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Abstract. We study the asymptotic behavior of the solutions to a family of discounted
Hamilton-Jacobi equations, posed in RN , when the discount factor goes to zero. The
ambient space being noncompact, we introduce an assumption implying that the Aubry
set is compact and there is no degeneracy at infinity. Our approach is to deal not
with a single Hamiltonian and Lagrangian but with the whole space of generalized La-
grangians, and then to define via duality minimizing measures associated with both the
corresponding ergodic and discounted equations. The asymptotic result follows from the
convergence properties of these measures concerning the narrow topology. We use as
duality tool a separation theorem in locally convex Hausdorff spaces, and we use the
strict topology in the space of the bounded generalized Lagrangians as well.
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1. Introduction

We study the asymptotic behavior, as the discount factor λ > 0 goes to 0, of the
viscosity solutions to the Hamilton–Jacobi equations

λu+H(x,Du) = c

posed in the Euclidean space RN . Here c is the so–called critical value defined as

c = inf{a | H = a admits subsolutions in RN}.

Under our assumption, this quantity is actually finite and is a minimum.
Our output provides an extension to the noncompact setting of the selection principle,

first established in the compact case in [10]. It asserts that the whole family of solutions
of the discounted problems, which are uniquely solved if the ambient space is compact,
converges to a distinguished solution of the ergodic limit equation

H(x,Du) = c.

The latter has instead multiple solutions, parametrized by the Aubry set, denoted by
A, which is, roughly speaking, the set of points where is concentrated the obstruction of
getting subsolutions to H = a, for a < c, see Appendix A.

We assume the Hamiltonian H(x, p) from RN × RN to R to be continuous in both
arguments, and convex, coercive in the momentum variable, locally uniformly in x. Since
H can be modified for p of large norm, without affecting the analysis, a superlinear
growth of H as |p| → +∞, can be in addition postulated without loss of generality. See
Proposition 3.6. A Lagrangian, denoted by L, can be then defined via the Legendre-
Fenchel transform.

We have one more key condition, see (A3)/(A3’), to specifically deal with the lack of
compactness of the ambient space. It implies that the Aubry set is nonempty, compact
and that the intrinsic distance associated with H = c, see Appendix A, is equivalent to
the Euclidean one at infinity. Loosely speaking, the latter condition means that there is
no Aubry set at infinity. In the case where the Hamiltonian is of the form

H(x, p) = |p| − f(x), with f continuous potential,

this corresponds to requiring the infimum of f to be not attained at infinity.
Under our assumption, due to the noncompactness, either of the discounted equations

does not anymore single out a unique solution, see example in Section 3, and the Aubry
set fails to be a uniqueness set for the critical equation.

This fact leads to single out a special type of solutions to the critical equation in RN ,
named weak KAM solutions, and defined as the functions u for which

u(x) = min{u(y) + S0(y, x) | y ∈ A} for any x,

where S0 is the intrinsic (semi)distance associated with the critical equation. In our
setting, they are characterized among all the critical solutions, see Theorem 4.7, by the
property of being bounded from below. By definition, A is then a uniqueness set for the
weak KAM solutions.

Regarding the discounted equations, we consider the maximal solution obtained as the
pointwise supremum of the family of all subsolutions. they possess, like the weak KAM
solutions, the crucial property of being bounded from below, see Section 3.

Our main result can, therefore, be stated as follows:
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Theorem. The whole family of maximal solutions to the discounted equations converges,
as the discount factor λ goes to zero, locally uniformly to a distinguished weak KAM
solution of the limit ergodic equation.

As in [10], we derive the asymptotic behavior of solutions from weak convergence of
suitable associated measures. Our method, however, is rather different. The relevant
measures are not defined as occupational measures on curves, and we seldom employ
representation formulae for solutions or properties of curves in the space of the state
variable.

Our approach instead relies on some functional analysis and appropriate duality prin-
ciples between spaces of generalized Lagrangians and spaces of measures. We define in
this way minimizing measures, named after Mather, associated with both the ergodic and
discounted equations.

For the ergodic equation, they coincide with the classical Mather measures given when
the Hamiltonian is, in addition, Tonelli and the ambient space compact. We also recover
the relevant property that the closure of the union of the supports of such measures is a
uniqueness set for the weak KAM solutions, see Section 11.

Our procedure is close in spirit to Evans’s interpretation of Mather theory in terms of
complementarity problems, see [11], [12], and also [16]. We think that this alternative
approach is interesting per se and can handle to extend the asymptotic result to a more
general setting, for instance in the case of fully nonlinear second-order equations (see
[18,19] and also [20] for such generalizations).

The idea of performing some duality between generalized Lagrangians and measures,
to study the asymptotic of the solution to discounted equations, has been introduced in
[18, 19]. The authors, however, use as duality tool the Sion minimax Theorem, while we
instead employ a separation result for convex subsets in locally convex Hausdorff space,
see Appendix B.

It implies that the normal cone at any element of the boundary of a convex set with
nonempty interior has nonzero elements. We actually find the Mather measures as ele-
ments, up to change of sign, of the normal cone at L of suitable convex sets in the space
of generalized Lagrangians. We need for this an appropriate topological frame.

We consider the space of bounded continuous functions from R2N to RN equipped with
the so–called strict topology, see Appendix B. In this case a nice generalization of Riesz
representation theorem holds true, namely the topological dual is the space of signed
Borel measures with bounded variation with the narrow topology as corresponding weak
star topology.

To implement our method, some effort has been put into constructing convex subsets
of the space of bounded generalized Lagrangians with nonempty interior and L ∧M as
boundary point, for suitable constants M . To this aim, we have preliminarily proved
some localization results for both the ergodic and discounted equations, see Section 5 and
Propositions 7.3, 8.2.
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2. Setting

Given R > 0, we denote by BR the open ball of RN or RN × RN centered at 0 with
radius R, we write insead B(x0, R) if the center is at x0. Given two elements x, y of RN ,
we write x · y to indicate their scalar product. For any subset E of a topological space,
we denote by E, intE, ∂E its closure interior and boundary, respectively. If u is a locally
Lipschitz continuous function from RN to R we define its (Clarke) generalized gradient
at some point x via

∂u(x) = co{lim
i
Du(xi) | xi → x, xi differentiability points of u}

where co stands for convex hull.
We consider a Hamiltonian H : RN × RN → R satisfying the following conditions

(A1) H ∈ C(RN × RN).

(A2)

H is convex and coercive, that is, for any x ∈ RN , the function H(x, ·)
is convex in RN and for any R > 0,

lim
R→∞

inf{H(x, p) | x ∈ BR, p ∈ RN \BR} = +∞.

(A3)

There exists ε > 0 such that

lim sup
|x|→+∞

max
p∈Bε

H(x, p) < max
x∈RN

min
p∈RN

H(x, p)

We further consider the discount problem for the Hamilton-Jacobi equation

(DP) λu+H(x,Du) = c in RN ,

and the associated ergodic problem

H(x,Du) = c in RN ,

where λ > 0 is a given constant, and

(1) c = inf{a | H(x,Du) = a admits subsolutions in RN}
is the so–called critical value of H. We will show that in our setting it is finite and is
actually a minimum. Here and in what follows, the terms solutions, subsolutions, and
supersolutions of Hamilton-Jacobi equations must be understood in the viscosity sense.
We henceforth suppress the adjective word viscosity. We record for later use a weaker
version of (A3):

(A3’)

There exists ε > 0 such that

lim sup
|x|→+∞

max
p∈Bε

H(x, p) < c.

It is clear that the critical value is greater than or equal to the right hand–side of (A3).
The advantage of the formulation (A3) is that that the quantity in the right hand–side is
observable for any given Hamiltonian while the critical value could be in general not easy
to compute.
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We can assume by normalization that c = 0 and, consequently, the ergodic problem is
stated as

(EP) H[u] = 0 in RN .

Here we mean that the problems involving the Hamiltonian H are normalized so as to c
when H is replaced by H − c. Note that if H satisfies (A1)–(A3) and c ∈ R, then H − c
satisfies (A1)–(A3) as well. We interpret (DP) as an approximation procedure for (EP)
when λ is sent to 0.

The first author studied, under assumptions to be compared with (A1)–(A3), the large
time behavior of the Hamilton-Jacobi equation in RN in [17].

Condition (A3) implies:

Proposition 2.1. Assume that u is a subsolution of H[u] = a for some a ∈ R and K
a compact subset of RN . Then there exists a subsolution of the same equation, constant
outside some compact subset, coinciding with u on K.

Proof. Due to (A3) and H = a admitting subsolutions, we have

a > lim sup
|x|→+∞

max
p∈Bε

H(x, p) for some ε > 0,

we can therefore take a compact subset C with

intC ⊃ K ∪
{
x | max

p∈Bε
H(x, p) ≥ a

}
.

We set φ(x) = − ε
2
|x| and select b > 0 with minC(φ + b) > maxC u. Because of the

definition of C, the function

v = min{φ+ b, u}
is a subsolution of H = a with v = u on K and

lim
|x|→+∞

v = −∞.

The function

w0 = max{v,min
C
u},

satisfies the assertion. �

3. Maximal subsolutions of (DP)

The first result of the section is

Proposition 3.1. The family of subsolutions to (DP) is locally equibounded from above,
when λ varies in (0,+∞).

A lemma is preliminary

Lemma 3.2. For each R > 0, there exist a constant CR > 0 and a function ψR ∈ C1(BR)
such that

H[ψR] > −CR in BR, and lim
|x|→R−

ψR(x) = +∞.
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Proof. Fix R > 0 and choose a function ψR ∈ C1(RN) so that

lim
|x|→R−

ψR(x) = +∞ and lim
|x|→R−

|DψR(x)| = +∞.

Observe that
x 7→ H(x,DψR(x))

is continuous on BR and that

lim
|x|→R−

H(x,DψR(x)) = +∞.

