23
33 3 3

3 3 2
,    with    :

1 1 1

T
B q q r

q q
ss q q

  + + −
= − + = 

+ + +  

r s
a r s   (10) 

where 
3  denotes the gravitational parameter of the third body, 

3s  represents its position vector 

relative to the main body (i.e., the Earth), and 
3 3s = s . The previous expression makes use of the 

Battin-Giorgi [7,44] approach to the Encke’s method for orbit perturbations.  

In the ECI-frame, the instantaneous positions of both the Sun and the Moon can be derived 

through interpolation of the ephemerides, using the approach described in Ref. 45. Then, 
3s  can 

be projected onto the LVLH-frame using Eq. (7), to yield the three components of the perturbing 

accelerations, i.e. 
( ) ( ) ( )( ), ,
S S S

r ha a a  for the Sun and 
( ) ( ) ( )( ), ,
M M M

r ha a a  for the Moon. If 
( )S

a  and 

( )M
a  denote the related vectors, the overall perturbing acceleration due to the gravitational pull of 

third bodies is 
( ) ( ) ( )3B S M

= +a a a . 

3.3. Aerodynamic drag 

If the spacecraft orbits the Earth at relatively low altitudes (lower than 1000 km), also the aer-

odynamic drag is to be considered as a perturbing action. Let 
DS  and 

Dc  denote the aerodynamic 

cross section and drag coefficient of the space vehicle. The drag acceleration ( )D
a  is given by 

 ( ) 1

2

D D
D R R

S
c v

m
= −a v   (11) 

where   is the local atmospheric density, 
Rv  is the spacecraft velocity relative to the atmosphere, 

and R Rv = v . In this research   is interpolated by means of a piecewise exponential function, 

based on tabular data [46]. As orbital motion takes place at hypersonic velocities in rarefied flow 

regime, 
Dc  is nearly constant, thus it is set to the typical value 2.2. Under the assumption that the 

atmosphere rotates together with the Earth, the relative velocity is 

 ˆcosR Er E = −v v   (12) 

where v denotes the spacecraft inertial velocity, given by  

 ( )ˆˆ sin 1 cosE re f e f
p


 = + +

 
v   (13) 

Moreover, Ê  can be written as ˆˆˆ cos sinE h  = − , while both   and   can be expressed as a 

function of the orbit elements by means of Eqs. (6)-(7). These can be written again in terms of 

equinoctial elements using Eq. (1). As a result, Rv  can be finally projected in the LVLH-frame, as 

well as the drag acceleration 
( )D

a . The respective components are denoted with 
( ) ( ) ( )( ), ,
D D D

r ha a a . 

3.4. Solar radiation pressure 

Solar radiation pressure is associated with a further perturbing acceleration and derives from 

the interaction of photons with the spacecraft when this is illuminated. For the sake of simplicity, 

the cannonball model is adopted [45], and the perturbing acceleration due to solar radiation is 
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 ( ) ˆSR R R
SR S

c S
P r

m
= −a   (14) 

where ( )6 4.557 10  PaSRP −=   is the solar radiation pressure on Earth, 
Rc  is the radiative coeffi-

cient, related to the nature of the radiation interaction with the space vehicle, 
RS  is the spacecraft 

cross section that is illuminated, 
Ŝr  is the unit vector aligned with the Sun position vector 

Sr  (tak-

en from the Earth center), and   is the shadow function. In this study, 
Rc  is set to 2 (perfect re-

flection). In the ECI-frame, the instantaneous position of the Sun, 
Sr , is interpolated using again 

the approach described in Ref. 45. Then, 
Sr  can be projected onto the LVLH-frame using Eq. (7), 

to yield the three components of the perturbing accelerations, i.e. 
( ) ( ) ( )( ), ,
SR SR SR

r ha a a . 

The shadow function   equals either 0 (when the space vehicle is eclipsed) or 1 (when it is il-

luminated). Letting ( )1 : arccos ER r = , ( )2 : arccos E SR r =  (with S Sr = r ), and 

( )ˆ ˆ: arccos Sr r =  , the space vehicle is eclipsed if [45] 

 
1 2   +   (15) 

Because 0E SR r  , the previous relation becomes  

 

2

1cos sin 1 ER

r
 

 
 − = − −  

 
  (16) 

The term cos  can be computed easily, after writing r̂  and Ŝr  in the ECI-frame. Therefore, if 

inequality (16) is satisfied, then 0 = , otherwise 1 = . 

4. NONLINEAR ORBIT CONTROL: DEFINITION AND STABILITY ANALYSIS 

Previous research [32] has shown that any state (associated with elliptic orbits) is accessible 

when the spacecraft dynamics is subject to the Gauss equations for classical orbit elements. How-

ever, the same property holds also for equinoctial elements [32]. This represents the theoretical 

premise for applying nonlinear techniques to orbital control. 

