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Abstract. We introduce and investigate a class P of continuous and peri­

odic functions on R. The class P is defined so that second­order central differences

of a function satisfy some concavity­type estimate. Although this definition seems

to be independent of nowhere differentiable character, it turns out that each func­

tion in P is nowhere differentiable. The class P naturally appears from both a

geometrical viewpoint and an analytic viewpoint. In fact, we prove that a func­

tion belongs to P if and only if some geometrical inequality holds for a family

of parabolas with vertexes on this function. As its application, we study the be­

havior of the Hamilton–Jacobi flow starting from a function in P . A connection

between P and some functional series is also investigated. In terms of second­

order central differences, we give a necessary and sufficient condition so that a

function given by the series belongs to P . This enables us to construct a large

number of examples of functions in P through an explicit formula.
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1. Introduction

Let us denote by Cp(R) the set of all continuous and periodic functions
f : R → R with period 1 and f(0) = 0. Throughout this paper, we assume
that r is an integer such that r ≥ 2. Let N0 := N ∪ {0}.

Our aim in this paper is to introduce and investigate the class P of func-
tions in Cp(R) defined as follows: Given a function f ∈ Cp(R), we consider,
for each (n, k, y) ∈ N0 ×Z× (0,1), the first-order forward and backward dif-

ferences of f at k+y
rn

defined, respectively, by

(1.1) δ+n,k(y; f) =
f(k+1

rn
)− f(k+y

rn
)

1−y
rn

, δ−n,k(y; f) =
f(k+y

rn
)− f( k

rn
)

y
rn

.

Definition 1.1. Let c > 0 be a given constant. A function f ∈ Cp(R)
belongs to Pc if

(1.2) δ+n,k(y; f)− δ−n,k(y; f) ≤ −c

for all (n, k, y) ∈ N0 × Z× (0, 1). We use the notation P =
⋃

c>0Pc. Note
that both Pc and P depend on the choice of r though we omit it in our
notation.

Inequality (1.2) can be written equivalently as

(1.3) ∆n,k(y; f) ≤ −2crn,

where ∆n,k(y; f) is the second-order central difference defined by

(1.4) ∆n,k(y; f) = 2rn(δ+n,k(y; f)− δ−n,k(y; f)).

It is well-known that if a function f : R → R is concave and has the second
derivative in some interval I , then f ′′ ≤ 0 in I . Even if f is not twice differ-
entiable, a discrete version of the estimate ∆n,k(y, f) ≤ 0 still holds. Thus,
the condition (1.3) can be regarded as a concavity-type estimate for f . Our
definition of P requires a function to have the second-order differences which
tend to −∞ in the prescribed rate as n → ∞.

Although Definition 1.1 seems to be independent of nowhere differen-
tiable character, it turns out that each function in P is nowhere differen-
tiable. This shows that our concavity-type estimate (1.3) is significantly
different from a usual concavity since any concave function is twice differen-
tiable almost everywhere.

We have two reasons to introduce and investigate the class P . The first
reason comes from a geometrical viewpoint. We show that each function
in P has a geometrical characterization stated as follows: For any given
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function f ∈ Cp(R), let {qf (t, x; z)}z∈R be the family of parabolas defined
by

(1.5) qf (t, x; z) = f(z) +
1

2t
(x− z)2, (t, x, z) ∈ (0,∞)× R× R.

Then, we show that a function f in Cp(R) belongs to Pc if and only if f
satisfies
(F1)c For all (n, k, y) ∈ N0 × Z× (0, 1) and t ≥ 1

2crn ,

(1.6) qf

(

t, x;
k + y

rn

)

≥ min

{

qf

(

t, x;
k

rn

)

, qf

(

t, x;
k + 1

rn

)

}

, x ∈ R.

Inequality (1.6) is a geometrical one related to position of the three parabo­
las; see Fig. 1.

Fig. 1: The broken line and the solid line indicate, respectively, the function on the left-
and right-hand side of (1.6)

Another interpretation of (1.6) is that the function qf (t, x; ·) takes a

minimum over the interval [ k
rn
, k+1

rn
] at the endpoints.

The second reason comes from an analytic viewpoint. We consider the
operator U : Cp(R) ∋ ψ �→ Uψ ∈ Cp(R) defined by the series

(1.7) Uψ(x) =
∞
∑

j=0

1

rj
ψ(rjx), x ∈ R.