It is now obvious that
x 7→ H(x,DψR(x))

has a minimum in BR. Thus, for some constant CR > 0,

H(x,DψR(x)) ≥ −CR in BR.

�

Proof of Proposition 3.1. Let u be any subsolution of (DP), for some λ > 0. Fix R > 0.
According to Lemma 3.2, there are a function ψ ∈ C1(BR) and a constant b > 0 such
that

H(x,Dψ(x)) ≥ −b for x ∈ BR and lim
|x|→R−

ψ(x) = +∞.

By adding a constant to ψ if necessary, we may assume that ψ ≥ 0 in BR.
Set

v(x) = ψ(x) + λ−1 b for x ∈ BR,

and note that

(2) λv(x) +H(x,Dv(x)) ≥ λλ−1 b− b = 0 for x ∈ BR.

We prove that

(3) u ≤ v in BR.

By contradiction, we suppose that supBR(u− v) > 0. Since

lim
|x|→R−

(u− v)(x) = −∞,

the function u − v has a maximum point at some x0 ∈ BR and hence, by the viscosity
property of u

λu(x0) +H(x0, Dψ(x0)) ≤ 0,

which yields, since u(x0) > v(x0)

λv(x0) +H(x0, Dψ(x0)) ≤ 0.

contradicting (2).
From (3), we get

u(x) ≤ v(x) ≤ λ−1 b+ ‖ψ‖∞,BR/2 for all x ∈ BR/2.

This gives the assertion. �

In view of the Perron method and (A2), we directly derive:

Theorem 3.3. There exists, for each λ > 0, a maximal viscosity solution uλ of (DP),
which is locally Lipschitz continuous.
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From now on, we denote by uλ, for any λ > 0, the maximal (sub)solution of (DP).

Lemma 3.4. The functions uλ are equibounded from below in RN for λ > 0.

Proof. By Proposition 2.1 there exists a compactly supported subsolution w of (EP). Let
b > 0 an upper bound of |w(x)| in RN , then the nonpositive function w−b is a subsolution
of (DP), for any λ > 0. By the maximality of uλ among the subsolutions of (DP), we
conclude that uλ ≥ w − b ≥ −2 b in RN . �

Here we digress slightly from the streamline and consider an example where N = 1 and
H(x, p) = |p| − |x| for (x, p) ∈ R2. By solving the equations

λu(x) + u′(x) = x and λu(x)− u′(x) = x for x > 0,

where λ > 0, we easily see that the functions

u+(x) :=
|x|
λ

+
1

λ2
(−1 + e−λ|x|),

and

uC(x) :=
|x|
λ

+
1

λ2
(1− Ceλ|x|),

with C ≥ 1, are solutions of

(4) λu(x) + |u′(x)| = |x| in R.
We can prove the following uniqueness claim: if u is a solution of (4) that satisfies

(5) lim inf
|x|→∞

(u(x) + δeλ|x|) > 0 for all δ > 0,

then u = u+. In particular, we have uλ = u+ in this example. That is, the maximal
solution uλ of (4) is characterized as the unique solution of (4) that satisfies (5). This
example tempts us to conjecture that, in our standing assumptions, the maximal solution
uλ is a “unique” solution of (DP) that is bounded from below. The authors are not able
to show the uniqueness of those solutions of (DP) that are bounded from below.

A brief idea to check the uniqueness claim above is that if u is a solution of (4) and
(5), then consider the function

w(x) := (1− δ)u+(x)− δeλ|x| on R
for small δ ∈ (0, 1), observe that w is a subsolution of (4) and

lim sup
|x|→∞

(w(x)− u(x)) = −∞,

and apply a standard comparison theorem in a large interval [−R, R], to see that w ≤ u
in R, which implies in the limit as δ → 0 that u+ ≤ u. Observing by (4) that u(x) ≤ |x|/λ
for all x ∈ R, we may repeat an argument, parallel to the above, with w and u replaced
by (1− δ)u− δeλ|x| and u+, respectively, to conclude that u ≤ u+.

Proposition 3.5. The family uλ, for λ > 0, is relatively compact in C(RN).

Proof. We already know from Proposition 3.1 and Lemma 3.4 that the uλ are locally
equibounded. This implies that for any R > 0 there exists a constant bR with

H[uλ] ≤ bR in BR, for any λ > 0.

Taking into account the coercivity condition (A2), we derive from the above inequality
that the uλ are equiLipschitz–continuous in BR, for any R > 0. This concludes the
proof. �
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We derive from the previous results on maximal solutions of (DP):

Proposition 3.6. There exists a Hamiltonian H̃ satisfying (A1), (A2), (A3) plus

(6) lim
|p|→+∞

H̃(x, p)

|p|
= +∞ for any x ∈ RN

such that in addition the subsolutions of the equations (EP) and H̃[u] = 0 are the same,

and uλ is the maximal subsolution to λu+ H̃[u] = 0 for any λ > 0.

Proof. We set

b = max
x∈RN

H(x, 0) ≥ 0,

this maximum does exist in force of (A3). The function u ≡ − b
λ

is subsolution to (DP)
for any λ > 0, so that λuλ ≥ −b, and accordingly

(7) 0 ≥ λuλ +H[uλ] ≥ −b+H[uλ].

We define

H̃(x, p) = H(x, p) +
(
0 ∨ (H(x, p)− b)

)2

by exploiting the property that the square of any coercive nonnegative convex function

from RN to R is convex with superquadratic growth at infinity, we see that H̃ satisfies
(A1), (A2), (6).

Regarding property (A3), we have that

min
p
H(x, p) ≤ H(x, 0) ≤ b for any x ∈ RN

which implies

(8) max
x∈RN

min
p∈RN

H(x, p) = max
x∈RN

min
p∈RN

H̃(x, p)

Moreover

max
p∈Bε

H(x, p) ≤ 0 ≤ b when |x| is large enough

so that

(9) lim sup
|x|→+∞

max
p∈Bε

H(x, p) = lim sup
|x|→+∞

max
p∈Bε

H̃(x, p)

where ε is the same constant appearing in (A3). We deduce from (8), (9) that condition

(A3) holds for H̃. Since b ≥ 0, we have that

{(x, p) | H(x, p) ≤ 0} = {(x, p) | H̃(x, p) ≤ 0}.

This implies that 0 is the critical value for H̃ and the equations H[u] = 0, H̃[u] = 0 have

the same subsolutions. Further, due to H̃ ≥ H, any subsolution of λu + H̃[u] is also

subsolution to (DP), which implies that the maximal subsolution to λu+ H̃[u] = 0 is less
than or equal to uλ. On the other side, since by (7)

H(x,Duλ(x)) = H̃(x,Duλ(x)) for a.e. x,

the function uλ itself is subsolution to λu+ H̃[u] = 0. This implies that uλ is indeed the

maximal subsolution to λu+ H̃[u] = 0, ending the proof.
�
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The above result allows us to assume, without any loss of generality, that superlinear
growth property in (6) holds true for H. We can therefore define via Fenchel transform
the corresponding Lagrangian

L(x, q) = max
p
p · q −H(x, p),

which is convex and coercive in q. In addition, we have for any R > 0, x ∈ BR

L(x, q) ≥ R |q| −H(x,R |q|−1 q) ≥ R |q| − sup
(x,p)∈BR×BR

H(x, p),

which shows that

(10) lim
|q|→+∞

inf
x∈BR

L(x, q)

|q|
= +∞ for any R > 0.

We moreover deduce from (A3) that there is a compact subset K ⊂ RN and positive
constants δ0, M0 such that

L(x, q) ≥ δ0 |q| −H(x, q |q|−1 δ0) ≥ δ0 |q|,(11)

L(x, q) ≥ −H(x, 0) ≥M0 > 0(12)

for x 6∈ K, any q ∈ RN .

4. Ergodic equation

Lemma 4.1. The definition of critical value in (1) is well posed, the critical value is finite
and is actually a minimum.

Proof. By assumption (A3), H(·, 0) attains a maximum in RN . If a ≥ maxRN H(x, 0),
then H[u] = a admits any constant function as subsolutions. This implies that the
set in the right hand side of (1) is nonempty. On the other side, if a < minpH(x, p)
for some x ∈ RN , then H[u] = a does not admit any subsolution, which shows that the
critical value is finite. Finally it is a minimum by standard stability properties of viscosity
subsolutions. �

We recall that we assume throughout the paper that the critical value is 0.

Proposition 4.2. There exists a solution to

H[u] = 0 in RN .

Proof. As already pointed out, there exists a subsolution to H[u] = 0 in RN . This
implies that the intrinsic distance S0 is finite. We use the usual covering argument, see
[14, Theorem 3.3] plus existence of subsolution going to −∞ and Proposition 2.1 to show
there exists y ∈ RN such that S0(·, y) is a solution to H[u] = 0 in RN . �

Proposition 4.3. The Aubry set A is a nonempty compact subset of RN .

Proof. The argument of Proposition 4.2 shows that A is nonempty, it is in addition closed
by stability properties of viscosity solutions. By Proposition 2.1, there exists a subsolution
of H[u] = 0 which is strict outside a compact subset C0 ⊂ RN . This implies by Proposition
A.2 that A ⊂ C0.

�
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We recall that if the ambient space is compact the ergodic equation admits solutions
only at the critical level. This is not any more the case in the noncompact setting since
a solutions can be found at any supercritical value as well.

Definition 4.4. We say that a solution v to the critical equation is a weak KAM solution
if it can be written in the form

(13) v(x) = min{v(y) + S0(y, x) | y ∈ A}.

We directly derive from the definition of intrinsic distance:

Lemma 4.5. A function v is weak KAM solution if and only if

v(x) = max{u(x) | u subsolution to (EP) with u = v on A}.

We recall the following result, see for the proof [17], [14].

Lemma 4.6. Let B0 be a ball containing A than any solution v of (EP) in B0 satisfies

v(x) = min{v(y) + S0(y, x) | y ∈ ∂B0 ∪ A}.