In a preceding section, the spacecraft motion was shown to be governed by Eqs. (2), (3), and 

(5). In particular, Eq. (2) can be rewritten as 

 ( )6

7

T
P

x
x

 
= + 

 
G ,

u
z z a   (17) 

where the perturbing acceleration 
P

a  includes several contributions, related to the space envi-

ronment, namely harmonics of the geopotential (term 
( )H

a ), third body gravitational attraction 

(
( )3B

a ), aerodynamic drag (
( )D

a ), and solar radiation pressure (
( )SR

a ). Thus, 
( ) ( ) ( ) ( )3H B D SR

P
= + + +a a a a a . It is worth noticing that Eq. (17) assumes a control-affine form in 

the absence of perturbing accelerations (
P
= 0a ). For systems governed by Eq. (17) with 

P
= 0a , 

the Jurdjevic-Quinn theorem [47] provides a feedback control law that can drive the dynamical 

system to an arbitrary target state, making the controlled system Lyapunov-stable. 
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In practical mission scenarios, orbit maintenance regards some (or all) of the following orbit 

elements: semimajor axis a, eccentricity e, inclination i, right ascension of the ascending node 

(RAAN)  , and argument of periapse  . These identify the orbit size, shape, and orientation in 

space. Under the assumption that the target trajectory is defined in terms of these orbit elements 

only, the desired operational conditions depend only on z  (cf. Eq. (1)) and can be formally de-

fined by  

 ( ) = 0ψ z   (18) 

The previous vector equation is problem-dependent and corresponds to ( ) 5q   relations that in-

volve equinoctial elements 
1

x  through 5
x . If 5q  , Eq. (18) identifies a target set that is assumed 

to be a connected and differentiable manifold. 

4.1. Lyapunov stability 

This section is specifically devoted to defining a feedback control law capable of driving the 

dynamical system at hand (associated with Eqs. (3), (5), and (17)) toward the target conditions 

identified by Eq. (18). To do this, the following candidate Lyapunov function is introduced: 

 
1

2

TV = Kψ ψ   (19) 

where K denotes a diagonal matrix with constant, positive elements, which play the role of arbi-

trary weights. These are selected a priori in relation to the application of interest. It is immediate 

to recognize that 0V   unless = 0ψ . Yet, further conditions are required in order that V be an 

actual Lyapunov function. This issue is being addressed in the following. 

Proposition 1. Let ( ):
TT=  G Kb ψ z ψ . If and ψ  and ( ) ψ z  are continuous, 0b  un-

less = 0ψ , and ( )
7

max

T Pu x +b a , then the feedback control law 

 ( )7T Px= − +u b a   (20) 

leads a dynamical system governed by Eqs. (3), (5), and (17) to converge asymptotically to the 

target set associated with Eq. (18). 

Proof. The candidate function (19) can be proven to be an actual Lyapunov function. First, it 

is apparent that V is positive in the entire domain, except when = 0ψ . Second, V has continuous 

partial derivatives, because ψ  and ( ) ψ z  are continuous. Moreover, using Eq. (17), the time 

derivative of V equals  

 ( ) ( )
7

T T T
P

V
x

     
= = +    

      
K K G

uψ ψ
ψ z z ψ z a

z z
  (21) 

Insertion of Eq. (20) yields 

 ( ) 0T TV
 

= − = −  
 

ψ
ψ z b b b

z
K G   (22) 

which is continuous and negative if  0ψ . Definitely, V is a positive definite function (about 

= 0ψ ), with continuous partial derivatives and such that 0V   (unless = 0ψ ), therefore V is a 
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Lyapunov function [36]. Attraction toward the set = 0ψ  implies asymptotic convergence of the 

dynamical system toward the final condition (18).                                                                           

The previous proposition includes the assumption ( )
7

max

T Pu x +b a . If this condition is vio-

lated, the feedback control law (20) is infeasible, because 7T Px= +u b a  would exceed the max-

imal value ( )max

Tu . In this case, in place of (20), an alternative feedback law can be used. 

Proposition 2. Let ( ):
TT=  G Kb ψ z ψ . If and ψ  and ( ) ψ z  are continuous, 0b  un-

less = 0ψ , ( )
7

max

T Pu x +b a , and 0T

P
b a , then the feedback control law 

 
( )max P

T T

P

u
+

= −
+

b a
u

b a
  (23) 

leads a dynamical system governed by Eqs. (3), (5), and (17) to converge asymptotically to the 

target set associated with Eq. (18). 

Proof. The candidate function (19) can be proven again to be an actual Lyapunov function. 