Such a series is known to generate nowhere differentiable functions under a
suitable condition on ψ. We prove that the condition Uψ ∈ P can be equiva­
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lently rephrased by the condition including the second-order differences of ψ.
In fact, we establish

(1.8) ∆n,k(y;Uψ) =
n−1
∑

j=0

rj∆n−j,k(y;ψ) −
2rn

y(1− y)
Uψ(y),

whenever ψ ∈ Cp(R) and (n, k, y) ∈ N0 × Z× (0, 1). When n = 0, the first
term of the right-hand side of (1.8) is interpreted as 0. Thus, for a given
c > 0, we see that Uψ ∈ Pc if and only if the right-hand side of (1.8) is less
than or equal to −2crn for all (n, k, y) ∈ N0 ×Z× (0,1). In other words, the
class P is characterized via the operator U . Besides, making use of (1.8),
we give some sufficient conditions on ψ in order that Uψ ∈ P . We show that
Uψ belongs to P if ψ is concave on [0, 1]. Also, even if ψ is not concave on
[0,1], there is the case where Uψ belongs to P provided that ψ is semiconcave
on [0, 1] and satisfies some additional assumption. These simple sufficient
conditions enable us to systematically construct a large number of examples
of functions in the class P through the explicit formula (1.7).

A typical example of functions constructed by this procedure is the gen-
eralized Takagi function τr ∈ Cp(R) defined by

(1.9) τr(x) = Ud(x) =
∞
∑

j=0

1

rj
d(rjx), x ∈ R,

where d ∈ Cp(R) is the distance function to the set Z, that is,

(1.10) d(x) = min
{

|x− z| | z ∈ Z
}

, x ∈ R.

The celebrated Takagi function is given by τ2. The function τ2 is equivalent
to the one first constructed by T. Takagi in 1903, who showed that τ2 is
nowhere differentiable (see [17]). Its relevance in analysis, probability theory
and number theory has been widely illustrated by many contributions, see
for instance [1,15,17,18]. Since d is concave on [0, 1], we can show that τr
belongs to P for any integer r ≥ 2.

In connection with (F1)c, we also study the behavior of the Hamilton–
Jacobi flow {Htf}t>0 starting from f ∈ P , where

(1.11) Htf(x) = inf
z∈R

qf (t, x; z), (t, x) ∈ (0,∞)× R.

This formula is widely used in the theory of viscosity solutions, and Htf is
also referred to as an inf-convolution of f .

There are several papers related to our work. In [12], Hata and Yam-
aguti proposed a different generalization of the Tagaki function, the so-called
Tagaki class, which includes not only nowhere differentiable functions, but
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also differentiable and even smooth ones. To analyze this class, they used
some functional equations containing second-order central differences. Al-
though we also use the second-order central difference ∆n,k(y;f) of a function
f ∈ Cp(R), the frame and the purpose of the investigation of [12] are how-
ever rather different from ours. In [3,13,16], an inequality for approximate
midconvexity of the Takagi function was investigated. A precise behavior of
the flow {Htτ}t>0 starting from the Takagi function is studied in [7].

The function Uψ of (1.7) has been considered by many authors. Cater
[5] showed that if ψ ∈ Cp(R) is concave on the interval [0, 1] and ψ takes
its positive maximum over [0,1] at x = 1

2 , then Uψ is nowhere differentiable.
Although the connection between the concavity of ψ and Uψ was already
explored in [5], we show in addition that the formula (1.7) provides exam-
ples of functions in the class P . Furthermore, we show that Uψ can belong
to P even if ψ ∈ Cp(R) is not concave on [0,1]. Heurteaux [14] gave another
sufficient conditions on ψ ∈ Cp(R) such that Uψ is nowhere differentiable.
The set of maximum points in [0, 1] of the function Uψ was studied in [8]
for r = 2. However, all of the above papers neither characterize a class of
nowhere differentiable functions nor introduce a class like P .

The structure of the paper is as follows. In Section 2 we prove nowhere
differentiability and the geometrical characterization of a function in P . Sec-
tion 3 is devoted to the formula (1.8). We derive some sufficient conditions on
ψ ∈ P in order that Uψ ∈ P . In Section 4, we study how the Hamilton–Jacobi
flow {Htf}t>0 starting from f ∈ P behaves. Section 5 contains concluding
remarks.

2. The class P

In this section, we state and prove several results on the class P . The
first result of this section is Theorem 2.1, where we prove that each function
in P is nowhere differentiable. The second result of this section is Theorem
2.3, which shows that a function f in Cp(R) belongs to Pc if and only if f
satisfies (F1)c.

Since we study periodic functions with period 1, we often choose three
points k

rn
, k+y

rn
, k+1

rn
lying in [0, 1]. For this reason, we prepare the set A of

admissible triplets (n, k, y) as

A :=
{

(n, k, y) | n ∈ N0, k ∈ {0, 1, 2, 3, . . . , rn − 1}, y ∈ (0, 1)
}

.