The following characterization holds:

Theorem 4.7. A solution v is weak KAM if and only if it is bounded from below.

Proof. Exploiting (A3), we can find ε > 0 and R > 0 with

sup
x∈RN\BR

max
p∈Bε

H(x, p) < 0,

we can further assume that BR ⊃ A. We consequently have

(14) `0(ξ) ≥ ε `(ξ)

for any curve ξ with support contained in RN \ BR. Here, to repeat, ` stands for the
Euclidean length, and `0 for the intrinsic length of a curve. Given x0 ∈ BR, we define

(15) m = min
x∈BR

S0(x, x0).

Assume that v is not a weak KAM solution, then by applying Lemma 4.6 to a sequence
of balls with diverging radii, we find that there exist xn with |xn| → +∞ such that

(16) v(x0) = v(xn) + S0(xn, x0).

We may assume that |xn| > R for any n. Let ξn be a sequence of curves, parametrized in
[0, 1], linking xn to x0 such that

(17) `0(ξn) ≤ S0(xn, x0) +
1

n
.

Let tn be the first entrance time of ξn in BR. This means

ξn([0, tn)) ∩BR = ∅ and yn := ξn(tn) ∈ ∂BR.

We claim that

lim
n
`0(ξn)− S0(xn, yn) = 0,(18)

lim
n
S0(xn, x0)− S0(xn, yn)− S0(yn, x0) = 0(19)

10



where ξn = ξn∣∣[0,tn)
. We in fact have by (17) and the triangle inequality

`0(ξn) ≤ S0(xn, x0) +
1

n
≤ S0(xn, yn) + S0(yn, x0) +

1

n

≤ `0(ξn∣∣[tn,1]
) + S0(xn, yn) +

1

n
≤ `0(ξn) + `0(ξn∣∣[tn,1]

) +
1

n

= `0(ξn) +
1

n

which implies

0 ≤ `0(ξn)− S0(xn, yn) ≤ 1

n
,

0 ≤ S0(xn, yn) + S0(yn, x0)− S0(xn, x0) ≤ 1

n

and gives in the end (18), (19) sending n to +∞. We further have by (16), (14), (18),
(19) that

v(x0) = v(xn) + S0(xn, x0) ≥ v(xn) + S0(xn, yn) + S0(yn, x0)− 1

n

≥ v(xn) + `0(ξn) + S0(yn, x0)− 2
1

n

≥ v(xn) + ε (|xn| −R) +m− 2
1

n
,

where m is defined as in (15), and we finally obtain

v(xn) ≤ v(x0)−m− ε (|xn| −R) + 2
1

n
.

Since |R| can be sent to infinity, this proves that u is unbounded from below. Conversely,
let v be a weak KAM solution. Let x1 be a point with |x1| > R. We denote by y0 an
element of the Aubry set with

v(x1) = v(y0) + S0(y0, x0)

and by ξ a curve, parametrized in [0, 1], linking y0 to x1 such that

(20) `0(ξ) ≤ S0(y0, x1) + 1.

Let t0 be the last exit time of ξ from BR. This means

ξ((t0, 1)) ∩BR = ∅ and z0 := ξ(t0) ∈ ∂BR.

We have by (20) and the triangle inequality

`0(ξ) ≤ S0(y0, x1) + 1 ≤ S0(y0, z0) + S0(z0, x1) + 1

≤ `(ξ∣∣[0,t0]
) + S0(z0, x1) + 1

≤ `0(ξ∣∣(t0,1]
) + `0(ξ∣∣[0,t0]

) + 1

= `0(ξ) + 1,

which implies

0 ≤ `0(ξ∣∣[t0,1]
)− S0(z0, x1) ≤ 1,(21)

0 ≤ S0(y0, z0) + S0(z0, x1)− S0(y0, x1) ≤ 1.(22)
11



We further have by (16), (21), (22) and the fact that v is a weak KAM solution

v(x1) = v(y0) + S0(y0, x1) ≥ v(y0) + S0(y0, z0) + S0(z0, x1)− 1

≥ v(y0) + `0(ξ∣∣[t0,1]
) + S0(y0, z0)− 2

≥ v(z0)− 2 ≥ min
∂BR

v − 2,

which gives that v is bounded from below since x1 has been arbitrarily chosen in RN \
BR. �

5. Localization results

The results of this section will be crucial to prove that some subsets of the space of
bounded functions Φ : RN × RN are open in a suitable topology. This in turn will allow
showing the existence of minimizing measures for (EP), (DP).

Proposition 5.1. Any open ball B0 ⊃ A satisfies

0 = inf{a | H = a admits subsolutions in B0}.

Proof. Let B0 be an open ball containing the Aubry set. Assume by contradiction that
there is a strict subsolution to H[u] = 0 in B0. Then by standard comparison principles,
there exists one and only one solution u0 to H[u] = 0 equal to a given trace g on ∂B0

with
g(x)− g(y) ≤ S0(y, x) for any x, y in ∂B0

and it is given by
u0(x) = min{g(y) + S0(y, x) | y ∈ ∂B0}.

We fix z ∈ A ⊂ B0, since S0(z, ·) is solution of H[u] = 0 in RN , we apply the comparison
principle with g = S0(z, ·) on ∂B0, and deduce that

0 = S0(z, z) = S0(z, y0) + S0(y0, z) for some y0 ∈ ∂B0.

This implies that we can find a sequence ξn of cycles passing through z and y0 with

`0(ξn)→ 0 and inf
n
`(ξn) > 0.

This in turn implies that y0 ∈ A by Proposition A.1 , against the assumption that A is
contained in the interior of B0. �

We proceed proving a localization property for the discounted equation.

Proposition 5.2. Given z ∈ RN there exist λz > 0 such that uλ and the maximal
subsolution of (DP) in Cz,λ coincide at z for λ < λz and some ball Cz,λ.

Remark 5.3. We recall that the maximal subsolution to (DP) in some ball B is nothing
but the state constraint solution. If uλ(z) coincide with this solution then

uλ(z) = inf

{∫ 0

−∞
eλs L(ξ, ξ̇) ds | ξ(s) ∈ B ∀ s, ξ(0) = z

}
.

If, on the contrary, uλ(z) is strictly less to the maximal subsolution in B then

uλ(z) = inf

{
e−λTu(ξ(−T )) +

∫ 0

−T
eλs L(ξ, ξ̇) ds | ξ(s) ∈ B ∀ s, ξ(0) = z, ξ(−T ) ∈ ∂B

}
.
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We need two preliminary lemmata.

Lemma 5.4. Let λ > 0, x be an arbitrary element of RN , ξ a curve defined in [−t, 0],
for some t > 0, with ξ(0) = x then

uλ(x) ≤ e−λt uλ(ξ(−t))) +

∫ 0

−t
eλs L(ξ, ξ̇) ds.

If η : (−∞, 0]→ RN with η(0) = x then

uλ(x) ≤
∫ 0

−∞
eλs L(η, η̇) ds+ lim inf

t→+∞
e−λt uλ(η(−t)).

Note that L and the uλ are bounded from below, the indeterminate form +∞ −∞
cannot therefore appear in the above formula.

Proof. We just prove the first part of the assertion, the second part can be obtained
sending t to infinity. We have

uλ(x)− e−λt uλ(ξ(−t)) =

∫ 0

−t

d

ds
[eλs uλ(ξ(s))] ds

=

∫ 0

−t
eλs (λuλ(ξ(s)) + p(s) · ξ̇(s)) ds,

where p(s) is a suitable element of ∂uλ(ξ(s)). Taking into account that uλ is a subsolution,
we further obtain

uλ(x)− e−λt uλ(ξ(−t)) ≤
∫ 0

−t
eλs (λuλ(ξ(s)) + L(ξ(s), ξ̇(s)) +H(ξ(s), p(s))) ds

≤
∫ 0

−t
eλs L(ξ, ξ̇) ds.

This concludes the proof. �

Lemma 5.5. Given ε > 0, λ > 0, x0 ∈ RN , let ξ : (−T, 0] → RN , T ∈ R ∪ {+∞}, be a
curve with ξ(0) = x0 and

(23) uλ(x0) ≥
∫ 0

−T
eλs L(ξ, ξ̇) ds+ lim inf

t→T
e−λt uλ(ξ(−t))− ε.

Then

(24) uλ(ξ(−t1)) ≥ e−λ(t2−t1) uλ(ξ(−t2)) +

∫ 0

t1−t2
eλs L(ξ(· − t1) ξ̇(· − t1)) ds− ε

for any T > t2 > t1 ≥ 0.
13



Proof. By (23) and Lemma 5.4 we have

uλ(x0) ≥
∫ −t2
−T

eλsL(ξ, ξ̇) ds+

∫ −t1
−t2

eλsL(ξ, ξ̇) ds

+

∫ 0

−t1
eλsL(ξ, ξ̇) ds+ lim inf

t→T
e−λt uλ(ξ(−t))− ε

≥ e−λt2uλ(ξ(−t2))− lim inf
t→T

e−λt uλ(ξ(−t))

+ e−λt1
∫ 0

t1−t2
eλs L(ξ(· − t1) ξ̇(· − t1)) ds

+ uλ(x0)− e−λt1 uλ(ξ(−t1)) + lim inf
t→T

e−λt uλ(ξ(−t))− ε,

which gives (24). �

Proof of Proposition 5.2. Given t > 0 and a curve ξ defined in [−t, 0], we set to ease
notations

ρλ(t, ξ) =

∫ 0

−t
eλs L(ξ, ξ̇) ds.

Let B be a ball containing z such that there are positive constants M0, δ0, a, with

L(x, q) ≥ δ0 |q| for x 6∈ B, any q,(25)

L(x, q) ≥ M0 for x 6∈ B, any q,(26)

uλ(x) ≥ −a for any λ > 0, x ∈ RN .(27)

See (11), (12), and Lemma 3.4 to check out that this is possible. Further, we take λz such
that

(28) max{uλ(x) | x ∈ ∂B, λ < λz} <
M0

λ
− a− 1.

