',‘ frontiers

Author’s Proof

Before checking your proof, please read the instructions below.

Carefully read the entire proof and mark all corrections in the appropriate place, using the Adobe Reader commenting tools (Adobe Help).

Provide your corrections in one single PDF file or post your comments in the Production forum making sure to reference the relevant query/line

number, and to upload or post all your corrections directly in the Production forum, to avoid any comments being missed.
We do not accept corrections in the form of edited manuscripts nor via email.

Before you submit your corrections, please make sure that you have checked your proof carefully as once

you approve it, you won’t be able to make any further corrections.

Submitting your corrections is a 2-step process. First, you need to upload your file(s). Second, you will need to approve your proof or request a

new one.

In order to ensure the timely publication of your article, please submit the corrections within 48 hours. After submitting, do not email or query

asking for confirmation of receipt.
If you have any additional questions, contact cellbiology.production.office@frontiersin.org.

Quick Check-List

* Author names - Complete, accurate and consistent with your previous publications.

» Affiliations - Complete and accurate. Follow this style when applicable: Department, Institute, University, City, Country.

e Tables - Make sure our formatting style did not change the meaning/alignment of your Tables.

* Figures - Make sure we are using the latest versions.

¢ Funding and Acknowledgments - List all relevant funders and acknowledgments.

e Conflict of Interest - Ensure any relevant conflicts are declared.

* Supplementary files - Ensure the latest files are published and that no line numbers and tracked changes are visible.

Also, the supplementary files should be cited in the article body text.

* Queries - Reply to all typesetters queries below.

* Content - Read all content carefully and ensure any necessary corrections are made.

Author Queries Form

www.frontiersin.org/Registration/Register.aspx) if they would like their
names on the article abstract page and PDF to be linked to a Frontiers
profile. Please ensure to provide us with the profile link(s) when
submitting the proof corrections. Non-registered authors will have the
default profile image displayed.

“Federico Giulitti”

“Simonetta Petrungaro”

Query No. Details Required Author’s Response
Q1 The citation and surnames of all of the authors have been highlighted.
Check that they are correct and consistent with the authors’ previous
publications, and correct if need be. Please note that this may affect
the indexing of your article in repositories such as PubMed.
Q2 Please ask the following authors to register with Frontiers (at https://



https://helpx.adobe.com/acrobat/using/mark-text-edits.html
mailto:cellbiology.production.office@frontiersin.org
https://www.frontiersin.org/Registration/Register.aspx
https://www.frontiersin.org/Registration/Register.aspx
https://www.frontiersin.org/Registration/Register.aspx

Query No.

Details Required

Author’s Response

“Eugenio Gaudio”
“Elio Ziparo.”

Q3

Confirm that all author affiliations are correctly listed. Note that
affiliations are listed sequentially as per journal style and requests for
non-sequential listing will not be applied.

Qa4

Confirm that the email address in your correspondence section is
accurate.

Q5

If you decide to use previously published, copyrighted figures in your
article, please keep in mind that it is your responsibility, as the author,
to obtain the appropriate permissions and licenses and to follow any
citation instructions requested by third-party rights holders. If
obtaining the reproduction rights involves the payment of a fee, these
charges are to be paid by the authors.

Q6

Ensure that all the figures, tables and captions are correct, and that all
figures are of the highest quality/resolution.

Q7

Verify that all the equations and special characters are displayed
correctly.

Q8

Confirm that the Data Availability statement is accurate. Note that we
have used the statement provided at Submission. If this is not the
latest version, please let us know.

Q9

Confirm that the details in the “Author Contributions” section are
correct and note that we have added the sentence “All authors
contributed to the article and approved the submitted version.”

Q10

Ensure to add all grant numbers and funding information, as after
publication this will no longer be possible. All funders should be
credited and all grant numbers should be correctly included in this
section.

Q11

Ensure that any supplementary material is correctly published at this
link: https://www.frontiersin.org/articles/10.3389/fcell.2021.629182/
full#supplementary-material

Provide new files if you have any corrections and make sure all
Supplementary files are cited. Please also provide captions for these
files, if relevant. Note that ALL supplementary files will be deposited to
FigShare and receive a DOI. Notify us of any previously deposited
material.

Q12

Confirm whether the insertion of the article title is correct.

Q13

Confirm that the keywords are correct and keep them to a maximum
of eight and a minimum of five. (Note: a keyword can be comprised of
one or more words.) Note that we have used the keywords provided at
Submission. If this is not the latest version, please let us know.

Q14

Check if the section headers (i.e., section leveling) were correctly
captured.



https://zendesk.frontiersin.org/hc/en-us/articles/115001975425-Do-I-need-to-obtain-copyright-licenses-for-reuse-of-already-published-material-
https://www.frontiersin.org/articles/10.3389/fcell.2021.629182/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.629182/full#supplementary-material

Query No.

Details Required

Author’s Response

Q15 Confirm that the short running title is correct, making sure to keep it to
a maximum of five words.

Q16 Confirm if the text included in the Conflict of Interest statement is
correct.

Q17 Confirm whether the insertion of figure citations in the sentence
“...reduces the migration of both...” is fine.

Q18 Confirm whether the insertion of the “Funding” section is fine.

Q19 Provide doi for the following references.
“Jarc and Petan, 2019; Yao et al., 2011.”

Q20 Provide the volume number for “Safa, 2013.”

Q21 Confirm whether the insertion of citation “Figures 1, 2" is fine.




