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Monitor, anticipate, respond, and learn: developing and interpreting a

multilayer social network of resilience abilities

Abstract

Resilient performance is influenced by social interactions of several types, which may be
analysed as layers of interwoven networks. The combination of these layers gives rise to
a “network of networks”, also known as a multilayer network. This study presents an
approach to develop and interpret multilayer networks in light of resilience engineering.
Layers correspond to the four abilities of resilient systems: monitor, anticipate, respond,
and learn. The proposal is applied in a 34-bed intensive care unit. To map relationships
between actors in each layer, a questionnaire was devised and answered by 133 staff
members, including doctors, nurses, nurse technicians, and allied health professionals.
Two multilayer networks were developed: one considering that actors are 100% available
and reliable (work-as-imagined) and another considering suboptimal availability and
reliability (work-as-done). The multilayer networks were analysed through actor-centred
(Katz centrality, degree deviation, and neighbourhood centrality) and layer-centred
metrics (inter-layer correlation, and assortativity correlation). Strengths and weaknesses

of social interactions at the ICU are discussed based on the adopted metrics.

Keywords: resilience engineering; social network analysis; multilayer network;

complexity; intensive care unit.
1. Introduction

Resilience is a characteristic of complex socio-technical systems, explaining why and
how these systems do not break down, by adjusting their performance in face of
constraints and opportunities (Hollnagel. 2017). Resilience is also emergent, which
means that it is a new property that arises at system level from interactions between

individual parts of the system, such as people, software, and hardware (Cilliers, 1998).

This paper explores a particular type of interaction that gives rise to resilience, namely
social interactions in the workplace. The modelling of how these interactions influence
resilience is challenging as they have different purposes (e.g. advice-seeking, nurturing
friendship), and all may be influential depending on the context (Koirala and Hakvoort,
2017).



Four general types of social interactions are discussed. They are associated with the four
abilities of resilient systems (Hollnagel, 2017), which have been used in resilience
engineering (RE). RE is the discipline concerned with finding, assessing, and influencing
resilience through design, in socio-technical systems (Nemeth and Herrera, 2015). These
abilities are (Hollnagel, 2017): (i) monitoring, which implies in knowing what to look for,
or being able to monitor what could seriously affect the system’s performance in the near
term, positively or negatively; (/i) responding, which implies in knowing what to do, or
being able to respond to regular and irregular changes, disturbances, and opportunities in
the system, (iif) learning, which implies in knowing what has happened, or being able to
learn from experience, in particular to acquire the right lessons from the right experience;
and (iv) anticipating, which implies in knowing what to expect, or being able to prepare
for developments further into the future, such as disruptions, constraints or opportunities

in the system.

Social interactions are one of the possible ways to boost those four abilities. As social
interactions take place in messy real-life situations, it is reasonable to expect that an
interaction may simultaneously target at two or more abilities. Also, interactions focused
on a certain ability (e.g. monitor) may trigger other ability-centred interactions (e.g.
respond) at a later moment in time. However, while dependence between resilience
abilities is expected in theory (Patriarca, et al., 2018a), empirical data supporting the

understanding of what that looks like in practice is scarce.

In this study, Social Network Analysis (SNA) (Wasserman and Faust, 1994) is used to
model interactions between the four abilities of resilient systems. In our proposal,
interactions related to each resilience ability are modelled as layers of a multilayer
network. Each layer consists of nodes (i.e. people) and edges (i.e. purpose of the
interaction). Although sharing the same nodes, each layer conveys different information
on the edges. If the same actors are present in every layer the network is denoted as
multiplex (Nicosia et al. 2013), which is the type investigated in this study. While some
previous studies adopted SNA for modelling resilience in socio-technical systems
(Bertoni et al. 2020; Long et al., 2014; McCurdie et al., 2018), none of them took a
multilayer perspective. That is a drawback as the multilayer network is effectively a new
network, and therefore it offers insights that are not observable at the single-layer level —
e.g.. it makes it clear, in a concise way, the extent to which actors interact with the same

people regardless of the purpose of the social interaction (Dickinson et al., 2016).



Our perspective is aligned to Wood’s (2015) view of resilience as layered interwoven
networks that adapt to surprises as conditions evolve. While sound in principle, such
perspective of resilience has remained mostly at a conceptual level (Berg et al., 2018).
We aim at bridging such gap in the literature by investigating two research questions
(RQs), as follows:

RQ1: How can a multilayer social network be developed to map resilience in a socio-

technical sysiem?

R()2: How can traditional metrics used in multilayer social networks, at both actor and

layer levels, be interpreted in light of resilience engineering?

These questions are investigated through an application of SNA to the modelling of social
interactions in the ICU of a tertiary care teaching hospital located in Brazil. A number of
problems in today’s healthcare systems are influenced by social interactions, such as silo-
working, poor communication, and professional isolation (Pomare et al., 2020).
Healthcare has been one of the top studied sectors in RE, which may be justified by the
sector’s high complexity (Braithwaite, 2018).

A survey questionnaire was devised to gather information related to social interactions
between caregivers at the ICU. Data on four types of interactions corresponding to the
resilience abilities were collected and used to develop a multilayer social network, thus
addressing RQ1. Next, selected actor-centred and layer-centred metrics derived from the
multilayer network were calculated and interpreted from an RE lens, thus addressing
RQ2. The study reported in this paper expands the data analysis conducted by Bertoni et
al. (2020) at the same ICU, which focused on the identification of key resilient players in

ability-based layers.
2. Background
2.1 Resilient healthcare: concept and previous studies in ICUs

When applied to healthcare, resilience engineering has been referred to as resilient
healthcare. which is the “ability of the healthcare system to adjust its functioning prior (o,
during, or following changes and disturbances, so that it can sustain required performance

under both expected and unexpected conditions” (Hollnagel et al., 2013, p. xxv).