We fix λ < λz, were the assertion not true for such a λ , we would find, see Remark 5.3,
Tn > 0, xn ∈ RN with |xn| → +∞ and curves ξn : [−Tn, 0] → RN joining xn to z such
that

(29) uλ(z) ≥ e−λTn uλ(xn) + ρλ(Tn, ξn)− 1

n
.

We set for any n
−T ′n = min{t > −Tn, | ξn(t) ∈ ∂B},

so that the support of ξn is outside B in the time interval (−Tn,−T ′n) and ξn(−T ′n) ∈ ∂B.
We have by (29) and Lemma 5.5

uλ(ξn(−T ′n)) ≥ e−λ(T ′n−Tn) uλ(ξn(−Tn)) + ρλ(Tn − T ′n, ξn(· − T ′n))− 1

n

≥ −a+ ρλ(Tn − T ′n, ξn(· − T ′n))− 1

n
,(30)

for any n. We first assume that limn Tn − T ′n = +∞, then

lim inf
n

ρλ(Tn − T ′n, ξn(· − T ′n)) ≥ M0

λ
and consequently

(31) lim inf
n

uλ(ξn(−T ′n)) ≥ −a+
M0

λ
,
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in contradiction with (28) since ξn(−T ′n) ∈ ∂B. If instead Tn − T ′n < T for any n, some
T > 0, we integrate by parts, bearing in mind that L(x, q) > 0 for x 6∈ B, any q, to get

ρλ(Tn − T ′n, ξn(· − T ′n)) =

[
−eλt

∫ 0

t

L(ξn(· − T ′n), ξ̇n(· − T ′n)) ds

]0

T ′n−Tn

+

∫ 0

T ′n−Tn
λ eλt

(∫ 0

t

L(ξn(· − T ′n), ξ̇n(· − T ′n)) ds

)
dt

≥ e−λ(Tn−T ′n)

∫ 0

T ′n−Tn
L(ξ(· − T ′n), ξ̇(· − T ′n)) ds

≥ e−λT δ0 |ξn(−Tn)− ξn(−T ′n)|.
Taking into account that ξn(−T ′n) ∈ ∂B and |ξn(−Tn)| = |xn| → +∞, we get

(32) lim
n
ρλ(Tn − T ′n, ξ(· − T ′n)) = +∞,

which contradicts (30). �

6. Generalized Lagrangians and narrow convergence of measures

We consider the space C(R2N) of the continuous functions from R2N to R. Given such
a function Φ(x, q), we say that a locally Lipschitz continuous function u is a subsolution
for Φ if

Du(x) · q ≤ Φ(x, q) for a.e. x ∈ RN , any q ∈ RN .

We further say that u is a strict subsolution if

Du(x) · q ≤ Φ(x, q)− ε for a.e. x, any q, some ε > 0.

A real number c is called critical value of Φ if Φ + c admits subsolutions but not strict
subsolutions.

Given a discount factor λ, we similarly say that a locally Lipschitz continuous function
u is a λ–discounted subsolution for Φ if

λu(x) +Du(x) · q ≤ Φ(x, q) for a.e. x ∈ RN , any q ∈ RN .

Remark 6.1. If Φ has superlinear growth when |q| goes to +∞, for any x, then we can
apply Fenchel transform to define a Hamiltonian, denoted by HΦ, which is convex in p and
satisfies (A1), (A2). A subsolution corresponding to Φ + a , for some a ∈ R, is nothing
but a subsolution of the equation HΦ[u] = a. Finally, the critical value of Φ is equal to
the critical value of HΦ.

We will denote by P the space of Radon probability measure on R2N . Given µ ∈ P and
Φ ∈ C(R2N), integrable with respect to µ, we will write from now on, to ease notations,
〈µ,Φ〉 in place of

∫
Φ dµ.

We state and prove some convergence lemmata with respect to the narrow topology we
will use in what follows.

Lemma 6.2. Let Φ ∈ C(RN × RN) be bounded from below, µ ∈ P, then

a := lim inf
n
〈µn,Φ〉 ≥ 〈µ,Φ〉

for any sequence µn narrowly converging to µ.
15



Proof. We can assume that a is finite, otherwise the assertion is trivial. Given ε > 0,
R > 0, we find a subsequence µnk of µn with

a+ ε ≥ 〈µnk ,Φ〉 ≥ 〈µnk ,Φ ∧R〉

for nk large enough. Since the functions Φ∧R, for R > 0, are bounded continuous by the
assumption, we get

a+ ε ≥ lim
nk
〈µnk ,Φ ∧R〉 = 〈µ,Φ ∧R〉

and consequently, letting ε going to 0

〈µ,Φ ∧R〉 ≤ a for any R.

Since Φ∧R converges monotonically to Φ as R −→ +∞, we finally obtain by the monotone
convergence theorem

〈µ,Φ〉 = lim
R→+∞

〈µ,Φ ∧R〉 ≤ a.

This ends the proof. �

We recall that L is bounded from below in force of (10), (11). We set

m = min
RN×RN

L.

Lemma 6.3. Given any real number a the sublevel

Va := {µ ∈ P | 〈µ, L〉 ≤ a}

is compact in the narrow topology, provided that it is not empty.

Proof. Given ε > 0, we find by (11) a compact subset Kε of RN × RN with

L(x, q) ≥ 1

ε
whenever (x, q) 6∈ Kε.

Given µ ∈ Va, we have

a ≥ 〈µ, L〉 ≥ mµ(Kε) +
1

ε
µ(Kc

ε) ≥ −|m|+
1

ε
µ(Kc

ε),

where Ac indicates the complement of A. This implies

(a+ |m|) ε ≥ µ(Kc
ε) for µ ∈ Va

and shows that the measures in Va are uniformly tight, so that Va is conditionally narrowly
compact. Finally if µn ∈ Va narrowly converges to some µ, we have by Lemma 6.2

a ≥ lim inf
n
〈µn, L〉 ≥ 〈µ, L〉,

which concludes the proof. �

Lemma 6.4. Let µn a sequence in P narrowly converging to some µ, with 〈µn, L〉 bounded,
then

〈µn,Φ〉 → 〈µ,Φ〉
whenever Φ is continuous, supported in K ×RN , for some compact subset K of RN , and
with linear growth as |q| goes to infinity.
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Proof. We take Φ as in the statement. The function

R 7→ µ(BR × RN)

is nondecreasing and so possesses countably many discontinuities. For any of its continuity
points R we have µ(∂BR × RN) = 0 and consequently by the Portmanteau Theorem

(33) µn(BR × RN)→ µ(BR × RN).

We can therefore find R > 0 satisfying (33) such that supp Φ ⊂ BR×RN , µ(BR×RN) > 0,
L > 0 in Bc

R × RN , see (11). We consider the conditional probabilities

µn(·) = µn(· | BR × RN), µ(·) = µ(· | BR × RN).

Note that the 〈µn, L〉 are bounded and µn narrowly converge to µ. Given ε > 0, we find
by (10) a compact subset C ⊂ RN with

L(x, q) ≥ 1

ε
|q| whenever x ∈ BR, q 6∈ C.

We set m = minRN×RN L and denote by a an upper bound of 〈µn, L〉. Bearing in mind
that the the µn are supported in BR × RN , we have

a ≥ 〈µn, L〉 ≥ mµn(BR × C) +

∫
(BR×C)c

Ldµn

≥ −|m|+
∫
BR×(RN\C)

Ldµn

≥ −|m|+ 1

ε

∫
BR×(RN\C)

|q| dµn,

which implies

(a+ |m|) ε ≥
∫
BR×(RN\C)

|q| dµn =

∫
(BR×C)c

|q| dµn.

We derive that the µn are 1–uniformly integrable and so conditionally compact with re-
spect to the Wasserstein distance of order 1, denoted by W 1. Since µn narrowly converges
to µ, we deduce that the convergence actually holds with respect to W 1. Such a con-
vergence can be equivalently expressed in duality with continuous function with linear
growth at infinity, and we thus get, taking into account that supp Φ ⊂ BR × RN ,

1

µn(BR × RN)
〈µn,Φ〉 = 〈µn,Φ〉 → 〈µ,Φ〉 =

1

µ(BR × RN)
〈µ,Φ〉,

which gives the assertion.
�

7. Mather measures for the discounted equation

The aim of this section is to show the existence of minimizing measures related to (DP).
More precisely, we will prove:
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Theorem 7.1. Given z ∈ RN , 0 < λ < λz ( λz as in Proposition 5.2), there exists a
probability measure µ ∈ P with

(34) 〈µ, L〉 = λuλ(z), 〈µ,Φ〉 ≥ λu(z)

for any Φ ∈ C(R2N) bounded from below admitting a λ–discounted subsolution and any
λ–discounted subsolution u of Φ.

Our strategy is to construct a suitable convex subset of Cb(RN), with L∧M for M > 0
large in its boundary, possessing nonempty interior, and then to apply Proposition C.1
about the existence of nonzero elements in normal cones. The nonzero elements in the
normal cone at L∧M are, up to change of sign and normalization, the probability measure
appearing in the previous statement.

We proceed to prove some preliminary results.

Lemma 7.2. Given z ∈ RN , a ∈ R, λ > 0, an open ball B containing z, any Lipschitz
function u in B satisfying u(z) ≥ a and

(35) λu(x) +Du(x) · q ≤ L(x, q) for a.e. x ∈ B, q with |q| = 1

has Lipschitz constant in B bounded from above by a quantity solely depending on a, λ,
L and the diameter of B.

Proof. We set

R = max{L(x, q) | x ∈ B, |q| = 1}.
We have by (35)

Du(x) · q ≤ L(x, q)− λmin
B
u for a.e. x ∈ B, any |q| = 1

and consequently

‖Du‖∞,B ≤ R− λmin
B
u.