41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

1' frontiers

in Cell and Developmental Biology

ORIGINAL RESEARCH
published: xx January 2021
doi: 10.3389/fcell.2021.629182

OPEN ACCESS

Edited by:
Lucia Latella,
Italian National Research Council, Italy

Reviewed by:

Emanuele Berardi,

Universiteit Hasselt, Belgium
Laura Belloni,

Sapienza University of Rome, Italy

*Correspondence:

Claudia Giampietri
claudia.giampietri@uniroma..it
Antonio Filippini
antonio.filippini@uniroma’..it

tPresent address:

Sara Mandatori,

Neuroinflammation Unit, Faculty of
Health and Medical Sciences, Biotech
Research and Innovation Centre
(BRIC), Copenhagen Biocentre,
University of Copenhagen,
Copenhagen, Denmark

Specialty section:

This article was submitted to

Cell Death and Survival,

a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 13 November 2020
Accepted: 14 January 2021
Published: xx January 2021

Citation:

Giulitti F, Petrungaro S, Mandatori S,
Tomaipitinca L, de Franchis V,
D’Amore A, Filippini A, Gaudio E,
Ziparo E and Giampietri C (2021)
Anti-tumor Effect of Oleic Acid in
Hepatocellular Carcinoma Cell Lines
via Autophagy Reduction.

Front. Cell Dev. Biol. 9:629182.

doi: 10.3389/fcel.2021.629182

Check for
updates

Anti-tumor Effect of Oleic Acid in
Hepatocellular Carcinoma Cell Lines
via Autophagy Reduction

Federico Giulitti, Simonetta Petrungaro, Sara Mandatori?, Luana Tomaipitinca,
Valerio de Franchis, Antonella D’Amore, Antonio Filippini*, Eugenio Gaudio, Elio Ziparo
and Claudia Giampietri*

Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome,
Rome, ltaly

Oleic acid (OA) is a component of the olive oil. Beneficial health effects of olive oil are
well-known, such as protection against liver steatosis and against some cancer types.
In the present study, we focused on OA effects in hepatocellular carcinoma (HCC),
investigating responses to OA treatment (50-300 wM) in HCC cell lines (Hep3B and
Huh7.5) and in a healthy liver-derived human cell line (THLE-2). Upon OA administration
higher lipid accumulation, perilipin-2 increase, and autophagy reduction were observed
in HCC cells as compared to healthy cells. OA in the presence of 10% FBS significantly
reduced viability of HCC cell lines at 300 wM through Alamar Blue staining evaluation,
and reduced cyclin D1 expression in a dose-dependent manner while it was ineffective
on healthy hepatocytes. Furthermore, OA increased cell death by about 30%, inducing
apoptosis and necrosis in HCC cells but not in healthy hepatocytes at 300 uM dosage.
Moreover, OA induced senescence in Hep3B, reduced P-ERK in both HCC cell lines
and significantly inhibited the antiapoptotic proteins c-Flip and Bcl-2 in HCC cells but
not in healthy hepatocytes. All these results led us to conclude that different cell death
processes occur in these two HCC cell lines upon OA treatment. Furthermore, 300 uM
OA significantly reduced the migration and invasion of both HCC cell lines, while it has
no effects on healthy cells. Finally, we investigated autophagy role in OA-dependent
effects by using the autophagy inducer torin-1. Combined OA/torin-1 treatment reduced
lipid accumulation and cell death as compared to single OA treatment. We therefore
concluded that OA effects in HCC cells lines are, at least, in part dependent on
OA-induced autophagy reduction. In conclusion, we report for the first time an autophagy
dependent relevant anti-cancer effect of OA in human hepatocellular carcinoma cell lines.

Keywords: lipid droplets, autophagy, fatty acids, cell death, cancer

INTRODUCTION

In the last years different research groups investigated the relationships between fatty acids and
solid tumors. Fatty acids are major components of biological membranes and play important
roles in the intracellular signaling pathways. They are chemically classified as saturated and
unsaturated (monounsaturated and polyunsaturated) fatty acids and their structure affects
their biological effects. One of the most abundant fatty acid is the monounsaturated fatty
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acid Oleic Acid (OA), representing the main component of olive
oil (70-80%). Olive oil has beneficial effects in counteracting
liver steatosis and cardiovascular diseases (Perez-Martinez et al.,
2011; Perdomo et al., 2015; Zeng et al., 2020). OA effects on
cancer cells are not completely elucidated although they seem
to be different depending on cancer cell types (Sales-Campos
et al,, 2013; Maan et al., 2018). Upon OA administration in in
vitro set up, lipid droplets (LD) formation occurs within the cells
(Rohwedder et al., 2014) and inside these compartments neutral
lipids are concentrated with mechanisms still largely unclear
(Fujimoto et al., 2006). Most eukaryotic cells can store excess
neutral lipids within LD (consisting mainly of triglycerides and
cholesteryl esters), and release them when necessary, depending
on cellular needs. This property is particularly important in cells
exposed to feeding periods followed by starvation periods, such
as cancer cells (Jarc and Petan, 2019). In the present study we
investigated in vitro the effects of OA in HCC models. Previous
works have shown that OA treatment leads to a massive lipid
accumulation in hepatocytes cell lines (i.e., LO2 and HepG2 cells)
associated with cell viability reduction (Yao et al., 2011). We
tested whether OA affects lipid accumulation, autophagy and
cell death in different HCC cell lines compared to immortalized
healthy hepatocytes. Autophagy is a catabolic process essential
to maintain cellular homeostasis; it allows the turnover of
cellular components including LD (Giampietri et al., 2017).
In the autophagy-mediated lipolytic process, LD are associated
with the autophagosome protein microtubule-associated protein
light chain 3 (LC3) and then are delivered to lysosomes (Singh
et al.,, 2009). Therefore, autophagy plays a crucial role in LD
degradation regulating fatty acids mobilization. On the contrary,
autophagy impairment, achieved by genetic knockdown of
autophagy genes (i.e., atg5 or atg7), significantly increases hepatic
lipid stores (Amir and Czaja, 2011). Autophagy is the main
cellular response to nutrients deprivation (Denton et al., 2012)
and plays a dual role in neoplastic transformations (Mizushima,
2007; D’Arcangelo et al., 2018). Autophagy upregulation under
chemotherapy treatment may increase cancer cell survival (Ding
et al,, 2011). Autophagy inhibition leads to cell death promotion
and cell growth inhibition, and its activation induces cell
proliferation in HCC (Chava et al, 2017). For such reasons
inhibiting the autophagy pathways might be crucial to induce
cancer cell death (Tomaipitinca et al., 2019). Relatively little
is known about the molecular mechanisms underlying the OA
effects in liver cancer cells and the role of autophagy (Li et al.,
2014; Maan et al, 2018). Evidences exist showing an inverse
relation in liver between levels of autophagy and perilipin-2, a
constitutive protein of LD. High levels of Perilipin-2 inhibit LD
degradation by decreasing autophagy while perilipin-2 deficiency
increases autophagy leading to LD breakdown (Singh et al., 2009;
Sanchez-Martinez et al., 2015; Tsai et al., 2017). Further evidences
demonstrated a direct relationship between OA and perilipin-
2 accumulation in tumors such as glioblastoma, confirming the
relationship between OA and LD storage (Taib et al.,, 2019).
Conversely, the role LD store plays on controlling HCC growth
is still partially unknown. In the present work we investigated
LD accumulation in HCC cell lines (Hep3B and Huh7.5) vs.
immortalized healthy hepatocytes (THLE-2) after OA treatment,
with a focus on autophagy role. We report an anti-tumor action