A core idea of resilient healthcare is the distinction between work-as-imagined (W AI)

and work-as-done (WAD). WAI is commonly defined top-down, prescribing rules,



procedures, and policies that define what is expected to occur, in various levels of detail.
WAD represents what actually occurs in the workplace, stressing the adaptations needed
to adjust to real work conditions (Hollnagel, 2014). In complex systems, such as
healthcare, there is inevitably a gap between WAI and WAD; however, none is
intrinsically superior over the other (Braithwaite, 2018). The adaptive capacity to fill out
gaps in WAI arises from formal organizational structures (e.g., training programs, built-
in slack resources, such as extra capacity) as well as from self-organization of employees,

trial and error, and experience (Provan et al., 2020; Wachs et al_, 2016).

In line with the emergent nature of resilient performance, Anderson et al. (2020) argue
that resilient healthcare research and practice should account for the prominence of social,
cultural and organizational factors in healthcare work — this further justifies the approach
adopted in our paper. In addition, those authors stress the need for giving visibility to the
linkages between resilience at different scales of time and space across the whole
healthcare system. Berg et al. (2018) refer to these scales as the micro (e.g., front-line
clinical work), meso (e.g., hospital), and macro levels (e.g., national regulations and

public health policies).

In the context of ICUs, in addition to Bertoni et al. (2020), a few other works have
explicitly adopted a resilient healthcare lens. Paries et al. (2013) investigated the merger
of two separate ICU services in a university hospital, describing how resilience
contributed to the improved performance of the new unit in terms of quality and safety of
care. Clay-Williams et al. (2015) proposed improvements in clinical guidelines in an ICU,
making them more compatible with WAD. Rosso and Saurin (2018) proposed the joint
use of the Functional Resonance Analysis Method (FRAM) and value stream mapping to
understand how resilience played out in the patient flow from an emergency department
to an ICU. Bueno et al. (2019) conducted a systematic literature review, analysing how
guidelines for coping with complexity were accounted for in 91 improvement
interventions at ICUs. Ransolin et al. (2020) explored the influence of the built

environment on the resilient performance of caregivers in an ICU.

In most of the aforementioned studies, theoretical and practical implications were
discussed in light of the four abilities of resilient systems, Alders’ (2019) study was the
only fully focused on the four abilities in ICUs, by assessing them through the resilience
assessment grid proposed by Hollnagel (2017). One of the findings was that resilient

performance strongly benefited from social interactions between care providers. In a



similar vein, Horsley et al. (2019) presented a framework for the improvement of 1CU

team resilience.
2.2 Multilayer social networks analysis: definitions and metrics

A single-layered social network (SSN) is defined by a tuple (V, E), where V is a set of
actors and E is a set of edges defining relations between actors. In a multilayered social
network (MSN), pairs of actors are connected by multiple edges and the network is
defined by a tuple (V,E, L), where L is a set of distinct layers, each associated with a

different type of relationship between actors (Magnani and Rossi, 2011).

At each layer [ information on actors and edges may be summarized in an adjacency
matrix A;, with element a;; signalizing the existence of a relationship between actors i
and j, through a binary value, or the strength of this relationship though a continuous non-
negative value. A common approach to MSN analysis is to merge layers of the SSN
through flattening of matrices A; (Dickinson et al., 2016). Several metrics at the actor and
layer level may be calculated for MSNs. Next, we briefly review the five metrics used in
our case study. These metrics reflect key attributes of complex systems, which therefore
have implications for resilient performance. Three of the metrics are actor-centred: Katz

centrality, degree deviation, and neighbourhood centrality.

Katz centrality C i(k“tz) relates the centrality of an actor i to centralities of the incoming
neighbours, taking into account immediate neighbours and those reachable through a
larger number of steps. Thus, Katz centrality assumes that nodes increase their centrality
if they are connected to central nodes. It is worth noting that, since the multilayer network
considers every edge, it represents a different network with a new topology; this may
result in Katz scores substantially different from those obtained for the individual layers.
A decay parameter « is used to assign larger weights to closer neighbours, through the

following expression (Katz, 1953):
k
Ci{ atz) _ b3 E?le ak (Ak)ﬂ- (1)
where A* is the adjacency mairix from a given layer or from the flattened network, and
N 1s the total number of actors in V. The value of « is usually set to 1/ - where 4.,
max

is the largest eigenvector associated with A.



Katz centrality is relevant for resilient performance since it accounts for the number of
interactions with central nodes, which refers to the number of interacting elements,

acknowledged to be a proxy measure of complexity (Perrow, 1984).

Degree deviation, G; of actor i, is the standard deviation of i’s centrality measurements
on a subset £ of network layers, which may include all layers in the network (Brodka et
al., 2011). A low value of G; may indicate that i is either homogenously active or inactive
on the layers. When calculating G; in a directed network with weighted edges, two
approaches could be considered: (7) use Katz as centrality measure, or (i7) use the degree
cenirality measure given by the sum of edges leaving and arriving at i, ignoring weighis.
We used approach (i7) since degree reflects a local property less dependent on the graph’s

topology and corresponds to the neighbour concept presented next.