First, it is apparent that V is positive in the entire domain, except when = 0ψ . Second, V has con-

tinuous partial derivatives, because ψ  and ( ) ψ z  are continuous. Moreover, the time deriva-

tive of V is reported in Eq. (21), and insertion of Eq. (23) yields 

 ( )
( ) ( ) ( )( )7

7 7 7

K G

maxTmax max T
P P TT T P T

P

P P P

x uu u
V

x x x

+ − + 
= − = − +  

 + + +    

b a b ab a b bψ
ψ z a

z b a b a b a
  (24) 

The first term of Eq. (24) is negative (unless = 0ψ ). Instead, the second term can be either posi-

tive or negative, depending on T

P
b a , because ( )

7

max

P Tx u+ b a . If the inequality 0T

P
b a  is ful-

filled, then the sum in the right-hand side of Eq. (24) is negative (unless = 0ψ ). Thus, V  is con-

tinuous and negative if the assumptions of the statement hold. Because V is a positive definite 

function (about = 0ψ ), with continuous partial derivatives and such that 0V   (unless = 0ψ ), V 

is a Lyapunov function [36]. Attraction toward the set = 0ψ  implies asymptotic convergence of 

the dynamical system toward the final condition (18).                                                                     

It is worth remarking that the previous proposition requires the sufficient condition 0T

P
b a  

to ensure 0V  . However, the sign of T

P
b a  is time-varying and depends on the particular time 

evolution of the dynamical system of interest. In fact, T

P
b a  usually assumes both positive and 

negative values. An additional sufficient condition that ensures 0V   even if 0T

P
b a , regard-

less of the specific time evolution, is provided by the following  

Proposition 3. Let ( ):
TT=  G Kb ψ z ψ . If and ψ  and ( ) ψ z  are continuous, 0b  un-

less = 0ψ , and ( )
7 7

max

P T Px u x  +a b a , then the feedback control law (23) leads a dynam-

ical system governed by Eqs. (3), (5), and (17) to converge asymptotically to the target set as-

sociated with Eq. (18). 

Proof. The first steps for demonstrating the preceding statement are analogous to those of 

Propositions 1 and 2. The new condition ( )
7

max

T Pu x a  implies 0V  . To prove this, let 
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: , : ,  and :T

P P Pa b = = =b a a b . Two cases can occur: (i) 0   or (ii) 0  . Case (i) corre-

sponds to 0V  , regardless of 
Pa  and ( )max

Tu  (cf. Proposition 2). For case (ii), as a first step, the 

following inequality is considered: 

 
( )

P

P T

P

a
 +


+

b a

b b a
  (25) 

This can be proven by squaring both sides  

 
( )

( )

2 2 2 2
2 2

2 2
2

2 T
P P

P P P

b a
a a a

bbb

  



+ +
    

+
                    

b a
  (26) 

If the right-hand side of the last expression is regarded as a dot product, it is straightforward to 

recognize that all the inequalities in Eqs. (26) hold, and so does Eq. (25). Due to the inequality 
( )

7

max

T Pu x a  and Eq. (25), 

 
( )

( )
( ) ( ) 7

7

     i.e.     0

max
maxP T TT

P T P P PT

P

u
a u x

x

 +
  + − + 

+

b a
b b a b a b a

b b a
  (27) 

From inspection of Eq. (24), it is apparent that inequality (27) implies 0V  .                               

The two feedback laws (20) and (23) can be written in compact form as 

 
( ) ( )

( ) 
7

7max ,

max P

T T max

T P

x
u

u x

+
= −

+

b a
u

b a
  (28) 

Equation (28) incorporates the saturation condition on 
Tu , i.e. ( )max

T Tuu , and provides a control 

law that can be actuated using steerable and throttleable propulsive thrust (with time-varying 

magnitude and direction). 

Propositions 1 and 2 provide some sufficient conditions for stabilizing the dynamical system 

of interest. If perturbations are absent (
P
= 0a ), Eq. (23) provides a Lyapunov-optimal feedback 

control law [1]. If the perturbing acceleration is negligible with respect to the thrust acceleration 
( )( )7

max

P T
u xa , then the control law (23) can be regarded as nearly-Lyapunov-optimal. Propo-

sition 3 provides a very useful sufficient condition that has a straightforward meaning: if the 

thrust acceleration magnitude, 
( )

7

max

Tu x , exceeds the perturbation acceleration magnitude, Pa , 

then 0V   unless = 0ψ . As a final remark, it is worth stressing that Propositions 1 through 3 

state some sufficient conditions for Lyapunov stability. This circumstance implies that the as-

sumptions of Propositions 1 through 3 can be violated (in some time intervals), without necessari-

ly compromising asymptotic convergence to the desired final condition identified by Eq. (18). 

4.2. Nonlinear control for semimajor axis, eccentricity, and inclination of Earth orbits 

The previous stability properties refer to the spacecraft dynamics, governed by Eqs. (3), (5), 

and (17). The desired operational conditions are defined by Eq. (18), which is problem-dependent 

and identifies the target set.  
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In this subsection, nonlinear orbit control using low-thrust propulsion is addressed, with the 

objective of driving the spacecraft toward the desired Earth orbit. This has specified (desired) 

values of semimajor axis, eccentricity, and inclination, denoted respectively with 
da , 

de , and 
di . 

Due to the definitions of Eq. (1), the desired operational conditions correspond to 

 
1 0dx p− =   (29) 

 2 2 2

2 3 0dx x e+ − =   (30) 

 2 2 2

4 5 tan 0
2

dix x+ − =   (31) 

where ( )21d d dp a e= −  and 1de  . The left-hand sides of Eqs. (29)-(31) form the vector ψ .  