It is then enough to show that minB u is bounded from below, when u varies among the
functions satisfying the assumptions. We set

v(x, t) = u(x)eλt for (x, t) ∈ B × R,

and observe that, for any q ∈ RN with |q| ≤ 1, v satisfies

Dv(x, t) · q + (∂/∂t)v(x, t) ≤ Reλt for (x, t) ∈ B × R.

Fix any point y ∈ B \ {z} and set q = (z − y)/|z − y|. Thanks to [9, Theorem I.14], we
have

v(y + tq, t)− v(y, 0) ≤
∫ t

0

Reλs ds for t ∈ [0, |z − y| ],

and, in particular,

u(z)eλ|z−y| ≤ u(y) +
R

λ

(
eλ|z−y| − 1

)
.

Hence, if d denotes the diameter of B, then

u(y) ≥ (a ∧ 0) eλ d − R

λ

(
eλ d − 1

)
. �

We exploit the above lemma to prove:
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Proposition 7.3. Given z ∈ RN , λ > 0, a ∈ R, a ball B containing z, there exists R > 1,
such that any Lipschitz function u in B satisfying u(z) ≥ a and

(36) λu(x) +Du(x) · q ≤ L(x, q) for a.e. x ∈ B, |q| ≤ R

is a subsolution to (DP) in B.

Proof. If (36) holds true for |q| = 1 then we know from Lemma 7.2 that there exists an
upper bound, denoted by M , of the Lipschitz constants of all functions satisfying the
assumptions, and consequently

max
B

u ≤ a+ rM,

where r denotes the diameter of B. We take R > 1 such that

inf
x∈B, |q|>R

L(x, q)

|q|
≥M + λ (a+ rM),

note that this choice is possible in force of (10). We get

L(x, q) ≥ |q| (M + λ (a+ rM))

≥ Du(x) · q + λu(x)

for a.e. x ∈ B, any q with |q| > R. This last relation, together with (36), gives the
assertion. �

We fix z ∈ RN , λ < λz, and set B0 = Cz,λ, see Proposition 5.2. We further denote by
R0 the constant provided by Proposition 7.3 in correspondence to B0, z, λ, a = uλ(z).

We define in the space Cb(R2n) the set Gλ,z made up by the Φ ∈ Cb(R2n) for which there
exist a positive constant ε and a Lipschitz continuous function u in B0 with u(z) ≥ uλ(z)
and

(37) λu(x) +Du(x) · q ≤ Φ(x, q)− ε

for a.e. x ∈ B0, any q with |q| ≤ R0.

Proposition 7.4. The set Gλ,z is a convex subset, open with respect to the strict topology
(see Appendix B for the definition of strict topology).

Proof. The convexity property is apparent. If Φ0 satisfies (37), then any Φ with ‖Φ −
Φ0‖∞,B0×BR0

< ε
2

satisfies

λu(x) +Du(x) · q ≤ Φ0(x, q)− ε ≤ Φ(x, q)− ε

2

for a.e. x ∈ B0, any q with |q| ≤ R0. This shows that any such Φ belong to Gλ,z,
in addition these elements make up an open neighborhood of Φ0 in the compact–open
topology and consequently in the strict topology. This shows that Gλ,z is open.

�

Proposition 7.5. Given Φ ∈ C(R2n) bounded from below and possessing a λ–discounted
subsolution u in RN with u(z) ≥ uλ(z), there exists M0 such that Φ ∧ M ∈ Gλ,z for
M ≥M0.
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Proof. We have that
λu(x) +Du(x) · q ≤ Φ(x, q)

for a.e. x ∈ B0, any q. Since the left hand–side of the above formula is bounded when
|q| ≤ R0, we find M0 such that

λu(x) +Du(x) · q ≤ Φ(x, q) ∧M for M ≥M0, |q| ≤ R0, a.e. x ∈ B0.

This shows that Φ(x, q)∧M + ε belongs to Gλ,z for any ε. We therefore get the assertion
because Φ(x, q) ∧M + ε strictly converges to Φ(x, q) ∧M as ε goes to 0. �

Proposition 7.6. There exists M0 such that L ∧M ∈ ∂Gλ,z for M ≥M0.

Proof. Since L satisfies the assumptions of Proposition 7.5, we know that L ∧M ∈ Gλ,z
for M greater than or equal to some M0. It is left to show that L ∧M cannot be in the
interior of Gλ,z. In fact, if this is the case, there are a Lipschitz continuous function u,
with u(z) ≥ uλ(z), and ε > 0 such that

L(x, q)− ε ≥ (L(x, q) ∧M)− ε ≥ λu(x) +Du(x) · q
for a.e. x ∈ B0, any |q| ≤ R0. We then deduce from Proposition 7.3 that u is strict
subsolution to (DP) in B0. This implies in view of Proposition 5.2 that u(z) = uλ(z), and
u is subtangent to uλ at z. This is impossible because

L(z, q) ≥ p · q + λu(z) + ε for any p ∈ ∂u(z), q ∈ RN ,

while at least for a p0 ∈ ∂u(z), any q ∈ RN , we must have by the subtangency condition

L(z, q) = p0 · q + λu(z).

�

Lemma 7.7. Let M such that L∧M ∈ Gλ,z, then any nonzero element µ in −NGλ,z(L∧M)

belongs to P, up to a normalization. For any such µ we have

〈µ, L ∧M〉 = λuλ(z).

Proof. We know that L∧M ∈ ∂Gλ,z for M large enough thanks to Proposition 7.6. Since
Gλ,z is a convex set with nonempty interior in force of Proposition 7.4, we deduce from
Proposition C.1 that NGλ,z(L ∧M) contains nonzero elements.

If one of the elements µ of −NGλ,z(L∧M) were not positive, we would find Φ ∈ Cb(R2N),

Φ ≥ 0 with 〈µ,Φ〉 < 0. This implies that L ∧M + Φ belongs to Gz,λ and

〈µ, L ∧M + Φ〉 < 〈µ, L〉,
which is in contrast with −µ belonging to the normal cone at L ∧M . This proves that
µ is a probability measure, up to a normalization. Since Φ ≡ λuλ(z) belongs to Gλ,z, we
get

(38) 〈µ, L ∧M〉 ≤ λuλ(z).

Since
ρ (L ∧M) + (1− ρ)λuλ(z) ∈ Gλ,z for ρ > 1,

we further get
(1− ρ)

(
〈µ, L ∧M〉 − λuλ(z)

)
≤ 0

and consequently
〈µ, L ∧M〉 ≥ λuλ(z).

This inequality, together with (38), completely gives the assertion. �
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Corollary 7.8. Let M0 be such that L ∧M0 ∈ Gλ,z, then

NGλ,z(L ∧M0) ⊃ NGλ,z(L ∧M) for any M > M0.

Moreover
〈µ, L〉 ≤M0 for µ ∈ −NGλ,z(L ∧M) ∩P, M ≥M0.

Proof. Let M > M0. If µ ∈ −NGλ,z(L∧M)∩P then by Lemma 7.7 and the very definition

of normal cone, we have

〈µ, L ∧M〉 = λuλ(z) and 〈µ,Φ〉 ≥ λuλ(z) for Φ ∈ Gλ,z.
This implies that 〈µ, L ∧M0〉 ≥ λuλ(z). On the other side, since L ∧M ≥ L ∧M0, the
opposite inequality holds true as well. We deduce that

〈µ, L ∧M0〉 = λuλ(z),

which in turn implies that µ ∈ −NGλ,z(L∧M0)∩P showing the first part of the assertion.

We claim that
suppµ ⊂ {(x, q) | L(x, q) ≤M0} =: W.

If not, there should be (x0, q0) ∈ suppµ with L(x0, q0) > M0. There thus should exist a
neighborhood U of (x0, q0) with µ(U) > 0 and

M ≥ L(x, q) > M0 for any (x, q) ∈ U and some M > M0,

so that ∫
U

L ∧M dµ =

∫
U

Ldµ >

∫
U

L ∧M0 dµ

and consequently
〈µ, L ∧M〉 > 〈µ, L ∧M0〉

in contrast to what shown above. We finally have

〈µ, L ∧M〉 =

∫
W

Ldµ ≤M0.

�

Proposition 7.9. There is µ ∈ P such that

〈µ,Φ〉 ≥ 〈µ, L〉 = λuλ(z)

for any Φ ∈ C(R2N) bounded from below and admitting a λ–discounted subsolution u with
u(z) ≥ uλ(z).

Proof. We consider an increasing positively diverging sequence Mn with

L ∧Mn ∈ ∂Gλ,z for any n,

and µn ∈ −NGλ,z(L ∧Mn) ∩P. According to Corollary 7.8, we have

〈µ, L〉 ≤M1.

This implies by Lemma 6.3 that µn narrowly converges to some µ ∈ P, up to subsequences.
For any fixed j, we have that

µn ∈ −NGλ,z(L ∧Mj) for n ≥ j

and consequently
λuλ(z) = 〈µn, L ∧Mj〉 for n ≥ j.
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We deduce that
λuλ(z) = lim

n
〈µn, L ∧Mj〉 = 〈µ, L ∧Mj〉

and we get by the monotone convergence theorem, sending j to infinity

〈µ, L〉 = λuλ(z).

If Φ is an element of R2N satisfying the properties in the statement, we have by Proposition
7.5 that

Φ ∧Mn ∈ Gλ,z for n large enough

then
λuλ(z) ≤ lim

j
〈µj,Φ ∧Mn〉 = 〈µ,Φ ∧Mn〉,

which implies
〈µ,Φ〉 ≥ λuλ(z).

This ends the proof. �

Proof of Theorem 7.1. Given Φ, u as indicated in the statement, we have that

Φ + λ (uλ(z)− u(z))

has a subsolution coinciding with uλ at z. We derive from Proposition 7.9 that there
exists µ with

〈µ,Φ〉+ λ (uλ(z)− u(z)) ≥ λuλ(z)

and
〈µ, L〉 = λuλ(z).