Degree deviation reflects the diversity of actors’ interactions, which is another key
attribute of complexity that influences resilience (Dekker, 2011). Thus, it is reasonable to
expect that actors do not have a uniform participation across the four ability-based

networks — i.e. their degree deviation would be higher than zero.

Neighbours of an actor { are defined as all actors directly connected to i. In directed
networks, incoming and outgoing connections are considered in the determination of
neighbours. Neighbourhood centrality of actor i is defined as the total number of i’s
neighbours in the subset £ of layers of interest, such that each neighbour is only computed

once (Brodka and Kazienko, 2018); i.e.,
Neighbourhood (i, L) = |neighbours(i, L)| 2)

Similarly to degree deviation, neighbourhood centrality also reflects diversity. However,
it is concerned with the diversity of neighbours across the network layers, which may be

useful in providing diverse perspectives for decision-making (Page, 2010).

In addition to the actor-centred measures, two layer-centred measures are used in our
analysis: interlayer correlation and interlayer assortativity. Interlayer correlation is
calculated determining the proportion of edges that are common to pairs of layers,
regardless of the weights assigned to them. It is a measure of similarity, and therefore

redundancy between layers. As such, this metric also explores diversity at the layer level.

Assortativity correlation between a given pair of layers is obtained by first generating

for each layer a vector with entries given by the strength of edges in that layer (incoming,



outgoing or both) and organizing entries such that they refer (o the same edges in both
vectors. Then, Pearson’s correlation between those vectors is calculated (Nicosa and
Latora, 2015). At a single layer level, assortativity measures the preference of actors to
attach to others that are similar in some way. Thus, a network is assortative if edges
connect actors with similar degrees, high with high and low with low (Karrer and
Newman, 2009). In MSNs, this metric assesses whether these preferences remain the
same across all layers. Thus, assortativity correlation is yet another metric that reflects

diversity of interactions between actors.

As a support to the explanation above, Figure 1 depicts a multilayer network comprised
of four layers, namely monitor, anticipate, respond, and learn. Each single layer (on the
left side) renders a specific kind of directed relationship between five actors (A, B, C, D,
E). Depending on the chosen criteria, an actor may be central in a layer and peripheral in
the multilayer network (on the right side), in which the maximum possible network
density is quadrupled in relation to any individual layer. The thickness of an arc is
depicted as proportional to the frequency of the interactions between the corresponding
dyad, which helps to highlight the difference between degree and Katz centrality. The
former depends only on the number and values of incident arcs, whereas the second

depends on the topology of the entire network.
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Figure 1. Examples of single and multilayer networks



3. Method
3.1 Research stages

The ICU chosen for this study is part of a teaching hospital in Southern Brazil, which has
around 5,000 employees and 850 inward beds. The ICU has 34 beds and it has two
adjacent pods: one of them with 21 beds and another with 13 beds. Other recent resilience
engineering studies have been carried out at this same ICU by the same research group

involved in the present work (e.g., Ransolin et al., 2020).

Figure 2 presents the three main research stages: data collection, multilayer modelling,
and data analysis. There are (wo major sub-stages in the multilayer modelling, which need
to be justified upfront. Initially, a WAI network was devised by simply considering the
frequency of inleractions between actors. An expanded definition of WAI was used by
not limiting it to explicit knowledge. Indeed, there were no standardized procedures
specifying what the interactions should look like. Thus, the WAI network. in our context,
should read as the network of interactions under ideal circumstances, when the contacted
person is 100% available and 100% reliable. However, as these assumptions do not
necessarily hold true in practice, the development of a WAD network was necessary by
considering less than ideal availability and less than ideal reliability of the information
provided. The use of the terms WAI and WAD maintains their original key message.

namely that there is an idealized work system and a real one.
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Figure 2. Stages of the research method

3.2 Data collection

To obtain data for the development and interpretation of the MSN, we (7) designed and
validated a survey questionnaire, (if) applied the questionnaire to the target population
(primary data collection), and (iif) carried out semi-structured interviews with some actors
(secondary data collection). The same data collection procedures were used by Bertoni et
al. (2020) at the same ICU. Therefore, the same database supported the siudy in Bertoni
et al. (2020) — focused on actor-centered metrics at layer level, and the study described in
this paper. Furthermore, the previous study included semi-structured interviews with five
actors (two doctors and three nurses) that stood out based on actor-centered metrics at the
layer level. Some of those interviews were re-interpreted in this paper for the purpose of
the MSN.



A pilot survey was initially designed and tested with 8 of the 201 professionals working
in the ICU. Feedbacks were incorporated in the survey and a final version was applied to
the target population, comprised of four groups of care providers with at least one year of
experience in the ICU. They are: doctors (DR), nurses (N), nurse technicians (NT), and
allied health professionals (AH), such as psychologists, pharmacists, nutritionists, speech

and occupational therapists. Residents were not included in the target population.

There are three main sections to the survey questionnaire, which are summarized in Table

1. An overview of the sections is given next.

Section I (guestions 1 to 7) — designed to collect information on respondents, such as
professional group, age, experience, and working shift. Questions 7.1 and 7.2 refer to two
contextual information (i.e. frequency of interruptions and participation in daily rounds)

explored by Bertoni et al. (2020), and out of scope in the present study.

Section 2 (questions § and 9) — designed such that respondents were given the complete
list of 201 ICU staff members and asked to indicate those they search for advice (face-to-
face or through electronic means). Then, peers shortlisted from the [ull roster were scored
regarding their availability (“likelihood of peer being available™) and reliability
(“frequency in which the peer provides exactly the information requested”), using a five-
point scale, with the following descriptors: 1 — never; 2 — rarely; 3 — sometimes; 4 —
frequently; and 5 — always. Availability relates to time and reliability relates to precision.
These are the two main criteria for assessing variability (in time and precision dimensions,
respectively) when modelling socio-technical systems in resilience engineering
(Hollnagel, 2012).

