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Multiphase estimation is a paradigmatic example of a multiparameter problem. When measuring multiple
phases embedded in interferometric networks, specially tailored input quantum states achieve enhanced
sensitivities compared with both single-parameter and classical estimation schemes. Significant attention has
been devoted to defining the optimal strategies for the scenario in which all of the phases are evaluated with
respect to a common reference mode, in terms of optimal probe states and optimal measurement operators.
Also, the strategies assume unlimited external resources, which is experimentally unrealistic. Here, we optimize
a generalized scenario that treats all of the phases on an equal footing and takes into account the resources
provided by external references. We show that the absence of an external reference mode reduces the number of
simultaneously estimable parameters, owing to the immeasurability of global phases, and that the symmetries of
the parameters being estimated dictate the symmetries of the optimal probe states. Finally, we provide insight
for constructing optimal measurements in this generalized scenario. The experimental viability of this paper
underlies its immediate practical importance beyond fundamental physics.
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I. INTRODUCTION

With its potential to revolutionize fields such as imaging
and sensing, quantum metrology is one of the most promising
near-term quantum technologies. Photonics implementations
are prominent, with many problems cast as the measurement
of a single optical phase, the applications of which range from
the measurement of biological tissues [1] to the detection of
gravitational waves [2,3]. For such tasks, the advantage of
using quantum light is a long-established result [4–8] and a
long-sought technological goal [9–14].

However, this focus on the single-parameter case is neither
necessary nor advisable. Recent suggestions advise adopting
a multiple parameter approach [15,16], thus making quantum-
enhanced multiparameter estimation [17–28] an important
component of the next quantum revolution.

The paradigmatic multiparameter estimation problem is
the estimation of multiple relative phases in an interferometer.
This proof-of-concept scenario, in which a simultaneous esti-
mation strategy can outperform sequential quantum-enhanced
estimation strategies, has generally been approached assum-
ing the presence of a preferred reference mode and an equal
interest in the remaining d modes [17], although different
choices have also been considered [29].

In this paper, we present a comprehensive study of the
implications of the presence or absence of a phase refer-
ence for multiple phase estimation, extending the results

*goldberg@physics.utoronto.ca

of Refs. [30,31]. Our treatment of this estimation problem
makes use of the quantum Fisher information (QFI). This is
a powerful tool encapsulating the ultimate lower bound on
the precision that can be achieved for estimating a specific
parameter using a given state [32,33]. In multiparameter prob-
lems, the corresponding QFI becomes a matrix, the inverse of
which bounds the matrix of covariances between all of the
estimated parameters. Scalar versions of the bound can be
inferred, limiting the precision of estimating all parameters
simultaneously.

The QFI, however, does not take into account any ex-
perimental restrictions on what measurements can be feasi-
bly achieved, leaving the theoretical treatment of estimation
somewhat disconnected from practical considerations. By ex-
plicitly incorporating the availability of a phase reference, we
are able to transparently include this experimental resource
into the QFI framework without recourse to infinitely intense
reference beams.

This paper is organized as follows: in Sec. II, we summa-
rize our main results; in Sec. III, we introduce the multiphase
paradigm; in Sec. IV, we detail the treatment of multiple
phase estimation with classical light; in Sec. V, we extend
our studies to quantum states of light; and, in Sec. VI,
we address experimental implementations of the required
measurements.

II. SUMMARY OF THE RESULTS

The imprinting of a phase shift φ on an optical mode
is described mathematically by the action of the operator
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FIG. 1. Multiple phase estimation: general concept. A set of
optical phases φ0, . . . , φd is estimated, based on a measurement
strategy �. This can either make use of an external phase reference
or use one or more of the modes as a reference.

eiφn̂, where n̂ is the photon number operator acting on that
mode. Operating on a Fock state |n〉, the phase-shift operator
yields einφ |n〉, where the parameter φ appears only as an
unobservable global phase. In contrast, coherent states |α〉 ∝∑∞

n=0
αn√

n!
|n〉, the most classical states of light, transform as

|α〉 → |eiφα〉, the phase φ now being encoded as a relative
phase between the amplitudes of the component number
states, which is, in principle, measurable.

However, interfering different energy eigenstates in order
to measure their relative phase is only possible with the aid of
an ancillary system with uncertain energy: here, another beam
|β〉, which can be used as a phase reference. The necessity of
a reference beam is normally glossed over in phase estimation
protocols. As a first result, we quantify how the available
information is decreased in the absence of such a phase
reference: the rank of the QFI matrix (QFIM) is decreased
by one, making it impossible to simultaneously estimate all
d + 1 phases in Fig. 1. The rank of the QFIM immediately
dictates the number of independent parameters that can be
estimated using a particular probe state, and the scaling of
the QFIM with various experimental parameters informs the
metrological usefulness of the given quantum state. We use

this to explicitly show why global phases cannot be estimated
in multiphase estimation protocols.

The irrelevance of global phases implies that no phase
is more equal than others. This amounts, in practice, to
establishing a phase reference, based on the available modes.
The parameters to be estimated are thus not the original
phases, but some set of linear combinations thereof, deter-
mined according to a cost matrix Ri. Our results show how
to properly account for any chosen reference beam, avoiding
accidental assumptions of access to ancillary beams with
infinite energy. This is particularly relevant, for instance, for
integrated optical sensors, which often incur severe power
limitations.

We establish the classical limits pertaining to the differ-
ent scenarios illustrated in Fig. 2: the standard approach of
selecting one of the modes as a reference and estimating the
relative phases of the other d modes to that one; the estimation
of the d + 1 relative phases between “neighboring” modes;
and the estimation of all d (d + 1)/2 possible relative phases.
Some of these have more parameters than the original prob-
lem, but each represents a meaningful task, and none have
more than d independent parameters. The optimal partitioning
of the total available energy E among the different modes
depends on the cost matrix: in particular, we find that for
the scenarios R1 and R2 a symmetric subdivision begets
optimal performance. The optimal measurement strategy si-
multaneously estimates all of the interdependent parameters
by inferring them from a projection-valued measure that it set
by the optimal probe state.