The preceding section supplies three sets of sufficient conditions (stated in Propositions 1 

through 3) that ensure asymptotic stability, i.e. convergence toward the target set, identified by 

Eqs. (29)-(31). This subsection is intended to check these conditions, for the ( )3 1 -vector ψ  

defined by Eqs. (29)-(31).  

As first steps, both ψ  and ( ) ψ z  turn out to be continuous in the entire domain where 

equinoctial elements are defined (i.e., i  ). 

Then, vector b, whose components are  1 2 3, ,b b b , is derived analytically for the problem at 

hand,  

 ( )( )2 2 21
1 2 3 6 2 6 2 32 cos sin d

E

x
b k x x x x x x e


= − − + −   (32) 

 ( ) ( ) 2 2 2 2 2 21
2 1 1 1 2 2 3 2 3

2
1d d

E

x
b k x x p k x x e x x

 
 = − + + − + + −    (33) 

 ( ) ( )2 2 2 2 23 1
3 4 6 5 6 4 5 4 5cos sin tan 1

2

d

E

k ix
b x x x x x x x x

 

 
= + + − + + 

 
  (34) 

The attracting set collects all the dynamical states that fulfill 0V = . In fact, out of the attracting 

set 0V  . The latter condition is met if 0=b , i.e. if the three components  1 2 3, ,b b b  equal 0, for 

any choice of the positive coefficients  1 2 3, ,k k k . It is straightforward to recognize that 1 0x =  

yields 
1 2 3 0b b b= = = . Other than this solution, from inspection of Eq. (33), 

2 0b =  regardless of 

 1 2,k k  only if 1 dx p=  and 2 2 2

2 3 dx x e+ = . The alternative condition 2 2 2

2 3 1 0x x + + − =  is ruled 

out because   depends on 6x , which is time-varying (also along the desired orbit). Then, 1 0b =  

if either 2 2 2

2 3 dx x e+ =  or 2 3 0x x= = . However, the latter condition is ruled out because it would 

imply 2 0b  . Lastly, 3 0b =  if either ( )2 2 2

4 5 tan 2dx x i+ =  or 4 5 0x x= = . In short, the attracting 

set includes the following three subsets: 
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1. 
1 0x =  (rectilinear trajectories);  

2. 
1 dx p= , 2 2 2

2 3 dx x e+ = , and 
4 5 0x x= =  (equatorial elliptic orbits with semilatus rectum  

dp  and eccentricity 
de ); 

3. 
1 dx p= , 2 2 2

2 3 dx x e+ = , and ( )2 2 2

4 5 tan 2dx x i+ =  (operational conditions, cf. Eqs. (29)-

(31)). 

Because the attracting set contains other subsets other than the target set (which coincides with 

subset 3), the asymptotic convergence toward the desired conditions is only local, based on Lya-

punov’s stability theorem [38]. However, the LaSalle’s principle [38] can be applied in order to 

rule out, if possible, subsets 1 and 2. Because ψ  is continuous and 0V   (except in the attracting 

set, denoted with A henceforth), the condition ( ) ( )0
V Vz z  (where 0

z  is z evaluated at the ini-

tial time) defines a compact set C. The invariant set, which plays a crucial role in the LaSalle’s 

principle, is to be sought in A C , i.e. in the portion of the attracting set contained in C. By def-

inition, the invariant set collects all the dynamical states (in the attracting set of z) that remain 

unaltered when  0a . This means that once the invariant set is reached,  0b  at future times, 

which implies  0b  while  0a . 

For the application at hand, the time derivatives of the three components of b assume the form 

 ( ) 2 4 6 5 61
6 6 3

6 6 1

sin cos
,

j j j j E
j h

E

b b b b x x x xx
b x x a

x x x




 

     −
= + = + + 
      

Gz z a
z z

  (35) 

where 1,2,3j = . The previous expression, evaluated at  0a  reduces to 

 ( )2

3

6 1

   1,2,3
j E

j

b
b j

x x





= =


  (36) 

Using Eqs. (32) through (34) one obtains 

 ( )( )2 2 2 22
1 2 6 3 6 2 3

1

2
cos sin d

k
b x x x x x x e

x
= + + −   (37) 

 

( ) ( ) ( ) 

( )

2 2 2 2 2 2

2 2 6 3 6 1 1 1 2 2 3 2 3

1

2

2
2 6 3 6

1

2
sin cos 1

4
   sin cos

d db x x x x k x x p k x x e x x
x

k
x x x x

x





 = − − + + − + + − 

− −

  (38) 

 ( )( )2 2 2 2 23
3 4 5 4 5 2 5 3 4 5 6 4 6

1

tan 1 cos sin
2

dk i
b x x x x x x x x x x x x

x

 
= + − + + − + − 

 
  (39) 

Inspection of Eqs. (37)-(39) reveals that subset 1 ( 1 0x = ) does not belong to the invariant set, 

therefore convergence toward rectilinear trajectories is ruled out. Instead, both subsets 2 and 3 

form the invariant set for the problem at hand. 

