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1 Sapienza Università di Roma, Rome, Italy
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Abstract. Every non-trivial distributed application needs to exchange
information in order accomplish its task, and reliable communication
primitives are fundamental in failures prone distributed systems to guar-
antee correct message exchanges between parties.
Their implementation becomes particularly challenging when considering
distributed systems where processes are arranged in a multi-hop network
and each of them may temporary and continuously be compromised by
an attacker during the execution. Although some fundamental problems
(such as the register implementation and the agreement) were investi-
gated considering Mobile Byzantine Faults (MBF), most of the contri-
butions consider a fully connected communication network.
In this paper we analyze the specific difficulty of ensuring reliable com-
munication between parties in a distributed system affected by Mobile
Byzantine Faults (compared to the case where the Byzantine failures are
static), showing that such a problem is essentially impossible to solve in
asynchronous systems with MBF, and we propose a synchronous pro-
tocol providing reliable communication both in complete networks and
specific multi-hop topologies.

Keywords: Reliable communication · Mobile Byzantine Faults · multi-
hop networks.

1 Introduction

Distributed systems are often prone to failures, given the multitude of intercon-
nected components they are composed of, and protocols that are deployed on
them are usually designed to guarantee correct execution despite fault occur-
rences. Besides, distributed systems are more and more frequently subject also
to external attackers, who aim to penetrate and compromise them.
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Processes in a distributed system need to communicate in order to achieve
non-trivial goals. Indeed, several reliable communication primitives have been
defined to guarantee integrity, delivery and authorship of messages exchanged
even in case of arbitrary failures. The reliable communication solutions proposed
so far mostly put constraints on the spatial distribution of failures or on their
duration. Such assumptions capture most of the internal misbehavior that may
occurs in a system: data corruptions, link failures, machine faults, etc. On the
other side, external malicious attackers commonly start compromising some ma-
chines and then they use them to move over the system till reaching their targets,
and the research handling such kind of attacks mostly focus on their prevention,
detection and reaction.

In this paper, we analyze the specific difficulties of ensuring reliable commu-
nication in distributed system affected by Mobile Byzantine Faults (compared to
the case where the Byzantine failures are static), showing that reliable communi-
cation in asynchronous systems is essentially impossible, and then we propose a
synchronous protocol solving reliable communication both in complete networks
and specific multi-hop topologies.

2 Related works

The reliable communication problem has been extensively investigated consid-
ering static Byzantine process failures. Dolev [10] provided the seminal contri-
bution addressing this problem in general networks with a globally bounded
number of faulty processes. Subsequently, several failure distributions have been
considered, such as neighborhood-bounded [12, 19, 21, 25], probabilistic [16, 20],
and the general adversary model [19]. Weaker problem specifications have been
proposed to allow solving the reliable communication problem in loosely con-
nected network [13,15], and dynamic networks have also been considered [2,17].

In complete communication networks, non-static Byzantine faulty processes
were considered by Reischuk [22] who proposed an algorithm solving the Byzan-
tine agreement in the case of f malicious agents that remain stationary on f
processes only for a given period of time. Later, Ostrovsky and Yung [18] in-
troduced the notion of an adversary that can inject and distribute faults in
the system at a constant rate and they proposed solutions (mixing randomiza-
tion and self-stabilization) for tolerating the attacks of mobile viruses. Then,
Garay [11] considered processes proceedings in synchronous rounds composed
by three phases (send, receive, and compute), and Byzantine mobile agents able
to move between one process to another during the lifetime of the system. Sev-
eral subsequent works later specialized his model, making alternative hypothesis
on the unawareness of processes of being faulty [24], assuming correct processes
sending non-equivocal messages [1], channels delays [23], decoupling the system
evolution from the agents movements [5]. All aforementioned works for the mo-
bile attacker model addressed either the Byzantine agreement, the approximate
Byzantine agreement [7], or the register abstraction [4] problems in complete



Mobile Byzantine Reliable Communication 3

networks. Most related to our work is the solution by Sasaki et al. [24], that is
detailed in section 6.

3 System model

Process definition and communication model. We consider a distributed
system composed by a set of n processes Π = {p1, p2, . . . pn}, each associated
with an unique identifier. Processes communicate by exchanging messages via
reliable and authenticated point-to-point links i.e., messages can neither be lost
or altered by the links and the identity of the sender of any message cannot
be forged. Processes and their links can be abstracted by an undirected graph
G = (Π,E) where the set of nodes is represented by the processes of the system
and the set of edges E contains an element ei,j if and only if there exists a link
between processes pi and pj . Two processes pi and pj can exchange messages
only if there is a link between them.