We then discuss how generalized NOON states spread
over multiple modes lead to a scaling enhancement of the
total variance with respect to the classical limits, generalizing
the results of Refs. [17,34]. We find that the weights of the
different components of the quantum state closely follow the
prescriptions for classical light.

In particular, an egalitarian estimation scheme optimizes
the sensitivity of measuring all phases relative to each other.
In such a scenario, the optimal states have the same form for
both classical and nonclassical states, with equal energy in
each of the modes of the interferometer. Simultaneous esti-
mation schemes significantly outperform sequential schemes
for symmetrized measurement scenarios.

FIG. 2. Schematics of the different phase estimation strategies. Circles stand for the phases in each mode, and the connecting lines for the
parameters to be estimated. In the first panel, mode zero is selected as a privileged phase reference, corresponding to estimating the relative
phases δi,0 = φi − φ0. In the second panel, the choice is to refer each phase to the previous one (in cyclical fashion): δi, j = φi − φ j . Finally, in
the third panel, all relative phases are considered.
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III. MULTIPHASE PARADIGM
OF QUANTUM ESTIMATION

The goal of parameter estimation is to measure a set of pa-
rameters φ = (φ0, · · · , φd ) describing a sample with as much
precision as possible. For this purpose, a probe is prepared
in a suitable quantum state |ψ0〉, which is then transformed
by a unitary operation Û (φ), representing the action of the
sample. Finally, appropriate measurements are carried out on
the output state |ψ (φ)〉 = Û (φ)|ψ0〉, so that the values of the
parameters can be inferred from the outcome statistics.

For the specific case of d + 1 optical phases, sketched in
Fig. 1, the explicit form of the unitary operator is

Û (φ) = exp

(
i

d∑
i=0

φin̂i

)
, (1)

where n̂i is the photon number operator pertaining to the mode
labeled by i.

The precision in such a multiparameter case is captured
by the (d + 1)×(d + 1) covariance matrix with components
Ci, j = 〈φiφ j〉 − 〈φi〉〈φ j〉. This is bounded by the Cramér-Rao
inequality:

C � [H (ψ0; φ)]−1, (2)

where H (ψ0; φ) is the celebrated QFIM. This is a measure of
the amount of information about the set φ that can be extracted
from the probe state |ψ0〉. In our specific example, the QFIM
has components

H i, j = 4Re

[〈
∂ψ (φ)

∂φi

∣∣∣∣∂ψ (φ)

∂φ j

〉

−
〈
ψ (φ)

∣∣∣∣∂ψ (φ)

∂φi

〉〈
∂ψ (φ)

∂φ j

∣∣∣∣ψ (φ)

〉]

= 4Covψ (φ)(n̂i, n̂ j ), (3)

where

Covψ (X,Y ) = 1
2 〈ψ |XY + Y X |ψ〉 − 〈ψ |X |ψ〉〈ψ |Y |ψ〉, (4)

while the general expression can be found in Ref. [35].
We seek to maximize H for the sake of obtaining the

minimal covariance, with all the caveats of working with a
matrix inequality such as (2); foremost, we require a scalar
figure of merit [36].

In this framework, it is in principle possible to simultane-
ously estimate all d + 1 parameters φ: for some states |ψ0〉
the QFIM H has rank d + 1 so that the lower bound from
(2) is finite, implying that the states independently depend
on all d + 1 parameters. This does not amount to measuring
absolute phases because the QFIM assumes the unconditional
availability of an extra external phase reference, as in Fig. 1.
This may not be the case in actual experiments, thus the QFIM
calculated using pure states would lead to a too-generous
estimate of the attainable covariance, in line with the consid-
erations of Ref. [30] for single-phase interferometry.

In the absence of an external phase reference, the appropri-
ate result can be obtained by considering the QFIM derived
under a superselection rule that transforms the state in such a

way that it erases any global phase information:

|ψ〉〈ψ | →
∫

dθ

2π
e−iN̂θ |ψ〉〈ψ |e+iN̂θ

=
∞∑

N=0

1̂N |ψ〉〈ψ |1̂N ≡
∞∑

N=0

pN |ψN 〉〈ψN |, (5)

where N̂ =∑N N1̂N is the total-photon-number operator and
1̂N is the projector onto the N-photon subspace. Calculating
the QFIM with this transformed state yields the maximal pos-
sible experimental precision in the absence of any additional
external resources. Since the spans of the subspaces and their
weights pN do not depend on φ, the resulting mixed-state
QFIM is the convex sum of the corresponding pure-state
QFIMs [26]:

H

( ∞∑
N=0

pN |ψN 〉〈ψN |
)

=
∞∑

N=0

pN H (|ψN 〉〈ψN |). (6)

We can then demonstrate our first result: this superselected
QFIM H has rank at most d and thus no state can indepen-
dently depend on more than d parameters. For this purpose,
we observe that the new QFIM H can be broken into a convex
sum:

H i, j = 4
∑

N

pN Cov|ψN 〉(n̂i, n̂ j ). (7)

In each photon number subspace, we can rewrite n̂0 = N −∑d
i=1 n̂i, where N is a constant. Using the linear covari-

ance rule Cov|ψ〉(X,Y + Z ) = Cov|ψ〉(X,Y ) + Cov|ψ〉(X, Z ),
we now find

H i,0 = H0,i =
d∑

j=1

[
−4
∑

N

pN Cov|ψN 〉(n̂i, n̂ j )

]
(8)

and

H0,0 =
d∑

i, j=1

4
∑

N

pN Cov|ψN 〉(n̂i, n̂ j ). (9)

From this it is apparent that
∑d

j=0 H i, j = 0 for all i, from
which we immediately conclude that H is singular.