Section 3 (questions 10 to 13) — a customized list of sought-after peers was generated for
each respondent based on names indicated in section 2. In this section, they were asked
to score the frequency of their interactions with those peers to monitor, anticipate,
respond, or learn. For that, a 5-point scale was presented with the following anchors: 1 —
never; 2 — less than once a month; 3 — one to three times a month; 4 — one to three times
a week; and 5 — daily.



Table 1 - Overview of the survey questionnaire (Bertoni et al., 2020)

Section name Question #  Question name Possible responses
Survey Starts Opening remarks
1 Name Full name
2 How old are vou? Number of vears
3 What 15 your gender? Male/female
Physician, nurse, nursing technician,
4 Profission pharmaceutical, nutritionist,
o physiotherapist, speech therapist, social
assistant, psychologist
5.1 Indicate number of vears since graduation
5.2 Time working in ICUs (including other Numiber of years
Demographic 5 hosplfals) _ _
Data 5.3 Time working at this ICU
5.4 Worked in other areas prior to the ICU? List e
Writing
them
Morning, afternoon, moming and
6 Work Shift afternoon, night shift 1, night shift 2,
night shift 3, sixth shift
;;]ﬁ;ﬁia?gﬂﬁfsgmm m Marks on a 5-point scale: 1 —never: 2 —
prmar =t = less than once a month; 3 — one to three
7 7.2 Frequency in which intermuptions take place j 3 ,
Vi o fik 11 s times a month; 4 — one to three times a
e:‘xcn}ng work (phone calls, answering to peers, week: 5 — daily
Roster 8 From the list n{ peers Ibelow. c.hcose those you Nk e s
interact for advice or information
Mtk 9.1 Score the list of peers shortlisted in Question  Marks on a 5-point scale: 1 —never; 2 —
sttribiies 9 #8 regarding their likelihood of being available rarely; 3 — sometimes: 4 — frequently: 5
when needed — always
9.2 Score the list of peers shortlisted in Question ~ Marks on a 5-point scale: 1 —never: 2 —
#8 regarding the frequency in which they rarely; 3 — sometimes; 4 — frequently; 5
provide exactly the information requested — always
From the list of peers shortlisted in Cuestion #8, i o L
. = 5 3 2 less than once a month; 3 — one to three
Ability to identify those you consult to understand what is B ;
: 10 % : ; ; times a monih: 4 — one to three times a
Monitor happening or has ocenrred in real-time in the week: 5 dail
ICU and how often that occurs * ¥
From the list of peers shortlisted in Question #8, Mlusioron - S-potns seale; |- rirwer; 2 -
e i) ek i less than once a month; 3 —one to three
Ability to identify those vou consult to anticipate short, . ! x
Antisi 11 2 : times a month; 4 — one to three times a
ticipate medium and long-term trends concerning the weele 5 Al
ICU and how often that occurs my
From the list of peers shortlisted in Question #8, Marks on a 5-point scale: 1 —never; 2 -
w5 2 i less than once a month; 3 — one to three
Ability to wlentify those you consult to know what to do ; ) :
12 . times a month; 4 — one to three times a
Respond when an event oceurs (either expected or week: 5 dail
unexpected) and how often that occurs ? oy
_Toint s P —
From the list of peers shortlisted in Question #8, tles geey S e.ca‘le. L
- : £ 4 i less than once a month; 3 — one to three
Ability to identify those you consult to learn during regular , : ;
13 ; R times a month; 4 — one to three times a
Leam days and in the occurrence of positive or ‘ :
i weeks 5 — daily
negatives events, and how often that oceurs
Survey Ends Closmg remarks

The online platform Qualtrics was used to apply the survey. All ICU staff members listed
in the roster were invited to answer the questionnaire. Three follow-up reminders were e-
mailed to non-respondents; ICU team leaders and managers sent additional e-mails
requesting them to complete the survey. There were 133 (out of 201) staff members who
completed the questionnaire, yielding a 66.2% response rate. Respondents included

nurses (78.1% of the total nurses), nurse technicians (72.2%), allied health professionals



(64.3%), and doctors (40.0%). Respondents were mostly female (72.9%) and
experienced. The share of respondents from each professional group is fairly similar to
their participation in the total population. The wider gap refers to doctors, who correspond

to 20% of the population and 12% of the respondents.

Regarding the secondary data collection, Bertoni et al. (2020) conducted semi-structured
interviews with five actors (DR198, DR190, N12, N94, and N135) positioned among the
top ten highest ranked in at least one of the ability-based networks — among the top ten,
they were randomly selected for the interviews. Interviews were audio recorded, lasted
on average 30 minutes, and were conducted in-person at the ICU premises, in a room that
allowed privacy for the conversation. A script with four questions was followed: (i) could
you provide examples of everyday situations in which you interact with others in terms
of monitoring, anticipating, responding, and learning?” (ii) Could you provide examples
of typical information requests from your colleagues? (7ii) Is your central role linked to
interruptions in your everyday work? How do you cope with interruptions? (iv) How does
participation in the interdisciplinary rounds affect the four resilience abilities? For the
purpose of this paper, only questions (i) and (7i) were useful. The other two questions

related mostly to the study by Bertoni et al. (2020).