Actually, convergence toward subset 2 is only theoretical. In fact, the Lyapunov function can 

be rewritten in terms of orbit elements as 
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 ( ) ( )
2

22 2 2 2 2

1 2 3

1
tan tan

2 2 2

d
d d

ii
V k p p k e e k

  
= − + − + −  

   

  (40) 

where p, e, and i are the instantaneous semilatus rectum, eccentricity, and inclination. The partial 

derivative of V with respect to i is 

 2 2 2

3 tan tan 1 tan tan
2 2 2 2

diV i i i
k

i

   
= + −  

   
  (41) 

It is apparent that 0V i  =  (i.e. V is stationary) at 0i = , which is consistent with the fact that 

subset 2 belongs to the invariant set. However, if 0i i=   (with i  arbitrarily small), then 

0V i   , and the reduction of V leads i to increasing up to the desired value 
di , which is associ-

ated with subset 3, i.e. the target set. This circumstance has the very interesting practical conse-

quence that – from the numerical point of view – the dynamical system of interest enjoys global 

convergence toward the desired operational conditions, provided that the control law (28) is 

adopted, while holding the assumptions of either Proposition 1, 2, or 3. 

5. NONLINEAR CONTROL ON VERY LOW EARTH ORBIT 

Some mission scenarios involve microsatellites placed in low Earth orbits, where their main 

task is the periodic monitoring of specific target areas. Sometimes, several satellites form constel-

lations. In the absence of correction maneuvers, the performance attainable from these microsatel-

lites degrades relatively quickly due to orbit perturbations. In particular, at very low altitudes, that 

is, 400 km or less, aerodynamic drag plays a crucial role, and yields orbit decay, i.e. a substantial 

and progressive altitude reduction. Orbit maintenance has the objective of avoiding these degra-

dation effects and is usually performed employing chemical propulsion. 

This study investigates the use of low-thrust electric propulsion for the purpose of accurate or-

bit maintenance for a microsatellite with initial mass of 30 kg, equipped with two Busek ion 

thrusters [48]. Their overall propulsive performance is identified by the following parameters: 

 
( ) ( )5 2

0 024.124 km sec      and     1.292 10  g   g 9.8 m sec
max

Tc n −= =  =   (42) 

The aerodynamic surface, which is assumed to coincide with the cross section subject to solar 

radiation ( D RS S ), equals 0.785 2m  (and corresponds to that of a sphere with radius of 0.5 m). 

The desired orbit is circular, with altitude of 400 km and inclination of 50 deg. Hence, due to 

the definitions of Eq. (1), the desired operational conditions correspond to Eqs. (29) through (31), 

with 400 kmd Ep R= + , 0de = , and 50 degdi = . The spacecraft motion is governed by Eqs. (3), 

(5), and (17). The initial RAAN and argument of latitude are both set to 0. Errors at orbit injection 

are also considered, and the initial conditions for the 7 state components are 

3

1, 2, 3, 4, 5, 6, 7,6778.136 km     4.426 10      0     0.488     0     0     1i i i i i i ix x x x x x x−= =  = = = = =   (43) 

These initial conditions correspond to perigee and apogee altitudes of 370 km and 430 km, re-

spectively, whereas the inclination equals 52 deg.  

Orbit acquisition and maintenance using low-thrust ion propulsion employs the feedback con-

trol law defined in Eq. (28). With this regard, the preceding section supplies three sets of suffi-

cient conditions (stated in Propositions 1 through 3) that ensure asymptotic stability, i.e. conver-

gence toward the desired operational conditions (29)-(31). In particular, the hypotheses of Propo-
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sitions 1 and 2 can be checked only a posteriori (and often do not hold at all times). Thus, as a 

first step, the conditions stated in Proposition 3 are being analyzed. At the initial time 
0

t , the 

spacecraft has minimum thrust acceleration, because ( )7 0 1x t = . The inequality 

( ) ( ) ( )
7 0

max max

T T P
u x t u=  a  is thus checked, making reference to the operational orbit of interest. 

Using the spacecraft data (i.e. propulsion, mass, and surface), the maximal magnitude of the per-

turbing acceleration turns out to exceed the minimum available thrust acceleration ( )max

T
u , due to 

the major contributions of some Earth gravitational harmonics, especially 
2

J . Yet, on average the 

2
J  perturbation does not change the orbit semimajor axis, eccentricity, and inclination. Among 

the remaining harmonics, only the 
2 2

J
,

 harmonic yields an acceleration with maximum magni-

tude that exceeds ( )max

T
u . Hence, Proposition 3 cannot guarantee convergence toward the target 

set. The next step is in considering Proposition 2, which relates the sign of V  to the term T

P
b a . 

All the Earth harmonics yield oscillating accelerations in an orbital period, as well as some of the 

remaining perturbations (solar radiation pressure and third body gravitational pull). As a result, 
T

P
b a  assumes both positive and negative values. However, V  depends on two terms (cf. Eq. 