A scalar version of the bound (2) can be found using any
positive-definite cost matrix R:

Tr(RC) � Tr
{
R[H (ψ0; φ)]−1}. (10)

Given that that C and H are symmetric, we can take R = JT J
to be symmetric without loss of generality for some real ma-
trix J. Any measurement that saturates the matrix inequality
(2), which is not possible in general but is always possible
for multiphase estimation, also saturates the scalar inequality
(10) for a particular probe state. Nonetheless, different probe
states yield different lower bounds for different cost functions.
Thus, one first defines a cost function R based on physical
considerations of the relevant parameters to be estimated,
weighing each parameter by its relative significance, which
can be done regardless of the basis in which one originally
parametrizes the problem; next, one searches for a probe
state that minimizes the lower bound of the scalar inequality
(10); then, finally, one searches for a measurement procedure
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that will saturate the matrix inequality (2). The measurement
procedure yields the covariance matrix C, with which one can
infer any cost function, and this procedure saturates the scalar
inequality for any cost matrix; still, the probe state is only
guaranteed to be optimal for a particular cost matrix.

IV. OPTIMAL ESTIMATION WITH CLASSICAL STATES

The capabilities of multiphase estimation with classical
light are assessed by inspecting the state

⊗d
i=0 |eiφiαi〉. In

the presence of a phase reference, the associated QFIM has
components

H i, j = 4|αi|2δi, j, (11)

where δi, j is the Kronecker delta. The diagonal form of
this QFIM derives from the fact that each phase shift is
accumulated independently of the others. This implies that,
in principle, each phase φi can be estimated at its individual
ultimate limit, regardless of the presence of the others. The
corresponding variances will be proportional to the inverses
of the energies in each mode i.

When a phase reference is unavailable, the form (11) is
not valid, and needs to be replaced with its superselected
version, derived using (5). Comparison between classical and
quantum states only makes sense for fixed resources devoted
to the estimation; hence, we keep the average energy E fixed.
For classical states, and writing E as a dimensionless photon
number, this requires E =∑d

i=0 |αi|2, which can be used to
recast the states in the form

d∏
i=0

∣∣eiφiαi
〉 = e−E/2

∞∑
N=0

(∑d
i=0 eiφiαiâ

†
i

)N
N!

|vac〉. (12)

From this we can immediately identify the Fock layers as

√
pN |ψN 〉 = e−E/2

(∑d
i=0 eiφiαiâ

†
i

)N
N!

|vac〉

= e−E/2

√
N!

∑
k0+···+kd =N

√(
N

k

)
eik·φ

d∏
i=0

α
ki
i |k〉, (13)

using the multinomial coefficients
(N

k

) = ( N
k0,··· ,kd

)
and the

vector notation |k〉 =⊗d
j=1 |k j〉 j . One can use the identity

〈k|k′〉 = δk0k′
0
· · ·δkd k′

d
to verify that the probabilities are Pois-

son distributed in terms of the total energy:

pN = EN e−E

N!
. (14)

The first-derivative terms are given by

〈ψN |∂ jψN 〉 = 1

pN

e−E

N!

∑
k0+···+kd =N

ik j

(
N

k

) d∏
i=0

|αi|2ki

= i|α j |2NE−1 (15)

and the second-derivative terms are given by

〈∂iψN |∂ jψN 〉 = 1

pN

e−E

N!

∑
k

kik j

(
N

k

) d∏
i=0

|αi|2ki

= |αi|2|α j |2N (N − 1)E−2 (16)

for (i 
= j) and

〈∂ jψN |∂ jψN 〉 = |α j |4N (N − 1)E−2 + |α j |2NE−1 (17)

otherwise. The QFIM thus has components

H i, j = 4
∞∑

N=0

pN (δi, j |αi|2NE−1 − |αi|2|α j |2NE−2)

= 4

(
δi, j |αi|2 − |αi|2

∣∣α j

∣∣2
E

)
. (18)

The absence of a phase reference has two main conse-
quences on the relative QFIM (18), with respect to its coun-
terpart with a phase reference (11). The first observation is
that each component of the QFIM is decreased, which is a
stronger result than the averaging over a global phase not
increasing the amount of information present in the states.
This needs to be taken into account by schemes showing
quantum advantages with mode-separable states [29,37,38];
the nonclassicality within a single mode cannot be harnessed
for enhanced phase estimation in the absence of strong ref-
erence beams [39]. More crucially, the rank of the QFIM
diminishes to d from the value d + 1 allowed by the presence
of a reference. The number of independent parameters that can
ultimately be estimated is thereby reduced by one when all
resources are taken into consideration because the state does
not independently depend on all d + 1 parameters.

This reduction of the rank demands careful consideration
when identifying how the available information should be
used. A standard procedure consists of selecting one of the
modes (viz., mode zero) as a reference, and comparing the
other d phases to φ0. The vector of parameters to be estimated
is then given by the relative phases δ0,i = φi − φ0. This can
be achieved mathematically by acting on the entire state with
the operator exp (−iφ0N̂ ), which sends each phase φi → δ0,i

while leaving unchanged the final state in (5). It can equiva-
lently be achieved using the change-of-parametrization rule
H → JT

1→0HJ1→0 with the (d + 1)×(d + 1) Jacobian that
differentiates the original parameters with respect to the new:

(J1→0)i, j =
{

∂φi

∂δ0, j
j > 0

∂φi

∂φ0
j = 0

; (19)

the relations φ j = δ0, j + φ0 and
∑d

j=0 H i, j = 0 ensure that
the new QFIM has its first row and column vanish and the
same final d×d block as the original QFIM.1 The block-
diagonal H allows us to retain all of the information present

1We achieve the same QFIM with any global phase ϕ such that
φ j = δ0, j + ϕ. Then (J1→0)i, j = ∂φi

∂δ0, j
= ∂δ0,i

∂δ0, j
= δi, j and (J1→0 )i,0 =

∂φi
∂ϕ

= ∂ϕ

∂ϕ
= 1.
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in the state by inspecting only the d relative phase param-
eters [40]. Any other set of d independent parameters that
made H block diagonal could have been chosen as a starting
point because the Jacobians that transform between sets of
d independent parameters are invertible. Namely, all of the
relative phases in Fig. 2 are spanned by the d relative phases
δ0,i such that a change of parametrization to another set of d
relative phases constitutes a change of basis, up to some scale
factor; the basis in which the QFIM is inverted has no effect on
the optimal probe state or the optimal measurement strategy.
The cost matrix formalism can thus be used in this basis to
ascertain the optimal probe states for any set of relative-phase
parameters.