All data collection and analysis procedures were granted approval by the hospital s ethics
committee. According to that approval, interviewees signed a form of informed consent
and SNA survey’s respondents were made aware that their names would not be disclosed
when presenting this study’s results — this warning appeared on the top of the
questionnaire, Only the researchers had access to data that identified respondents, which
was necessary for the follow-up interviews. Although ICU managers received a report
with the main findings, respondents were coded in the same way as presented in this paper

(see results, in which doctors are coded as DR, nurses as N, and so on).
3.3 Multilayer modelling
3.3.1 Work-as-Imagined (WAI) network

As previously mentioned, a questionnaire was designed customising a roster of actors to
each respondent and using the list to collect data on six relational variables (henceforth
denoted as the six dyads). Raw dyadic data may be represented as six directed graphs: the
ability-based networks (monitoring, anticipating, responding, learning), in addition to

reliability and availability networks.



In the WAI network, dyads represent idealised social interactions that give rise (o
adjacency matrices for resilience abilities. The WAI network has four layers, one for
each resilience ability, with corresponding intra-layer adjacency matrices obtained from
answers to questions 10 to 13 in Table 1. In each layer, the weights on actor i’s outgoing
edges correspond to the Likert scores obtained from the actor’s questionnaire. Since all
matrices share the complete list of 201 professionals in the ICU, some entries will be

nulled, corresponding to non-existent connections between pairs of actors.

Next, we carry out the WAI matrices ' normalization. Each adjacency matrix is normalized
dividing their respective Likert scores by the maximum scale value (5). Therefore,
possible WAI weights span between O (i.e. 0/5)and 1 (i.e. 5/5).

3.2.2 Work-as-Done (WAD) nerwork

We used the two remaining sets of dyads — availability and reliability — (o obtain a more
realistic representation of working conditions at the ICU and build the WAD network.
Availability is an estimate of likelihood (in Bayesian terms) to receive support from actor
J as rated by actor {. Reliability is a score reflecting actor i’s confidence that actor j is
providing exactly the information requested. Availability and reliability scores have been

used, after some manipulations, to build the modulation matrix F.

The adjacency matrix for availability uses scores from question 9.1 in Table 1. We
assumed that respondenis were biased (o a negligible extent when asked to evaluate
others” physical or behavioural availability. This assumption is reasonable since others’
openness may be viewed as an acceptable estimate of both accustomed relationship and
reciprocity. Therefore, the only data manipulation performed when modelling availability
consisted in converting the lowest Likert score 1 into 0, to represent the dyadic

unavailability (i.e. Null dvad).

The adjacency mairix for reliability uses results from question 9.2 in Table 1. Since
reliability judgements have a potentially biased moral connotation, its assessments
required a more careful data handling. For that, we took advantage of the reliability’s
adjacency matrix structure in which actors in rows assess the reliability of actors in
columns. We thus calculated a mean reliability value for the j-th actor adding scores in
the j-th column of the adjacency matrix and divided it by the total number of judgements.
Entries in all non-null cells in column j are replaced by the mean reliability value. Such

approach is intended to compensate for individual liking or aversion biases.



To obtain the modulation matrix F used to adjust the adjacency matrices for resilience
abilities considering actors” availability and reliability, we multiplied the assessment in
cell (i,j) of the availability matrix by the mean reliability value of actor j from the

reliability matrix.

The WAD network is finally obtained adjusting the WAI network by the modulation
matrix F, yielding the adjusted adjacency mairices for resilience abilities, which result

from performing the Hadamard product between each ability adjacency matrix and F.

The final result in this step is the WAD adjacency matrices for the resilience abilities,
which are obtained through rormalization of the adjusted adjacency matrices, dividing
each matrix score by the maximum value (5). Possible WAD weights also span between
0 and 1. Note that both WAI and WAD networks will have the same nodes. However, the
WAD network will be less connected (with no or weaker connections), proportional to

the entries in F, in which availability and reliability scores are manipulated.
3.4 Data analysis

In this stage, we analysed two sets of information from the multilayer network: (i) actor-
centred metrics, and (ii) layver-centred metrics. Measures in (i) include Katz centrality,
neighbourhood centrality, and degree deviation. Actors were ranked according to their
scores in each of these metrics. Metrics in (i) include interlayer correlation and
assortativity. Algorithms used for calculating all metrics are mostly based on De
Domenico et al. (2014), Azimi-Tafreshi et al. (2014), and De Domenico et al. (2015), and
were implemented using R language. They are grounded on a compact tensorial
representation of the entire network, i.e. the adjacency tensor. A tensor 1s a mathematical
object that generalizes the notion of a matrix, which is a 2° order tensor. A tensor may
sometlimes be represented by a supra-matrix, i.e. a flattened matrix structured to retain all

information distributed over the layers.

As for the interviews, the corresponding transcripts were subject to a thematic analysis
(Pope, 2000). Researchers looked [or excerpts of text related to practical instances of
social interactions that operationalized one or more of the resilience abilities. It is worth
reinforcing that these interviews were primarily conducted for the study by Bertoni et al.
(2020). For the purpose of this paper, we had a more limited interest in those interviews,
and they were useful to a lower extent, mostly for the contextualization of some findings

associated with the multilayer analysis.



4, Results
4.1. Actor-centred measures

Tables 2 and 3 display Katz centrality results for the multilayer WAI and WAD networks
as well as for each ability-related layer, respectively. Only the ten best ranked actors are
listed in these tables. Results show that only actor N94 appears among the top ten, both
in the multilayer and the single layer, for both WAI and WAD. This means that this actor

is well-connected to other central actors regardless of the resilience ability.