For any (n, k, y) ∈ A we have
[

k
rn
, k+1

rn

]

⊂ [0, 1]. For a constant c > 0,
note that f ∈ Cp(R) belongs to Pc if and only if (1.2) is satisfied for all
(n, k, y) ∈ A.
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We first derive a fundamental inequality for f ∈ P . For f ∈ Cp(R), we
see by (1.4) that

(2.1) ∆0,0(y; f) =
−2f(y)

y(1− y)
, y ∈ (0, 1).

Thus, for c > 0 and y ∈ (0, 1), we have ∆0,0(y; f) ≤ −2c if and only if

(2.2) cy(1− y) ≤ f(y).

Therefore we see that every f ∈ Pc satisfies (2.2) for any y ∈ (0, 1). In par-
ticular, when f ∈ P , we have f > 0 in (0, 1).

Now, we show that each function in P is nowhere differentiable. In what
follows we write [z] for z ∈ R to indicate the largest integer not exceeding z.
We denote by Qr the set of all rational numbers that can be written as k

rn

for some n ∈ N and k ∈ Z.

Theorem 2.1. Each function in P is nowhere differentiable in R.

Proof. Fix c > 0. Suppose that f ∈ Pc is differentiable at some point
x ∈ [0, 1].

We set kn = [rnx] for each n ∈ N. Also, set yn = y if x ∈ Qr and yn =
rnx− [rnx] if x �∈ Qr, where y ∈ (0, 1) is an arbitrary constant. We claim
that δ±n,kn

(yn; f) → f ′(x) as n → ∞. This gives a contradiction since taking

the limit n → ∞ in (1.2) along these kn and yn implies that 0 ≤ −c.
When x ∈ Qr, we have [r

nx] = rnx for n ∈ N large. In fact, since x ∈ Qr,
there are n0 ∈ N0 and k0 ∈ Z such that x = k0

rn0
, so that rnx = k0r

n−n0 ∈ N
if n ≥ n0. For n ≥ n0 we find that

δ+n,kn
(yn; f) =

f
(

x+ 1
rn

)

− f
(

x+ y
rn

)

1−y
rn

=
f
(

x+ 1
rn

)

− f(x)
1
rn

(1− y)
−

f
(

x+ y
rn

)

− f(x)
y
rn

1−y
y

→
f ′(x)

1− y
− y

f ′(x)

1− y
= f ′(x) (n → ∞).

In the same manner, we deduce that δ−n,kn
(yn; f) → f ′(x) as n → ∞.

Next, let x �∈ Qr. We then have [rnx] < rnx < [rnx] + 1 for each n ∈ N.

This implies that yn ∈ (0, 1) for each n ∈ N and that [rnx]
rn

→ x as n → ∞.
Thus,

δ+n,kn
(yn; f) =

f
( [rnx]+1

rn

)

− f(x)
[rnx]+1

rn
− x

→ f ′(x) (n → ∞).
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Similarly, it follows that δ−n,kn
(yn; f) → f ′(x). This completes the proof. �

Next, we show that a function f in Cp(R) belongs to Pc if and only if f
satisfies (F1)c. To prove this, the following proposition is essential:

Proposition 2.2. Let (n, k, y) ∈ A and t ∈ (0,∞). Then, for any f ∈
Cp(R), inequality (1.6) holds if and only if

(2.3) ∆n,k(y; f) ≤ −
1

t
.

Proof. Fix (n, k, y) ∈ A and t ∈ (0,∞). Let x1(n, k, y, t) be the unique
solution of the equation

qf

�

t, x;
k + y

rn

�

= qf

�

t, x;
k

rn

�

.

By direct calculation,

(2.4) x1(n, k, y, t) =
k

rn
+

y

2rn
+ tδ−n,k(y; f).

Then, we have










qf

�

t, x;
k

rn

�

≤ qf

�

t, x;
k + y

rn

�

, x ≤ x1(n, k, y, t),

qf

�

t, x;
k

rn

�

> qf

�

t, x;
k + y

rn

�

, x1(n, k, y, t) < x.

Similarly, the unique solution x2(n, k, y, t) of the equation

qf

�

t, x;
k + y

rn

�

= qf

�

t, x;
k + 1

rn

�

is given by

(2.5) x2(n, k, y, t) =
k

rn
+

1 + y

2rn
+ tδ+n,k(y; f).

Furthermore,










qf

�

t, x;
k + y

rn

�

≥ qf

�

t, x;
k + 1

rn

�

, x2(n, k, y, t) ≤ x,

qf

�

t, x;
k + y

2rn

�

< qf

�

t, x;
k + 1

rn

�

, x < x2(n, k, y, t).

Then, a geometrical investigation shows that inequality (1.6) holds if and
only if

(2.6) x1(n, k, y, t) ≥ x2(n, k, y, t).
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By (2.4) and (2.5), we see that inequality (2.6) holds if and only if

δ−n,k(y; f)− δ+n,k(y; f) ≥
1

2rnt
.

The desired inequality follows immediately from (1.4). �

Now, we state the second result of this section.