All of the information about these d relative phases is thus
contained in the d×d submatrix of H restricted to i, j > 0.
The inverse of the restricted H can be computed using the
Sherman-Morrison formula and has components

(H−1)i, j = δi, j

4|αi|2 + 1

4|α0|2
, (20)

with each diagonal term H i,i bounding from below the attain-
able uncertainty on the respective phase δ0,i.

Selecting mode zero as the reference does not yield the
same result for the components of the QFIM corresponding
to the d phases δ0,i that we saw earlier in Eq. (11). The
correct form has smaller diagonal elements, accompanied
by nonvanishing off-diagonal elements, which indicate the
statistical correlations between the d parameters. This is due
to the fact that the expression (18) takes the finite energy in
the reference mode into account explicitly; the ideal case is
obtained only in the limit |α0|2 → ∞.

To simultaneously optimize the estimation of all d phases
relative to a single phase reference one uses the cost matrix
R0 = 1 (i.e., no change of parametrization; see Fig. 2) to
quantify a lower bound for the scalar quantum Cramér-Rao
inequality (10):

Si = Tr(RiH−1). (21)

The bound S0 can be minimized using the Lagrange multiplier
E −∑d

i=0 |αi|2 to enforce the constraint on the total energy.
This yields

S0 = d

4E
(
√

d + 1)2 (22)

when

|αi|2 = |α0|2√
d

= E

d + √
d

. (23)

We can compare this limit to what is attained performing d
sequential estimations with the total energy of the reference
mode taken into account; then, each estimation has optimal
energy |αi|2 = |α0|2 = 1

2
E
d such that each of the d estimates

uses a total of |α0|2 + |αi|2 = E
d units of energy. In this case,

we find that that the analog limit is S0 = d2

E , thus larger by a
factor of at most 4. The imbalance between the optimal energy
in the reference mode and the d probe modes follows directly
from its privileged position with respect to the estimation cost
function.

We can extend this to any weighting in the cost function:
weigh each variance δ0,i by wi such that (R)i, j = wiδi, j . Then
the optimal state has

Ei = E
√

wi√∑d
i=1 wi +∑d

i=1
√

wi

; (24)

the optimal amount of energy in each component is exactly
determined by the symmetries of the cost function.

The choice of optimizing the estimation of the parameters
δ0,i is not unique, or necessarily the most convenient. In
fact, one can imagine a symmetric situation in which the
relevant quantities are the d + 1 relative phases between each
mode and the following one, parametrized by δi,i+1, including
δd,0 (see Fig. 2). Even though not all of the parameters are
independent, they all belong to the span of δ0,i, and one
can still equally weigh the cost of estimating each one. The
variance of any relative phase can be determined from the
covariance matrix of the original parametrization through

�2(δi, j ) = �2(δ0,i ) + �2(δ0, j ) − 2Cov(δ0,i, δ0, j ), (25)

where �2(X ) = 〈X 2〉 − 〈X 〉2. Using �2(δ0,0) = 0 and
Cov(δ0,0, δ0,d ) = �2(δ0,d ), the minimum total uncertainty is
bounded by

�2(δd,0) +
d−1∑
i=0

�2(δi,i+1) = 2

(
d∑

i=1

�2
(
δ0,i
)− d−1∑

i=1

Cov(δ0,i, δ0,i+1)

)
� S1 = Tr(R1H−1) (26)

for cost matrix

R1 =

⎛
⎜⎜⎜⎜⎝

2 −1 0 · · · 0
−1 2 −1 · · · 0

...
. . .

. . .
. . .

...
0 · · · −1 2 −1
0 · · · 0 −1 2

⎞
⎟⎟⎟⎟⎠. (27)

This cost matrix, and all others, can be found by the change-
of-parametrization Jacobian J0→i through Ri = JT

0→iJ0→i;

here

JT
0→1 =

⎛
⎜⎜⎜⎜⎝

1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 1 −1 0
0 · · · 0 0 1 −1

⎞
⎟⎟⎟⎟⎠ (28)
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is found from taking derivatives of the new parameters with
respect to the original ones:

(J0→1)i, j = ∂δi,i+1

∂δ0, j
= ∂ (δ0,i+1 − δ0,i )

∂δ0, j
. (29)

The measure to be minimized for the ring cost function is

S1 = 1

2

(
1

|α0|2
+

d∑
i=1

1

|αi|2
)

. (30)

Using the same Lagrange multiplier as before, the optimal
state now has

|αi|2 = |α0|2 = E

d + 1
, (31)

corresponding to a lower-bounded total uncertainty of2

S1 = (d + 1)2

2E
. (32)

In comparison, a sequential estimation scheme measures
all d + 1 parameters independently using energy E

d+1 , with
the (d + 1)×(d + 1) QFIM equal to E

d+1 times the identity
matrix. This can be recast as an estimate of the original d
independent parameters through the Jacobian transformation

H → JT
0→1HJ0→1 = E

d + 1
R1 (33)

because the QFIM transforms by differentiating the old pa-
rameters with respect to the new ones [26], and the roles of
old and new are reversed relative to when we derived the
cost matrix. The total error on all d + 1 parameters for the
sequential estimation scheme is easily calculated:

S1 = Tr(R1H−1) = d (d + 1)

E
. (34)

This is clearly superior to the alternative sequential estimation
scheme in which only the original d parameters are estimated;
that case would have S1 = Tr(R1

d
E ) = 2d2

E .
The simultaneous estimation strategy outperforms the se-

quential strategy by 2d
d+1 . The advantage approaches 2 in the

large-d limit because each sequential estimation with energy
E

d+1 can only send E
2(d+1) through each mode, while our

simultaneous estimation strategy always sends energy E
d+1

through each mode. Simultaneous estimation schemes are
optimal due to their sharing of resources to minimize the
variance in estimating each phase.