In fact, N94 is also a key player herself as she has the largest degree (in and out-degrees)
in both multi (67) and single layers. The lollowing report from N94 suggested that her
prominent role in the networks is partly due to her past managerial position in the ICU:
“I have been working in this hospital for 12 years, always in the ICU. I served as chief-
nurse during two different periods. Thus, people refer to me for advice on care activities
and administrative issues”. According to her report, N94 is also a reference for certain
care activities, such as puncturing and extracorporeal membrane oxygenation. It seems to
be beneficial that an actor is central hersell and is also well-connecled to other central
actors. This tends to produce rich exchanges of information between those involved,

supporting the four resilience abilities.

By contrast, other actors displayed high Katz scores in the individual layers, while being
poorly ranked in the multilayer network. An exemplar case is DR 169, which at worst was
the 4™ in one of the WAD layers. However, in the correspondent multilayer, the Katz
score of DR169 was 0.19, ranking at the 112" place. This is consistent with the fairly low
overall degree of that actor in the WAD multilayer network (i.e. 34, ranked 35™). This
reflects the lower diversity of DR169 contacts across the four layers, in comparison to
N94. Therefore, DR169 is prabably surrounded by a relatively small and stable number
of co-workers who do not necessarily have very high central roles. This aligns with the
expected everyday work of busy and specialized doctors. Table 2 conveys a similar
pattern for other doctors as there was only one doctor (10" place) among the top ten Katz
scores at the multilayer. Another way of interpreting these findings is that nurses and
nurse technicians work closely with several different central doctors, which do not

mnteract that much with others central doctors.

In turn, the ten best ranked actors are mostly the same at both the WAI and WAD
multilayer networks. However, DR142 is ranked 30™ in WAI while being the 10" in



WAD. This means that he is available and/or reliable, despite being well-connected to a
relatively low number of central actors. This type of actor, significantly better ranked in
WAD in comparison to WAI, may in principle play a bigger role in the ICU by being

connected to a wider number of central actors.

By contrast, DR190 was fairly well-ranked in WAI (13'"™), but less central in WAD (25™).
This means that her good connections with central actors have been underexploited, as
she is not much available and/or reliable. As such, this actor may need organizational
support to make the most from her good connections — e.g. less administrative tasks,

making her more available for adding-value social interactions.
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Tables 4 and 5 present results for degree deviation (G;) of WAD and WAI multilayer
networks, respectively. Low G; values indicate actors that are either homogeneously
active or inactive on layers —actors with low G; values and active on layers were assumed

to be in a more favourable position for resilient performance.

Only the top 10 actors according to degree deviation and degree centrality are shown.
Several actors had a homogeneous and relevant centrality in the four layers in both WAI
and WAD, such as NT4 and N68. These actors could be assigned formal and standardized
roles related to the four types of social interactions, as they can be trusted to be fairly
available and reliable. For example, these actors could be regular members that attend
ward rounds, or they could take part in committees that assess the ICU performance and

devise action plans.

It is important to note that the lowest possible degree deviation (i.e. zero) not always goes
hand in hand with the highest degree centrality. For instance, in the WAD network, actor
N94 had the highest degree centrality (67) and the 7™ highest degree deviation (1.4).
Similarly, actor N186 had the third highest degree centrality (50) and the highest degree
deviation (3.4). While these actors” contributions to resilience are relevant, they have
unbalanced participation in the layers. This is not necessarily a weakness provided those
actors have a relevant centrality in the individual layers, which is the case of N94 and
N186. Another way of putting that is that these actors are strong assets for resilience in
general, but even stronger in some abilities. This might be more a strength than a

weakness, depending on the role these actors play in the workplace.

Tables 6 (WAI) and 7 (WAD) present, for the top ten best ranked, the last actor-centred
metrics of interest for the multilayer network: neighbourhood centrality. Results indicate
a wide amplitude in neighbourhood centrality values. This metric conveys in a concise
way that some actors, such as N94, have a much wider diversity of neighbours across the
four layers. From the out-degree viewpoint, a possible interpretation is that N94 requests
information from people specialized in each ability. From the in-degree viewpoint, a
possible interpretation is that N94 is a reliable and available source of information related
to all four abilities as she is sought by a number of different people, each interested in

ability-specific information.



Table 4. Partial view of degree deviation and Table 5. Partial view of degree deviation and

centrality values for WAI centrality values for WAD
Acor | porSWAr | Centratity AT ACOr | peWAD | Centraiity WAD
N68 0 42 NT66 0 46
NT4 0 39 N68 ] 40
AH156 ] 39 NT4 0 39
NT44 0 38 NT44 0 34
NT144 0 37 N34 ] 30
AH102 0 35 N39 0 30
NT38 0 33 NT38 0 29
NT91 0 31 NT47 ] 29
N39 0 30 N65 0 29
NG5 0 30 NT60 0 28
Table 6. Neighbourhood centrality — WAI Table 7. Neighbourhood centrality — WAD
Actor N%ﬂ:’:;lil:;ﬂd Actor Necige?ll::_':li.: t';:"!
N4 70 NO4 56
N135 55 N135 52
N186 32 N186 43
NT66 48 NT66 42
NT20 47 NTI164 38
N73 47 NT4 36
NT164 46 NTI10 36
NI104 45 DR48 36
NT128 43 N104 36
NT28 42 AHI61 35

4.2. Layer-centred measures

Figure 3 shows a representation of single-layer and multilayer networks. In the WAD
networks, weights on edges are deflated according to availability and reliability
assessments. As a result, WAI networks are denser than their WAD counterparts, i.e.
although sharing the same edges, they are thicker on the WAI network. Actors are also
the same across all layers, although at different positions. Actors' spatial positioning is
optimized to allow better visualization using the layout algorithm developed by
Fruchterman and Reingold (1991). Graphs were obtained using the igraph package in R

software.
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Figure 3. Schematic representations of the WAI and WAD networks.