Time assumptions and computational model. Unless differently stated,
we consider a synchronous system [9]. Specifically, we assume one where the
computation evolves in sequential synchronous rounds r0, r1, . . . ri . . . (with
i ∈ N). Every round is divided in three phases: (i) send where processes send
messages through their links for the current round, (ii) receive where processes
receive all messages sent at the beginning of the current round, and (iii)
computation where processes execute a deterministic distributed protocol P
and generate the messages to be sent during the subsequent round. We assume
a tamper-proof read-only memory on every process where the code of P is stored.

Failure model. We assume that the system is affected by Mobile Byzantine
Faults (MBF) [1, 8, 11, 24]. Informally, in the mobile Byzantine failure model,
faults are represented by f computationally unbounded agents that move be-
tween processes. When an agent is on a process pi, it forces pi to behave as a
Byzantine faulty process (i.e., it may corrupt its local variables, forces it to exe-
cute an arbitrary protocol, to send arbitrary messages, to omit sending messages,
etc.). We assume that, at every round ri, every mobile Byzantine agent is placed
on at most one process pj and that it can move from pj to another process pk
only if there is a link between the two. The movement of the Byzantine agents
is characterized by the roaming pace parameter ρ, that is the minimum amount
of time between two displacements of an agent. We assume that the Byzantine
agents can only move in between the computation and the send phase [11, 24],
thus ρ ≥ 1 round.

We alternatively consider either an aware [24] or unaware [11] mobile
Byzantine failure model: in the former case a process knows about a mobile
agent that is moving away from it, in the latter it does not. At every round ri, a
process pj is either correct or Byzantine faulty. Precisely, pj is faulty if a mobile
Byzantine agent is on it at ri, or it is correct otherwise and it executes the
distributed protocol P. Notice that every process backs to execute protocol P



4 Silvia Bonomi, Giovanni Farina �, and Sébastien Tixeuil

right after a Byzantine agent moved away and that the failure state of a process
cannot change during a message transmission (send - receive phases). In the
aware mobile Byzantine failure model, we refer with cured process to a correct
one at round ri that was Byzantine faulty at round ri−1. We assume that every
cured process wipes all of its local variables at the beginning of the round.

Link specifications. The point-to-point reliable and authenticated links guar-
antee the following properties [9]: Reliable delivery - if a correct process sends a
message m to a correct process pj , then pj eventually receives m; No duplication
- no message is delivered by a link to a process more than once; Authenticity
- if some correct process pj receives a message m with sender ps, then m was
previously sent to pj by ps.

3.1 Graph metrics

We briefly recall some graph metrics that are employed to characterize reliable
communication correctness conditions.

Sasaki et al. [24] defined G(α, β) as the class of graphs G = (V,E) such that,
for any pair i, j of vertices in V , there are α disjoint paths connecting i and j,
whose length (in terms of the number of edges) is at most β.

A k-clique community is a graph defined as the union of all k-cliques (i.e.,
complete subgraphs of size k) that can be reached from each other through a
series of adjacent k-cliques (where adjacency means sharing k-1 vertices).

Pelc and Peleg [21] defined the parameter X(G) of a connected graph
G = (V,E): for every pair of nodes i, j ∈ V , X(i, j) denotes the number
of nodes x ∈ Γ (i) 3 that are closer to j than i; the parameter X(G) is de-
fined as the minimum X(i, j) between any pair of not incident nodes, namely
X(G) := min{X(i, j)| i, j ∈ V, (i, j) /∈ E}. The parameter X(G) allows to ar-
range nodes of a graph G in disjoint level L0, L1, . . . Lj (j ≥ 1) with respect their
distance to any chosen vertex s ∈ V such that L0 = {s}, L1 = Γ (s) and any
node in a level Li is at distance i from s and it has at least X(G) neighbors in
Li−1 (i.e. a level ordering [12]). A graphical example is provided in Figure 1a.

Litsas et al. [12] defined the parameter Ψ(G) of a graph G. Such a parameter
allows to arrange nodes of graphs in disjoint level L0, L1, . . . Lj (j ≥ 1) with
respect to any chosen vertex s ∈ V such that L0 = {s}, L1 = Γ (s) and any node
in a level Li has at least Ψ(G) neighbors in levels [L1, Li−1] (i.e. a minimum
level ordering [12]). A graphical example is provided in Figure 1b.