This gives the assertion. �

Given z ∈ RN , λ < λz, we call (λ, z)– Mather measure, any measure µ satisfying the
statement of Theorem 7.1. We denote by Mz,λ the set of such measures µ.

The formula (34) can be seen as an analog, to Hamilton-Jacobi equations, of the repre-
sentation of solutions of linear elliptic PDE via Green’s kernel or Poisson integral. In this
regard, for µ ∈Mz,λ one may call the measure λ−1µ a Green–Poisson measure associated
with (λ, z).

8. Mather measures for the ergodic equation

We perform in this section a construction parallel to that of Section 7 to show existence
of Mather measures for the ergodic equation.

The main result is:

Theorem 8.1. There is µ ∈ P such that

〈µ,Φ〉 ≥ 〈µ, L〉 = 0

for any Φ ∈ C(R2N) bounded from below and admitting a subsolution.

We call Mather measure any measure satisfying the statement of Theorem 8.1. We
denote by M the set of Mather measures. In Propositions 9.2 and 9.6 we will actually
show something more, namely that any measure µ ∈M is compactly supported and that
the inequality 〈µ,Φ〉 ≥ 0 holds for any Φ admitting subsolution.

We start by:
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Proposition 8.2. Given a ball B, there exists R > 0 such that if a locally Lipschitz
function u satisfies

(39) Du(x) · q ≤ L(x, q)− ε
for some ε > 0, a.e. x ∈ B, any q with |q| ≤ R, then u is strict subsolution of H[u] = 0
in B.

Proof. We set M = supx∈B,|q|=1 L(x, q). Exploiting (10), we can select R > 1 with

(40) inf
x∈B,|q|>R

L(x, q)

|q|
> M.

If (39) holds true for such an R then

|Du(x)| = Du(x) · Du(x)

|Du(x)|
≤ L

(
x,

Du(x)

|Du(x)|

)
− ε for a.e. x ∈ B,

which shows that |Du(x)| ≤M − ε in B. This in turn implies, in combination with (40)

Du(x) · q ≤ (M − ε) |q| ≤ L(x, q)− ε
for a.e. x ∈ B, any q with |q| > R. This last inequality, together with (39), gives the
assertion. �

We consider the set G of elements Φ ∈ Cb(R2N) such that there exist ε > 0 and a
Lipschitz continuous function u in B0 with

(41) Du(x) · q ≤ Φ(x, q)− ε for a,e, x ∈ B0, |q| ≤ R0,

where B0 is an open ball containing A, and so satisfying Proposition 5.1, and R0 is the
constant provided by Proposition 8.2 in correspondence to B0.

Proposition 8.3. The set G is a convex cone with vertex at 0 open in the strict topology.

Proof. The cone property of G is apparent. Given Φ0 ∈ G satisfying (41), we claim that

{Φ | ‖Φ− Φ0‖∞,K < ε/2} ⊂ G,
where K = B0 × BR. This will prove the assertion because the set in the left hand–side
of the above formula is an open neighborhood of Φ0 with respect to rhe compact–open
topology, and consequently with respect to the strict topology. For φ belonging to it, we
in fact have

Φ(x, q) ≥ Φ0(x, q)− ε

2
for x ∈ B0, q ∈ BR0 ,

then

Φ(x, q)− ε

2
≥ Φ0(x, q)− ε ≥ Du(x) · q for a.e. x ∈ B0, any q ∈ BR.

This shows that Φ ∈ G. �

Arguing as in Proposition 7.5, we also get

Proposition 8.4. Given Φ ∈ C(R2n) bounded from below and possessing a subsolution u
in RN , there exists M0 such that u ∧M ∈ G for M ≥M0.

Proposition 8.5. There exists M0 such that L ∧M ∈ ∂G for M ≥M0.

Proof. By Propositions 4.2 and 8.4, we have that L∧M ∈ G for M suitably large, on the
other hand L ∧M cannot be in G otherwise by Proposition 8.2 H[u] = 0 should admit a
strict subsolution in B0, which is against Proposition 5.1. �
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We derive arguing as in Corollary 7.8

Corollary 8.6. Let M0 be such that L ∧M0 ∈ G, then

NG(L ∧M0) ⊃ NG(L ∧M) for any M > M0.

Moreover
〈µ, L〉 ≤M0 for µ ∈ −NG(L ∧M) ∩P, M ≥M0.

We finally get Theorem 8.1 with the same argument as in Proposition 7.9.

9. Properties of Mather measures

Proposition 9.1. Given z ∈ RN , λ < λz we have

〈µ, λψ +Dψ · q〉 = λψ(z)

for any (λ, z)–Mather measure µ, ψ ∈ C1(RN), constant outside a compact subset.

Proof. We define

Ln(x, q) = λψ(x) +Dψ(x) · q +
1

n
(L(x, q) ∨ 0),

Ln(x, q) = −λψ(x)−Dψ(x) · q +
1

n
(L(x, q) ∨ 0).

It is clear that both Ln(x, q), Ln(x, q) are bounded from below and the functions ±ψ are
λ–discounted subsolution for Ln, Ln, respectively. We then derive from Theorem 7.1 that

〈µ, Ln〉 ≥ λψ(z) and 〈µ, Ln〉 ≥ −λψ(z),

which implies

|〈µ,Dψ · q〉+ λ 〈µ, ψ〉 − λψ(z)| ≤ 1

n
〈µ, (L(x, q) ∨ 0)〉.

Taking into account that 〈µ, L ∨ 0〉 is finite because L ∨ 0 is a compact perturbation of
L, we further deduce sending n to infinity.

〈µ, λψ +Dψ · q〉 = λψ(z).

�

Proposition 9.2. Any µ ∈M is compactly supported. More precisely there exists M > 0
such that satisfying

suppµ ⊂ A×BM for any µ ∈M.

Proof. Let µ be a Mather measure, we first prove that the support of the first marginal of
µ, denoted by µ1, is contained in the Aubry set, which is compact in force of Proposition
4.3. Assume by contradiction that there exists y ∈ supp µ1 \ A. This means that

µ1(U) = µ(U × RN) > 0 for any neighborhood U of y.

By Proposition A.2 there exists ε > 0, a neighborhood U0 of y in RN , and a locally
Lipschitz continuous function v : RN → R with

Dv(x) · q ≤ L(x, q) a.e. in RN ,(42)

Dv(x) · q ≤ L(x, q)− ε a.e. in U0.(43)

We define
L(x, q) = L(x, q)− ρ(x),
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where ρ is a continuous nonnegative function supported in U0 with max ρ = ε. We derive
from (42), (43) that L admits v as subsolution and is in addition bounded from below.
On the other side, we get

〈µ, L〉 = 〈µ, L〉 −
∫
U0

ρ dµ1 < 0,

in contrast with the definition of Mather measure. We have therefore found that the
projection of supp µ with respect to the first component is contained in A. Let B a ball
in RN containing A. We set

(44) R = sup{|p| | H(x, p) ≤ 0, x ∈ B},
then R is a Lipschitz constant in B for any subsolution to H[u] = 0. According to (10),
we can further choose a positive constant M with

L(x, q) > R |q| for any x ∈ B, |q| > M − 1.

We claim that

supp µ ⊂ A×BM .

In fact, assume for purposes of contradiction that there is (y0, q0) ∈ supp µ with y0 ∈ A,
|q0| ≥M . We take a neighborhood W of (y0, q0) in RN×RN with W ⊂ B×{|q| > M−1}
such that

(45) L(x, q) > R |q|+ ε for any (x, q) ∈ W , some ε > 0.

We proceed defining

L̃(x, q) = L(x, q)− ρ̃(x, q),

where ρ̃ is a continuous nonnegative function supported in W with max ρ̃ = ε. Due to

(44), (45), we see that any subsolution for L is still a subsolution for L̃, and L̃ is bounded
from below. With the same computations as in the first part of the proof, we find that

〈µ, L̃〉 < 0,

which is impossible.
�

Looking back to the proof of the previous proposition, we realize that the argument
actually shows a more general property.

Corollary 9.3. Let µ ∈ P such that 〈µ, L〉 = 0 and 〈µ,Φ〉 ≥ 0 for all Φ admitting
subsolutions such that

(46) Φ(x, q) = L(x, q) in (RN × RN) \K, with K ⊂ R2N compact.

Then µ is compactly supported.

Corollary 9.4. The set M is a nonempty compact subset of the space of Radon measures
endowed with the narrow topology.

Proof. This is a consequence of all Mather measure being supported in the same compact,
according to Proposition 9.2. The same holds true for any narrow limit µ of sequences µn
in M, therefore

〈µn,Φ〉 → 〈µ,Φ〉 for any Φ ∈ C(R2N).

�
25



We say that a measure µ is closed if

〈µ,Du · q〉 = 0 for any C1 function u.

We say in addition that it is locally closed if the above equality holds true just for C1

functions with compact support. For a compactly supported measure the properties of
being closed or locally closed are equivalent.

Proposition 9.5. All the measures µ ∈M are closed.

Proof. Given µ ∈M, we consider a C1 function ψ on RN , and set for ε > 0

Lε(x, q) = Dψ(x) · q + ε (L(x, q) ∨ 0), Lε(x, q) = −Dψ(x) · q + ε (L(x, q) ∨ 0).

The argument goes along the same lines as in Proposition 9.1. The functions ±ψ are
subsolutions corresponding to Lε, Lε, so that

(47) −ε〈µ, (L(x, q) ∨ 0)〉 ≤ 〈µ,Dψ · q〉 ≤ ε〈µ, (L(x, q) ∨ 0)〉.
Since 〈µ, L ∨ 0〉 is finite, and ε is arbitrary, we derive from (47)

〈µ,Dψ · q〉 = 0.

�

We finally get a characterization of M.