As for interlayer correlations, which measure the similarity or redundancy between pairs
of layers, all correlation values are in the interval [0.78; 0.79]. These strong correlations
are expected in real-world multiplex networks, as actors are the same in all layers (Nicosia
and Latora, 2015).

In turn, all assortativity correlations were in the interval [0.98; 0.99]. This suggests that
actors have a clear preference for connecting with similar degree actors in all four layers.
That can imply the formation of clusters of high degree and low degree actors, hindering
diverse perspectives when monitoring, anticipating, responding, and learning. For
example, it may be useful to make a high degree actor in the monitor network more

connected to low degree actors in the learn network.

The similar assortativity correlations for WAI and WAD convey that actors are not
discouraged from interacting with the same peers despite their occasional low availability
and low reliability. Possible reasons for that might be highly specialized knowledge and
skills of many actors, individual preferences, and strict organizational structures, which
leave actors with limited realistic options. Another interpretation is that, in face of the
unavailability of preferred co-workers, there is no social interaction at all, and actors fill
out information gaps on their own. This point is revealed in the report from N12: “we fake
many actions and decisions on our own, because sometimes the doctors are sleeping...so

we end up having to take the responsibilities ".

Lastly, the benefits of having preferential actors for interactions is illustrated by the
following report from DR169: the nurses know how I work, they know my way...for
example, some topics that I approach during the multidisciplinary round, a break in the
administration of sedation. The nurses 1 work with know that I will arrive in the morning
and I will pause the sedation..some exams that the nurse collects, some of their
attitudes ...so they don't even ask me what to do”. This report also raises the question of
whether low frequency social interactions can still be effective, as they can be partly

replaced by tacit knowledge and assumptions.
5. Discussion

The proposed steps for developing a multilayer social network of resilience abilities (see
Figure 2) proved to be workable and insightful. Although these steps are not healthcare
specific, adaptations for other contexts might be necessary in some portions of the

questionnaire — e.g. relevant demographic information on the respondent, and examples



of what counts as a monitor, anticipate, respond, or learn social interaction. As a minor
drawback, to generate MSN measures it is necessary to integrate the computing
environment with specific libraries developed for dealing with multiplex networks; e.g.
multinet, MUNA, Py3plex and Pymnet (McGee et al., 2019; ‘§krlj etal., 2019).

The most distinctive aspect of our approach is the development of separate WAI and
WAD networks, which in addition to the four ability-based layers translate RE ideas into
the practice of social network analysis. Our findings pointed out that there were relevant
differences between WAI and WAD at the actor-centred level. This means that the
frequency of interactions belween pairs of aclors, per se, is not representative of the
effectiveness of these interactions. However, since actors normally insist on contacting

the same people, the structure of the WAI and WAD networks is similar.

The ICU study shed light on how some multilayer metrics may be interpreted in light of
resilience engineering (Table 8). Results suggest that the ICU has a number of actors that
have effective interactions across the four layers, which is an asset for resilient
performance — e.g. there were 37 actors (27.1%) with a Kaiz score higher than the 75-th
percentile, 23 actors (17.3%) with neighbourhood centrality higher than the 75-th

percentile, and 47 actors (35%) with zero degree deviation and high centrality.

On the other hand, actors interact mostly with others with similar degrees, as indicated
by the high assortativity correlations. That may point to organizational structures (e.g.
stable and self-contained teams) and rigid social and professional hierarchies that either
discourage or impede actors’ access to a broader set of co-workers. Although healthcare
settings are known for communication barriers between professional groups (Creswick et
al. 2009; Bate, 2000), our results suggest that this can also be a relevant issue within
professional groups — e.g. high degree nurses communicating mostly with other high
degree nurses. Organizational structures can also explain the finding that 9 out of the 10
top Katz scores were either nurses (3) or nurse technicians (6). These professionals,
especially nurse technicians, play a key role as second-order resilient actors (see
definition in Table 8) as they work closely under the guidance of central doctors and
central nurses. It also points out that many doctors do not strongly interact with highly
central actors, which may stem from the greater autonomy and decision-making

responsibilities of these professionals.

As a drawback for an extended analysis of how well the ICU is performing, there is a lack

of benchmarks from other ICUs. Another difficulty in this respect refers to the ambiguity



of some metrics from the viewpoint of resilience (e.g. neighbourhood and assortativity),

which makes it difficult to generalize what counts as a desirable value.

Considering this background, and whether or not benchmarks are available, the presented
analysis can also play a role as a starting point for qualitative investigations that shed light

on the underlying mechanisms that gave rise to the quantitative findings — e.g. to which

extent is actors’ centrality influenced by organizational structures or personality traits?

Table 8. Selected multilayer metrics and their connections to resilience engineering.

Metrics

Logical connections to RE

ICU performance

Katz centrality

Actors with high Katz centrality can be those that
display resilient performance first-hand, after getling
advice or information from central actors. Thus, high-
scored Katz actors can be second-order resilient actors,
while those central actors around them can be first-
arder actors.

High-scored Katz actors can enjoy a certain status by
being close to powerful actors, besides being in a
favourable position to learn from them.