We refer with 〈k, l〉-multipartite cycle to a connected graph G composed
by l sets of k not adjacent nodes, such that each set is part of exactly two
complete bypartite subgraphs of 2k nodes. Figure 1c depicts an example of a
〈2, 4〉-multipartite cycle.

All the graph parameters and topologies we recalled guarantee specific graph
topological properties that will be leveraged addressing the reliable communica-
tion problem.

3 Γ (s) is the set of nodes in the neighborhood of node s in a graph.
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(a) (b)
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Fig. 1: (a) Level ordering with X(G) = 5. (b) Minimim Level ordering with
Ψ(G) = 5. (c) 〈2, 4〉-multipartite cycle.

4 Mobile Byzantine reliable communication problem
specification

Not all processes in a multi-hop network can directly exchange messages: some
of them have to rely on intermediate nodes relaying their messages in order
to communicate. Meanwhile, Byzantine faulty processes may diffuse spurious
messages, i.e. messages that have not been sent by their advertised source. A
reliable communication primitive prevent all correct processes from delivering
spurious messages while allowing them to communicate.

We aim to define a mobile Byzantine fault tolerant reliable communication
primitive in a multi-hop network of point-to-point reliable authenticated links,
namely to enable message exchanges between every pair of processes extend-
ing the guarantees provided by the point-to-point links in a distributed system
affected by Mobile Byzantine Faults.

The standard reliable communication (RC) specification [3,10,17,19,21] be-
tween a source process ps and a target process pt requires the following properties
to be satisfied: safety - if a correct process pt delivers a message m from ps, then
m has been sent by ps; liveness: if a correct process ps sends a message m to a
correct process pt, then m is eventually delivered by pt.

In the system model we are considering, the failure state of processes change
over time and no process is permanently correct. Furthermore, processes can be
compromised while they are communicating, namely between the computation
and send phase. It follows that every process which aims to communicate with a
peer must remain correct for at least two consecutive rounds in order to diffuse
any message, and thus, we define as correct source a process ps that is correct
for two consecutive rounds ri and ri+1, and computes a message m at ri.

Another aspect to take into account is that a message may require several
rounds to reach a target process, due to the network topology and to the protocol
employed to diffuse it. As a matter of fact, the state of a process may change over
time and a target process must not be permanently faulty in order to deliver a
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message sent by a source. Therefore, we say that a process pj is not permanently
faulty if for every round ri there always exists a round r′ ≥ ri where pj is correct.

Given all considerations stated above, we define a specification for the reliable
communication problem with Mobile Byzantine Faults.

Reliable communication with MBF specification. Given a correct source
process ps and target process pt, a reliable communication primitive guarantees
that:

– safety - if pt is correct at ri and it delivers a message m from ps, then m has
been sent by ps;

– liveness: if a correct source ps sends a message m to a not permanently faulty
process pt, then pt eventually delivers m.

5 Reliable communication in asynchronous systems

In this section, we show that it is impossible to design a protocol P that is
able to solve the reliable communication problem between a correct source ps
and a target pt when the distributed system is asynchronous and there is only
one mobile Byzantine agent. This motivates the subsequent assumptions for
analyzing synchronous systems (see section 6).

When assuming a fully asynchronous system, we consider that correct pro-
cesses still execute a deterministic distributed protocol P, but there is no known
upper bound on the time demanded for local computation, neither on the time
required to deliver point-to-point messages.

Theorem 1. There exists no distributed protocol P that is able to solve the
reliable communication problem specification with Mobile Byzantine Faults in an
asynchronous system even if (i) the source process ps is permanently correct,
(ii) there exists only one mobile Byzantine agent, and (iii) processes are aware
of their failure state.

Proof. The reliable communication specification requires both safety and liveness
property to be satisfied. We show that no protocol P can ensures the liveness
property, even assuming an always correct source, only one mobile Byzantine
agent and the aware failure model.

The reliable delivery property enforced by reliable and authenticated links
is guaranteed only between correct processes. Given that there is no constraint
on the link delay, even assuming a permanently correct source that continuously
sends a message m, such a message may never be delivered by the link, because
a target process pt may be compromised during each transmission of m.

On the other hand, we highlight on the solvability of safe communication
(i.e. enforcing only the safety property) in case of an asynchronous system.

The immediate consequence is that in the aware failure model, it is possible
to design a “best-effort” protocol that ensures safety while trying to maximize
the number of delivered messages.
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Theorem 2. Safe communication can be achieved with a non-degenerated pro-
tocol in an asynchronous distributed system in the aware mobile Byzantine failure
model.