of OA in HCC and a specific OA effect on lipid accumulation,
viability, proliferation, migration and invasion, at least partially
dependent on reduced autophagy.

MATERIALS AND METHODS

Cells Culture and Reagents
Hep3B and Huh7.5 cell lines were kindly donated by Professor
Maria Rosa Ciriolo “Tor Vergata” University of Rome.

The two HCC cell lines display respectively deletion (i.e.,
Hep3B) or point p53 mutation (i.e., Huh7.5) as tumor suppressor
p53 is one of the most frequently mutated genes in liver
cancer (Rebouissou and Nault, 2020). Cells were cultured in
DMEM (Gibco-Invitrogen, Carlsbad, CA, USA) containing high
glucose enriched with 10% fetal bovine serum, glutamine (2
mmol/l), in presence of penicillin (100 U/ml) and streptomycin
(100 pg/ml). Cells were maintained at 37°C in a humidified
5% CO, atmosphere. OA was purchased from Sigma-Aldrich
(Milano, Italy) and diluted with 0.1% NaOH, 10% delipidated
BSA (Sigma-Aldrich).

Control cell line (THLE-2) was purchased from the American
Type Culture Collection (ATCC, Manasses, VA, USA). THLE-
2 cells show phenotypic characteristics of normal adult
hepatocytes, are non-tumorigenic when injected into athymic
nude mice and do not express alpha-fetoprotein (Pfeifer
et al., 1993). THLE-2 were cultured with BEGM Bullet Kit
(Catalog No. CC-3170) from Lonza (East Rutherford, NJ,
USA). The Bullet Kit contains BEBM Basal Medium (CC-
3171 Lonza) and supplements. The final growth medium
consists of BEBM supplemented with 10% FCS, bovine pituitary
gland extract, hydrocortisone, epidermal growth factor (EGF),
insulin, triiodothyronine, transferrin, retinoic acid, 6 ng/
ml human recombinant EGF (Sigma-Aldrich) and 80 ng/
ml o-phosphorylethanolamine (Sigma-Aldrich). THLE-2 cells
require a special flask coating medium that consists of the
following reagents: a mixture of 0.01 mg/mL fibronectin from
human plasma (Sigma-Aldrich), 0.03 mg/mL bovine collagen
type I (Sigma-Aldrich) and 0.01 mg/mL bovine serum albumin
(Sigma-Aldrich) in BEBM medium.Before seeding, 3ml of
coating medium for a T-75 flask and 1 ml of coating medium for
one 6-well plate were applied for 2 min and then aspirated.

ATCC guidelines for culturing THLE-2 are available at:
https://www.lgcstandards-atcc.org/products/all/CRL-2706.aspx?
geo_country=it#culturemethod.

Hep3B, Huh7.5 and THLE-2 cells were cultured in T-75 flasks
and experiments were performed in 6-well plates. The day after
plating, cells were treated with OA at different concentration (50,
150, and 300 M OA) for the indicated time. Bafilomycin A1 was
purchased from Sigma-Aldrich and was used at 100 nM during
the last 3h treatment. Torin-1 was purchased from (Tocris,
Bristol, UK) and was used during the last 4h treatment at the
concentration of 250 nM for Hep3B and 500nM for Huh7.5
cell lines.

Western Blotting

Cells were washed two times with pre-chilled PBS (Phosphate
Buffered Saline) purchased from Sigma-Aldrich and lysed. Lysis
Buffer 10x (Cell Signaling, Danvers, MA, USA) was diluted
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in the presence of 2% SDS (Sodium Dodecyl Sulfate) and
proteases’ inhibitors (Sigma-Aldrich). Lysates were also sonicated
through a sonicator (Branson, Danbury, USA) for 10s at 50%
amplitude. Lysates were then incubated for 10 min on ice and
then centrifuged at 4°C for 15min at 14,000g to remove
cell debris.

Protein concentration was determined by micro BCA assay
(Pierce, Thermo Scientific, Rockford, IL, USA) and samples were
boiled at 95°C for 5min following Laemmli Buffer addition
(0,04% Bromophenol blue, 40% Glycerol, 2% SDS, 20% 8-
mercaptoethanol, 250 mM Tris HCI pH.6.8, all purchased from
Sigma-Aldrich) (Giampietri et al., 2006).