One can finally consider the fully symmetric cost function
that minimizes the sum of all pairwise relative phases (again,
spanned by the original δ0,i) using

R2 =

⎛
⎜⎜⎜⎜⎝

d −1 −1 · · · −1
−1 d −1 · · · −1

...
. . .

. . .
. . .

...
−1 · · · −1 d −1
−1 · · · −1 −1 d

⎞
⎟⎟⎟⎟⎠, (35)

2Incorporating the weights wi on the variances δi,i+1, the optimal
state has Ei = E (wi−1 + wi )/2

∑d
i=0 wi for all i including i = 0.

where, as before, R2 = JT
0→2J0→2,

(J0→2)μ, j = ∂δμ

∂δ0, j
= ∂ (δ0,μ2 − δ0,μ1 )

∂δ0, j
, (36)

and μ indexes all of the pairs of relative phases as depicted in
Fig. 2. It turns out that

S2 = d

2
S1, (37)

meaning that this measure is optimized by the same equal-
energy state as the ring cost function. The optimal sequential
estimation scheme, which measures

(d+1
2

)
relative phases each

using total energy E/
(d+1

2

)
, also satisfies S2 = d

2 S1:

S2 = d

(d+1
2

)
E

. (38)

We observe identical behavior in the ring and fully connected
parametrizations (Fig. 2). This shows the generic result that
symmetric estimation schemes are optimized by symmetric
probe states, and that simultaneous estimation schemes can
outperform sequential ones; we have seen this to be true for
classical input states, and we will subsequently show the same
phenomenon with quantum states.

V. OPTIMAL ESTIMATION WITH QUANTUM STATES

Nonclassical states are known to outperform their classical
counterparts in phase estimation. This result holds in the
single-parameter case, and carries over to the scenario of d
relative phases analogous to (22). For the latter case, the class
of quantum states

|ψ〉 =
d⊕

i=0

βi|N〉i, (39)

where the state |N〉i has N photons in mode i and zero photons
elsewhere, has provided interesting insight into this problem
[17,34]. This represents a generalization of NOON states to
our multidimensional problem, and, since the total photon
number is fixed at the value N , it is left invariant under the
superselection rule (5); the energy of the state is constrained
to E = N in units of photon number.

The QFIM for such states |ψ〉, which evolve to⊕d
i=0 eNiφiβi|N〉i, has components

H i, j = 4N2(δi, j |βi|2 − |βi|2|β j |2)

= 4N

(
δi, j |αi|2 − |αi|2|α j |2

N

)
,

(40)

where we have defined the energy fraction for each mode
to be |αi|2 = N |βi|2, in analogy with the classical case. This
shows that the quantum expression for the QFIM (40) differs
from the classical one (18) only by the prefactor N ; because
of this form, all of the nuances from the classical treatment
hold true—except for the scaling advantage associated with
the quantum resources. In particular, the QFIM again has rank
d , making it necessary to select a strategy at the outset.

The first example on which we report, which has been
discussed in Ref. [17], focuses on the d phase differences δ0,i.
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The inverse of the QFIM is easily found to be

(H−1)i, j = δi, j

4N2|βi|2
+ 1

4N2|β0|2
. (41)

All of the optimization over {βi} carries through in exactly
the same manner as in the classical case. In particular, the
optimization for the case of a single reference mode yields
a total variance

S0 = d

4N2
(
√

d + 1)2, (42)

achieved for |βi|2 = |β0|2/
√

d = (d + √
d )

−1
[see (22)], as

discussed in Ref. [17]. The scaling with the number of param-
eters d is the same as for the classical simultaneous estimation
strategy, while the scaling with energy is enhanced with these
nonclassical states.

In comparison, the optimal sequential quantum estimation
scheme measures the d relative phases δ0,i using a series of
d NOON states, each with total photon number N/d . The
precision on such a measurement is bounded by �2(δ0,i ) �
1/(N/d )2, thus yielding a bound on the total precision:

d∑
i=1

�2(δ0,i ) � d3

N2
= O(d )S0. (43)

The simultaneous estimation scheme offers an enhancement
over the sequential one by a factor that grows linearly with
the number of phases being estimated. This growth with
d , in contrast to the asymptotically constant improvement
of simultaneous versus sequential estimation with classical
states, is due to the E−2 scaling in the quantum case and
the E−1 scaling in the classical case. When the energy must
be split into d parts for a sequential estimation, the former
suffers more than the latter: sequential estimation increasing
the total variance relative to that of simultaneous estimation by
the order of d2 in the quantum case, but only by the order of d
in the classical one. The extra multipartite correlations make
simultaneous estimation much more appealing in the quantum
case.