(24)): (i) the first, negative term, and (ii) the second term, whose sign is time-varying and is given 

by that of T

P
b a . Due to this, one can conjecture that the inequality 0V   is met on average, albe-

it it is not fulfilled instantaneously. If this conjecture is correct, then V assumes an oscillating time 

behavior, with negative average time derivative. On the other hand, it is worth remarking that 7
x , 

which represents the mass ratio, is a decreasing function of time, therefore the inequality 
( )

7

max

T P
u x  a  can be satisfied as the spacecraft mass reduces even if it was not met at the initial 

time. 

In conclusion, the feedback control law (28) has the clear potentiality of driving the system 

toward the invariant set, more specifically toward the target set, in light of all the considerations 

drawn in the present and the preceding sections. Effectiveness of the feedback control law (28) is 

being tested numerically in the next subsections. 

5.1. Numerical results without eclipse effect  

Ion thrusters require onboard electrical power in order to operate. In some cases, this can be 

provided only when the space vehicle is illuminated. However, in this subsection, ion thrusters 

are assumed to be able to operate regardless of the spacecraft lighting conditions.  

In practical scenarios, specific tolerances may be allowed on the desired final conditions, in 

order to avoid excessive propellant expenditure. Specifically, if the perigee and apogee radii are 

constrained to prescribed intervals, then Eqs. (29) and (30) are treated as fulfilled, by setting 

1 2 0k k= = , i.e. 

 1 1
1 2

2 2 2 2

2 3 2 3

380 km     and     420 km          0
1 1

E E

x x
R R k k

x x x x
 +  +  = =

+ + − +
  (44) 

Similarly, if the orbit inclination is contained in a specified interval, then 3 0k = , i.e. 

  2 2

4 5 349.5 deg 2arctan 50.5 deg          0x x k +   =   (45) 
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The numerical simulations are performed using canonical units. The distance unit (DU) equals 

the Earth radius, whereas the time unit (TU) is such that 3 21 DU TUE = . Moreover, the fol-

lowing weighting coefficient are used, after extensive trial-and-attempt tuning: 
1 1k = , 

2 1k = , and 

3 100k = . Orbit propagations are performed for a duration of 5 years and the initial reference 

epoch is set to 1 June 2020 at 12 am GMT. The overall propellant expenditure equals 1.625 kg. 

From inspection of Figs. 1 and 2 it is apparent that the perigee and apogee radii are driven within 

the specified tolerances (denoted with horizontal lines), as well as the orbit inclination. Figure 2 

depicts also the mass ratio time history, pointing out that two phases exist: (a) orbit acquisition, 

where the thrust magnitude is maximum, and (b) orbit maintenance. Figure 3 portrays the time 

evolution of V, which exhibits of short-period oscillations (in the inset), while the average behav-

ior of V is time-decreasing, as conjectured in the previous subsection. Finally, Fig. 4 illustrates the 

thrust components. Inspection of this figure reveals that during phase (b) the thrust direction is 

horizontal (no radial and normal thrust component is in fact applied). 

 

 
 

Figure 1. LEO satellite (without eclipse effect): time histories of the perigee and apogee radii 

 

 

Figure 2. LEO satellite (without eclipse effect): time histories of inclination (with zoom in the inset) and 

                   mass ratio 
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Figure 3. LEO satellite (without eclipse effect): time history of the Lyapunov function (with zoom in the 

                   inset of the right figure) 

 
 

 

Figure 4. LEO satellite (without eclipse effect): time histories of the thrust components 
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5.2. Numerical results with eclipse effect  

This subsection includes the eclipse effect on the available electric power. This means that ion 

propulsion is considered unavailable when the microsatellite is not illuminated. The eclipse con-

ditions are identified using the shadow function  , introduced in Section 3.4. 

The tolerances (44)-(45) are assumed also in this case. The canonical units are those employed 

in the previous subsection, whereas the weighting coefficients, selected after trial-and-attempt 

tuning, are 
1 1k = , 7

2 10k = , and 2

3 10k = . 

Orbit propagations are performed for a duration of 5 years and the initial reference epoch is set 

again to 1 June 2020 at 12 am GMT. The overall propellant expenditure equals 2.451 kg. From 

inspection of Figs. 5 and 6 it is apparent that the perigee and apogee radii are driven within the 

specified tolerances, as well as the orbit inclination, with some exceptions limited to the time in-

tervals where ion propulsion is off due to eclipse. Figure 6 portrays also the mass time history, 

which has faster decrease in the early phases, due to correction of orbit injection errors. Subse-

quently, the ion propulsion is activated and turned off repeatedly and this is apparent from inspec-

tion of Fig. 8, which illustrates the thrust components. Unlike the previous simulations in the ab-

sence of the eclipse effect, the thrust is applied also in the radial direction after orbit acquisition. 

Figure 7 portrays the time evolution of V, which exhibits again short-period oscillations (in the 

inset), while the average behavior of V is time-decreasing. 