Proteins were separated by SDS-PAGE and transferred on
Polyvinylidene fluoride (PVDF) or Nitrocellulose membranes
(Amersham Bioscience, Piscataway, NJ, USA). Membranes
were probed using the following antibodies: anti-B-Actin-
HRP (Sigma-Aldrich 1:10,000); anti-Tubulin (Sigma-Aldrich
1:10,000); anti-LC3 (Cell Signaling 1:1,000); anti-Perilipin-2
(Sigma-Aldrich 1:500); anti-Cleaved caspase-3 (Cell Signaling
1:700); anti-PARP (Cell Signaling 1:1,000); anti-pERK (Cell
Signaling 1:1,000); anti-ERK2 (Santa Cruz, Santa Cruz, CA, USA
1:1,000); anti-Bcl-2 (Santa Cruz 1:500); anti-Flip (Cell Signaling
1:1,000); anti-Cyclin D1 (Santa Cruz 1:500); anti-PCNA (Santa
Cruz 1:500); anti-Srebp-1 (Santa Cruz sc-13551 1:50); anti PPAR-
gamma (Cell Signaling 2443 1:500).

Secondary  antibodies horseradish  peroxidase-
conjugated anti-mouse or anti-rabbit (Bio-Rad, Hercules,
CA, USA). Membranes were washed with Tris-buffered saline
(Medicago, Uppsala, Sweden) with 0.1% Tween-20 (Sigma-
Aldrich) and developed through the chemiluminescence system
(Amersham Bioscience) on the ChemiDoc image analyser
(Bio-Rad, Hercules, CA, USA), Image lab software was used for
densitometric quantifications.

Oil-Red O Staining

Briefly, a stock oil red solution was prepared diluting 0.7 g Oil
Red O with 200 mL isopropanol. A working dilution was then
obtained by mixing 6 parts Oil-Red O stock with 4 parts dH,O.
Cells were fixed with 10% formalin 5min at room temperature.
Then fresh formalin was added and incubated 1 h. After formalin
removal, cells were washed with 60% isopropanol 5min at
room temperature. After isopropanol removal, oil red working
solution was added for 10 min. Cells were then washed with H,O
and analyzed immediately by light microscopy. The Axioskop
2 plus microscope (Carl Zeiss Microimaging, Inc., Milan,
Italy) was used. Images were obtained at room temperature
using AxioCamHRC camera (Carl Zeiss Microimaging, Inc.) by
Axiovision software (version 3.1, Carl Zeiss Microimaging, Inc.).
Then, the stained lipid droplets were dissolved in 1.5ml 100%
isopropanol 5 min at room temperature and the absorbance was
measured at 500 nm to quantify neutral lipid accumulation.

were

Alamar Blue Assay

Alamar blue assay was performed using Resazurin sodium
salt solution (Sigma-Aldrich). Cells were cultured and treated
in 96-well plates as previously described, washed and then
Resazurin sodium salt solution was added for 4h. The solution

was collected and detected using a luminometer (Promega,
Madison, WIS, USA) using 580-640 nm emission filter and
520 nm excitation filter.

Cell Viability Assay

Cell viability was performed by counting cells in the presence of
trypan blue. Cells were seeded on 6-well plates and incubated
at 37°C in 5% CO; overnight, then treated with different doses
of OA. After OA incubation, cells were detached, volume mixed
1:1 with trypan blue and counted. The percentage of trypan blue
positive-dead cells respect to the total cell number was expressed
as the viability rate.

Flow Cytometry Cell Cycle and Cell Death

Analysis

For cell cycle analysis, cells were treated with OA at a
concentration of 300 wM for 48 h and then the cells were fixed
with 70% ethanol, washed three times with PBS and stained for
3h at room temperature with PBS containing 20 jug/mL RNase
A and 50 pg/mL propidium iodide (PI). Around 10,000 cells
were analyzed using a CyAn ADP flow cytometer (Beckman
Coulter, Brea, CA, USA) and FCS express 5 (De Novo software,
Glendale, CA, USA). The experiment was performed three times
with consistent results.

Annexin Pacific Blue /PI kit (Termo Fisher Scientific,
Rockford, IL, USA) was employed for the detection of percentage
of cell death according to manufacturer’s instructions. Cells were
treated with OA at the different concentrations into a 6-well plate
at the density of 1 x 10° cells/well for 24 h. Double staining
was used to identify the cell membrane phosphatidylserine
externalization and PI uptake. The results are from three
independent experiments (n = 3). Samples were run on the
CyAn ADP flow cytometer (Beckman Coulter) and analyzed with
FlowJo software, version 10.5.3.

Wound-Healing Assay

To evaluate cell migration we performed the wound-healing
assay using double well culture inserts (Ibidi GmbH, Martinsried,
Germany). Each insert was placed in a 24-well plate, 3.5 x
10* cells were plated into both wells of each insert with 70 wL
medium containing 10% FBS. When cells were confluent, the
culture inserts were gently removed and cells were fed with
1% FBS DMEM (CTRL) or treated with OA 300 uM (in the
presence of 1% FBS DMEM). Each well was photographed at
10x magnification immediately after insert removal, for the
measurement of the wound (cell-free) area (TO area considered
as 100%), and after 24 and 48 h with a Nikon DS-Fil camera
(Nikon Corporation, Tokyo, Japan). The mean percentage of
residual open area compared with the respective cell-free space
taken at TO was calculated using Image] v 1.47 h software. For
each experimental condition, three independent experiments
were performed.

Invasion Assay

To determine the invasion ability of HCC cell lines, transwell
membrane filters (8 WM pore size) (Falcon, Corning, NY, USA)
coated by reduced growth factor matrigel (BD, Franklin Lakes,
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NJ, USA) were used. 1 x 10° cells were seeded in the upper
chamber with 1% FBS medium, 20% FBS medium was added
to the bottom chamber. Following 48h incubation, the cells
were removed from the top surface of the membrane. The
invasive cells adhering to the bottom surface of the membrane
were fixed using 4% paraformaldehyde (Electron Microscopy
Sciences, Hatfield, PA, USA) and stained with 600 nM DAPI
(Thermo Fisher Scientific, Rockford, IL, USA). The total number
of DAPI-stained nuclei of invading cells were counted under
a fluorescence microscopy by using Image] software in five
randomly chosen macroscopic fields per membrane. Each
experiment was performed in triplicate and was repeated at least
three times.