Proof. We show a “best-effort” solution for the safe communication problem. Let
us assume that every process pj has access to a local clock Tj . It is reasonable to
assume that a Byzantine agent which is forcing a process pk to send a message m
must remain on pk till the end of its transmission to guarantee the link message
delivery. Let us consider the following protocol:

– the source process ps continuously sends 〈s, t,m〉;
– every process pj stores every message 〈s, t,m〉 received from a process pk

jointly with timestamp tk〈s,t,m〉 containing the value of Tj at the reception of

〈s, t,m〉;
– every process pj stores and continuously relays any message 〈s, t,m〉 received

from ps;
– every process pj that stores a set of 2f + 1 tuples

M := [〈〈s, t,m〉, t1〈s,t,m〉〉, 〈〈s, t,m〉, t
2
〈s,t,m〉〉, . . . , 〈〈s, t,m〉, t

2f+1
〈s,t,m〉〉] re-

ceived from distinct neighbors such that ∀i<j , t
i
〈s,t,m〉 < tj〈s,t,m〉 and

t2f+1
〈s,t,m〉 − t

1
〈s,t,m〉 < ρ continuously relays 〈s, t,m〉;

– if process pt relays 〈s, t,m〉 then it delivers m.

We show that the protocol defined above guarantees safety of reliable com-
munication in an asynchronous system. Let us consider a single agent initially
placed on a process p1 6= ps, that starts the transmission of a spurious message
m̃ to a process pq at time tstart1 and concludes at time tend1 when m̃ is received
by pq. Process pq then stores m̃ and a timestamp t1m̂ obtained by its local clock
at the reception of m̃. Subsequently, the Byzantine agent may move on a dif-
ferent process p2 and start sending another copy of m̃ to pq at time tstart2 , that
it concludes at time tend2 when the message is received by pq. Again, process
pq stores m̃ and a timestamp t2m̂. And once more, the agent can move another
time on a process p3 and iterate again the transmission of m̃. According with
the absence of link latency guarantees, it could happen that tendi − tstarti → 0.

On the other hand, tj+2
m̂ - tjm̂ > ρ, because a mobile agent must move twice in

order to send a spurious message for three distinct processes. It follows that,
assuming f mobile Byzantine agents, if a process q receives more than 2f copies
of a message m in a time windows shorter than ρ, then it can safely accept m.
For ease of explanation, the execution stated above is depicted in Figure 2.

6 Reliable communication in synchronous systems

In this section, we briefly present the seminal reliable communication protocol
defined by Sasaki et al. [24], and we define a new parameterized algorithm,
RCMB.
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Fig. 2: Graphical execution example of Theorem 2.

Sasaki et al. [24] proposed a reliable communication protocol aimed to enable
mobile Byzantine agreement on multi-hop networks. Their solution is based on
the fact that mobile Byzantine agents may compromise at most f processes at
every round: leveraging the disjoint paths available between all pairs of processes,
they defined a reliable communication protocol that enables mobile Byzantine
agreement in the unaware failure model in graphs G(α, β) where the inequality
α > 2βf is satisfied. Specifically, messages between every pair of processes are
routed over α disjoint paths and Byzantine agents may at most compromise βf
of them.

RCMB Algorithm. We define a new protocol addressing the reliable commu-
nication problem, RCMB. With respect to the one proposed by Sasaki et al., it
aims to keep the number of processes that concurrently send spurious messages
bounded over time.

Algorithm Reliable Communication Mobile Byzantines - RCMB :

– the source process ps computes message m addressed to a target process pt
at round ri, and saves 〈s, t,m〉 in a set variable delivered.

– any message 〈s, t,m〉 stored in delivered is removed after τ rounds.
– every process pj queues every message stored in delivered at round ri to be

sent in round ri+1 to itself and to all of its neighbors;
– if a correct process pj receives a message 〈s, t,m〉 from ps at round ri, then
pj saves 〈s, t,m〉 in a set variable delivered, and delivers m from ps if j = t;

– if a correct process pj receives more than σ copies of a message 〈s, t,m〉
from distinct neighbors at round ri, then pj saves 〈s, t,m〉 in a set variable
delivered, and delivers m from ps if j = t;

The parameter σ is a safety threshold, corresponding to the number of copies of
the same message that must concurrently be received to deliver it. The parameter
τ allows processes that were faulty in the unaware failure model to remove
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spurious messages that may have been injected by malicious agents. It can be
ignored in the aware failure model, because cured processes directly wipe their
local variables. Notice that, in case of τ = 1, every message stored in delivered
at round ri is queued to be sent at round ri+1 and then dropped.