Moving beyond the picture of a privileged phase-reference
mode, we again consider the ring cost function (26). We
find the optimal states to be Greenberger-Horne-Zeilinger
(GHZ)-type states defined by |βi|2 = |β0|2 = (d + 1)−1, with
[see (30) and (31)]

S1 = (d + 1)2

2N2
. (44)

Because the QFIM is degenerate with respect to the phase
differences being calculated, the same result is obtained re-
gardless of the set of d independent relative phases with
which we begin. This can again be compared to the optimal
sequential estimation scheme using d + 1 NOON states with
N/(d + 1) photons each, achieving a lower-bounded sum of
variances:

d∑
i=0

�2(δi,i+1) � d

(
d + 1

N

)2

= O(d )S1. (45)

The increased advantage with d has the same origin in the
different energy scaling as the previous case. A sequential

estimation of only d independent parameters, on the other
hand, gives Tr[R1( d

N )
2
] = 2d ( d

N )
2
, which outperforms the

sequential ring estimation scheme for d < 3.
Lastly we turn our attention to the fully symmetric cost of

estimating all
(d+1

2

)
phase differences. The optimization for

the classical states carries through to again be optimized by
the GHZ-type states, with

S2 = d

2
S1 = d (d + 1)2

4N2
. (46)

A sequential estimation strategy this time requires
(d+1

2

)
NOON states with N/

(d+1
2

)
photons each, resulting in a total

sum of variances:

d∑
i< j=0

�2(δi, j ) � d

((d+1
2

)
N

)2

= O(d2)S2. (47)

This sequential estimation scheme performs poorly. It is better
to only perform a sequential estimation of d phases relative to
a single common reference, and to infer the values of the other
parameters; this procedure has variance bound Tr[R2( d

N )
2
] =

d4

N2 . The ring estimation procedure, with variance bound

Tr(R2R−1
1 ) (d+1)2

N2 = 1
2

(d+2
3

) (d+1)2

N2 , outperforms both others for
d = 3, 4 by less than 5%; otherwise, it is better to avoid
splitting the energy N into too many parts due to the O(N2)
scaling of the variances.

We can make some overall comments about uncertainty
scalings, with results summarized in Table I. The optimal
simultaneous quantum estimation strategy goes as∑

i, j

�2(δi, j ) � O(ndN−2), (48)

where n is the total number of possibly dependent parameters
being estimated (i.e., the total number of terms in the sum
over i, j). This is because the variance goes as ≈ O(E−2) =
O(N−2), the probabilities |βi|2 are equally split among O(d )
modes, and there are O(n) total covariance terms to consider.
In contrast, for a sequential quantum scaling the energy is
optimally split into O(d ) parts with probabilities split over
only O(1) modes, and there are O(n) variances to sum, leading
to an overall scaling:

d∑
i, j

�2(δi, j ) � O

[
n

(
d

N

)2
]

= O(nd2N−2). (49)

For a classical simultaneous estimation there are again n
parameters to be estimated, this time with variances scaling as
E−1, and the total energy is again split among d modes:∑

i, j

�2(δi, j ) � O(ndE−1). (50)

The sequential classical scheme divides the energy into n
parts, but the reparametrized information only counts these
d times, leading to the same scaling. Simultaneous estimation
outperforms sequential estimation in the classical regime by
O(1) due to advantages in resource allocation among modes.
These scaling arguments explain the asymptotic improve-
ments of the simultaneous estimation schemes for different
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TABLE I. Minimum total variances �2
tot for each estimation scheme depicted in Fig. 2. For all configurations, simultaneous quantum

estimation schemes outperform sequential and classical estimation ones. Classical sequential estimation schemes benefit from estimating
each parameter directly, even those are are not independent; quantum simultaneous estimation schemes are better served by measuring fewer
parameters. Changing the relative significance of each parameter in the estimation procedure changes the optimal strategy accordingly.

Common reference (R0) Neighboring references (R1) All references (R2)

�2
tot Strategy �2

tot Strategy �2
tot Strategy

Classical
Sequential d2

E d estimates d (d+1)
E d + 1 estimates d2 (d+1)

2E

(d+1
2

)
estimates

Simultaneous d (
√

d+1)2

4E Privileged mode (d+1)2

2E Mode symmetry d (d+1)2

4E Mode symmetry

Quantum
Sequential d3

N2 d estimates

{
2d3

N2 , d � 2
d (d+1)2

N2 , d > 2

d estimates

d + 1 estimates

{(d+2
3

) (d+1)2

2N2 , d = 3, 4
d4

N2 , d 
= 3, 4

d + 1 estimates

d estimates

Simultaneous d (
√

d+1)2

4N2 Privileged mode (d+1)2

2N2 Mode symmetry d (d+1)2

4N2 Mode symmetry

numbers of parameters being estimated. Quantum schemes
outperform their classical counterparts by a factor of N ; this
heightened sensitivity to splitting N among more measure-
ments is responsible for the dramatic O(d ) improvements
promised by simultaneous versus sequential quantum estima-
tion.

VI. OPTIMAL MEASUREMENT SCHEME
FOR SIMULTANEOUS PHASE ESTIMATION

The matrix quantum Cramér-Rao bound suffers from the
limitation that the bound may be unattainable even in princi-
ple. Multiple phase estimation is a fortunate counter-example
that does not suffer from this drawback; it is possible to
simultaneously estimate all d independent parameters. This is
ultimately linked to the fact that the generators corresponding
to the d independent phase-shift operations commute. For
example, the commutativity of the set

ĥδ0,i = n̂i, i ∈ (1, d ) (51)

implies that the d phase differences δ0,i can be simultaneously
estimated at the ultimate limit.

We present example schemes that can be experimentally
implemented to saturate the Cramér-Rao inequality (2). No-
tice that, while the QFIM is only d dimensional, the quantum
Cramér-Rao bound can be saturated for any cost function (21),
even one that takes into account more than d interdependent
parameters. We focus our discussion on quantum states with
fixed N , as these are the only states that remain pure in the
absence of a phase reference.

Per Refs. [17,34], the quantum Cramér-Rao bound can be
saturated by a projection-valued measure using a set of d + 1
orthogonal projectors. These depend explicitly on the phases
φ, which is perfectly legitimate, since the Cramér-Rao bound
holds true for local estimation and in the asymptotic limit.
The first projector is chosen to correspond to the evolved state
|ψ (φ)〉. Since this state and its d derivatives

∂

∂δ0,i
|ψ (φ)〉 = iĥδ0,i |ψ (φ)〉 (52)

are linearly independent, the remaining d projectors can be
formed using a Gram-Schmidt orthogonalization procedure,
provided they satisfy some additional conditions detailed in

Ref. [34]. Because all of the generators ĥδi, j of the relative
phases can be created from linear combinations of the original
d generators ĥδ0,i , the orthogonalization procedure does not
actually depend on which d independent relative phases one
asserts to estimate.