Proposition 9.6. The following conditions are equivalent:

(i) µ ∈M,
(ii) µ is locally closed and 〈µ, L〉 = 0,

(iii) 〈µ, L〉 = 0 and any Φ admitting subsolution is integrable with respect to µ with
〈µ,Φ〉 ≥ 0.

Proof. The implication (i)⇒ (ii) has been already proved in Proposition 9.5. We proceed
proving (ii)⇒ (iii). Let µ be a measure satisfying (ii).

We take Φ admitting subsolution and coinciding with L outside a compact subset of
R2N , namely satisfying (46), then the critical value of Φ is less than or equal 0, and the
corresponding Hamiltonian HΦ satisfies (A1)–(A3). We can therefore apply Proposition
2.1 to HΦ and find that there is a compactly supported subsolution for Φ, say u.

Given ε > 0, we can regularize u obtaining a compactly supported smooth function u
which is subsolution for Φ + ε. Exploiting that µ is locally closed, we get

〈µ,Φ + ε〉 ≥ 〈µ,Du · q〉 = 0,

and the positive quantity ε being arbitrary

〈µ,Φ〉 ≥ 0.

This implies by Corollary 9.3 that µ is compactly supported, and consequently any func-
tion of C(R2N) is integrable with respect to µ. We proceed proving that 〈µ,Φ〉 ≥ 0 for any
Φ admitting subsolution. We denote by B an open ball of RN such that suppµ ⊂ B×RN .
Taken ε > 0 and Φ admitting a subsolution u, we can regularize u in some open ball con-
taining B obtaining a function ū of class C1 in B such that

Φ(x, q) + ε ≥ Dū(x) · q for (x, q) ∈ B × RN .

Exploiting that suppµ ⊂ B × RN and that µ is closed, we therefore get

〈µ,Φ + ε〉 ≥ 〈µ,Du · q〉 = 0.
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This proves the claim since ε has been arbitrarily chosen. The implication (iii) ⇒ (i) is
trivial. �

10. Asymptotic results

The first asymptotic result is:

Theorem 10.1. Given z ∈ RN and an infinitesimal sequence λj < λz, we consider a
sequence µj ∈ Mλj ,z, then µj narrowly converges, up to subsequences, to a probability
measure µ ∈M.

Proof. Since the sequence 〈µj, L〉 = λj uλj(z) is bounded by Proposition 3.1, Lemma 3.4,
we get that µj narrowly converges to some measure µ, up to subsequences, in force of
Lemma 6.3. Let ψ ∈ C1

c , then by Proposition 9.1

(48) 〈µj, λj ψ +Dψ · q〉 = λj ψ(z).

Since ψ is compactly supported, then

〈µj, ψ〉 → 〈µ, ψ〉 as j → +∞
and by Lemma 6.4

〈µj, Dψ · q〉 → 〈µ,Dψ · q〉 as j → +∞.

Sending j to infinity, we thus derive from (48) that 〈µ,Dψ · q〉 = 0, or in other terms
that µ is locally closed. We further deduce via regularization of a compactly supported
subsolution for L, which does exist by Proposition 2.1

(49) 〈µ, L〉 ≥ 0.

On the other side, we have by Lemma 6.2

0 = lim
j
λj uλj(z) = lim

j
〈µj, L〉 ≥ 〈µ, L〉,

so that
〈µ, L〉 = 0.

This concludes the proof in force of the characterization of Mather measures provided in
Proposition 9.6. �

We define

(50) w(x) = max{v(x) | v subsolution to (EP) with 〈µ, v〉 ≤ 0 ∀µ ∈M.}

Proposition 10.2. The function w defined above is a weak KAM solution.

Proof. As maximum of subsolutions, w is a subsolution to (EP). Since all the Mather
measures are supported in A×RN , then w is the maximum of subsolutions with a given
trace on A. This implies the assertion by Lemma 4.5. �

We give an alternative formula for w using the Peierls barrier.

Theorem 10.3. The function w defined in (50) coincide with the function on RN given
by

(51) x 7→ min{〈µ, P0(·, x)〉 | µ ∈M}.
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Proof. We denote by u the function defined in (51). We know that the function x 7→
P0(y, x) is a weak KAM solution for any y. By the convexity of H(x, p) in the variables
p, we deduce that the function x 7→ 〈µ, P0(·, x)〉 is a subsolution of (EP) and the same
holds true for u.

Next, we show that w ≤ u in RN . Since w is a subsolution o (EP), we have

w(x)− w(y) ≤ P0(y, x) for all x, y ∈ RN .

Integration of both sides of the above in y with respect to µ ∈M yields

w(x) ≤ 〈µ,w〉+ 〈µ, P0(·, x)〉 ≤ 〈µ, P0(·, x)〉.
This shows that u ≤ w in RN .

Since −S0(·, z) is a subsolution of (EP), the function

y 7→ −P0(x, y) = max
z∈A

(−S0(x, z)− S0(z, y))

is a subsolution as well. Thus, the function y 7→ −P0(x, y)+u(x) is a subsolution of (EP)
for all x ∈ RN . Integrating this function with respect to µ ∈M, we get

〈µ,−P0(·, x) + u(x)〉 = −〈µ, P0(·, x)〉+ inf
ν∈M
〈ν, P0(·, x)〉 ≤ 0.

The definition of w in (50) guarantees that

w(y) ≥ −P0(y, x) + u(x) for all x, y ∈ RN .

In particular, we have in view of Lemma A.3

w(z) ≥ u(z) for all z ∈ A.
Since w is a weak KAM solution and u a subsolution, the inequality above ensures that
u ≤ w in RN . Thus, we conclude that u = w in RN . �

We proceed proving the main result:

Theorem 10.4. The functions uλ locally uniformly converge to w defined as in (50)/ (51).

A lemma is preliminary:

Lemma 10.5. We have that

〈µ, uλ〉 ≤ 0 for any λ > 0, any Mather measure µ.

Proof. The function uλ is a subsolution for L− λuλ. We then get by Proposition 9.6

0 ≤ 〈µ, L− λuλ〉 = −λ 〈µ, uλ〉.
showing the assertion. �

Proof of Theorem 10.4. Let v be such that uλj → v for some sequence λj converging
to 0. We fix z ∈ RN and assume λj < λz. We denote by µj a sequence of (λj, z)–
Mather measures. Owing to Theorem 10.1, the µj converge, up to subsequences, to some
probability measure µ ∈M.

We apply Proposition 2.1 to the function w defined in (50) with the compact subset
K = A ∪ {z}. We obtain in this way a bounded subsolution w̄ to H[u] = 0, coinciding
with w on A ∪ {z}, which is at the same time a λj–discounted subsolution for L + λj w̄.
Since L+ λj w̄ is bounded from below, we get by Theorem 7.1

〈µj, L+ λj w̄〉 ≥ λj w(z)
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and consequently

(52) uλj(z) + 〈µj, w̄〉 ≥ w(z).

The function w̄ is a critical subsolution agreing with w on the Aubry set, and so w̄ ≤ w
on RN . We deduce from the definition of w in (50)

〈µ, w̄〉 ≤ 〈µ,w〉 ≤ 0,

and we get passing to the limit in (52) as j → +∞
(53) v(z) ≥ w(z).

On the other side, given any ν ∈M, we have by Lemma 10.5

〈ν, uλj〉 ≤ 0

and, being ν compactly supported

〈ν, uλj〉 −→ 〈ν, v〉,
which gives

〈ν, v〉 ≤ 0.

This last relation and (53) imply, by the maximality of w, w(z) = v(z). This concludes
the proof since z has been chosen arbitrarily. �

11. Mather set

The (projected) Mather set M is defined as the image by the projection ((x, q) 7→ x)
of the set ⋃

µ∈M

supp µ .

The main result of the section is:

Theorem 11.1. Let u0 be a weak KAM solution of (EP). Then

u0(x) = max{v(x) | v weak KAM solution with 〈µ,w − u0〉 ≤ 0 ∀µ ∈M}.
Note that by Lemma 4.5 the right hand–side of the above formula is equal to

max{v(x) | v subsolution to (EP) with 〈µ,w − u0〉 ≤ 0 ∀µ ∈M}.
By the very definition of M, we have∫

R2N

ψ(x) dµ =

∫
M×RN

ψ(x) dµ for ψ ∈ C(RN), µ ∈M.

Accordingly, Theorem 11.1 readily yields the following proposition.

Corollary 11.2. Let v, w be weak KAM solutions of (EP). Assume that v ≤ w in M,
then v ≤ w in RN .

Remark by Proposition 9.2 that M ⊂ A. The corollary above claims that M is a
uniqueness set of (EP), that is, if v, w are two weak KAM solutions of (EP) and v = w
in M, then v = w in RN . see [17], and [13], [21] for related results.

In our proof, we consider the following variation of the discount problem

(54) λv +H(x,Dv(x)) = λu0(x) in RN ,

where λ is a given positive constant and u0 is a weak KAM solution as in Theorem 11.1.
Here it is obvious that u0 is a solution of (54).
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Lemma 11.3. Let u0 be a weak KAM solution. Then, u0 is a maximal subsolution of
(54).

Proof. Assume by contradiction that there is an usc subsolution v of (54) with v(x) >
u0(x) at some point x. Since the maximum of two subsolutions is still a subsolution, we
can assume in addition that v ≥ u0 in RN . Therefore

H(x,Dv) ≤ λ (u0(x)− v(x)) ≤ 0,

so that v is a subsolution to (EP) and is locally Lipschitz–continuous. By Lemma A.2
we further derive that v = u0 on A. Since u0 is a weak KAM solution, this implies that
u0 ≥ v in RN , which is contradictory. �

Proof of Theorem 11.1. By Proposition 2.1 there exists a subsolution ū of (EP) coinciding
with u on A and constant at infinity. By regularization we get for any ε > 0 a sequence
ūε of C1 functions satisfying

|ūε(x)− ū(x)| < ε for x ∈ RN ,

|ūε(x)− u0(x)| < ε for x ∈ A.