6.1 Reliable communication correctness conditions

We provide in this section several correctness conditions that enable to solve
the reliable communication problem with one of the protocols presented in the
previous subsection. We investigate the solvability of reliable communication in
two scenarios: a correct source and a permanently correct source (that is, a source
that is correct in every round ri). The latter case is motivated by the fact that
such additional assumption enables to solve the reliable communication problem
in further topologies.

Unaware failure model

Theorem 3. Reliable communication cannot be achieved in the unaware mobile
Byzantine failure model with n ≤ 4f .

Proof. The result can be deduced from the lower bound implementing the safe
register abstraction in the unaware mobile Byzantine failure model [4]. Let us
consider a set of 4f processes connected through a complete communication
network. Let us assume a correct source ps that computes a message m at round
r0, that ps sends it to all other processes at round r1 and that pt and other f −1
processes are faulty at r1. Thus, pt is faulty while the reliable communication
protocol is diffusing m according to a distributed protocol P. Subsequently, the
mobile Byzantine agents move on process ps and on f−1 other processes between
rounds r1 and r2. It follows that at round r2 there are 2f processes that share
a state that contains m and 2f processes (f Byzantine faulty at r2 and f that
were faulty in r1) that may share a state injected by the adversary, thus it is not
possible to distinguish which set of processes is storing the message sent by the
correct source.

Theorem 4. The RCMB protocol with σ = (τ + 1)f guarantees safety of reliable
communication in the unaware mobile Byzantine failure model.

Proof. Let us consider a set of n process connected through a complete network.
Let us assume, for the ease of contradiction, that a target process pt delivers a
message m at round ri from ps but m has not been sent by its source (i.e. m is
a spurious message).

The delivery of a message m in the RCMB protocol is independent from
the process local variables and it is only determined by the messages that are
currently received in a round. On the other hand, the messages that are diffused
in a round depends on the content of the delivered variable.

The message m has not been received by a process through a link with the
source process ps according to our hypothesis. It follows that there have been
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more than σ = (τ + 1)f processes that sent 〈s, t,m〉 to pt at round ri. Mobile
Byzantine agents can force f processes to send 〈s, t,m〉 at round ri and they
can inject 〈s, t,m〉 in the delivered sent of the processes that were faulty at
ri−k, k ∈ [1, τ ] if τ ≥ 1. Thus, at most τf correct processes may potentially relay
〈s, t,m〉 in a round because they were previously faulty, since after τ rounds
〈s, t,m〉 is dropped from the delivered set. Every other correct processes process
pj 6= pt sends 〈s, t,m〉 at ri only if either pj received such a message through
a link with process ps, or from more than (τ + 1)f neighibors. It follows that
at most (τ + 1)f processes in the system may concurrently send 〈s, t,m〉. Thus
message m has been sent by its source. This leads to a contradiction and the
claim follows.

Theorem 5. The RCMB protocol with τ = 1 and σ = (τ +1)f provides reliable
communication in complete networks of size n > 4f in the unaware mobile
Byzantine failure model.

Proof. We verified the safety property of the RCMB protocol with σ = (τ + 1)f
in the unaware mobile Byzantine failure model in Theorem 4. We need to prove
the liveness property of reliable communication in a complete networks of size
n > 4f considering τ = 1.

Let us assume a correct source ps that computes a message m at r0 and sends
it at r1 to itself and to all of its neighbors according to the RCMB algorithm.
It follows that more than 3f processes queue m to be sent at r2, because m has
been received through a link from its source. At any round ri there are at most
f processes that get faulty and at most f ones that were faulty in ri−1. Thus, all
correct processes receive at least 2f + 1 copies of m from distinct nodes at any
round rj ≥ r2 and they relay it at the subsequent round. It follows that message
m is relayed by at least 2f + 1 > σ processes on any round rj ≥ r2, and that
process pt delivers it in a round rj ≥ r2 it is correct.

Theorem 6. The RCMB protocol with τ = 1 and σ = (τ + 1)f provides reli-
able communication in the unaware mobile Byzantine failure model in a k-clique
community network topology with k > 4f + 1.

Proof. We verified the safety property of the RCMB protocol with σ = (τ + 1)f
in the unaware mobile Byzantine failure model in Theorem 4. We need to prove
the liveness property of reliable communication in a k-clique community network
topology with k > 4f + 1 considering τ = 1.