Theorem 2.3. Let f ∈ Cp(R) and let c > 0 be a constant. Then, f sat-

isfies (F1)c if and only if f ∈ Pc.

Proof. Assume first that f ∈ Pc. Fix (n, k, y) ∈ A and t ≥ 1
2crn arbi­

trarily. By (1.3) and (1.4), we have

∆n,k(y; f) ≤ −2crn ≤ −
1

t
,

and so (1.6) holds by Proposition 2.2. Thus we see that f satisfies (F1)c.
Next, assume that (F1)c holds. Then, by Proposition 2.2, we see that

∆n,k(y; f) ≤ −
1

t

for all (n, k, y) ∈ A and t ≥ 1
2crn . Letting t = 1

2crn , we conclude that f ∈ Pc.
�

3. The functions Uψ and P

In this section, we give sufficient conditions on ψ ∈ Cp(R) in order that
Uψ ∈ P , where U is the operator defined by (1.7). The results enable us to
generate a large number of functions in P through the explicit formula (1.7).
We also give some examples of ψ ∈ Cp(R) for which Uψ �∈ P .

The following theorem provides a representation of ∆n,k(Uψ; y) in terms
of ∆n,k(ψ; y), which plays a crucial role to study if Uψ ∈ P . Note that, for
every ψ ∈ Cp(R), we have Uψ ∈ Cp(R) and Uψ(0) = 0 by the definition of Uψ .

Theorem 3.1. Let ψ ∈ Cp(R). Then, (1.8) holds for each (n, k, y) ∈ A.
When n = 0, the first term of the right-hand side of (1.8) is interpreted as 0.

Proof. Let (n, k, y) ∈ A. When n = 0, we have k = 0, so that (1.8)
follows from (2.1) since Uψ(0) = 0. If n ≥ 1, then

Uψ

(k + y

rn

)

−

n−1
∑

j=0

1

rj
ψ
(k + y

rn−j

)
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=
∞
∑

j=n

1

rj
ψ
(

rj−n(k + y)
)

=
∞
∑

j=n

1

rj
ψ
(

rj−ny
)

=
1

rn
Uψ(y).

This is valid even for y = 0 and y = 1. Since Uψ(0) = Uψ(1) = 0, we have

Uψ

( k

rn

)

=
n−1
∑

j=0

1

rj
ψ
( k

rn−j

)

, Uψ

(k + 1

rn

)

=
n−1
∑

j=0

1

rj
ψ
(k + 1

rn−j

)

.

We therefore have

∆n,k(y;Uψ) = 2rn
[

Uψ

(

k+1
rn

)

− Uψ

(

k+y
rn

)

1−y
rn

−
Uψ

(

k+y
rn

)

− Uψ

(

k
rn

)

y
rn

]

= 2rn
[

∑n−1
j=0

1
rj

(

ψ
(

k+1
rn−j

)

− ψ
(

k+y
rn−j

))

− 1
rn
Uψ(y)

1−y
rn

−

∑n−1
j=0

1
rj

(

ψ
(

k+y
rn−j

)

− ψ
(

k
rn−j

))

+ 1
rn
Uψ(y)

y
rn

]

=
n−1
∑

j=0

rj 2rn−j

[

ψ
(

k+1
rn−j

)

−ψ
(

k+y
rn−j

)

1−y
rn−j

−
ψ
(

k+y
rn−j

)

−ψ
(

k
rn−j

)

y
rn−j

]

−
2rn

y(1−y)
Uψ(y)

=
n−1
∑

j=0

rj∆n−j,k(y;ψ) −
2rn

y(1− y)
Uψ(y).

This implies (1.8). �

Applying Theorem 3.1, we derive some sufficient conditions on ψ ∈ Cp(R)
that guarantee Uψ ∈ P . As a typical result, it turns out that Uψ ∈ P if ψ is
concave in [0, 1] and positive in (0, 1).

Let us recall a notion of concavity. A function g : [0,1] → R is said to be
concave on [0, 1] if the inequality

λg(x) + (1− λ)g(y) ≤ g(λx+ (1− λ)y)

holds for all x, y ∈ [0, 1] and λ ∈ [0, 1]. If the reverse inequality holds, then
g is said to be convex. For a constant α ≥ 0, a function g on [0, 1] is said to
be α-semiconcave on [0, 1] if g(x) + α

2 x(1− x) is concave on [0, 1]. This is

equivalent to the condition that g(x)− α
2x

2 is concave on [0, 1].