B-galactosidase Assay
All the experiments were performed using the beta-galactosidase
staining kit according to manufacturer’s instructions (Cell
Signaling Technologies - USA, Danvers, MA).

Briefly, 100,000 cells were plated on 35mm Petri dishes at
37°C in 5% CO;, overnight, then treated with 300 nM OA

for up to 48h. Cells were fixed at 48h, then 1ml of beta-
galactosidase staining solution was applied to each dish. Cells
were incubated overnight in a dry, CO,-free incubator, then were
examined under light microscope at 200x magnification. For the
quantification of B-galactosidase positive cells, a score from 1 to
3 was assigned to each cell based on color intensity. The average
of the scores of three microscopic fields from each Petri dish was
calculated and the values were divided by the overall number of
analyzed cells. Each experiment was performed in triplicate and
was repeated at least three times.

Statistical Analysis

All the experiments were repeated at least 3 times. Statistical
analysis was performed using Prism software (GraphPad). Values
are expressed as mean, with individual experiments data points
plotting. The statistical significance was determined performing
unpaired Student f-tests or One-Way Analysis of variance
(ANOVA). Student’s t-test was used for statistical comparison
between means where appropriate (two groups) and One-Way
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FIGURE 1 | Neutral lipid accumulation upon OA treatment. Control (THLE-2), Hep3B and Huh7.5 cell lines treated with OA. In the left panels: images of the three cell
lines: Control, Hep3B and Huh7.5 stained with Oil-Red O after treatment with increasing doses of OA (50, 150, and 300 uM). In the right end panels: quantification of
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FIGURE 2 | Autophagic flux and perilipin-2 modulation upon OA treatment in Hep3B, Huh7.5 and THLE-2 cell lines. (A) Control (THLE-2), Hep3B and Huh7.5 and cell
lines treated with OA increasing doses in the presence of bafilomycin A1. LC3II quantification reveals a significant reduction of autophagic flux upon high OA doses in
both HCC cell lines, but not in the healthy hepatocyte cell line. (B) Western blot analyses for perilipin-2, were performed. Perilipin-2 levels in both HCC cell lines are
increased in a dose dependent manner, while in Control cells perilipin-2 levels do not significantly increase upon 48 h OA treatment (n = 3; *o < 0.05; **p < 0.01).

ANOVA (three or more groups); P < 0.05 was considered
statistically significant.

RESULTS

Lipid Accumulation Induced by OA

Administration

In order to evaluate the involvement of OA in the modulation of
neutral lipid accumulation in human hepatocellular carcinoma
and hepatocyte cell lines, we treated Control cell line (THLE-2),
Hep3B and Huh7.5 with increasing doses of OA (50, 150, and
300 wM). Upon 24 h treatment, cells were fixed and stained with
Oil-Red O dye, which binds neutral lipids, such as triglycerides
and cholesterol esters. As shown by optical microscopy analyses,
the treatment with increasing doses of OA induced a consistent
relevant and dose-dependent Oil-Red O accumulation compared
to the basal level into the cytoplasm of both HCC cell lines. Only a
slight Oil-Red O staining increase was observed in the control cell
line (Figure 1). Oil-Red O quantification by eluate absorbance

normalized by cell number, showed a dose dependent increase
with a significant value at 300 WM OA vs. untreated cells in HCC.

Supplementary Figure 1 shows a similar increase of oil-red
staining at 48h, suggesting that there is not a delay in lipid
accumulation, rather, a permanent increase is present in cancer
cells at 24 and 48 h.

Autophagic Flux and Perilipin-2 Modulation
Upon OA Treatment

Since autophagy is known to be involved in tumor metabolism
and in LD break-down, we investigated OA effect on autophagy.
We treated Control, Hep3B, Huh7.5 with increasing doses
of OA and bafilomycin Al. The presence of bafilomycin Al
allows to evaluate the autophagic flux (Klionsky et al., 2016)
by blocking the fusion between autophagosome and lysosome
and inducing autophagosomes accumulation. As shown in
Figure 2A, increasing doses of OA reduce the autophagic flux
in a dose dependent manner, in both HCC cell lines. On the
contrary, in the control cell line (THLE-2) OA shows no effect.
We speculate that the reduction observed in Figure 2 on Hep3B
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FIGURE 3 | OA reduces viability, cyclin D1 and PCNA in HCC cell lines. Cell viability assays and western blot analyses for Cyclin D1 and PCNA were performed. (A)
OA induced a significant dose-dependent reduction of cellular viability in HCC cell lines but not in healthy hepatocyte cell line, measured by Alamar Blue assay. (B)
Western blot Cyclin D1 and PCNA analyses showed that OA treatment induced a significant reduction of Cyclin D1 and PCNA levels in HCC cell lines, but not in
healthy hepatocytes cell line (0 = 3; *p < 0.05; **p < 0.01; **p < 0.001; ***p < 0.0001).

and Huh7.5 may be associated with the parallel increase observed
in Figure 1, while the lack of effect in control cell line is
consistent in Figures 1, 2. In order to better understand the
relation between LD accumulation and autophagy, the levels
of perilipin-2 were investigated by western blot analyses upon
48h OA administration. Perilipin-2 is located in LD peripheral
zone and its abundance is inversely related to autophagy level
in liver (Tsai et al, 2017). In Figure 2B perilipin-2 levels in

Control, Hep3B, and Huh7.5 cell lines are shown. 48h OA
treatment led to a significant and dose-dependent increase
of perilipin-2 levels in both HCC cell lines. Metabolic and
inflammation related targets (Zhong et al., 2018; Gnoni et al,,
2019) were differently modulated in HCC cells as compared
to control cells thus indicating that OA exerts different effects
in healthy vs. HCC cells as a consequence of different lipid
accumulation (Supplementary Figure 2).
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in Control (n = 3; *p < 0.05).