 
Figure 5. LEO satellite (with eclipse effect): time histories of the perigee and apogee radii 

 

 
Figure 6. LEO satellite (with eclipse effect): time histories of inclination and mass (with zoom in the inset) 
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Figure 7. LEO satellite (with eclipse effect): time history of the Lyapunov function (with zoom in the 

                       inset of the right figure) 

 

 

 
Figure 8. LEO satellite (with eclipse effect): time histories of the thrust components 
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6. NONLINEAR CONTROL ON MEDIUM-ALTITUDE EARTH ORBIT 

Alternative mission scenarios involve satellites placed in medium-altitude Earth orbits, where 

their main task is often in providing navigation services. In the absence of correction maneuvers, 

the performance attainable from these satellites degrades again due to orbit perturbations. Orbit 

maintenance has the objective of avoiding these degradation effects. 

In this section, low-thrust propulsion is used again for accurate orbit injection and mainte-

nance. For the purpose of comparing the performance of nonlinear control, the same spacecraft 

considered in the preceding section is assumed. Ion propulsion is considered again, with the pa-

rameters specified in Eq. (42). At the altitudes that are being considered, drag is absent. Instead, 

solar radiation pressure plays a role, and the related spacecraft cross section equals 0.785 2m . 

The desired orbit is elliptic, with perigee and apogee altitudes equal to 23206 km and 23237 

km, respectively, whereas the inclination is 56.6 deg. These are the typical orbit elements of the 

satellites that form the Galileo constellation and are chosen for illustrative purposes as representa-

tive values for the class of medium-altitude Earth satellites. Hence, the desired operational condi-

tions correspond again to Eqs. (29) through (31), with 29599.628 kmdp = , 45.097 10de −=  , and 

56.6 degdi = . The spacecraft motion is governed by Eqs. (3), (5), and (17). The initial RAAN, 

argument of perigee, and true anomaly are all set to 0. Errors at orbit injection are considered, and 

the initial conditions for the 7 state components are 

 1, 2, 3, 4, 5, 6, 7,29084.355 km     0.1     0     0.466     0     0     1i i i i i i ix x x x x x x= = = = = = =   (43) 

Orbit acquisition and maintenance using low-thrust ion propulsion employs the feedback con-

trol law defined in Eq. (28). With this regard, Section 4 supplies three sets of sufficient conditions 

(stated in Propositions 1 through 3) that ensure asymptotic stability, i.e. convergence toward the 

desired operational conditions (29)-(31). Similarly to the previous case, the hypotheses of Propo-

sitions 1 and 2 can be checked only a posteriori and are frequently violated, thus only the condi-

tions stated in Proposition 3 are being analyzed. 

At the initial time 0
t , the spacecraft has minimum thrust acceleration, because ( )7 0 1x t = . The 

inequality 
( ) ( ) ( )

7 0

max max

T T P
u x t u=  a  is thus checked, referring to the operational orbit of interest. 

Using the spacecraft data (i.e. propulsion, mass, and surface), the minimum available thrust ac-

celeration 
( )max

T
u  turns out to exceed the maximal magnitude of the perturbing acceleration, unlike 

what occurs for spacecraft orbiting the Earth at low altitudes. As a consequence, the feedback 

control law is expected to drive the spacecraft toward the desired operational conditions, in light 

of the global stability properties established in Section 4. Effectiveness of the feedback control 

law (28) is being tested numerically in the next subsections. 

6.1. Numerical results without eclipse effect  

Ion thrusters require onboard electrical power in order to operate. In some cases, this can be 

provided only when the space vehicle is illuminated. However, in this subsection, ion thrusters 

are assumed to be able to operate regardless of the spacecraft lighting conditions.  

Similarly to the case of low-thrust orbits, specific tolerances may exist on the periapse and 

apoapse radii. However, for medium-altitude orbits, Proposition 3, together with the subsequent 

theoretical developments, ensures global asymptotic convergence. In this subsection, convergence 

is verified numerically. To do this, no tolerance on the desired orbit elements is introduced, and 

the operational conditions defined previously are pursued. 
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The numerical simulations are performed using canonical units. The distance unit (DU) equals 

the Earth radius, whereas the time unit (TU) is such that 3 21 DU TUE = . Moreover, the fol-

lowing weighting coefficient are used, after extensive trial-and-attempt tuning: 
1 1k = , 4

2 10k = , 

and 
3 1k = . Orbit propagations are performed for a duration of 5 years and the initial reference 

epoch is set to 1 June 2020 at 12 am GMT. The overall propellant expenditure equals 7.234 kg. 

From inspection of Figs. 9 and 10 it is apparent that the semimajor axis, eccentricity, and inclina-

tion converge to the desired operational values. Figure 10 depicts also the mass ratio time history, 

pointing out that two phases exist: (a) orbit acquisition, where the thrust magnitude is maximum, 

and (b) orbit maintenance. Figure 11 portrays the evolution of V, which is decreasing in time. 

This is consistent with the expected global asymptotic convergence toward the operational condi-

tions. Finally, Fig. 12 illustrates the thrust components and magnitude. Inspection of this figure 

reveals that the thrust components have similar amplitudes, both in phase (a) and in phase (b). 