Taking into account that u0 is a weak KAM solution we derive from Lemma 4.5

ūε(x) ≤ ū(x) + ε ≤ u0(x) + ε for x ∈ RN .

We consider the equations

λu+H(x,Du) = λ ūε,(55)

λu+H(x,Du−Dūε(x)) = 0.(56)

It is easy to check that u is a subsolution to (55) if and only if u− ūε is a subsolution of
(56). Since u0 + ε is the maximal solution of

λu+H(x,Du) = λ (u0 + ε)

by Lemma 11.3 and u0 + ε ≥ ūε in RN , we deduce that

u0 + ε ≥ u for any subsolution to (55).

We define the Lagrangian

Lε(x, q) = L(x, q) +Dūε(x) · q
corresponding to the Hamiltonian H(x,Du − Dūε(x)). A function u is subsolution to
H[u] = a, for any a ∈ R, if and only if u − ūε is subsolution to H(x,Du + Dūε(x)) = a,
this implies that L and Lε has both 0 as critical value. In addition, Mather measures being
closed, we have that M = M(Lε), where M(Lε) indicates the Mather measures associated
with Lε. By applying Theorem 10.4 to Lε, we see that the maximal subsolutions of (56)
converge to

max{u subsolution for Lε with 〈µ, u〉 ≤ 0 ∀µ ∈M}
= max{u− ūε | u subsolution for L with 〈µ, u〉 ≤ 〈µ, ūε〉 ∀µ ∈M}.

We derive that

u0(x) + ε ≥ max{u(x) subsolution for L with 〈µ, u〉 ≤ 〈µ, ūε〉 ∀µ ∈M}
≥ max{u(x) subsolution for L with 〈µ, u〉 ≤ 〈µ, u0〉 ∀µ ∈M} − ε
≥ u0(x)− 2 ε.

We get the assertion sending ε to 0.
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Appendix A. Weak KAM facts

We define an intrinsic (semi)distance S0(·, ·) in RN related to the ergodic equation (see
[13,17] and also [14]) via

S0(x, y) = sup{u(y)− u(x) | u subsolution of (EP)} for x, y ∈ RN .

Since the family of subsolution to (EP) vanishing at some point y ∈ RN , is locally equi-
Lipschitz continuous and, hence, locally uniformly bounded in RN , the function x 7→
S0(x, y) is well-defined as a locally Lipschitz continuous function in RN .

Moreover, because of the stability of the viscosity properties under locally uniform
convergence, the function x 7→ S0(x, y) is a subsolution of (EP) for any y ∈ RN . It is
clear that S0(x, x) = 0 for all x ∈ RN and that S0(x, y) ≤ S0(x, z) + S0(z, y) for all
x, y, z ∈ RN . In view of the Perron method, for any y ∈ RN , the function x 7→ S0(x, y) is
a solution of (EP) in RN \ {y}.

Due to the convexity of H in p, it turns out that S0 is the geodesic distance related to
a length functional of the curves in RN . We define

σ0(x, q) = max{p · q | H(x, p) ≤ 0} for (x, q) ∈ RN × RN

and, given a (Lipschitz continuous) curve ξ : [0, 1]→ RN , we set

`0(ξ) =

∫ 1

0

σ0(ξ, ξ̇) dt.

Note that the above integral is invariant for orientation preserving change of parameter.
We have

S0(y, x) = inf{`0(ξ) | ξ : [0, 1]→ RN with ξ(0) = y, ξ(1) = x}

= inf

{∫ T

0

L(ζ, ζ̇) dt | T > 0, ζ : [0, T ]→ RN with ζ(0) = y, ζ(T ) = x

}
.

We define the Aubry set A as

A = {y ∈ RN | S0(y, ·) is a solution to H = 0}.

Proposition A.1. An element y ∈ A if and only there is a sequence ξn of cycles based
on y with

inf
n
`(ξn) > 0, lim

n
`0(ξn) = 0.

Proof. One can argue as in [14, Lemma Proposition 5.4 – Lemma 5.5].
�

Proposition A.2. Given x ∈ RN , if there is a subsolution of (EP) which is strict in
some neighborhood of x then x 6∈ A, conversely if x 6∈ A there exists a subsolution of
(EP) which is strict in some neighborhood of x.

Proof. If such a subsolution u does exist for x ∈ A, we find by maximality properties
of S0(·, x), that the function u(x) + S0(x, ·) is supertangent to u at x. Being S0(·, x)
solution, there is p0 ∈ ∂u(x) (the generalized gradient of u at x), with H(x, p0) ≥ 0, on
the other side, being u strict subsolution, any p ∈ ∂u(x) satisfies H(x, p) < 0, which is
contradictory.
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Conversely, if x 6∈ A, then S0(x, ·) is not a solution to (EP) and there exists consequently
a strict subtangent to S0(x, ·) at x with H(x,Dψ(x)) < 0, then the function

min{S0(x, ·), ψ + a}
is a subsolution of (EP) locally strict around x, for a suitable choice of a > 0. �

The function P0 in R2N given by

P0(x, y) = min
z∈A

[S0(x, z) + S0(z, y)] for x, y ∈ RN

is called the Peierls barrier. See [7, Proposition 3.7.2] and [1, 5, 10, 13].

Lemma A.3. For any z ∈ RN , P0(z, z) = 0 if and only if z ∈ A.

Proof. First of all, we examine some properties of the function P0. Since

0 = S0(x, x) ≤ S0(x, y) + S0(y, x) for all x, y ∈ RN ,

we find that P0(x, x) ≥ 0 for all x ∈ RN . Note next that if z ∈ A, then the function
x 7→ S0(z, x) is a weak KAM solution of (EP). Hence, the function x 7→ P0(y, x) is a
weak KAM solution of (EP) as well, for any y ∈ RN . We note by the triangle inequality
for S0 that for any x, y ∈ RN ,

S0(x, y) ≤ min
z∈A

[S0(x, z) + S0(z, y)] = P0(x, y).

Now, we assume that z ∈ A. We have

0 ≤ P0(z, z) ≤ S0(z, z) + S0(z, z) = 0.

Hence, P0(z, z) = 0.
Next, assume that S0(z, z) = 0. We need to show that the function x 7→ S0(z, x) is

a solution of (EP). In fact, since the function x 7→ S0(z, x) is a solution of (EP) in
RN \ {z}, we only need to show that H(z,Dψ(z)) ≥ 0 for all C1 subtangent ψ to S0(z, ·)
at z. Indeed, such a function is also subtangent to P0(z, ·) at z, and the sought inequality
comes from P0(z, ·) being solution to (EP). This completes the proof. �

Appendix B. Strict topology

We denote by C0(R2N), Cc(R2N) the space of compactly supported and vanishing at
infinity continuous functions, respectively. We endow the space of continuous bounded
functions in R2N , denoted by Cb(R2N), with the strict topology. It is is the locally convex
Hausdorff topology defined by the family of seminorms

{‖ · ‖Ψ | Ψ ∈ C0(R2N)},
where

‖Φ‖Ψ = ‖Φ Ψ‖∞ for any Ψ ∈ Cb(R2N).

We recall that the compact open topology is instead given by the seminorms

{‖ · ‖Ψ | Ψ ∈ Cc(R2N)}.
It induces the local uniform convergence and a base of neighborhoods at any given Φ0 ∈
Cb(R2N) is given by

{Φ | ‖Φ− Φ0‖∞,K < ε} with K compact subset of RN , ε > 0.

The strict topology is stronger than the compact–open topology since it has a larger class
of defining seminorms. Any open set for the compact–open topology is consequently an
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open set for the strict one. Further, the strict topology is weaker than the topology
induced by ‖ · ‖∞. Also recall that the completion of Cc(R2N) with respect to the norm
topology is C0(R2N), while it is Cb(R2N) in the strict topology.

The interest of introducing the strict topology is that we get in this frame a nice
generalization of Riesz representation theorem, namely the topological dual of Cb(R2N)
is the space of signed Radon measures with bounded variation, the normalized positive
elements are then Radon probability measures, see [4]. The corresponding weak star
topology on the dual, namely the weakest topology for which

µ 7→
∫

Φ dµ

is continuous for any Φ ∈ Cb(R2N) is called the narrow topology. Accordingly a sequence
of measures µn narrow converges to some µ if∫

Φ dµn →
∫

Φ dµ for any Φ ∈ Cb(R2N).

The matter is slippery because the bounded signed Radon measures make up the topolog-
ical dual of C0(R2N) with the norm topology as well, but the induced weak star topology,
the so–called vague topology, is strictly weaker than the narrow topology. Regarding the
dual of Cb(R2N) with the norm topology, it is given by the bounded signed measures on
the Stone–Cech compactification of R2N .

Appendix C. Separation theorem

Let X be a general locally convex Hausdorff space, we indicate by X∗ its topological
dual and by (·, ·) the pairing between X∗ and X. Given a closed convex subset E and
x ∈ ∂E, we denote by NE(x) the normal cone to E at X, defined as

NE(x) = {p ∈ X∗ | (p, y − x) ≤ 0 for any y ∈ E}.

Note that in contrast to what happens for finite dimensional spaces, in the infinite dimen-
sional case NE(x) can reduce to {0}, see for instance [6]. However we have

Proposition C.1. Let E be a closed convex subset of X with nonempty interior, then
NE(x) contains nonzero elements for any x ∈ ∂E.

This is actually a simple consequence of the hyperplane separation theorem in locally
convex Hausdorff spaces, see [22], which can be stated as follows:

Theorem C.2. Ler E be a convex subset of X with nonempty interior and y 6∈ E. There
exists 0 6= p ∈ X∗ with

(p, y) ≥ (p, x) for any x ∈ E.

To get Proposition C.1 it is enough to use the property that the interior of any convex
set is convex, and to apply the hyperplane separation theorem to the interior of E and to
any point in ∂E.
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