FIGURE 4 | proteins showed that 300 uM OA induced apoptotic cell death in Huh7.5 cell line. (C,D) Cytofluorimetric analysis for Ann V/PI staining of Hep3B and
Huh7.5 cell lines cultured with different concentration of OA (50, 150, and 300 uM). The strategy of cytometric analysis is showed on the left: representative dot plots
from five different experiments, by using Pl staining alone for gating Ann V + / Pl + cells. On the right, histograms of Ann V -/ PI + necrotic cells (fold increase) of
Hep3B and Huh7.5 cell lines showed that 300 uM OA significantly induces necrosis in Hep3B (n = 3; *p < 0.05; **p < 0.01). (E) B-galactosidase staining for Control
cell line and Hep3B was performed. Images and graphs revealed that 300 wM OA treatment induced significant increase of senescence phenotype in Hep3B but not

These results show that OA treatment directly affects
perilipin-2 expression in hepatocellular carcinoma cell lines,
correlating with both neutral lipid accumulation and autophagic
flux reduction.

Viability and Cell Death Upon OA Treatment
Control, Hep3B and Huh7.5 cells were treated with OA for 48 h
to investigate OA effects on viability and cell death. Alamar Blue
assay showed a specific dose-dependent reduction of cellular
viability in both HCC cell lines (Figure 3A). Also, OA-dose-
dependently reduced the expression of the proliferation markers
cyclin D1 and PCNA in both HCC cell lines but not in healthy
controls (Figure 3B).

Then, we evaluated cell death by trypan blue cell staining.
Forty-eight hours OA treatment induced a significant cell
death in both HCC cell lines, but not in the Control cell
line (Figure 4A). Finally, we investigated two markers of the
apoptotic pathway, namely, caspase-3 and PARP. Western
blot analyses show that both Caspase-3 and PARP are
activated by cleavage in Huh7.5 cell line upon 300puM OA
treatment (Figure 4B). Conversely in Hep3B and in Control
cells no increase of the active form of Caspase-3 proteins
has been observed. Nevertheless, a small sub-G1 population
is observed through Flow Cytometry cell cycle analysis after
PI staining, suggesting a week apoptotic response in Hep3B
(Supplementary Figure 3).

We also carried out cytofluorimetric analyses with Annexin
V-FITC/PL. As shown in Figures 4C,D, increasing doses of
OA significantly increase necrosis in Hep3B but not in in
Huh7.5. Necrosis appears as a dose dependent effect of OA
treatment in Hep3B but not in Huh7.5. Finally, as shown
in Figure4E, 300uM OA treatment significantly induced a
senescence phenotype in Hep3B cell line, but not in Control
cell line.

We therefore concluded that OA may induce cell death and
senescence pathways in HCC cell lines.

p-ERK and Anti-apoptotic Proteins

Modulation Upon OA Treatment
We then investigated p44/p42 MAPK (ERK1/2) phosphorylation
after 48 h OA treatment since reduction of ERK phosphorylation
in the Thr202/Tyr204 has been related to reduced proliferation
and increased cell death (Hennig et al, 2010). Western blot
analyses (Figure 5A) show that increasing OA concentrations
dose-dependently reduce p-ERK in both HCC cell lines but not
in the healthy controls.

To further investigate OA-induced cell death pathways, we
treated Control, Hep3B and Huh7.5 cell lines for 48h with
300 pM OA. Western blot analyses revealed that OA significantly

down-regulated the expression of anti-apoptotic proteins c-Flip
(Figure 5B) and Bcl-2 (Figure 5C) in both HCC cell lines but
not in the heathy cells. These data highlight OA as a possible
inducer of cell death processes in HCC by modulating cell death
regulators (Tsujimoto et al., 1997; Giampietri et al., 2014). Our
results are in agreement and extend previous results obtained
in different cellular models showing Bcl-2 reduction upon OA
treatment (Jiang et al., 2017).

OA Reduces Migration and Invasion of
Both HCC Cell Lines

We then performed wound-healing assays to evaluate cell
migration. Representative images are shown in Figure 6 at
different times after wound scratch. The percentage of uncovered
area at different time points represents the different wound
recovery ability of Control, Hep3B and Huh7.5 cell lines.
Hep3B cells display higher ability to cover the plate as
compared to Huh7.5. Such result is in agreement with previous
data demonstrating higher Hep3B cell line aggressiveness as
compared to other HCC cell lines (Slany et al., 2010; Qiu et al.,
2015). OA (300 uM) significantly reduces the migration of both
HCC cell lines (Figures 6B,C) as compared to healthy cells
(Figure 6A). OA appears to be more potent on Hep3B cells, thus
indicating the potential utility of OA in aggressive setup.

We then evaluated the OA effect on invasiveness in transwell
invasion assays. As shown in Figure 6D, a significant 70-to-80%
reduction of invasion after 300 WM OA treatment is observed in
both HCC cell lines.

The Autophagy Activator Torin-1 Reduces
OA-Induced Lipid Accumulation and Cell

Death

We then further analyzed the autophagy under OA treatment.
Hep3B and Huh7.5 cells were treated with OA combined with
torin-1 in the presence of bafilomycin Al. As expected, combined
OA/torin-1 treatment increases the autophagic marker LC3II
in both HCC cell lines as compared to OA alone (Figure 7A).
A significant reduction of neutral lipid accumulation was
observed, as compared to single OA treatment in HCC cell lines
(Figure 7B). Interestingly, the neutral lipid storage reduction
parallels the significant cell death decrease (Figure 7C).