Remark 3.2. (i) Let ψ ∈ Cp(R) and assume that ψ is concave on
some interval I . Then it is easy to see that ∆n,k(y;ψ) ≤ 0 for all (n, k, y)

∈ N0 × Z× (0, 1) such that
[

k
rn
, k+1

rn

]

⊂ I . More generally, if ψ ∈ Cp(R)
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is α-semiconcave on I , then we have ∆n,k(y;ψ) ≤ α for all (n, k, y) ∈

N0 × Z× (0, 1) such that
[

k
rn
, k+1

rn

]

⊂ I . The reverse inequalities hold for
(α-semi)convex functions.

(ii) If ψ ∈ Cp(R) is concave on [0, 1], then we have ∆n,k(y, ψ) ≤ 0 for all
(n, k, y) ∈ A by (i). However, the converse is not true in general: that is,
even if ∆n,k(y, ψ) ≤ 0 for all (n, k, y) ∈ A, we cannot say that ψ is concave
on [0,1]. Every f ∈ P gives a counterexample to this. In fact, ∆n,k(y, f) ≤ 0
for all (n, k, y) ∈ A, but f is never concave on [0, 1] by Theorem 2.1, since a
concave function must be differentiable almost everywhere.

We first prepare inequalities involving Uψ and the generalized Takagi
function τr defined in (1.9). Recall that d is the distance function given by
(1.10).

Lemma 3.3. Let ψ ∈ Cp(R). Assume that there exists a constant m > 0
such that md(x) ≤ ψ(x) for all x ∈ [0, 1]. Then, we have

(3.1)
mr

r − 1
x(1− x) ≤ mτr(x) ≤ Uψ(x), x ∈ [0, 1].

Proof. It follows from our assumption that md(rjx) ≤ ψ(rjx) for all
x ∈ [0, 1] and j ∈ N0. Thus, mτr(x) ≤ Uψ(x) by taking the sum.

It remains to prove that

(3.2)
r

r − 1
x(1− x) ≤ τr(x), x ∈ [0, 1].

Let

F (x) = d(x) +
1

r
d(rx), G(x) =

r

r − 1
x(1− x), x ∈ [0, 1].

Since F ≤ τr, it suffices to show that G(x) ≤ F (x) for x ∈ [0, 1]. As F and
G are symmetric about x = 1

2 , we may assume that x ∈ [0, 12 ]. Note that

F (x) = 2x
(

0≤x≤
1

2r

)

, F (x) =
1

r

( 1

2r
≤x≤

1

r

)

, F (x) ≥ x
(1

r
≤x≤

1

2

)

.

When 0 ≤ x ≤ 1
r
, we have

G(x) ≤ G
(1

r

)

=
1

r
, G(x) ≤

r

r − 1
x(1− 0) ≤ 2x.

Thus G(x) ≤ F (x). Next, let 1
r
≤ x ≤ 1

2 . Then,

G(x) ≤
r

r − 1
x
(

1−
1

r

)

= x ≤ F (x).

Hence, we conclude (3.2). �
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Remark 3.4. Assume that ψ ∈ Cp(R) is concave in [0, 1] and ψ > 0 in
(0, 1). Then, we have

(3.3) 2ψ
(1

2

)

d(x) ≤ ψ(x), x ∈ [0, 1],

and thus ψ satisfies the assumption in Lemma 3.3 for m = 2ψ( 12). Indeed, by
the concavity of ψ, its graph lies above the segment connecting (0, ψ(0)) and
( 12 , ψ(

1
2 )) and the segment connecting ( 12 , ψ(

1
2 )) and (1, ψ(1)). This shows

(3.3) since ψ(0) = ψ(1) = 0.

Now, we state the main result of this section.

Theorem 3.5. Let ψ ∈ Cp(R). Assume that there exist two constants
m > 0 and α ≥ 0 such that

(i) md(x) ≤ ψ(x) for all x ∈ [0, 1].
(ii) ∆n,k(y;ψ) ≤ α for all (n, k, y) ∈ A.

If 2mr > α, then Uψ ∈ Pc with c = 2mr−α
2(r−1) .

Proof. Let us derive ∆n,k(y;Uψ) ≤ −2crn for a fixed (n, k, y) ∈ A.
From Lemma 3.3 it follows that

−
2rn

y(1− y)
Uψ(y) ≤ −

2mrn+1

r − 1
.

If n = 0, we see by (2.1) that ∆0,0(y;Uψ) ≤ −2mr
r−1 < −2c. For n ≥ 1 we have

n−1
∑

j=0

rj∆n−j,k(y;ψ) ≤
n−1
∑

j=0

rjα = α ·
rn − 1

r − 1
< α ·

rn

r − 1
.

Thus, by (1.8)

∆n,k(y;Uψ) ≤ α ·
rn

r − 1
−

2mrn+1

r − 1
= −2crn,

which proves the theorem. �

Let us denote by E the set of ψ ∈ Cp(R) satisfying (i) and (ii) in Theo-
rem 3.5 for some m > 0 and α ≥ 0 with 2mr > α. Theorem 3.5 asserts that
Uψ ∈ P for every ψ ∈ E. We give typical classes that are included in E.