Let us assume a correct source ps that computes a message m at round r0
and sends it at round r1. Given a k-clique community network, two processes ps
and pt are either both part of a k-clique or they are are included in two distinct
k-cliques that are connected through a sequence of adjacent ones.

Let us assume that ps and pt are both part of a k-clique K0. We showed in
Theorem 5 that all correct processes in a complete network of at least 4f + 1
nodes continuously relay a message m sent by a correct sender. It follows that t
delivers m in a round ri ≥ r1 it is correct.
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Let us assume that pt is part of a k-clique K1 adjacent to K0. All correct
processes but 2f in K0 sends m at every round rj ≥ ri+2 to all of their neighbors.
It follows that pt receives at least 2f+1 > σ copies of m on every round rj ≥ ri+2

because it is connected to at least 4f + 1 nodes in K0. Thus, it delivers m in a
round rj ≥ ri+2 it is correct.

Such an argumentation extends to any process in a k-clique reachable through
a sequence of adjacent k-cliques.

Theorem 7. The RCMB protocol with τ = 2 and σ = (τ + 1)f provides reli-
able communication in the unaware mobile Byzantine failure model in a network
topology G where n > 6f and X(G) > 6f .

Proof. The condition X(G) > 6f allows to arrange nodes of a graph G in a level
ordering of two or more levels [L0, · · ·Lk]. Let us consider a correct source ps
that computes a message m at r0 and sends it at round r1.

Let us assume that the level ordering with respect to ps is composed by 2
levels. It follows that all processes have a link with the source and that all the
correct ones receive m at round r1 directly from the source, thus they save it into
their delivered set and relay it at r2. Subsequently, the mobile Byzantine agents
can move between r1 and r2. At round r2 all correct processes are connected to
at least 4f + 1 > σ processes that relays m. It follows they relay m at round r3
and at all the subsequent rounds.

Let us assume that the level ordering with respect to ps is composed by 3
or more levels. At round r1 all correct processes in L1 receive m directly from
the source, thus they save it into their delivered set and they relay it at r2.
Subsequently, the mobile Byzantine agents can move between r1 and r2, and at
round r2 all correct processes in L1 relay m to all nodes in L2. Every process in
L2 has at least 6f + 1 neighbors in L1 and at least 4f + 1 > σ of them relay m.
It follows they all save and relay m at round r3. Between rounds r2 and r3 the
mobile Byzantine agents move and compromise further f processes. It follows
that at round r3 every process in levels L1, L2 and L3 receives m from at least
3f + 1 > σ processes, because each of them has at least 6f + 1 neighbors inside
the first three levels and at most 3f processes may have been compromised from
the beginning of the transmission. It follows that all correct processes in the first
three levels relay m at every round ri ≥ r4. This reasoning extends considering
more levels.

Theorem 8. The RC Sasaki et al. protocol with σ = βf provides reliable com-
munication in the unaware mobile Byzantine failure model in networks where
the inequality α > 2βf is satisfied [24].

Proof. Every reliable communication instance between a source process ps and a
destination process pt lasts exactly β rounds in the RC Sasaki et al. protocol. The
inequality α > 2βf guarantees that between every pair of processes there exist
at least 2α+1 disjoint paths of length at most β. Any process can relay messages
between peers ps and pt at only one defined round every β ones. It follows that
the mobile Byzantine agents can compromise at most βf processes (and thus
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disjoint paths) in β rounds, and thus no correct process receive more than σ
copies of a spurious message in a round. The assumption α > 2βf guarantees
instead that there always exist βf + 1 disjoint paths that are not compromised
by Byzantine agents in every communication instance.

Theorem 9. The RCMB protocol with τ = 1 and σ = (τ + 1)f provides reli-
able communication from a permanently correct source in the unaware mobile
Byzantine failure model in networks where Ψ(G) > 4f .

Proof. We verified the safety property of the RCMB algorithm with σ = (τ+1)f
in the unaware mobile Byzantine failure model in Theorem 4. We need to prove
the liveness property of reliable communication in networks where Ψ(G) > 4f
in case of a permanently correct source and τ = 1.

The condition Ψ(G) > 4f allows to arrange the nodes of a network G in a
(4f + 1)-minimum level ordering with respect to every vertex of G.