We concluded that OA-induced neutral lipid accumulation
and cell death are both dependent on autophagy impairment
since the combined OA/torin-1 treatment is able to reduce
lipid accumulation and cell death; therefore, OA-dependent anti-
tumor effects are dependent, at least in part, on autophagy
reduction in HCC cell lines.
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FIGURE 5 | OA significantly reduces ERK phosphorylation and anti-apoptotic proteins in HCC cell lines. (A) Western blot analyses show that p-ERK levels are
significantly decreased upon 300 wM OA treatment in both HCC cell lines, but not in Control cell line. (B) c-Flip levels are significantly reduced in both HCC cell lines,

but not in the healthy cells. (C) Bcl-2 protein expression is significantly decreased in both HCC cell lines but not in the healthy cells. (n = 3; *p < 0.05).
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FIGURE 6 | OA reduces migration and invasion of both hepatocarcinoma cell lines. Wound-healing assay on Control (A), Hep3B (B), and Huh7.5 (C) cell lines were
performed. Representative phase-contrast images wound-healing assay (scratch test) taken at different time points (0, 24, and 48 h) after 300 wM OA treatment are
shown. Quantitative analysis of the percentage of uncovered area at 48 h revealed a statistical significance difference in both HCC cell lines after OA treatment, while
no differences in Control cell line were observed upon OA treatment (n = 3; *o < 0.05; *p < 0.01). (D) Invasion assay of Hep3B and Huh7.5 cell lines was performed.
Top: significant reduction of invading cells percentage after 48 h OA treatment in both HCC cell lines. Bottom: Representative images of Hep3b and Huh7.5
DAPI-stained nuclei after 300 uM OA treatment are shown (n = 3; ***p < 0.001; ***p < 0.0001).
DISCUSSION display higher attitude to accumulate neutral lipids ad LD as

compared to healthy cells. As shown in Figure 2 we also found a
In the last recent years different studies highlighted the role of  gpecific reduction of autophagy marker LC3II and increased LD
lipids in tumor progression, namely, in hepatocellular carcinoma.  marker perilipin-2 in HCC thus hypothesizing that autophagy
This cancer type, like other tumors, exploits lipid reservoirs to  reduction underlies higher LD and neutral lipid accumulation in
promote its progression (Borchers and Pieler, 2010). OA displays  HCC upon OA administration. An inverse relationship between
important beneficial effects on the liver, by reducing hepatic  perilipin-2 and autophagy levels is known to occur in the liver
steatosis and fibrogenesis. OA plays a positive role in the primary  (Tsai et al., 2017) in agreement with our OA-induced effects.
prevention of non-alcoholic fatty liver disease (NAFLD). Intake Reduced Alamar Blue staining in both HCC cell lines upon
of monounsaturated fatty acids such as OA, may be beneficial for QA treatment as well as significant cyclin-D1 and PCNA decrease
NAFLD patients, as opposed to the intake of carbohydrates, thus  in both HCC cell lines (Figure 3) suggest the role of OA as a
reducing the potential risk to develop HCC (Assy et al,, 2009). In  pegative regulator of proliferation in HCC cell lines. Previous
addition, the effects of OA in different cancer processes are well-  studies reported cell proliferation inhibition and apoptosis
known. OA promotes the growth of highly metastatic tumors (Li  jnduction after OA administration in carcinoma cells (Carrillo
et al,, 2014) while it induces cell death in low metastatic tumors et al, 2012). In previous works unsaturated fatty acid oleate
(Carrillo et al., 2012). OA has been also shown to exert anti-  (an oleic acid-derived salt) induces (Vinciguerra et al., 2009;
cancer effects in tumors inducing lipotoxicity (Yao et al, 2011).  Ppark et al., 2018) or inhibits (Arous et al., 2011; Li et al., 2013)
In the present study we investigated the involvement of OA in  HepG2 cell proliferation in a concentration-dependent manner,
counteracting HCC growth with a particular focus on autophagy.  with a mechanism only partially elucidated. We report here that
We addressed this issue on two different HCC cell lines vs.  increasing doses of OA reduce viability and increase cell death
healthy hepatocytes. The two HCC cell lines differ in their  (Figure4) in both HCC cell lines. OA activates the apoptotic
morphology, growth and cisplatin sensitivity (Qin and Ng, 2002).  process in Huh7.5 but not in Hep3B and increases necrotic
Since fatty acids are able to determine LD accumulation in  cell percentage in Hep3B but not in Huh7.5. Such data agree
HCC (Jarc and Petan, 2019), we evaluated neutral lipids and  with previous observations indicating that OA, among many
LD content. Surprisingly, we observed (Figure 1) a significant  beneficial functions, can induce cell death through apoptotic
increase in neutral lipid storage in both HCC cell lines, but notin  (Jiang et al., 2017) and non-apoptotic pathways (Yamakami et al.,
the healthy hepatocyte cell line at 300 WM OA, assayed through ~ 2014). Remarkably, as described by Magtanong et al. (2016)
Oil-Red O staining. We therefore concluded that HCC cell lines  there are several non-apoptotic cell death pathways activated
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by OA, such as necroptosis. OA is known to modulate cell
death by altering lipid metabolism or by altering membrane lipid
composition (Fontana et al., 2013; Ning et al., 2019).

Recently, Bosc et al. (2020) demonstrated that autophagy
regulates fatty acids availability through mitochondria-
endoplasmic reticulum contact sites and this event occurs
mainly in cancer cells. The metastatic potential of cancer cells is
related to genes involved in fatty acids synthesis and intracellular
lipids storage. Therefore, modulation of lipid accumulation,
function of enzymes dedicated to LD digestion, and fatty
acids availability play together a role in tumor progression
(Sanchez-Martinez et al., 2015; Giampietri et al., 2020). In
fact, lipid metabolism generates a high energy support used
by cancer cells to grow and metastasize. It is important to
note that OA accumulates inside the cell as triglycerides and
cholesterol esters, resulting in LD formation, i.e., cellular
organelles important in lipotoxicity control (Wen et al., 2013;
Petan et al., 2018). Interfering with LD accumulation leads to cell
death in fibroblasts exposed to the otherwise non-toxic oleate
(Listenberger et al., 2003).