Proposition 3.6. The set E includes the following two sets:
(1) SC 0 :=

{

ψ ∈ Cp(R) | ψ is concave in [0, 1] and ψ > 0 in (0, 1)
}

.
(2) P .

Proof. (1) Let ψ ∈ SC 0. It follows from Remark 3.4 that ψ satisfies
Theorem 3.5(i) for m = 2ψ(12), while we can take α = 0 in Theorem 3.5(ii)

Acta Mathematica Hungarica

A CLASS OF NOWHERE DIFFERENTIABLE FUNCTIONS 353



Acta Mathematica Hungarica 160, 2020

12 Y. FUJITA, N. HAMAMUKI, A. SICONOLFI and N. YAMAGUCHI

by Remark 3.2(i). Since 2mr > α, we have ψ ∈ E and Uψ ∈ Pc with c =
2r
r−1ψ(

1
2 ).

(2) Let ψ ∈ Pc for some c > 0. By (2.2), we can take m = c in Theo-
rem 3.5(i). We also take α = 0 in Theorem 3.5(ii) by the definition of Pc.
Since 2mr > α, we conclude that ψ ∈ E and Uψ ∈ Pc′ with c′ = cr

r−1 . �

Note that the two sets SC 0 and P above are mutually disjoint, since
a concave function is differentiable almost everywhere. Also, if ψ belongs
to P , then Uψ also belongs to P since P ⊂ E by Proposition 3.6(2). Thus,
P is an invariant set under the operator U .

Remark 3.7. By Proposition 3.6(1) and its proof, we see that the gen-
eralized Takagi function τr belongs to Pc with c = r

r−1 since d ∈ Cp(R) is

concave in [0, 1] and d( 12) =
1
2 . In particular, the Takagi function τ2 is in P2

for r = 2.

If ψ ∈ Cp(R) is α-semiconcave in [0, 1], then (ii) in Theorem 3.5 is ful-
filled by Remark 3.2(i). However, (i) does not hold in general even if ψ > 0
in (0, 1). One may then wonder if Uψ belongs to P for ψ in

SC α := {ψ ∈ Cp(R) | ψ is α-semiconcave in [0, 1] and ψ > 0 in (0, 1)}

with α > 0. The answer is no. Besides, Uψ for ψ ∈ SC α does not necessarily
possess nowhere differentiable character. Namely, for every α > 0 there are
the following three examples of ψ ∈ SC α:

(A) Uψ ∈ P and ψ �∈ SC 0.
(B) Uψ �∈ P and Uψ is nowhere differentiable in [0, 1].
(C) Uψ �∈ P and Uψ ∈ C∞((0, 1)).
Let us give an example of ψ ∈ SC α satisfying each (A)–(C).

Example 3.8. For constants a, b > 0, let ψ0 = ad+ bd2 ∈ Cp(R). Then,
ψ0 is not concave on [0, 1] but 2b-semiconcave on [0, 1]. In addition, when
ar > b, Uψ0

∈ P . We thus obtain a function satisfying (A).

Indeed, since ψ0(x) = ax+ bx2 on [0, 12 ], ψ0 is not concave on [0,1]. Also,
we have ψ0(x)+ bx(1−x) = (a+ b)d(x) on [0,1], and so ψ0 is 2b-semiconcave
on [0, 1]. Finally, since ψ0 ≥ ad on [0, 1], we can take m = a and α = 2b in
Theorem 3.5. Thus, ψ0 ∈ E and so Uψ0

∈ P .
This example also shows that SC 0 ∪ P � E.

Let us next discuss the example of (B). Let θ ∈ Cp(R) be a function such
that

θ(x) = x2 for x ∈
[

0,
1

r

]

, θ ∈ C2(R), θ > 0 in (0, 1).

We now apply [14, Theorem 3.1], which asserts that, if ψ ∈ Cp(R) ∩ C1(R)
and ψ′ is Hölder continuous in R, then Uψ is nowhere differentiable in R.
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Since θ satisfies these conditions, we deduce that Uθ is nowhere differentiable
in R. However, Uθ does not belong to P as shown below.

Theorem 3.9. ∆n,0(
1
r
;Uθ) = − 2

r−1 for each n ∈ N0. Thus, Uθ �∈ P .

Proof. Let n ∈ N0. We have

Uθ

(1

r

)

=

∞
∑

j=0

1

rj
θ(rj−1) = θ(r−1) =

1

r2
.

Thus,

2rn

y(1− y)
Uθ(y)

∣

∣

∣

y= 1

r

=
2rn

r − 1
.