Let us assume that process ps sends a messagem employing RCMB to process
pt at round ri. Process pt can either be in L1 or in Li>1. In the former case it
receives m through a link from s starting from round rj ≥ ri+1 it is correct, and
thus it eventually delivers the message m. In the latter case, all correct processes
in L1 receive m at every round rj ≥ ri+1. Thus, they queue m to be sent at
every round rj ≥ ri+2. At every round, there are at most f processes that can
be faulty among all levels. It follows that at least 2f + 1 processes in L1 relay m
to processes in L2 at every round rj , because f nodes may have been faulty at
rj−1 and f ones are faulty at rj . Therefore, all correct processes in L2 relays m
to all of their neighbors at every round rj ≥ ri+3, and if process t is in L2 then
it delivers m at rj ≥ ri+3 when it is correct. The reasoning extends to any other
level given the assumption of Ψ(G) > 4f , and the claim follows.

Aware failure model

Theorem 10. Reliable communication cannot be achieved in the aware mobile
Byzantine failure model with n ≤ 3f .

Proof. The result can be deduced from the lower bound implementing the safe
register abstraction in the aware mobile Byzantine failure model [4]. Let us
consider a set of 3f processes connected through a complete communication
network. Let us assume a correct source ps that computes a message m at round
r0, that ps sends it to all other processes at round r1 and that pt and other f −1
processes are faulty at r1. Thus, pt is faulty while the reliable communication
protocol is diffusing m according to a distributed protocol P. Subsequently,
the mobile Byzantine agents moves on process ps and on f − 1 other processes
between rounds r1 and r2. It follows that at round r2 there are f processes
that share a state that contains m, f cured processes (i.e. with wiped local
variables) and f faulty processes. Thus, it is not possible to distinguish which
set of processes (the f faulty or the f not cured ones) is storing the message
sent by the correct source.
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Theorem 11. The RCMB protocol with σ = f guarantees safety of reliable com-
munication in the aware mobile Byzantine failure model.

Proof. Let us consider a set of n process connected through a complete network.
Let us assume, for the ease of contradiction, that a target process pt has delivered
a message m at round ri from ps but m has not been sent by its source (i.e. m
is a spurious message).

The delivery of a message m in RCMB is independent from the process local
variables and it is only determined by the messages that are received in a round.
The message m has been received by no process through a link with the source
process ps according to our hypothesis. It follows there have been more than
σ = f processes that sent 〈s, t,m〉 to pt at round ri. The mobile Byzantine
agents can force f processes to send 〈s, t,m〉 at round ri. The correct processes
at ri that were faulty at ri−1 turn to the cured state, thus they wipe their
local variables (and thus their delivered set) and remove any message previously
queued for the submission. Any correct process pj 6= pt sends 〈s, t,m〉 at ri only
if either pj has received such a message through a link with process ps, or from
more than f neighbors in a round. It follows that at most f processes in the
system may concurrently send 〈s, t,m〉. Thus message m has been sent by its
source. This leads to a contradiction and the claim follows.

Theorem 12. The RC Sasaki et al. protocol with σ = (β−1)f provides reliable
communication in the aware mobile Byzantine failure model in networks where
the inequality α > (2β − 1)f is satisfied.

Proof. The cured processes remain silent, namely they drop every message pre-
viously queued for the submission. In the first round of a reliable communication
instance, only the source is allowed to transmit. It follows that no process can
diffuse spurious messages in such a round. Therefore, spurious messages can only
traverse (β−1)f disjoint paths in a communication instance. On the other hand,
Byzantine agents can still compromise f processes per round, preventing peers
from receiving and relaying messages, and thus up to βf ones may be compro-
mised in every communication instance. The inequality follow considering that
(β−1)f+1 copies of a message received in a single round are sufficient to ensure
safety and that at most βf process can be compromised during a communication
instance.

Theorem 13. The RCMB protocol with σ = f provides reliable communication
in complete networks of size n > 3f in the aware mobile Byzantine failure model.

Proof. We verified the safety property of the RCMB algorithm with σ = f in
the aware mobile Byzantine failure model in Theorem 11. We need to prove
the liveness property of reliable communication in a complete networks of size
n > 3f .

Let us assume a correct source ps that computes a message m at r0 and sends
it at r1 to itself and to all of its neighbors according to the RCMB algorithm.
It follows that ps and at least 2f processes queue m to be sent at r2, because
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m has been received through a link from its source. At any round ri there are
at most f processes that are faulty and at most f ones that were faulty in ri−1.
Thus, all correct processes receive at least f + 1 > σ copies of m from distinct
nodes at any round rj ≥ r2 and they relay it in the subsequent round. It follows
that message m is relayed by at least f + 1 processes at any round rj ≥ r2, and
that process pt delivers it in a round rj ≥ r2 it is correct.