We report here a senescent phenotype in f-galactosidase
stained Hep3B after OA treatment (Figure4). This result is
in accordance with our data showing that Hep3B cell line
does not undergo apoptosis but necrosis after OA treatment.
Different factors are known to regulate cellular senescence
and cells displaying G1 or G2 phase increase with S-phase
reduction may enter a senescent state becoming resistant to
apoptotic signals and undergoing necrosis (Kastan and Bartek,
2004; Gire and Dulic, 2015). Furthermore, senescence observed
on OA-treated Hep3B is in accordance with previous reports
demonstrating OA as a mild senescence inducer (Iwasa et al.,
2003; Yamakami et al.,, 2014). Further studies are underway to
further evaluate cell death processes induced by OA in HCC
cell lines. We therefore concluded that in our experimental
setup OA activates both apoptotic (Jiang et al, 2017) and
non-apoptotic pathways (Assy et al, 2009), depending on
cell type.

We observed that OA treatment displays significant reduction
of c-Flip and Bcl-2 in both HCC cell lines but not in the
healthy hepatocyte cell line (Figure 5). Wang et al. described the
anti-apoptotic role of both these proteins in the liver (Wang,
2015). It is well-known that c-Flip has multiple roles, modulating
apoptosis, autophagy and necrosis (Safa, 2013). Its up-regulation
was correlated with a poor clinical outcome in many pathological
conditions including cancer. Moreover, agents or molecules
able to inhibit c-Flip expression are of potential therapeutic
interest (Safa, 2013). Bcl-2 is known for its properties in cell
death modulation and OA has been shown to reduce Bcl-2
expression levels in tongue squamous carcinoma cells (Jiang et al.,
2017). In accordance with our results showing OA-dependent
cyclin D1 decrease and cell death activation, we also found
dose-dependent OA p-ERK reduction, reported in Figure5.
This finding parallels results obtained in tongue squamous cell
carcinoma cells, where dose-dependent OA treatment reduced p-
ERK1/2 (Jiang et al., 2017). In the present study OA significantly
reduced the migratory capability of HCC cells as compared to
Control cells (THLE-2) and reduced the number of invading

cells in both HCC cell lines (Figure 6). Hep3B cells display
higher ability to cover the scratch respect to Huh7.5 cells.
This difference between the two cell lines is in agreement with
previous data indicating higher aggressiveness of Hep3B cell line
vs. other HCC cell lines. Taken together these data supported
the hypothesis that OA, by negatively modulating the autophagic
flux, counteracts the aggressiveness and invasiveness of Hep3B
and Huh7.5 cell lines.

OA treatment in hepatic cell lines like HepG2 or immortalized
hepatocytes induces lipid accumulation and represents an in vitro
model of liver disease (Lim et al., 2020). Under our experimental
conditions, OA treatment induces lipid accumulation as expected
in healthy cells (THLE-2), although at a lower extent as compared
to cancer cells (Hep3B and Huh7.5). This suggests a beneficial
role of OA in cancers cells since the higher lipid accumulation
observed in cancer cells leads to cell death and to reduced
proliferation, migration, and invasion. We demonstrate that this
is likely related to autophagy flux reduction in cancer cells.
These results agree with Li et al. (2013), who demonstrated
that reduced invasiveness of HCC cells (HepG2 and BEL7402)
is related to a negative modulation of autophagy. To verify
the role of autophagy in OA-dependent effects, HCC cells
were treated with OA and analyzed for LD content in the
presence of the autophagy inducer Torin-1 (a mTOR kinase
inhibitor). The results shown in Figure7 led us to conclude
that 300 WM OA-induced LD accumulation and cell death are
both, at least partially, dependent on autophagy impairment
since the combined torin-1/OA treatment reduces LD and
cell death. Previous studies demonstrated that OA treatment
reduces autophagy in Hepalclc7 mouse hepatoma cell line
(Ning et al, 2019); also the saturated palmitic acid (PA)
impairs autophagic-flux in a time-dependent manner in liver
HepG2 cells (Korovila et al., 2020). Furthermore, OA was
previously shown to exert different effects in HepG2 cells
at different concentrations (Pang et al, 2018). In particular
LD accumulation and apoptosis induction was reported at
concentrations ranging from 0.1 to 2 mM OA while LD reduction
was found at 400 uM OA treatment. The Authors concluded
that these concentration-dependent effects are strictly related
to autophagy since autophagy is able to prevent 400 M
OA-induced HepG2 apoptosis.

Results of the present study achieved on three human cell
lines-based in vitro systems, confirm the pivotal role of autophagy
reduction in promoting OA-dependent LD accumulation, cell
death and reduced aggressiveness/invasiveness. Additional
studies are needed to further clarify the underlying molecular
mechanisms. We conclude that OA stimulates HCC cell death
via autophagy reduction while it does not impair autophagy
level in healthy cells thus leading us to hypothesize that
fine autophagy regulation preserves healthy hepatocytes
resistance to toxicity caused by high levels of neutral
lipids. LD accumulation in association with autophagic
flux reduction after OA treatments in Hep3B and Huh7.5
cell lines, promote cell death through apoptosis in Huh7.5
and also non-apoptotic pathway in Hep3B cell line. Such
differences in cell death mechanisms are currently under
further investigation.
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In conclusion, we present here several evidences indicating
OA specific antitumor effects in HCC in an autophagy-
dependent manner.
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