When n = 0, this and (2.1) show that ∆0,0(
1
r
;Uθ) = − 2

r−1 . Let n ≥ 1. Since

∆m,0

(

1
r
, θ) = 2 for any m ∈ N, it follows from Theorem 3.1 that

∆n,0

(1

r
;Uθ

)

=
n−1
∑

j=0

rj∆n−j,0

(

1

r
; θ

)

−
2rn

y(1− y)
Uθ(y)

∣

∣

∣

y= 1

r

= 2
n−1
∑

j=0

rj −
2rn

r − 1
= −

2

r − 1
. �

Let α > 0. Since θ ∈ C2(R), we have εθ ∈ SCα if ε > 0 is sufficiently
small. Also, it is easy to see that Uεθ is still nowhere differentiable and
Uεθ �∈ P . We thus obtain a function satisfying (B).

Example 3.10. Let us give an example of a function satisfying (C).
Define

ψ(x) = |sin(πx)| −
1

r
|sin(πrx)| ∈ Cp(R).

Then, by the definition of Uψ , we easily see that Uψ(x) = |sin(πx)| ∈ Cp(R).
Thus Uψ ∈ C∞((0, 1)) and in particular Uψ �∈ P as required in (C).

Let us next check that ψ ∈ SC α for some α > 0. The positivity of ψ in
(0,1) follows from a straightforward calculation, so we omit the proof. Next,
since functions 1

r
sin(πrx) and −1

r
sin(πrx) are semiconcave, the minimum

−1
r
|sin(πrx)| of them is also semiconcave. Therefore, ψ being the sum of

two semiconcave functions in [0, 1] is semiconcave in [0, 1].
Similarly to the previous example, for a given α > 0, we have εψ ∈ SC α if

ε > 0 is sufficiently small. A function satisfying (C) has thus been obtained.

We conclude this section by studying if a Weierstrass type function be-
longs P .
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Example 3.11. The famous Weierstrass function W is given by

W (x) =

∞
�

j=0

ajρ(bjx), ρ(x) = cos(πx),

where a ∈ (0, 1) and b is an odd integer with ab > 1 + 3π
2 . Note that ρ is

continuous and periodic on R with period 2 and ρ(0) �= 0. Since we consider
functions ψ in Cp(R) with ψ(0) = 0, we study Uη for η(x) = sin(2πx) ∈ Cp(R)
instead of W . By Hardy [11], it is shown that Uη is nowhere differentiable.
We also remark that η possesses a balance of convexity and concavity prop-
erties, since it is concave on [0, 12 ] and convex on [12 , 1].

We claim that Uη does not belong to P . In fact, noting that η( r
j

2 ) =

sin(πrj) = 0 for all j ∈ N0, we see that Uη(
1
2) = 0 by the definition of Uη .

This implies that Uη �∈ P since, if Uη ∈ P , we have Uη > 0 in (0, 1) by (2.2).

4. The behavior of {Htf}t>0 for f ∈ P

In this section we consider the behavior of the Hamilton–Jacobi flow
{Htf}t>0 for f ∈ P , where Htf is the function defined by (1.11). It is known
that Htf belongs to Cp(R) and uniformly approximates f as t goes to 0 (see
[4, Ch. 3.5]). Also, Htf is a unique viscosity solution of the initial value
problem of the Hamilton–Jacobi equation:

(4.1)







ut(t, x) +
1

2
(ux(t, x))

2 = 0, (t, x) ∈ (0,∞)× R,

u(0, x) = f(x), x ∈ R

(cf. [6]). Here, ut(t, x) =
∂u
∂t
(t, x) and ux(t, x) =

∂u
∂x
(t, x).

First of all, we prove that the range of z in (1.11) can be reduced.

Lemma 4.1. Let f ∈ Cp(R). If f(z) ≥ 0 for all z ∈ [0, 1], then

(4.2) Htf(x) = min
z∈[0,1]

qf (t, x; z), (t, x) ∈ (0,∞)× [0, 1].

Proof. Fix (t, x) ∈ (0,∞)× [0, 1]. We first let z < 0. Since f(z) ≥ 0,
the geometrical investigation implies that qf (t, x; z) > qf (t, x; 0). Thus, the
minimum in (1.11) is never attained for z < 0. The same arguments show
that z > 1 is not a minimizer of (1.11), and hence (4.2) holds. �

Now, we state the main result of this section.

Theorem 4.2. Let f ∈ Pc for c > 0. Then, the following holds:
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(F2)c For all n ∈ N0,

(4.3) Htf(x) = min
k∈{0,1,2,3,...,rn}

qf

(

t, x;
k

rn

)

, (t, x) ∈
[ 1

2crn
,∞

)

× [0, 1].