Theorem 14. The RCMB protocol with σ = f provides reliable communication
in the aware mobile Byzantine failure model in i) a k-clique community network
topology with k > 3f + 1 and ii) in topologies where X(G) > 5f .

Proof. We verified the safety property of the RCMB algorithm with σ = f in
the unaware mobile Byzantine failure model in Theorem 11.

The liveness property in case of k-clique community networks with k > 3f+1
or networks where X(G) > 5f follows from the same argumentation provided
respectivelly in Theorems 6 and 7 considering that σ is reduced to f .

Theorem 15. The RCMB protocol with σ = f provides reliable communication
from a permanent correct source in the aware mobile Byzantine failure model in
networks where Ψ(G) > 3f .

Proof. We verified the safety property of the RCMB algorithm with σ = f in
Theorem 11.

The liveness property in networks where Ψ(G) > 3f follows from the same
argumentation provided in Theorem 9 considering that σ is reduced to f .

6.2 Graph parameters comparison

In this section we provide some examples of topology where the condition α >
2βf by Sasaki et al. [24] is not satisfied, but the reliable communication problem
remains solvable.

Theorems 6 and 14 identify k-clique communities as a topology where the re-
liable communication problem is solvable. There exist topologies where α ≤ 2βf
but k > 4f + 1, and an example is depicted in Figure 3a: a 6-clique community
graph. According with Theorem 6, it is possible to provide reliable communica-
tion tolerating one mobile Byzantine agents (f = 1) in such a topology (indeed,
k > 4f + 1 = 5) considering the unaware failure model with algorithm RCMB.
On the other hand, in such a graph β = 3 and α = 5, thus the inequality
α > 2βf is not satisfied for f ≥ 1, so the algorithm by Sasaki et al. [24] does
not guarantee reliable communication in such a network.

Theorems 9 and 15 identify graphs where the parameter Ψ(G) is greater than
certain values as topologies where the reliable communication problem is solvable
from a permanent correct source. There exist topologies where α ≤ 2βf but
Ψ(G) > 4f , and an example is depicted in Figure 3b. According with Theorem
8, one mobile Byzantine agent (f = 1) cannot be tolerated by the algorithm by
Sasaki et al [24], indeed α = 5 and β = 3. Instead, Ψ(G) > 4f in such an example,
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allowing to achieve reliable communication against one mobile Byzantine agent
with algorithm RCMB.

The conditions defined in Theorems 7 and 14 identify new topologies where it
is possible to solve the reliable communication problem. Specifically, there exist
topologies where α ≤ 2βf but X(G) > 6f . An example is depicted in Figure 3c:
a 〈7, 14〉-multipartite cycle. In such a network, X(G) = 7, α = 14 and β = 7. Ac-
cording with Theorem 7 it is possible to achieve reliable communication against
one mobile Byzantine agents (indeed, X(G) > 6f) with Algorithm RCMB. On
the other hand the inequality α > 2βf is not satisfied in such a topology, so the
algorithm by Sasaki et al. [24] cannot guarantee reliable communication in such
a setting.
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Fig. 3: (a) 6-clique community example. (b) Ψ(G) = 5, α > 2βf not satisfied
with f > 1. (c) 〈7, 14〉-multipartite cycle.

7 Conclusion

We analyzed the reliable communication problem in distributed systems affected
by Mobile Byzantine Faults. We highlighted the specific difficulties that arise
when considering mobile malicious agents able to move in the system and to con-
tinuously compromise nodes. We shown that the reliable communication problem
arises even in complete communication networks, and that it is not possible to
address it in an asynchronous system. Then, starting from the only solution
available in the literature (the one proposed by Sasaki et al. [24]), we provided
additional insights about the specific properties that such protocols are able to
guarantee. In more details, we defined a new reliable communication protocol,
RCMB, and we identified new multi-hop topologies where reliable communica-
tion primitives remain feasible.

Our work paves the way toward deeper analyzes about reliable communi-
cation and others related distributed system problems with mobile Byzantine
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faults in multi-hop networks. A particularly interesting question is the feasabil-
ity of tolerating both mobile Byzantine failures and self-stabilization (as in the
register construction of Bonomi et al. [6]) for the purpose of reliable communi-
cation. To our knowledge, this problem was only shown solvable by Maurer et
al. [14] for the static Byzantine case.
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