27.1% of the actors had a
Katz centrality score
higher than the 75-th
percentile score (0.369) in
the WAD multilayer
network.

Actors that strongly contribute to resilient
performance can have low degree deviation, provided

For WAD, 35% of the
actors had a degree

correlation

Degree this is gssociated with a high centrality in all four deviation score equal to
deviation layers zero and at the same time
had a high centrality
(higher than the average)
in each of the four layers,
A high neighbourhood centrality indicates that an For WAD, 17.3% of the
actor has different neighbours in each layer. This can actors had a
Neighbourhood | stem from specialized neighbours in certain abilities. neighbourhood centrality
centrality Diversily of perspeclives is normally accepted as score higher than the 75-th
beneficial 1o resilience (Page, 2010). However, low percentile score (32.0).
neighbourhood centrality is not necessarily
detrimental, provided the same actors are available
and reliable for different types of interactions.
Interlayer A high interlayer correlation tends to be desirable to | Inter-layer correlations
correlation resilience. It suggests that social interactions are rich in | were strong for both WAI
terms of contributing at the same time to the four | and WAD.
abilities.
Assortativity A high assortativity correlation suggests clusters of | Assortativity correlations

high degree actors and low degree actors. As a
downside, actors can lose sight of the context and miss
out different perspectives. As an upside (Kazawa and
Tsugawa, 2020), it makes the network more robust with
respect to node removal, as they tend to be similar
within each cluster.

were very strong both for
WAT and WAD,
suggesting that both the
downside and the upside
of high correlations tend to
be amplified.

Both researchers and professionals on top leadership roles are the main potential users of
the aforementioned metrics and analysis. Researchers might use the proposed approach
for the investigation of research questions related to the role of social interactions in
resilient performance (e.g., whether network metrics correlate with patient safety and

workload of caregivers). Depending on the nature of these questions, complementary



tools might be necessary, while at the same time the steps adopted in this study do not
need to be followed strictly. In turn, managers might use our proposal as a basis for the
revision of work organization structures and allocation of staff in the ICU. Some of these
possibilities were presented in the Results section. In addition, there could be created
routines that allowed professionals to interact with a broader set of co-workers, which
would be relevant in the studied ICU. One such routine could be based on the RPET
method, which has been tested in hospitals. According to it, at the end of each shift,
professionals meet and reflect on what went right and what went wrong, based on a

checklist of probing questions (Hollnagel 2019).

Lastly, it is worth reinforcing that there is more to resilient performance than social
interactions. As previously mentioned, resilience is an emergent property of socio-
technical systems. Our approach addresses the social portion, emphasizing the four
resilience abilities. Other types ol interactions, such as those involving people and
technological artefacts (e.g., consultation of information on patient dashboards) were not
considered, even though earlier studies indicated that they have an influence on ICU

resilience (Bueno et al_, 2019).
6. Conclusions

This paper presented an approach for the development and interpretation of multilayer
networks, using the lens of RE. The steps for the development of the network encompass
core concepts of RE: the four resilience abilities, work-as-imagined, work-as-done, and
performance variability (Patriarca et al., 2018b). These RE concepts have been translated
into the practice of social network analysis, offering a new perspective for the analysis of
resilient performance. The multilayer network provided an emergent yet concise
representation of the interactions between the four ability-based layers, being

complementary rather than a replacement for the traditional analysis laver by layer.

The five metrics adopted in this work poeinted out strengths and weaknesses of social
interactions at the ICU, which had not been identified by Bertoni et al. (2020) at the same
setting. However, some of these metrics were ambiguous from the RE viewpoint (i.e.
neighborhood and assortativity), and some findings were counterintuitive at a cursory
view. For example, two actors had very high degree deviations and very high degree
centralities, while also being key assets for resilience. That background, when jointly
considered with the lack of benchmarks for comparison, makes it difficult to establish

generalizable and simple rules for the interpretation of the multilayer metrics from an RE



standpoint — the proposal in Table 8 is a starting point. Despite these limitations, the
richness of information stemming from the multilayer network is valuable by itself, in

addition to raising questions for further investigation.

Some further limitations of this study should be mentioned. First, there was no primary
qualitative data collection, which could have offered additional insight into the underlying
reasons for the observed performance. Second, the pioneer nature of this research in terms
of applying multilayer network analysis in resilient healthcare, hindered comparative
analysis with other contexts. Third, while the response rate to the questionnaire survey
was high (66.2%), some important actors may have been missed out. Fourth, social
interactions have other dimensions not explored in this study, such as their timing,

duration, and workload implications.

As for future studies, some opportunities may be highlighted, as follows: (i) to investigate
whether actors’ centrality and network structures change in face of prolonged crisis and
growing use of virtual interactions, as observed during the COVID-19 pandemic; (i) to
develop other multilayer approaches for investigating resilient performance. e.g. by
considering interactions between layers composed by nodes at the individual, team, and
organizational levels — in this study, the nodes in all layers corresponded to individuals;
(#ii) to assess the value of using other metrics at the multilayer level; (iv) to apply the
proposed approach to other settings, not only in healthcare; (v) to use the results of the
multilaver analysis as a basis for qualitative investigations that further explore the
consultation experience and explain the observed results; and () to map social
interactions onto functions carried out by actors, through the joint use of SNA and FRAM
— this could shed light on interactions’ impacts on functions and networks of functions
that display resilient performance, following early results where FRAM itself has been
interpreted as a multi-layer network (Falegnami et al., 2020).
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