Proof. This is a consequence of (4.2) and (F1)c. In fact, since f ∈ Pc

satisfies the inequality f(z) ≥ 0 for z ∈ [0, 1] by (2.2), we have (4.2), while
Theorem 2.3 guarantees that (F1)c holds. �

By Theorem 4.2 we see that Htf with f ∈ Pc is a piecewise quadratic
function in [0,1] for all t > 0 and that the x-coordinate of each vertex of the
parabolas making up Htf always belongs to Qr. In general it is known that
Htf for f ∈ Cp(R) is 1

2t -semiconcave in [0, 1] for all t > 0. For f ∈ Pc we
deduce from (4.3) that

Htf(x)−
x2

2t
=

1

2t
min

k∈{0,1,2,3,...,rn}

[

−
2k

rn
x+

( k

rn

)2
+ f

( k

rn

)

]

for (t, x) ∈ [ 1
2crn ,∞)× [0,1]. This shows that Htf(x)−

x2

2t is not only concave
but also piecewise linear in [0, 1].

One may ask if, conversely, a function f ∈ Cp(R) satisfying (F2)c for
some c > 0 is nowhere differentiable. We have no complete answer to this
question at the moment. However, we can prove that such an f is non-
differentiable on a dense subset of R. In general this is not enough to infer
that it is nowhere differentiable, as is shown by the Riemann function. In-
deed, let R be the Riemann function defined by

R(x) =
∞
∑

j=1

sin(πj2x)

j2
, x ∈ R.

Set

F :=
{2A+ 1

2B + 1

∣

∣

∣
A,B ∈ Z

}

(⊂ Q).

By Hardy [11] and Gerver [9,10], it is shown that R is differentiable on the
set F and that R is non-differetiable on the set (R \Q) ∪ (Q \ F ).

Theorem 4.3. Let f ∈ Cp(R) and let c > 0 be a constant. Assume that
(F2)c holds. Then, there exists a dense subset of the interval [0, 1] such that
f is non-differentiable at each point of this subset.

We denote by D−f(x) the subdifferential of f at x, that is, the set of
φ′(x) such that φ ∈ C1 near x and f − φ has a local minimum at x. We list
basic properties of the subdifferential used in the proof of Theorem 4.3. Let
f ∈ Cp(R) and x ∈ R.
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(I) If f is differentiable at x, then D−f(x) = {f ′(x)} ([2, Lemma
II.1.8(b)]);

(II) Let t > 0 and choose z ∈ R such that Htf(x) = qf (t, x; z). Then
x−z
t

∈ D−f(z) ([2, Lemma II.4.12(iii)]).

Proof of Theorem 4.3. Fix x0 ∈ (0, 1) and ε > 0, and let I =
(x0 − ε, x0 + ε). We prove that there is some z ∈ I such that f is not differ-
entiable at z. We may assume that ε < min{x0, 1− x0}, so that I ⊂ [0, 1].

Let t ∈ (0, ε2

2M ), with M > 0 the oscillation of f , that is, M = supR f − infR f .

Since Htf is represented by (4.3) with n such that t ≥ 1
2crn , there exists some

δ ∈ (0, ε) such that Htf = qf (t, ·; z) in J := [x0 − δ, x0] ⊂ I with z = k
rn

for
some k ∈ {0, 1, 2, 3, . . . , rn}. The choice of t then guarantees that z ∈ I .
Indeed, we have

f(x0) ≥ Htf(x0) = f(z) +
1

2t
(x0 − z)2,

and hence (x0 − z)2 ≤ 2t(f(x0)− f(z)) ≤ 2Mt < ε2, that is, z ∈ I .
It follows from (II) that x−z

t
∈ D−f(z) for all x ∈ J . This implies that

[

x0−δ−z
t

, x0−z
t

]

⊂ D−f(z): that is, D−f(z) is not a singleton. Hence we
conclude by (I) that f is not differentiable at z. �

Remark 4.4. The above proof actually shows that the dense set we
found is a subset of Qr.

5. Concluding remark

We conclude this paper by mentioning another possible definition of Pc.
Let us define P ′

c as the set of all f ∈ Cp(R) such that there exists an infinite
subset N′ ⊂ N0 such that f satisfies (1.2) for all (n, k, y) ∈ A with n ∈ N′.
In other words, we require (1.2) only for some subsequence of n ∈ N0. Even
if this generalized class P ′

c is used, one can easily see that Theorem 2.3 is
obtained in a suitable sense. Namely, f ∈ P ′

c if and only if f satisfies (F1)c
with “for all n ∈ N′” instead of “for all n ∈ N0”. The proof is almost the
same as before.

Moreover, Theorem 2.1 is true for a function in P ′ :=
⋃

c>0P
′
c since the

proof still works when taking the limit along N′. The formula (1.7) still gives
many examples of functions in P ′. Though P ′ provides a more general class
than P , there are, however, no essential changes or difficulties in the proofs.
For this reason, for simplicity of presentation, the authors decided to give
results for Pc instead of P ′

c.
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