The first scenario in Fig. 2(a) corresponds to d phase shifts
δ0,i being estimated with respect to a common reference. The
state identified by the condition (41) represents the optimal
choice. In the limit of small phase shifts φ ≈ 0, which can be
obtained by means of adaptive schemes, the optimal measure-
ment includes d + 1 projectors:

|u( j)〉 =
d⊕

i=0

u( j)
i |N〉i, j ∈ (1, d + 1). (53)

To obtain the coefficients u( j)
i [17], where the first vector must

be the projector over the unperturbed input state, one can
define the following set of linearly independent vectors:

v(1) ∝ (d1/4, 1, . . . , 1),

v(2) ∝ (d1/4, 1, . . . , 1,−1),

v(3) ∝ (d1/4, 1, . . . , 1,−1, 0),

v(4) ∝ (d1/4, 1, . . . , 1,−1, 0, 0),

. . .

v(d+1) ∝ (d1/4,−1, 0, . . . , 0). (54)

Note that the first vector v(1) is, modulo a normalization
constant, the projector onto the unperturbed probe state. Then,
by applying Gram-Schmidt orthogonalization to the set {v( j)},
one finds a new set of vectors {u( j)} that provides the coef-
ficients for states |u( j)〉. Such a choice leads to the same set
of projectors reported in Ref. [17] for the specific case d = 3,
and provides a general recipe for larger d . Furthermore, such
a choice is guaranteed to satisfy the conditions of Ref. [34],
since all coefficients are real-valued. Finally, this specific set
maximizes the number of zero-valued coefficients, potentially
simplifying an experimental apparatus performing such mea-
surement.

An analogous set can be obtained for the GHZ-type states
that are optimal for the ring and fully connected cost functions
[Figs. 2(b) and 2(c)]. In these cases, in the limit of small
phase shifts φ ≈ 0, the set of projectors |u( j)〉 is obtained
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by applying Gram-Schmidt orthogonalization to the following
vectors:

v(1) = (1, 1, . . . , 1, 1),

v(2) = (1, 1, . . . , 1,−1),

v(3) = (1, 1, . . . , 1,−1, 0),

v(4) = (1, 1, . . . , 1,−1, 0, 0),

. . .

v(d+1) = (1,−1, 0, . . . , 0), (55)

which leads to a new set of orthonormal vectors {u( j)} defin-
ing the measurement. As for the previous scenario with d
phase shifts measured with respect the common mode zero,
the first vector {v(1)}, and thus {v(1)} after Gram-Schmidt
orthogonalization, is the projector onto the unperturbed probe
state. As before, such coefficients define the states |u( j)〉 =⊕d

i=0 u( j)
i |N〉i, and lead to the same results as Ref. [17].

Note that, in general, the set of projectors for a given
probe state is not unique. As an explicit example, let us again
consider the GHZ-type states for the specific case d = 3. In
addition to the optimal measurement constructed from (55), a
different set of projectors satisfying the conditions of [34] can
be obtained as

u′(1) = 1
2 (1, 1, 1, 1),

u′(2) = 1
2 (1,−1, 1,−1),

u′(3) = 1
2 (1, 1,−1,−1),

u′(4) = 1
2 (1,−1,−1, 1). (56)

One may thus use whichever set of optimal projectors best
suits their experimental constraints.

For a given probe state, the optimal measurement pro-
cedure does not depend on the cost function. In order to
show this, we consider a specific measurement saturating
the quantum Cramér-Rao C � H−1. When a generic cost
matrix Ri is introduced, the corresponding bound on the
cost function is calculated by evaluating both the covariance
matrix C and the QFIM H in conjunction with the same Ri,
namely, Eq. (10), Tr(RiC) � Tr(RiH−1). The saturation of
the quantum Cramér-Rao bound then implies saturation of
the bound subject to the specific cost function. In turn, this
means that, given a fixed state and a measurement saturating
the quantum Cramér-Rao bound, this measurement is capable
of optimally extracting information on any set of parameters
specified by an arbitrary Ri.

The optimal measurement scheme is easy to depict for N =
1. In that case, the optimal probe state can be generated by
passing a single photon through a series of beam splitters and
phase elements; then, after the application of the phases φ, a
projection onto the probe state can be achieved by running the
circuit in reverse and projecting onto the presence of a single
photon in the original mode. The local asymptotic nature of
this estimation scheme is exemplified by the reverse circuit
requiring a good estimate φ̃ of the phases. The remaining d
projectors, corresponding to detecting the photon in any of
the d remaining modes, will give zero probability in the limit
φ̃ → φ. For N > 1 photons, not all states and measurements
can be deterministically accessed by linear-optical passive

networks, and thus in general may require one to exploit
additional ingredients such as postselection [34].

VII. CONCLUSIONS

In metrology, the concept of resources is central to quanti-
fying and comparing the aptness of different strategies. While
phase measurements are often considered as illustrative and
technologically relevant examples, care should be taken in
stating what resources are actually employed, due to the rich
conceptual intricacy; the inability of defining absolute phases
is a notable case in point.

In this paper we have focused on a comprehensive theory of
how the unavailability of a phase reference limits multiphase
estimation. In the absence of such an external reference, one
has to optimize their measurements for a particular choice of
relative phases. This choice then dictates the optimal probe
state for a simultaneous estimation of all parameters.

We have first derived the general limits that can be attained
by classical resources, and then we have introduced signifi-
cantly improved quantum strategies based on quantum states
of light with fixed numbers of photons. Within this class,
states of the form (39) undergo large phase shifts Nφi, leading
to Heisenberg scaling of the Fisher information with aver-
age energy. Moreover, simultaneously estimating all of the
parameters in symmetric estimation schemes is dramatically
more precise than sequentially estimating each relative phase.
The usefulness of this phenomenon will hopefully extend to a
wide variety of quantum-enhanced multiparameter estimation
problems.