 
Figure 9. MEO satellite (without eclipse effect): time histories of the semimajor axis and eccentricity (with 

                zoom in the insets) 

 

Figure 10. MEO satellite (without eclipse effect): time histories of inclination and mass (with zoom in the 

                  insets) 
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Figure 11. MEO satellite (without eclipse effect): time history of the Lyapunov function 

 

 

Figure 12. MEO satellite (without eclipse effect): time histories of the thrust components and magnitude 
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6.2. Numerical results with eclipse effect  

This subsection includes the eclipse effect on the available electric power. This means that ion 

propulsion is considered unavailable when the microsatellite is not illuminated. The eclipse con-

ditions are identified using the shadow function  , introduced in Section 3.4. 

No tolerance is assumed also in this case. The canonical units and the weighting coefficients 

 1 2 3, ,k k k  are those employed in the previous subsection. 

Orbit propagations are performed for a duration of 5 years and the initial reference epoch is set 

again to 1 June 2020 at 12 am GMT. The overall propellant expenditure equals 6.949 kg. From 

inspection of Figs. 13 and 14 it is apparent that the semimajor axis, eccentricity, and inclination 

converge to the desired values. However, the semimajor axis exhibits some oscillations due to 

unavailability of thrust during the eclipse intervals. Figure 14 portrays also the mass time history,  

which   has   faster   decrease  in   the   early   phases,   due to   correction of orbit injection errors.  

 
Figure 13. MEO satellite (with eclipse effect): time histories of the semimajor axis and eccentricity (with 

                  zoom in the insets) 

 

Figure 14. MEO satellite (with eclipse effect): time histories of inclination and mass (with zoom in the 

                  insets) 
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Figure 15. MEO satellite (with eclipse effect): time history of the Lyapunov function 

 

 

Figure 16. MEO satellite (with eclipse effect): time histories of the thrust components and magnitude 
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Subsequently, ion propulsion is activated and turned off repeatedly and this is apparent from in-

spection of Fig. 15, which illustrates the time history of the Lyapunov function. In fact, the mod-

est-amplitude spikes portrayed in the inset correspond to the eclipse intervals. Unlike the previous 

simulations in the absence of the eclipse effect, the maximum thrust is applied repeatedly, even 

after orbit acquisition (cf. Fig. 16), which takes a relatively short time (i.e., about 20 days, cf. in-

sets of Fig. 13). In Fig. 16 it is apparent that all the thrust components have similar amplitudes. 

7. CONCLUDING REMARKS 

This research addresses the definition, analysis, and numerical testing of a real-time feedback 

orbit control strategy tailored to compensating orbit perturbations and errors at orbit injection for 

spacecraft placed in Earth orbits. The space vehicle of interest is assumed to be equipped with a 

throttleable, steerable ion propulsion system, with an upper bound on the thrust magnitude.  

Lyapunov stability theory, in conjunction with the LaSalle’s invariance principle, supply the 

theoretical foundations for the definition of a feedback control law capable of driving the dynam-

ical system at hand toward the desired operational conditions. Unlike several former contributions 

published in the scientific literature, this study proposes a saturated control law for orbit maneu-

vering, in the presence of perturbing accelerations inherent to the space environment. Moreover, 

the operational conditions, which identify the target set, are expressed in a rather general form. 

They are proven to correspond to a portion of the invariant set of the controlled system. Asymp-

totic convergence toward the target set is thus demonstrated, and it is global in all the dynamical 

contexts of practical interest, if some sufficient conditions, stated in three distinct Propositions, 

are met.  

Two mission scenarios, corresponding to two different operational orbits, are investigated: (a) 

circular, very low Earth orbit and (b) near-circular, medium-altitude Earth orbit. All the relevant 

orbit perturbations are included in the dynamical model used for numerical propagations. Due to 

the modest thrust level associated with the ion propulsion system, the sufficient conditions for 

stability are violated in mission scenario (a). In fact, Earth gravitational harmonics are responsible 

of oscillating perturbing accelerations, whose maximal magnitude in low Earth orbits exceeds the 

available thrust acceleration magnitude. Nevertheless, for scenario (a) the sufficient conditions for 

stability hold on average. As a result, convergence and stabilization in the proximity of the de-

sired operational conditions is demonstrated, albeit short-period oscillations cannot be avoided 

and represent the ultimate, non-compensated effect of Earth gravitational harmonics. Suitable 

tolerances on the operational conditions allow substantial propellant savings, because propulsion 

is switched on only when the flight conditions are beyond some specified bounds. As a further 

effort to model real scenarios with enhanced fidelity, satellite eclipsing is considered. In this case, 

the numerical simulations demonstrate that the tolerances are occasionally violated in some lim-

ited time intervals (where the ion propulsion is unavailable). In mission scenario (b), the expected 

asymptotic convergence toward the operational conditions – with no tolerance – is demonstrated 

numerically. Satellite eclipsing yields modest oscillations of the semimajor axis, during the inter-

vals when the ion propulsion is unavailable. All the numerical simulations refer to a duration of 5 

years and demonstrate that for both orbits (a) and (b) the propellant consumption is very limited, 

thus making the nonlinear control technique at hand particularly suitable and appealing for pre-

cise orbit injection and maintenance. 
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