Absent a privileged reference arm, there are multiple ar-
rangements in which the phases can be self-referenced. We
have explored three cases: selecting one arm as a reference, re-
ferring each arm to its neighbors, and considering all possible
pairs of modes. Since the Cramér-Rao bound can be saturated
in all of these cases, there is no preference for one over the
others. It is important to remark how the symmetry, or lack
thereof, of the different parameters is mirrored by the optimal
state, even when each parameter has arbitrary significance. We
expect that similar considerations of the role of symmetry can
find applications in more general settings of multiparameter
estimation.

ACKNOWLEDGMENTS

A.Z.G. acknowledges funding from a Natural Sciences and
Engineering Research Council of Canada (NSERC) Discov-
ery Award Fund, an NSERC Alexander Graham Bell Scholar-
ship, the Walter C. Sumner Foundation, the Lachlan Gilchrist
Fellowship Fund, a Michael Smith Foreign Study Supple-
ment, and Mitacs Globalink. N.S. and F.S. acknowledge fund-
ing from the Ministero dell’Istruzione dell’Università e della
Ricerca (MIUR) via PRIN “QUSHIP—Taming complexity
with quantum strategies: A hybrid integrated photonics ap-
proach” and by the Amaldi Research Center funded by the
MIUR program “Dipartimento di Eccellenza” (CUP Grant
No. B81I18001170001). A.M.S. is a Fellow of CIFAR, and
further acknowledges support from an NSERC Discovery
grant and from a visiting professor fellowship of La Sapienza.

022230-9



AARON Z. GOLDBERG et al. PHYSICAL REVIEW A 102, 022230 (2020)

[1] D. D. Nolte, in Optical Interferometry for Biology and Medicine
(Springer Science & Business Media, Berlin, 2011), Vol. 1.

[2] J. Abadie et al. (The LIGO Scientific Collaboration), Nat. Phys.
7, 962 (2011).

[3] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Phys. Rev. Lett. 116, 061102 (2016).

[4] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
[5] R. S. Bondurant and J. H. Shapiro, Phys. Rev. D 30, 2548

(1984).
[6] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33,

4033 (1986).
[7] P. Grangier, R. E. Slusher, B. Yurke, and A. LaPorta, Phys. Rev.

Lett. 59, 2153 (1987).
[8] M. Xiao, L.-A. Wu, and H. J. Kimble, Phys. Rev. Lett. 59, 278

(1987).
[9] N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner,

and I. A. Walmsley, Phys. Rev. Lett. 107, 113603 (2011).
[10] T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S.

Takeuchi, Science 316, 726 (2007).
[11] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and

G. J. Pryde, Nature (London) 450, 393 (2007).
[12] M. Kacprowicz, R. Demkowicz-Dobrzański, W. Wasilewski,
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011801(R) (2012).
[31] S. Ataman, Phys. Rev. A 102, 013704 (2020).
[32] C. Helstrom, Phys. Lett. A 25, 101 (1967).
[33] A. Holevo, J. Multivariate Anal. 3, 337 (1973).
[34] L. Pezzè, M. A. Ciampini, N. Spagnolo, P. C. Humphreys, A.

Datta, I. A. Walmsley, M. Barbieri, F. Sciarrino, and A. Smerzi,
Phys. Rev. Lett. 119, 130504 (2017).

[35] M. G. A. Paris, Int. J. Quantum Inf. 07, 125 (2009).
[36] F. Albarelli, J. F. Friel, and A. Datta, Phys. Rev. Lett. 123,

200503 (2019).
[37] C. N. Gagatsos, D. Branford, and A. Datta, Phys. Rev. A 94,

042342 (2016).
[38] M. Gessner, L. Pezzè, and A. Smerzi, Phys. Rev. Lett. 121,

130503 (2018).
[39] W. Ge, K. Jacobs, Z. Eldredge, A. V. Gorshkov, and M. Foss-

Feig, Phys. Rev. Lett. 121, 043604 (2018).
[40] T. J. Proctor, P. A. Knott, and J. A. Dunningham,

arXiv:1702.04271.

022230-10

https://doi.org/10.1038/nphys2083
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevD.23.1693
https://doi.org/10.1103/PhysRevD.30.2548
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevLett.59.2153
https://doi.org/10.1103/PhysRevLett.59.278
https://doi.org/10.1103/PhysRevLett.107.113603
https://doi.org/10.1126/science.1138007
https://doi.org/10.1038/nature06257
https://doi.org/10.1038/nphoton.2010.39
https://doi.org/10.1038/s41566-017-0011-5
https://doi.org/10.1063/1.4724105
https://doi.org/10.1016/j.nima.2005.05.068
https://doi.org/10.1088/1751-8121/ab8672
https://doi.org/10.1103/PhysRevLett.111.070403
https://doi.org/10.1080/23746149.2016.1230476
https://doi.org/10.1103/PhysRevLett.116.030801
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.1103/PhysRevA.96.062107
https://doi.org/10.1142/S0219749917400056
https://doi.org/10.1103/PhysRevA.98.032113
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1364/OPTICA.6.000288
https://doi.org/10.1116/1.5119961
https://doi.org/10.1088/1751-8121/ab9d46
https://doi.org/10.1016/j.physleta.2020.126311
https://doi.org/10.1103/PhysRevA.94.062312
https://doi.org/10.1103/PhysRevA.85.011801
https://doi.org/10.1103/PhysRevA.102.013704
https://doi.org/10.1016/0375-9601(67)90366-0
https://doi.org/10.1016/0047-259X(73)90028-6
https://doi.org/10.1103/PhysRevLett.119.130504
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1103/PhysRevLett.123.200503
https://doi.org/10.1103/PhysRevA.94.042342
https://doi.org/10.1103/PhysRevLett.121.130503
https://doi.org/10.1103/PhysRevLett.121.043604
http://arxiv.org/abs/arXiv:1702.04271

